National Library of Energy BETA

Sample records for neutron source project

  1. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  2. Advanced Neutron Source (ANS) Project progress report FY 1992

    SciTech Connect (OSTI)

    Campbell, J.H. [ed.; Selby, D.L.; Harrington

    1993-01-01

    This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

  3. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  4. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect (OSTI)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  5. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  6. Neutron producing target for accelerator based neutron source for

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    247 Neutron producing target for accelerator based neutron source for NCT V. Belov1 , S. Fadeev1, Russia Summary Neutron producing targets for novel accelerator based neutron source [1, 2] are presented Neutron producing target is one of the main elements of proposed accelerator based facility for neutron

  7. An Accelerator Neutron Source for BNCT

    SciTech Connect (OSTI)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  8. Research on fusion neutron sources

    SciTech Connect (OSTI)

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  9. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  10. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  11. Neutron Sources for Standard-Based Testing

    SciTech Connect (OSTI)

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  12. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  13. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this site SandiaSpallation Neutron

  14. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  15. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron...

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    E-Print Network [OSTI]

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  17. Aspects of a high intensity neutron source

    E-Print Network [OSTI]

    Chapman, Peter H. (Peter Henry)

    2010-01-01

    A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

  18. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Y. Arimoto; N. Higashi; Y. Igarashi; Y. Iwashita; T. Ino; R. Katayama; R. Kitahara; M. Kitaguchi; H. Matsumura; K. Mishima; H. Oide; H. Otono; R. Sakakibara; T. Shima; H. M. Shimizu; T. Sugino; N. Sumi; H. Sumino; K. Taketani; G. Tanaka; M. Tanaka; K. Tauchi; A. Toyoda; T. Yamada; S. Yamashita; H. Yokoyama; T. Yoshioka

    2015-09-11

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  19. SNS | Spallation Neutron Source | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located...

  20. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  1. A neutron producing target for BINP accelerator-based neutron source B. Bayanova

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    A neutron producing target for BINP accelerator-based neutron source B. Bayanova , E. Kashaeva b l e i n f o Keywords: Target Lithium Neutron capture therapy Epithermal neutrons a b s t r a c t An innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute

  2. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  3. Supernova neutrino detection at spallation neutron sources

    E-Print Network [OSTI]

    Huang, Ming-Yang; Young, Bing-Lin

    2015-01-01

    With considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given.

  4. neutron density. The neutron density (nn) of the source was modeled by solving the simul-

    E-Print Network [OSTI]

    West, Stuart

    neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re

  5. Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources

    SciTech Connect (OSTI)

    Tang, V; Morse, J; Meyer, G; Falabella, S; Guethlein, G; Kerr, P; Park, H G; Rusnak, B; Sampayan, S; Schmid, G; Spadaccini, C; Wang, L

    2008-08-08

    Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled [1-4]. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

  6. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    SciTech Connect (OSTI)

    Rothrock, Benjamin G [ORNL] [ORNL; Farrar, Mike B [ORNL] [ORNL

    2009-01-01

    This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  7. NEUTRON PRODUCTION BY NEUTRAL BEAM SOURCES

    E-Print Network [OSTI]

    Berkner, K.H.

    2010-01-01

    HORSE Code—A Hultigroup Neutron and Gamma-Say Honte CarloR. Smith, "A Tantalus Fast Neutron Integrator," UCRL-17051.FiS- 9 Neutron dose during 3 months of typical TSUI

  8. Novel neutron focusing mirrors for compact neutron sources

    E-Print Network [OSTI]

    Gubarev, M. V.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

  9. Nuclear Physics: The Ultracold Neutron Source Kippen, Karen E...

    Office of Scientific and Technical Information (OSTI)

    Physics: The Ultracold Neutron Source Kippen, Karen E. Los Alamos National Laboratory Los Alamos National Laboratory; Clayton, Steven Los Alamos National Laboratory Los...

  10. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  11. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  12. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect (OSTI)

    Stout, Daniel S [ORNL] [ORNL; Assadi, Saeed [ORNL] [ORNL; Campisi, Isidoro E [ORNL] [ORNL; Casagrande, Fabio [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; DeVan, Bill [ORNL] [ORNL; Hardek, Thomas W [ORNL] [ORNL; Henderson, Stuart D [ORNL] [ORNL; Howell, Matthew P [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Stone Jr, William C [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Williams, Derrick C [ORNL] [ORNL; Wright, Paul Alan [ORNL] [ORNL

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  13. Compact neutron source development at LBNL

    E-Print Network [OSTI]

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-01-01

    used for lead and polyethylene shielding for the secondaryinside the lead/polyethylene shielding. The neutron yield

  14. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  15. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect (OSTI)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial reencapsulators domestically and internationally. Sealed {sup 252}Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of {sup 252}Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations.

  16. Measurement of Neutron Background at the Pyhasalmi mine for CUPP Project, Finland

    E-Print Network [OSTI]

    J. N. Abdurashitov; V. N. Gavrin; V. L. Matushko; A. A. Shikhin; V. E. Yants; J. Peltoniemi; T. Keranen

    2006-07-20

    A natural neutron flux is one of significant kind of background in high-sensitive underground experiments. Therefore, when scheduling a delicate underground measurements one needs to measure neutron background. Deep underground the most significant source of neutrons are the U-Th natural radioactive chains giving a fission spectrum with the temperature of 2-3 MeV. Another source is the U-Th alpha-reactions on light nuclei of mine rock giving neutrons with different spectra in the 1-15 MeV energy region. Normal basalt mine rocks contain 1 ppm g/g of U-238 and less. Deep underground those rocks produce natural neutron fluxes of 10^{-7} - 10^{-6} cm^{-2}s^{-1} above 1 MeV. To measure such a background one needs a special techniques. In the Institute for Nuclear Research, Moscow, the neutron spectrometer was developed and built which is sensitive to such a low neutron fluxes. At the end of 2001 the collection of neutron data at the Pyhasalmi mine was started for the CUPP project. During 2002 the background and rough energy spectra of neutron at underground levels 410, 660, 990 and 1410 m were measured. The result of the measurement of the neutron background at different levels of the Pyhasalmi mine is presented and discussed. Data analysis is performed in different energy ranges from thermal neutrons up to 25 MeV and above.

  17. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  18. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  19. Slower, colder, longer : prospects for a very cold neutron source.

    SciTech Connect (OSTI)

    Micklich, B. J.; Carpenter, J. M.; Intense Pulsed Neutron Source

    2007-01-01

    The motivation for our study is to establish the prospects for a neutron source providing intense pulsed beams with spectra as cold as is realistic. The scientific motivation is to serve applications in nanoscience, biology and technology.

  20. Design and Demonstration of a Quasi-monoenergetic Neutron Source

    SciTech Connect (OSTI)

    Joshi, T.; Sangiorgio, Samuele; Mozin, Vladimir V.; Norman, E. B.; Sorensen, Peter F.; Foxe, Michael P.; Bench, G.; Bernstein, A.

    2014-03-05

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the 7Li(p,n)7Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative lters such as vanadium and manganese are also explored and the possibility of studying the response of di*erent materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  1. Theory and Analysis of the Feynman-Alpha Method for Deterministically and Randomly Pulsed Neutron Sources

    E-Print Network [OSTI]

    Pázsit, Imre

    planned accelerator-driven subcritical systems, as well as in some recent related experiments, the neutron difference between an ADS and a traditional subcritical system with a source will be that the accelerator-driven in the European Community­supported project MUSE. I. INTRODUCTION Accelerator-driven subcritical reactors ~ADS

  2. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  3. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    COHERENT Collaboration; D. Akimov; P. An; C. Awe; P. S. Barbeau; P. Barton; B. Becker; V. Below; A. Bolozdynya; A. Burenkov; B. Cabrera-Palmer; J. I. Collar; R. J. Cooper; R. L. Cooper; C. Cuesta; D. Dean; J. Detwiler; Y. Efremenko; S. R. Elliott; N. Fields; W. Fox; A. Galindo-Uribarri; M. Green; M. Heath; S. Hedges; N. Herman; D. Hornback; E. B. Iverson; L. Kaufman; S. R. Klein; A. Khromov; A. Konovalev; A. Kumpan; C. Leadbetter; L. Li; W. Lu; A. Melikyan; D. Markoff; K. Miller; M. Middlebrook; P. Mueller; P. Naumov; J. Newby; D. Parno; S. Penttila; G. Perumpilly; D. Radford; H. Ray; J. Raybern; D. Reyna; G. C. Rich; D. Rimal; D. Rudik; K. Scholberg; B. Scholz; W. M. Snow; A. Sosnovchev; A. Shakirov; S. Suchyta; B. Suh; R. Tayloe; R. T. Thornton; A. Tolstukhin; K. Vetter; C. H. Yu

    2015-09-29

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  4. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10²more »MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  5. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Anderson, I. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carpenter, J. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Festa, G. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Gorini, G. [Universita' degli Studi di Milano - Bicocca, Milano (Italy); Loong, C. -K. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy); Senesi, R. [Università degli studi di Roma Tor Vergata Centre NAST, Rome (Italy)

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10?? to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  6. The early development of neutron diffraction: Science in the wings of the Manhattan Project

    SciTech Connect (OSTI)

    Mason, Thom [ORNL] [ORNL; Gawne, Timothy J [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Nestor, Margaret Boone {Bonnie} [ORNL; Carpenter, John M [ORNL] [ORNL

    2012-01-01

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.

  7. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    SciTech Connect (OSTI)

    Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-02-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

  8. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    Permanent-Magnet Mi- crowave Ion Source for a Compact High-Yield Neutron Generator,Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generatorgenerator. Microwave ion sources, however, A permanent-magnet

  9. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  10. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  11. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  12. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  13. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

    E-Print Network [OSTI]

    Wu, Ying

    2010-01-01

    compact RF-driven neutron generator Los Alamos NationalSource for a Neutron Generator Used For Associated Particleprototype compact neutron generator for associated particle

  14. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    E-Print Network [OSTI]

    M. Lantz; D. Gorelov; A. Jokinen; V. S. Kolhinen; A. Mattera; H. Penttilä; S. Pomp; V. Rakopoulos; S. Rinta-Antila; A. Solders

    2013-04-09

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.

  15. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  16. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect (OSTI)

    Milanese, M.; Moroso, R.; Barbaglia, M.; Universidad del Centro de la Provincia de Buenos Aires , Pinto 399, Tandil 7000, Buenos Aires ; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  17. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    permanent-magnet microwave ion source for the high-yield neutron generator.Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron GeneratorPermanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator ?

  18. The early development of neutron diffraction: science in the wings of the Manhattan Project

    SciTech Connect (OSTI)

    Mason, T. E., E-mail: masont@ornl.gov; Gawne, T. J.; Nagler, S. E.; Nestor, M. B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Carpenter, J. M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-01-01

    Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.

  19. Manhattan Project: Sources and Notes

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle)SciTechNorris Bradbury,Cubes of1945Glenn T.SOURCES

  20. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOE Patents [OSTI]

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  1. Performance of a Clad Tungsten Rod Spallation Neutron Source Target

    SciTech Connect (OSTI)

    Sommer, Walter F. [Los Alamos National Laboratory (United States); Maloy, Stuart A. [Los Alamos National Laboratory (United States); Louthan, McIntyre R. [Savannah River National Laboratory (United States); Willcutt, Gordon J. [Los Alamos National Laboratory (United States); Ferguson, Phillip D. [Oak Ridge National Laboratory (United States); James, Michael R. [Los Alamos National Laboratory (United States)

    2005-09-15

    Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of {approx}4 x 10{sup 21} p/cm{sup 2}. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm{sup 3}. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271 deg. C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.

  2. $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

    E-Print Network [OSTI]

    Gallino, R; Husti, L; Käppeler, F; Cristallo, S; Straniero, O

    2006-01-01

    $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

  3. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  4. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect (OSTI)

    Lisin, V. A.; Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 ; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  5. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator O. Waldmanna-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable with an optimized magnetic field. Keywords: Neutron generator, Microwave ion source, Active interroga- tion PACS: 29

  6. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  7. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  8. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect (OSTI)

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

  9. SPALLATION NEUTRON SOURCE RING-DESIGN AND CONSTRUCTION SUMMARY.

    SciTech Connect (OSTI)

    WEI,J.

    2005-05-16

    After six years, the delivery of components for the Spallation Neutron Source (SNS) accumulator ring (AR) and the transport lines was completed in Spring 2005. Designed to deliver 1.5 MW beam power (1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures were implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the design, R&D, and construction of the ring and transport systems.

  10. A compact neutron generator using a field ionization source

    SciTech Connect (OSTI)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2011-10-31

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  11. A compact neutron generator using a field ionization source

    E-Print Network [OSTI]

    Persaud, Arun

    2012-01-01

    Handbook of Fast Neutron Generators Volume I (CRC Press,A compact neutron generator using a ?eld ionization sourcewell logging with neutron generators. 2 Due to the harsh en-

  12. Demonstration of a solid deuterium source of ultra-cold neutrons

    E-Print Network [OSTI]

    A. Saunders; J. M. Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. E. Hill; M. Hino; S. Hoedl; G. E. Hogan; T. M. Ito; K. W. Jones; T. Kawai; K. Kirch; S. K. Lamoreaux; C. -Y. Liu; M. Makela; L. J. Marek; J. W. Martin; C. L. Morris; R. N. Mortensen; A. Pichlmaier; S. J. Seestrom; A. Serebrov; D. Smith; W. Teasdale; B. Tipton; R. B. Vogelaar; A. R. Young; J. Yuan

    2003-12-18

    Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with material guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.

  13. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  14. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect (OSTI)

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  15. Experimental and numerical characterization of the neutron field produced in the n@BTF Frascati photo-neutron source

    E-Print Network [OSTI]

    Bedogni, R.; Buonomo, B.; Esposito, A.; Mazzitelli, G.; Foggetta, L.; Gomez Ros. J.M.; 10.1016/j.nima.2011.08.032

    2011-01-01

    A photo-neutron irradiation facility is going to be established at the Frascati National Laboratories of INFN on the base of the successful results of the n@BTF experiment. The photoneutron source is obtained by an electron or positron pulsed beam, tunable in energy, current and in time structure, impinging on an optimized tungsten target located in a polyethylene-lead shielding assembly. The resulting neutron field, through selectable collimated apertures at different angles, is released into a 100 m2 irradiation room. The neutron beam, characterized by an evaporation spectrum peaked at about 1 MeV, can be used in nuclear physics, calibration of neutron detectors, material

  16. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  17. Recovery of {sup 241}Am/Be neutron sources, Wooster, Ohio

    SciTech Connect (OSTI)

    Tompkins, J.A.; Wannigman, D.; Hatler, V.

    1998-07-01

    In August 1997, the Nuclear Regulatory Commission (NRC) submitted to the US Department of Energy (DOE) a partial list of licensed radioactive sealed sources to be recovered under a pilot project initiating Radioactive Source Recovery Program (RSRP) operations. The first of the pilot project recoveries was scheduled for September 1997 at Eastern Well Surveys in Wooster, Ohio, a company with five unwanted sealed sources on the NRC list. The sources were neutron emitters, each containing {sup 241}Am/Be with activities ranging from 2.49 to 3.0 Ci. A prior radiological survey had established that one of these sources, a Gulf Nuclear Model 71-1 containing 3 Ci of {sup 241}Am, was contaminated with {sup 241}Am and might be leaking. The other four sources were obsolete and could no longer be used by Eastern Well Surveys for their intended application in well-logging applications due to NRC decertification of these sources. All of the sources exceeded the limits established for Class C waste under 10 CFR 61.55 and, as a result, are the ultimate responsibility of the DOE under the provisions of PL 99-240. This report describes the cooperative effort between the DOE and NRC to recover the sources and transport them to Los Alamos National Laboratory (LANL) for deactivation under the RSRP. This operation alleviated any potential risk to the public health and safety from the site which might result from the leaking neutron sources or the potential mismanagement of unwanted sources. The on-site recovery occurred on September 23, 1997, and was performed by personnel from LANL and its contractor and was observed by staff from the Region III office of the NRC. All aspects of the recovery were successfully accomplished, and the sources were received at LANL on September 29, 1997. Experience gained during this operation will be used to formulate operational poilicies and procedures which will contribute to the eventual routine recovery operations of a full-scale RSRP.

  18. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect (OSTI)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  19. Probing neutrino magnetic moments at Spallation Neutron Source facilities

    E-Print Network [OSTI]

    T. S. Kosmas; O. G. Miranda; D. K. Papoulias; M. Tortola; J. W. F. Valle

    2015-07-15

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a chi^2 analysis employing realistic nuclear structure calculations in the context of the quasi-particle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for Standard Model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge-radius. We illustrate our results for various choices of experimental setup and target material.

  20. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    Akimov, D; Awe, C; Barbeau, P S; Barton, P; Becker, B; Below, V; Bolozdynya, A; Burenkov, A; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Dean, D; Detwiler, J; Efremenko, Y; Elliott, S R; Fields, N; Fox, W; Galindo-Uribarri, A; Green, M; Heath, M; Hedges, S; Herman, N; Hornback, D; Iverson, E B; Kaufman, L; Klein, S R; Khromov, A; Konovalev, A; Kumpan, A; Leadbetter, C; Li, L; Lu, W; Melikyan, A; Markoff, D; Miller, K; Middlebrook, M; Mueller, P; Naumov, P; Newby, J; Parno, D; Penttila, S; Perumpilly, G; Radford, D; Ray, H; Raybern, J; Reyna, D; Rich, G C; Rimal, D; Rudik, D; Scholberg, K; Scholz, B; Snow, W M; Sosnovchev, A; Shakirov, A; Suchyta, S; Suh, B; Tayloe, R; Thornton, R T; Tolstukhin, A; Vetter, K; Yu, C H

    2015-01-01

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT...

  1. The Neutron Energy Spectrum Study from the Phase II Solid Methane Moderator at the LENS Neutron Source

    E-Print Network [OSTI]

    Yunchang Shin; W. Mike Snow; Christopher M. Lavelle; David V. Baxter; Xin Tong; Haiyang Yan; Mark Leuschner

    2007-11-19

    Neutron energy spectrum measurements from a solid methane moderator were performed at the Low Energy Neutron Source (LENS) at Indiana University Cyclotron Facility (IUCF) to verify our neutron scattering model of solid methane. The time-of-flight method was used to measure the energy spectrum of the moderator in the energy range of 0.1$meV\\sim$ 1$eV$. Neutrons were counted with a high efficiency $^{3}{He}$ detector. The solid methane moderator was operated in phase II temperature and the energy spectra were measured at the temperatures of 20K and 4K. We have also tested our newly-developed scattering kernels for phase II solid methane by calculating the neutron spectral intensity expected from the methane moderator at the LENS neutron source using MCNP (Monte Carlo N-particle Transport Code). Within the expected accuracy of our approximate approach, our model predicts both the neutron spectral intensity and the optimal thickness of the moderator at both temperatures. The predictions are compared to the measured energy spectra. The simulations agree with the measurement data at both temperatures.

  2. Transportation Channel with Uniform Electron Distribution for the Kharkov Neutron Source based on Subcritical Assembly Driven with Linear Accelerator

    E-Print Network [OSTI]

    Zelinsky, A Y

    2008-01-01

    Transportation Channel with Uniform Electron Distribution for the Kharkov Neutron Source based on Subcritical Assembly Driven with Linear Accelerator

  3. Final Report US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources

    SciTech Connect (OSTI)

    Miley, George, H.

    2008-06-04

    Abstract The history of IEC development will be briefly described, and some speculation about future directions will be offered. The origin of IEC is due to the brilliance of Phil Farnsworth, inventor of electronic TV in the US. Early experiments were pioneered in the late 1960s by Robert Hirsch who later became head of the DOE fusion program. At that time studies of IEC physics quickly followed at the University of Illinois and at Penn State University. However, despite many successes in this early work, IEC research died as DOE funding stopped in the mid 1980s. In the early 90’s, R. W. Bussard of EMC revived work with a new major project based on a magnetic assisted IEC. While doing supportive studies for that project, G. Miley proposed a grided “STAR mode” IEC as a neutron source for NAA. This concept was later used commercially by Daimler- Benz in Germany to analysis impurities in incoming ores. This represented a first practical application of the IEC. During this period other research groups at LANL, U of Wisconsin and Kyoto University entered IEC research with innovative new concepts and approaches to IEC physics and applications. Much of this work is documented in the present and in past US-Japan Workshops. At present we stand on the threshold of a new area of IEC applications as neutron source, for isotope production, and as a plasma source. These applications provide a way to continue IEC understanding and technology development with the ultimate goal being a fusion power plant. Indeed, a distinguishing feature of the IEC vs. other fusion confinement approaches is the unique opportunity for “spin off” applications along the way to a power producing plant.

  4. A neutron method for NDA analysis in the SAPPHIRE Project

    SciTech Connect (OSTI)

    Lewis, K.D.

    1995-01-09

    The implementation of Project SAPPHIRE, the top secret mission to the Republic of Kazakhstan to recover weapons grade nuclear materials, consisted of four major elements: (1) the re-packing of fissile material from Kazakh containers into suitable US containers; (2) nondestructive analyses (NDA) to quantify the U-235 content of each container for Nuclear Criticality Safety and compliance purposes; (3) the packaging of the fissile material containers into 6M/2R drums, which are internationally approved for shipping fissile material; and (4) the shipping or transport of the recovered fissile material to the United States. This paper discusses the development and application of a passive neutron counting technique used in the NDA phase of SAPPHIRE operations to analyze uranium/beryllium (U/Be) alloys and compounds for U-235 content.

  5. Neutron method for NDA in the Sapphire Project

    SciTech Connect (OSTI)

    Lewis, K.D. [Martin Marietta Energy Systems Inc., Oak Ridge, TN (United States)

    1995-12-31

    The implementation of Project Sapphire, the top-secret mission to the Republic of Kazakhstan to recover weapons-grade nuclear materials, consisted of four major elements: (1) repacking of fissile material from Kazakh containers into suitable U.S. containers; (2) nondestructive analyses (NDA) to quantify the {sup 235}U content of each container for nuclear criticality safety and compliance purposes; (3) packaging of the fissile material containers into 6M/2R drums, which are internationally approved for shipping fissile material; and (4) shipping or transport of the recovered fissile material to the United States. This paper discusses the development and application of a passive neutron counting technique used in the NDA phase of the Sapphire operations to analyze uranium/beryllium (U/Be) alloys and compounds for {sup 235}U content.

  6. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect (OSTI)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  7. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  8. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  9. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  10. Proceedings of the 10th meeting of the international collaboration on advanced neutron sources

    SciTech Connect (OSTI)

    Hyer, D.K.

    1989-03-01

    This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

  11. Designing and testing the neutron source deployment system and calibration plan for a dark matter detector

    E-Print Network [OSTI]

    Westerdale, Shawn (Shawn S.)

    2011-01-01

    In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

  12. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect (OSTI)

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  13. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    SciTech Connect (OSTI)

    Buchanan, J.R.; Dumont, J.N.; Kendrick, C.M.; Row, T.H.; Thompson, P.B.; West, C.D.; Marchaterre, J.F.; Muhlheim, M.D.; McBee, M.R.

    1988-12-01

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants.

  14. Development of a Time-tagged Neutron Source for SNM Detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; Waldron, Will; Tinsley, Jim

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore »extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  15. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    SciTech Connect (OSTI)

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert [Alameda Applied Sciences Corporation, 3077 Teagarden Street, San Leandro, CA 94577 (United States); Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Lane, Stephen [NSF Center for Biophotonics and School of Medicine, University of California Davis, Sacramento CA, 95817 (United States)

    2011-12-13

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at {approx}10-50 Hz and emits {approx}10{sup 6}n/pulse at a peak current of 100 kA. Both sources emit 2.45{+-}0.1 MeV(DD) neutron pulses of {approx}25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm{sup 3} in volume.

  16. Multiple source associated particle imaging for simultaneous capture of multiple projections

    DOE Patents [OSTI]

    Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A

    2013-11-19

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.

  17. Deuteron injector for Peking University Neutron Imaging Facility project

    SciTech Connect (OSTI)

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y.

    2012-02-15

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D{sup +} ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A {phi}5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D{sup +} beam that passed through the {phi}5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16{pi} mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  18. A TARGETED SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration101; and others

    2014-07-10

    A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine ''target sets'', in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.

  19. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    SciTech Connect (OSTI)

    Gheisari, R.; Firoozabadi, M. M.; Mohammadi, H.

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (? ? z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79?×?10{sup 6} cm{sup ?2}s{sup ?1} and 2.20 ×10{sup 5} cm{sup ?3}s{sup ?1}, respectively.

  20. Risk Management Plan Electron Beam Ion Source Project

    E-Print Network [OSTI]

    Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002. There are three specific areas of risk that can be controlled and managed by the EBIS Project team and these are and operations. The BNL ISM clearly indicates that risk management is everybody's business and will be factored

  1. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect (OSTI)

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ?16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ?}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ?500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ?} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (?200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ?} = 190-336 eV) and a shorter e-folding time (?160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  2. First Data Acquired on the EQ-SANS Diffractometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Liu, Dazhi [ORNL; Hong, Kunlun [ORNL; Gao, Carrie Y [ORNL; Melnichenko, Yuri B [ORNL; Littrell, Ken [ORNL; Smith, Greg [ORNL; Zhao, Jinkui [ORNL

    2011-01-01

    The measurement of the conformation of a Generation-8 Polyamidoamine dendrimer is reported as an initial experiment using the Extended Q-range Small Angle Neutron Scattering (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory (ORNL). The conformation parameters (radius of gyration, thickness of the soft shell etc.) are extracted by model fitting. The results are compared with data collected at the General-Purpose Small Angle Neutron Scattering at the High Flux Isotopic Reactor at ORNL. The comparison shows that the EQ-SANS diffractometer has comparable data statistics and Q resolution with shorter counting time over the measured Q-range.

  3. Calibration of Time Of Flight Detectors Using Laser-driven Neutron Source

    E-Print Network [OSTI]

    S. R. Mirfayzi; S. Kar; H. Ahmed; A. G. Krygier; A. Green; A. Alejo; R. Clarke; R. R. Freeman; J. Fuchs; D. Jung; A. Kleinschmidt; J. T. Morrison; Z. Najmudin; H. Nakamura; P. Norreys; M. Oliver; M. Roth; L. Vassura; M. Zepf; M. Borghesi

    2015-06-15

    Calibration of three scintillators (EJ232Q, BC422Q and EJ410) in a time-of-flight (TOF) arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors are shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  4. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect (OSTI)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  5. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  6. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema (OSTI)

    Gibbson, Murray;

    2013-04-19

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  7. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  8. SOURCES 4A: A Code for Calculating (alpha,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra

    SciTech Connect (OSTI)

    Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.

    1999-09-01

    SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.

  9. Neutron source detection with high pressure capillary arrays. (Conference)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron| SciTech

  10. Source localization using recursively applied and projected (RAP) MUSIC

    SciTech Connect (OSTI)

    Mosher, J.C.; Leahy, R.M.

    1998-03-01

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.

  11. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    SciTech Connect (OSTI)

    Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  12. GEANT4 and PHITS simulations of the shielding of neutrons from $^{252}$Cf source

    E-Print Network [OSTI]

    Shin, Jae Won

    2014-01-01

    Neutron shielding simulations by using GEANT4 and PHITS code are performed. As a neutron source, $^{252}$Cf is considered and the energy distribution of the neutrons emitted from $^{252}$Cf is assumed the Watt fission spectrum. The neutron dose equivalent rates with and without the shield are estimated for shielding materials such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. For the neutron shielding simulations by using GEANT4, high precision (G4HP) model with G4NDL 4.2 based on ENDF-VII data are used. And for PHITS simulations, JENDL-4.0 library are used for the same purpose. It is found that differences between the shielding calculations by using GEANT4 with G4NDL 4.2 and PHITS with JENDL-4.0 library are not significant for all cases considered in this work. We investigate the accuracy of the neutron dose equivalent rates obtained from GEANT4 and PHITS by comparing our simulation results with experimental data and other values calculated earlier. Calculated neutron dose equivalent rates agree w...

  13. The Spallation Neutron Source (SNS) Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency MaineAutoSecurity |the MoveDepartment ofThe

  14. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore »is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  15. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect (OSTI)

    Rees, Lawrence B. [Brigham Young University, Provo, UT (United States); Czirr, J. Bart [Brigham Young University, Provo, UT (United States)

    2012-11-01

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  16. Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech Connect NeutronSciTech(Conference)

  17. GDT-based neutron source with multiple-mirror end plugs

    SciTech Connect (OSTI)

    Beklemishev, A.; Anikeev, A.; Burdakov, A.; Ivanov, A.; Ivanov, I.; Postupaev, V.; Sinitsky, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2012-06-19

    We present a new linear trap to be built at the Budker Institute. It combines gasdynamictype central cell with sloshing ions for beam fusion and the multiple-mirror end plugs for improved axial confinement. Thus it is designed as an efficient neutron source and a testbed for future development of mirror-based fusion reactors.

  18. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  19. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore »scattering angle component out of the equatorial plane.« less

  20. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    E-Print Network [OSTI]

    2007-01-01

    LBNL-62514 MICROWAVE ION SOURCE AND BEAM INJECTION FOR ANAbstract An over-dense microwave driven ion source capableregion. Matching of the microwave power from the waveguide

  1. Laser fusion neutron source employing compression with short pulse lasers

    DOE Patents [OSTI]

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  2. 10 years and 20,000 sources: the offsite source recovery project

    SciTech Connect (OSTI)

    Whitworth, Julia R; Abeyta, Cristy L; Pearson, Michael W

    2009-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  3. Research and Development of Compact Neutron Sources based on Inertial Electrostatic Confinement Fusion

    SciTech Connect (OSTI)

    Masuda, Kai; Yoshikawa, Kiyoshi; Nagasaki, Kazunobu [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Takamatsu, Teruhisa; Fujimoto, Takeshi; Nakagawa, Tomoya; Kajiwara, Taiju [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Misawa, Tsuyoshi; Shiroya, Seiji; Takahashi, Yoshiyuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-03-10

    Recent progress is described in the research and development of an inertial-electrostatic confinement fusion (IECF) device. Use of a water-cooling jacket with non-uniform thickness shows promising success for landmine detection application, such as effective channeling of neutron flux toward the target and a very stable dc yield in excess of 10{sup 7} D-D neutrons/sec. Addition of an ion source to the conventional glow-discharge-driven IECF enhances the converging deuterium ion energy distribution by allowing a lower operating gas pressure. Improvement in normalized neutron yield, which corresponds to the fusion cross-section averaged over the device radius, by a factor often has been observed.

  4. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    by a service oriented architecture for functional implementation. KEY WORDS: Portal, Neutron Scattering, TeraGrid, Science Gateway, Service Architecture, Grid 1. INTRODUCTION Neutron Science: Neutron scattering is used, earth science, and fundamental physics [3]. As a diagnostic tool, neutron scattering provides unique

  5. Modeling and Simulation Optimization and Feasibility Studies for the Neutron Detection without Helium-3 Project

    SciTech Connect (OSTI)

    Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.; Lintereur, Azaree T.

    2013-01-01

    This report details the results of the modeling and simulation work accomplished for the ‘Neutron Detection without Helium-3’ project during the 2011 and 2012 fiscal years. The primary focus of the project is to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but are outside the scope of this study.

  6. Final Technical Report for the Neutron Detection without Helium-3 Project

    SciTech Connect (OSTI)

    Ely, James H.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Swinhoe, Martyn T.; Woodring, Mitchell L.

    2013-11-01

    This report details the results of the research and development work accomplished for the ‘Neutron Detection without Helium-3’ project conducted during the 2011-2013 fiscal years. The primary focus of the project was to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but were outside the scope of this study.

  7. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  8. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  9. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  10. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect (OSTI)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  11. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect (OSTI)

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  12. PROJECT DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE 1 Akers Hall, originally constructed in 1964, requires major

    E-Print Network [OSTI]

    will replace the existing chiller plant, including demolition of the existing cooling tower and its associated enclosure at the Olin receiving area; installation of new components for the chilled water system; HVAC DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE 3 Munn Ice Arena HVAC Upgrades and Ice

  13. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    SciTech Connect (OSTI)

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  14. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

  15. 1989 neutron and gamma personnel dosimetry intercomparison study using RADCAL (Radiation Calibration Laboratory) sources

    SciTech Connect (OSTI)

    Sims, C.S.; Casson, W.H.; Patterson, G.R. ); Murakami, H. . Dept. of Health Physics); Liu, J.C. )

    1990-10-01

    The fourteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 14) was conducted during May 1-5, 1989. A total of 48 organizations (33 from the US and 15 from abroad) participated in PDIS 14. Participants submitted by mail a total of 1,302 neutron and gamma dosimeters for this mixed field study. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (40%), direct interaction TLD (22%), track (20%), film (7%), combination (7%), and bubble detectors (4%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: TLD (84%) and film (16%). Radiation sources used in the six PDIS 14 exposures included {sup 252}Cf moderated by 15-cm D{sub 2}O, {sup 252}Cf moderated by 15-cm polyethylene (gamma-enhanced with {sup 137}Cs), and {sup 238}PuBe. Neutron dose equivalents ranged from 0.44--2.63 mSv and gamma doses ranged from 0. 01-1.85 mSv. One {sup 252}Cf(D{sub 2}O) exposure was performed at a 60{degree} angle of incidence (most performance tests are at perpendicular incidence). The average neutron dosimeter response for this exposure was 70% of that at normal incidence. The average gamma dosimeter response was 96% of that at normal incidence. A total of 70% of individual reported neutron dosimeter measurements were within {plus minus}50% of reference values. If the 0.01 mSv data are omitted, approximately 90% of the individual reported gamma measurements were within {plus minus}50% of reference values. 33 refs., 9 figs., 27 tabs.

  16. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, Matthew B [ORNL; Niedziela, Jennifer L [ORNL; Abernathy, Douglas L [ORNL; Debeer-Schmitt, Lisa M [ORNL; Garlea, Vasile O [ORNL; Granroth, Garrett E [ORNL; Graves-Brook, Melissa K [ORNL; Ehlers, Georg [ORNL; Kolesnikov, Alexander I [ORNL; Podlesnyak, Andrey A [ORNL; Winn, Barry L [ORNL

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  17. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Granroth, G. E. [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kolesnikov, A. I. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  18. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  19. Offsite source recovery project - ten years of sealed source recovery and disposal

    SciTech Connect (OSTI)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources meeting the DOE definition of 'transuranic,' OSRP has achieved many milestones, including defense determinations for various isotopes, a WIPP RCRA permit modification to accommodate headspace gas sampling requirements, and approval of a peer-reviewed non-assay radiological characterization methodology. For non-transuranic sources, which OSRP began to recover in 2004, OSRP has achieved NEP A coverage for storage and implemented consolidated storage at both DOE and commercial locations, as well as completing several specific disposal operations. The closure of the Barnwell low-level waste disposal site in 2008 has left 36 states with absolutely no commercial disposal pathway for most sealed sources, increasing the demands on OSRP. This and other current challenges and future work will also be discussed.

  20. Directory of financing sources for foreign energy projects

    SciTech Connect (OSTI)

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  1. Verification of the content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen

    2005-08-29

    A non-destructive, gamma-spectrometric method for verifying the plutonium content of Pu-Be neutron sources has been developed. It is also shown that the isotopic composition and the age of plutonium (Pu) can be determined in the intensive neutron field of these sources by the ``Multi-Group Analysis'' method. Gamma spectra were taken in the far-field of the sample, which was assumed to be cylindrical. The isotopic composition and the age of Pu were determined using a commercial implementation of the Multi-Group Analysis algorithm. The Pu content of the sources was evaluated from the count rates of the gamma-peaks of 239Pu, relying on the assumption that the gamma-rays are coming to the detector parallel to each other. The determination of the specific neutron yields and the problem of neutron damage to the detector are also discussed.

  2. Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries

    E-Print Network [OSTI]

    Laura Sampson; Nicolas Yunes; Neil Cornish; Marcelo Ponce; Enrico Barausse; Antoine Klein; Carlos Palenzuela; Luis Lehner

    2014-11-28

    Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the star's own compactness (spontaneous scalarization) or, for binary systems, by the companion's scalar hair (induced scalarization) or by the orbital binding energy (dynamical scalarization). Scalarized stars in binaries present different conservative dynamics than in General Relativity, and can also excite a scalar mode in the metric perturbation that carries away dipolar radiation. As a result, the binary orbit shrinks faster than predicted in General Relativity, modifying the rate of decay of the orbital period. In spite of this, scalar-tensor theories can pass existing binary pulsar tests, because observed pulsars may not be compact enough or sufficiently orbitally bound to activate scalarization. Gravitational waves emitted during the last stages of compact binary inspirals are thus ideal probes of scalarization effects. For the standard projected sensitivity of advanced LIGO, we here show that, if neutron stars are sufficiently compact to enter the detector's sensitivity band already scalarized, then gravitational waves could place constraints at least comparable to binary pulsars. If the stars dynamically scalarize while inspiraling in band, then constraints are still possible provided the scalarization occurs sufficiently early in the inspiral, roughly below an orbital frequency of 50Hz. In performing these studies, we derive an easy-to-calculate data analysis measure, an integrated phase difference between a General Relativistic and a modified signal, that maps directly to the Bayes factor so as to determine whether a modified gravity effect is detectable. Finally, we find that custom-made templates are equally effective as model-independent, parameterized post-Einsteinian waveforms at detecting such modified gravity effects at realistic signal-to-noise ratios.

  3. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (more »RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  4. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    SciTech Connect (OSTI)

    Kurennoy, S. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garnett, R. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rybarcyk, L. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108 /s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  5. The Polarized Electron Source for the International Collider (ILC) Project

    SciTech Connect (OSTI)

    Brachmann, A.; Clendenin, J.E.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.e.; Maruyama, T.; Prescott, C.Y.; Sheppard, J.; Turner, J.; Zhou, F.; /SLAC

    2006-12-01

    ILC project will be the next large high energy physics tool that will use polarized electrons (and positrons). For this machine spin physics will play an important role. The polarized electron source design is based on electron injectors built for the Stanford Linear Collider (polarized) and Tesla Test Facility (un-polarized). The ILC polarized electron source will provide a 5GeV spin polarized electron beam for injection into the ILC damping ring. Although most ILC machine parameters have been achieved by the SLC or TTF source, features of both must be integrated into one design. The bunch train structure presents unique challenges to the source laser drive system. A suitable laser system has not yet been demonstrated and is part of the ongoing R&D program for ILC at SLAC. Furthermore, ILC injector R&D incorporates photocathode development, increasing available polarization, and improving operational properties in gun vacuum systems. Another important area of research and development is advancing the design of DC and RF electron gun technology for polarized sources. This presentation presents the current status of the design and outlines aspects of the relevant R&D program carried out within the ILC community.

  6. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  7. Neutron Stars as Sources of High Energy Particles - the case of RPP

    E-Print Network [OSTI]

    B. Rudak

    2001-01-09

    Highly magnetised rapidly spinning neutron stars are widely considered to be natural sites for acceleration of charged particles. Powerful acceleration mechanism due to unipolar induction is thought to operate in the magnetospheres of isolated neutron stars, bringing the particles to ultrarelativistic energies at the expense of the neutron star rotational energy, with inevitable emission of high energy photons. The aim of this review is to present basic ingredients of modern models of magnetospheric activity of rotation powered pulsars in the context of high-energy radiation from these objects. Several aspects of pulsar activity are addressed and related to spectacular results of pulsar observations with two major satellite missions of the past - CGRO and ROSAT. It is then argued that high sensitivity experiments of the future - GLAST, VERITAS and MAGIC - will be vital for a progress in our understanding of pulsar magnetospheric processes. In a conservative approach rotation powered pulsars are not expected to be the sources of UHE Cosmic Rays. However, several scenarios have been proposed recently to explain the UHECR events above the GZK limit with the help of acceleration processes in the immediate surrounding of newly born pulsars. Major features of these scenarios are reviewed along with references to contemporary models of magnetospheric activity.

  8. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    a Compact High-Yield Neutron Generator O. Waldmann 1 , B.Compact High-Yield Neutron Generator ? O. Waldmann a and B.yield compact neutron generator for active interrogation

  9. The ALPS project: open source software for strongly correlated systems

    E-Print Network [OSTI]

    F. Alet; P. Dayal; A. Grzesik; A. Honecker; M. Koerner; A. Laeuchli; S. R. Manmana; I. P. McCulloch; F. Michel; R. M. Noack; G. Schmid; U. Schollwoeck; F. Stoeckli; S. Todo; S. Trebst; M. Troyer; P. Werner; S. Wessel; for the ALPS collaboration

    2004-10-15

    We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.

  10. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    SciTech Connect (OSTI)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  11. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Guler, N.; Volegov, P.; Danly, C. R.; Grim, G. P.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-10-15

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  12. Chandra Orion Ultradeep Project: Observations and Source Lists

    E-Print Network [OSTI]

    Getman, K V; Broos, P S; Grosso, N; Tsujimoto, M; Townsley, L K; Garmire, G P; Kästner, J H; Li, J; Harnden, F R; Wolk, S; Murray, S S; Lada, C J; Münch, A; McCaughrean, M J; Meeus, G; Damiani, F; Micela, G; Sciortino, S; Bally, J; Hillenbrand, L A; Herbst, W; Preibisch, T; Feigelson, E D

    2004-01-01

    We present a description of the data reduction methods and the derived catalog of more than 1600 X-ray point sources from the exceptionally deep January 2003 Chandra X-ray Observatory observation of the Orion Nebula Cluster and embedded populations around OMC-1. The observation was obtained with Chandra's Advanced CCD Imaging Spectrometer (ACIS) and has been nicknamed the Chandra Orion Ultradeep Project (COUP). With an 838 ks exposure made over a continuous period of 13.2 days, the COUP observation provides the most uniform and comprehensive dataset on the X-ray emission of normal stars ever obtained in the history of X-ray astronomy.

  13. Chandra Orion Ultradeep Project: Observations and Source Lists

    E-Print Network [OSTI]

    K. V. Getman; E. Flaccomio; P. S. Broos; N. Grosso; M. Tsujimoto; L. Townsley; G. P. Garmire; J. Kastner; J. Li; F. R. Harnden, Jr.; S. Wolk; S. S. Murray; C. J. Lada; A. A. Muench; M. J. McCaughrean; G. Meeus; F. Damiani; G. Micela; S. Sciortino; J. Bally; L. A. Hillenbrand; W. Herbst; T. Preibisch; E. D. Feigelson

    2004-10-06

    We present a description of the data reduction methods and the derived catalog of more than 1600 X-ray point sources from the exceptionally deep January 2003 Chandra X-ray Observatory observation of the Orion Nebula Cluster and embedded populations around OMC-1. The observation was obtained with Chandra's Advanced CCD Imaging Spectrometer (ACIS) and has been nicknamed the Chandra Orion Ultradeep Project (COUP). With an 838 ks exposure made over a continuous period of 13.2 days, the COUP observation provides the most uniform and comprehensive dataset on the X-ray emission of normal stars ever obtained in the history of X-ray astronomy.

  14. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect (OSTI)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)

  15. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect (OSTI)

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  16. Governance in Open Source Software Development Projects: A Comparative Multi Level Analysis

    E-Print Network [OSTI]

    Scacchi, Walt

    Governance in Open Source Software Development Projects: A Comparative Multi Level Analysis 1 Governance in Open Source Software Development Projects: A Comparative Multi- Level Analysis Chris Jensen project work. However, a growing number of OSS projects are developing, delivering, and supporting

  17. The importance of $^{22}$Ne($\\alpha$, n)$^{25}$Mg as s-process neutron source and the s-process thermometer $^{151}$Sm

    E-Print Network [OSTI]

    CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Andriamonje, Samuel A; Angelopoulos, P; Assimakopoulos, P A; Audouin, L; Badurek, G; Bakos, G A; Bauge, E; Baumann, P; Beer, H; Benlliure, J; Benlloch, J M; Boffi, S; Boiano, A; Borcea, C; Brusegan, A; Buono, S; Calviño, F; Cambronero, C F; Cano-Ott, D; Cennini, P; Charpak, Georges; Chepel, V Yu; Colonna, N; Cortés, G; Corvi, F; Cura, J L; Czajkowski, S; Dasso, C H; David, S; De Blas, A; De Poli, M; Del Moral, R; Delaroche, J P; Della Mea, G; Derré, J; Díez, S; Dolfini, R; Durán, I; Eleftheriadis, C; Embid-Segura, M; Farget, F; Ferreira-Marques, R; Ferrari, A; Furman, W I; Gadea, A; Garzón, J A; Giomataris, Ioanis; Giusti, C; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Grudzevich, O; Guber, K H; Gundrorin, N; Gunsing, F; Hage-Ali, M; Haight, B; Harissopoulos, S V; Heil, M; Ioannides, K G; Ioannou, P; Isaev, S; Jastrzebski, J J; Jericha, E; Kadi, Y; Käppeler, F K; Kalfas, C A; Karamis, D; Kazakov, L; Kelic, A; Ketlerov, V; Kitis, G; Köhler, P E; Konovalov, V; Kopach, Yu N; Kossionides, E; Lacoste, V; Lavielle, B; Leal, L C; Leeb, H; Leprêtre, A; Lopes, M; Lozano, M; Martínez-Val, J M; Mastinu, P F; Matteucci, M F; Matveev, D V; Mengoni, A; Meunier, R; Milazzo, P M; Mínguez-Torres, E; Mitrofanov, V P; Molina, A; Mordenti, R; Mutti, P; Napiorkowski, P J; Nicolis, N G; Nolte, R; Oberhummer, Heinz; Ordine, A; Ortega, R; Pacati, F D; Pakou, A A; Papadopoulos, I M; Papaevangelou, T; Paradelis, T; Pavlik, A; Pavlopoulos, P; Perlado, J M; Piera, M; Piksaikin, V M; Plag, R; Plompen, A; Poch, A; Policarpo, Armando; Popov, A; Popov, Yu; Pretel, C; Quaranta, A; Quesada, J M; Radermacher, E; Radici, M; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rigato, V; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Rundberg, B; Sakelliou, L; Saldaña, F; Santos, D M; Sanz, J; Savvidis, S; Schuhmacher, H; Sedyshev, P V; Sergent, C; Serov, D; Simonoff, M; Stéphan, C; Tagliente, G; Taín, J L; Tapia, C; Tassan-Got, L; Terrani, M; Terchychnyi, R; Tsagas, N; Tzima, A; Vardaci, E; Ventura, A; Villamarín, D; Vlachoudis, V; Voinov, A V; Voss, F; Weigmann, H; Wendler, H; Wiescher, M C; Wisshak, K; Zeinalov, S S; INTC

    2000-01-01

    The importance of $^{22}$Ne($\\alpha$, n)$^{25}$Mg as s-process neutron source and the s-process thermometer $^{151}$Sm

  18. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  19. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    E-Print Network [OSTI]

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  20. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect (OSTI)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  1. Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train wheels and potential methods of

    E-Print Network [OSTI]

    Researchers have been using STFC's ISIS neutron and muon source to investigate cracking in train with a great business idea. For more information about how your business could benefit from access to ISIS: Tel: +44 (0)1925 603708 Email: innovations@stfc.ac.uk Twitter: @STFC_B2B Using ISIS to optimise train wheel

  2. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    Compact High-Yield Neutron Generator, AIP Conf. Proc. 1336 (a Sealed-Tube Neutron Generator O. Waldmann ? B. Ludewigtthrough a 60 · 6 mm 2 tron generator. When operated with a

  3. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    SciTech Connect (OSTI)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s ..mu..m in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ greater than or equal to 10/sup 19/ n/s) to provide uncollided neutron fluxes in excess of I/sub ..omega../ = 5--10 MW/m/sup 2/ over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10/sup 5/--10/sup 6/, its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10/sup 19/ n/s, with neutron currents I/sub ..omega../ /approx lt/ 10 MW/m/sup 2/ over volumes V/sub exp/ greater than or equal to 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs.

  4. Tracking Single Dynamic MEG Dipole Sources Using the Projected Extended Kalman Filter

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    obtained useful information by localizing the MEG signal sources related to such disorders and directly Source Model The primary current distribution corresponding to an MEG signal source is modeledTracking Single Dynamic MEG Dipole Sources Using the Projected Extended Kalman Filter Yuchen Yao

  5. Results of the Development of Humanitarian Landmine Detection System by a Compact Fusion Neutron Source and Dual Sensors

    SciTech Connect (OSTI)

    Yoshikawa, Kiyoshi; Masuda, Kai; Takamatsu, Teruhisa; Yamamoto, Yasushi; Toku, Hisayuki; Fujimoto, Takashi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hotta, Eiki; Yamauchi, Kunihito [Department of Energy Sciences, Tokyo Institute of Technology, 4259-G3-36 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8502 (Japan); Ohnishi, Masami; Osawa, Hodaka [Department of Electrical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Shiroya, Seiji; Misawa, Tsuyoshi; Takahashi, Yoshiyuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kubo, Yoshikazu; Doi, Toshiro [JGC Corporation, Minato-Mirai, Nishi-ku, Yokohama, Kanagawa (Japan)

    2009-03-10

    A 5-year task is described on the research and development of the advanced humanitarian landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) device and 3 dual sensors made of BGO and NaI(Tl). With 10{sup 7} D-D neutrons/s stably produced in steady-state mode, H-2.2 MeV, N-5.3, 10.8 MeV {gamma} rays from (n,{gamma}) reaction with hydrogen and nitrogen atoms in the explosives are measured for two kinds of explosives (TNT, RDX), under the conditions of three different buried depths, and soil moistures each. Final probabilities of detection for arid soil are found to be 100% in the present tests. The neutron backscattering method is also found to be efficient.

  6. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    progress with the current month schedule performance index (SPI) for the overall project at 1.39 (+$2.1M). The cumulative cost and schedule indices for the overall project are 0.99 and 0.96. The project was 85% (88 construction activities are nearly complete, while work to address punchlist items continues. Proposals

  7. Probing astrophysically important states in $^{26}$Mg nucleus to study neutron sources for the $s$-Process

    E-Print Network [OSTI]

    Talwar, R; Berg, G P A; Bin, L; Bisterzo, S; Couder, M; deBoer, R J; Fang, X; Fujita, H; Fujita, Y; Gorres, J; Hatanaka, K; Itoh, T; Kadoya, T; Long, A; Miki, K; Patel, D; Pignatari, M; Shimbara, Y; Tamii, A; Wiescher, M; Yamamoto, T; Yosoi, M

    2015-01-01

    The $^{22}$Ne($\\alpha$,n)$^{25}$Mg reaction is the dominant neutron source for the slow neutron capture process ($s$-process) in massive stars and contributes, together with the $^{13}$C($\\alpha$,n)$^{16}$O, to the production of neutrons for the $s$-process in Asymptotic Giant Branch (AGB) stars. However, the reaction is endothermic and competes directly with the $^{22}$Ne($\\alpha,\\gamma)^{26}$Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of $^{26}$Mg near the alpha and neutron separation energies. These uncertainties are affecting the s-process nucleosynthesis calculations in theoretical stellar models. Indirect studies in the past have been successful in determining the energies, $\\gamma$-ray and neutron widths of the $^{26}$Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the $\\alpha$-widths for these states. The goal of the present...

  8. Silicon Photo-Multiplier radiation hardness tests with a beam controlled neutron source

    E-Print Network [OSTI]

    M. Angelone; M. Pillon; R. Faccini; D. Pinci; W. Baldini; R. Calabrese; G. Cibinetto; A. Cotta Ramusino; R. Malaguti; M. Pozzati

    2010-06-08

    We report radiation hardness tests performed at the Frascati Neutron Generator on silicon Photo-Multipliers, semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to 7x10^10 1-MeV-equivalent neutrons per cm^2. Detector performances have been recorded during the neutron irradiation and a gradual deterioration of their properties was found to happen already after an integrated fluence of the order of 10^8 1-MeV-equivalent neutrons per cm^2.

  9. Imaging of Diesel Particulate Filters using a High-Flux Neutron Source

    Broader source: Energy.gov [DOE]

    Detailed images of deposits identified inside automotive DPFs using neutrons show how the deposits of soot, ash, and washcoat occurs within the filter.

  10. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  11. How Argonne's Intense Pulsed Neutron Source came to life and gained its niche : the view from an ecosystem perspective.

    SciTech Connect (OSTI)

    Westfall, C.; Office of The Director

    2008-02-25

    At first glance the story of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory (ANL) appears to have followed a puzzling course. When researchers first proposed their ideas for an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, the project seemed so promising that both Argonne managers and officials at the laboratory's funding agency, the Department of Energy (DOE), suggested that it be made larger and more expensive. But then, even though prototype building, testing, and initial construction went well a group of prominent DOE reviewers recommended in fall 1980 that it be killed, just months before it had been slated to begin operation, and DOE promptly accepted the recommendation. In response, Argonne's leadership declared the project was the laboratory's top priority and rallied to save it. In late 1982, thanks to another review panel led by the same scientist who had chaired the panel that had delivered the death sentence, the project was granted a reprieve. However, by the late 1980s, the IPNS was no longer top priority within the international materials science community, at Argonne, or within the DOE budget because prospects for another, larger materials science accelerator emerged. At just this point, the facility started to produce exciting scientific results. For the next two decades, the IPNS, its research, and its experts became valued resources at Argonne, within the U.S. national laboratory system, and within the international materials science community. Why did this Argonne project prosper and then almost suffer premature death, even though it promised (and later delivered) good science? How was it saved and how did it go on to have a long, prosperous life for more than a quarter of a century? In particular, what did an expert assessment of the quality of IPNS science have to do with its fate? Getting answers to such questions is important. The U.S. government spends a lot of money to produce science and technology at multipurpose laboratories like Argonne. For example, in the mid-1990s, about the time the IPNS's fortunes were secured, DOE spent more than $6 billion a year to fund nine such facilities, with Argonne's share totaling $500 million. And an important justification for funding these expensive laboratories is that they operate expensive but powerful scientific tools like the IPNS, generally considered too large to be built and managed by universities. Clearly, 'life and death' decision making has a lot to tell us about how the considerable U.S. federal investment in science and technology at national laboratories is actually transacted and, indeed, how a path is cleared or blocked for good science to be produced. Because forces within Argonne, DOE, and the materials science community obviously dictated the changing fortunes of the IPNS, it makes sense to probe the interactions binding these three environments for an understanding of how the IPNS was threatened and how it survived. In other words, sorting out what happened requires analyzing the system that includes all three environments. In an attempt to find a better way to understand its twists and turns, I will view the life-and-death IPNS story through the lens of an ecological metaphor. Employing the ideas and terms that ecologists use to describe what happens in a system of shared resources, that is, an ecosystem, I will describe the IPNS as an organism that vied with competitors for resources to find a niche in the interrelated environments of Argonne, DOE, and the materials science community. I will start with an explanation of the Argonne 'ecosystem' before the advent of the IPNS and then describe how the project struggled to emerge in the 1970s, how it scratched its way to a fragile niche in the early 1980s, and how it adapted and matured through the turn of the 21st century. The paper will conclude with a summary of what the ecosystem perspective shows about the life and death struggle of the IPNS and reflect on what that perspective reveals about how researc

  12. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station

    SciTech Connect (OSTI)

    Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.

    2013-10-15

    The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ?0.7 ?s. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ?1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

  13. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    SciTech Connect (OSTI)

    Phillips, R. E.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)] [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-07-15

    A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  14. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    SciTech Connect (OSTI)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristics that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.

  15. Results from the Commissioning of the n-TOF Spallation Neutron Source at CERN

    E-Print Network [OSTI]

    Borcea, C; Dahlfors, M; Ferrari, A; García-Muñoz, G; Haefner, P; Herrera-Martínez, A; Kadi, Y; Lacoste, V; Radermacher, E; Saldaña, F; Vlachoudis, V; Zanini, L; Rubbia, Carlo; Buoni, S; Dangendorf, V; Nolte, R; Weierganz, M

    2003-01-01

    The new neutron time-of-flight facility (n_TOF) has been built at CERN and is now operational. The facility is intended for the measurement of neutron induced cross sections of relevance to Accelerator Driven Systems (ADS) and to fundamental physics. Neutrons are produced by spallation of the 20 GeV/c proton beam, delivered by the Proton Synchrotron (PS), on a massive target of pure lead. A measuring station is placed at about 185 m from the neutron producing target, allowing high-resolution measurements. The facility was successfully commissioned with two campaigns of measurements, in Nov. 2000 and Apr. 2001. The main interest was concentrated in the physical parameters of the installation (neutron flux and resolution function), along with the target behavior and various safety-related aspects. These measurements confirmed the expectations from Monte Carlo simulations of the facility, thus allowing to initiate the foreseen physics program.

  16. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    E-Print Network [OSTI]

    Wu, Ying

    2009-01-01

    Neutron Generators . . . . . . . . . . . . . 1.5 ThesisFor Compact Neutron Generators Background of Ion Sourcethe prototype neutron generator. The generator is attached

  17. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Performance Index (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1 cost and schedule performance, completing 65% of the project by the end of October with about 32 the current status of the conventional construction, updated magnet production and accelerator installation

  18. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    .95 in previous month while the cumulative cost index remaining at 0.95. The Project was 86% complete with 48 excellent progress in January with the current month schedule performance index (SPI) for overall project and concurred at the DOE mini-review held in December 2012. Conventional construction activities continue

  19. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  20. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect (OSTI)

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this early design stage. The ring and transfer lines are being designed for hands-on maintenance. The SNS beam loss criteria, which determine radiation dose design, are a factor of {approx}30 lower than the lowest that has been achieved at any existing proton synchrotron and accumulator rings. This demonstrates that ALARA considerations are an important part of SNS design. A noteworthy example of the ALARA principal being incorporated into the SNS is the hybrid ring lattice design recently approved by the SNS change control process. The new lattice design increases calculated acceptance by about 50% and improves the expected collimator efficiency from 80 to 95%. As a result, the expected calculated beam loss rate, and resulting radiation dose rates, are significantly improved. Another major design change with ALARA implications was the change from an alpha to an omega configuration for the high-energy beam transport (HEBT) system, ring, and ring-to-target beam transport (RTBT) system. Because of this change, the ring and transfer lines will have crane coverage, eliminating the need for personnel to be near activated equipment for repair and removal. By using the crane, extensive shielding can be placed around highly radioactive equipment (e.g., collimators), and the equipment can be moved by remote control. As part of the change from an alpha to omega configuration, the tunnel width was increased by 2 ft. This increased width will allow easier access to failed equipment, reducing radiation exposure time to workers during maintenance and repair. In addition, a personnel entrance was added to the ring between the HEBT and RTBT so that personnel will not have to enter this area directly through the HEBT or RTBT. This addition will shorten the travel distance, and therefore the time, that personnel performing maintenance work on radioactive equipment will need to be in the area, reducing potential dose. In the RTBT beam line, a hatchway will be placed above the collimators and quad doublet magnets near the target to facilitate their removal. This design was chosen in lieu

  1. Development of a compact neutron source based on field ionization processes

    SciTech Connect (OSTI)

    Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali

    2010-11-25

    The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed.

  2. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  3. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOE Patents [OSTI]

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  4. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  5. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  6. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  7. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect (OSTI)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  8. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1 and management reserve for the remaining Budget At Completion (BAC). The cumulative Schedule Performance Index.01. Construction of the ring building continues with beneficial occupancy for pentant 5, the last section

  9. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Performance Index (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1.00. Construction of the ring building continues its excellent progress with beneficial occupancy for pentant 4 of the ring building occurring in December and rapid progress in construction of all five lab­office buildings

  10. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    . The cumulative schedule index is 0.97 and the cumulative cost index is 1.02, both well within the acceptable. The project is 48% complete with 30% of contingency and management reserve for the remaining cost to go range. The current-month schedule variance is negative due to conventional construction being slowed

  11. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    with conventional construction, the monthly schedule perfor- mance index for the overall project was 0 progress in August, maintaining its satisfactory cost and schedule performance with cumulative cost and management reserve for the remaining Estimate at Completion. Conventional construction continued to wind down

  12. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    a reasonable level of cost and schedule contingencies. At the end of March, the project is 52% complete, with over 32% of contingency and management reserve for the remaining cost to go. The cumulative cost water piping, and main substation expan- sion, enables all major utility services to be delivered

  13. Current status of the Taiwan Photon Source project

    SciTech Connect (OSTI)

    Chang, Shih-Lin [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076 Taiwan (China)

    2014-03-05

    The progress of establishment of a high brightness and low emittance mid-energy storage ring is reported. The status of the 3 GeV Taiwan Photon Source (TPS) currently under construction will be presented. The progress on the civil construction, manufacturing of machine components, as well as the opportunity of using low emittace synchrotron source and phase I beamlines at TPS will be mentioned. The future planning of phase II beamlines and related research will be sketched. Future developments will be also briefly outlined.

  14. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    A Permanent-Magnet Microwave Ion Source for a Compact High-A Permanent-Magnet Microwave Ion Source for a Compact High-on the development of a microwave ion source that will be

  15. An Open Source Laboratory for Operating Systems Projects Mark Claypool, David Finkel and Craig Wills *

    E-Print Network [OSTI]

    Claypool, Mark

    1 An Open Source Laboratory for Operating Systems Projects Mark Claypool, David Finkel and Craig 100 Institute Road Worcester, MA 01609 Abstract Typical undergraduate operating systems projects use services provided by an operating system via system calls or develop code in a simulated operating system

  16. Probing astrophysically important states in $^{26}$Mg nucleus to study neutron sources for the $s$-Process

    E-Print Network [OSTI]

    R. Talwar; T. Adachi; G. P. A. Berg; L. Bin; S. Bisterzo; M. Couder; R. J. deBoer; X. Fang; H. Fujita; Y. Fujita; J. Gorres; K. Hatanaka; T. Itoh; T. Kadoya; A. Long; K. Miki; D. Patel; M. Pignatari; Y. Shimbara; A. Tamii; M. Wiescher; T. Yamamoto; M. Yosoi

    2015-08-23

    The $^{22}$Ne($\\alpha$,n)$^{25}$Mg reaction is the dominant neutron source for the slow neutron capture process ($s$-process) in massive stars and contributes, together with the $^{13}$C($\\alpha$,n)$^{16}$O, to the production of neutrons for the $s$-process in Asymptotic Giant Branch (AGB) stars. However, the reaction is endothermic and competes directly with the $^{22}$Ne($\\alpha,\\gamma)^{26}$Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of $^{26}$Mg near the alpha and neutron separation energies. These uncertainties are affecting the s-process nucleosynthesis calculations in theoretical stellar models. Indirect studies in the past have been successful in determining the energies, $\\gamma$-ray and neutron widths of the $^{26}$Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the $\\alpha$-widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the $\\alpha$-widths by $\\alpha$ transfer techniques . Hence, the $\\alpha$-inelastic scattering and $\\alpha$-transfer measurements were performed on a solid $^{26}$Mg target and a $^{22}$Ne gas target, respectively, using the Grand Raiden Spectrometer at RCNP, Osaka, Japan. Six levels (E$_x$ = 10717 keV , 10822 keV, 10951 keV, 11085 keV, 11167 keV and 11317 keV) have been observed above the $\\alpha$-threshold in the region of interest (10.61 - 11.32 MeV). The rates are dominated in both reaction channels by the resonance contributions of the states at E$_x$ = 10951, 11167 and 11317 keV. The E$_x$ =11167 keV has the most appreciable impact on the ($\\alpha,\\gamma$) rate and therefore plays an important role for the prediction of the neutron production in s-process environments.

  17. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  18. Characterization of a Be(p,xn) neutron source for fission yields measurements

    E-Print Network [OSTI]

    A. Mattera; P. Andersson; A. Hjalmarsson; M. Lantz; S. Pomp; V. Rakopoulos; A. Solders; J. Valldor-Blücher; D. Gorelov; H. Penttilä; S. Rinta-Antila; A. V. Prokofiev; E. Passoth; R. Bedogni; A. Gentile; D. Bortot; A. Esposito; M. V. Introini; A. Pola

    2013-04-02

    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\\"askyl\\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.

  19. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOE Patents [OSTI]

    Steinberg, Meyer (Huntington Station, NY); Powell, James R. (Shoreham, NY); Takahashi, Hiroshi (Setauket, NY); Grand, Pierre (Blue Point, NY); Kouts, Herbert (Brookhaven, NY)

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  20. Projection of needs for gamma radiation sources and other radioisotopes and assessment of alternatives for providing radiation sources

    SciTech Connect (OSTI)

    Ross, W.A.; Jensen, G.A.; Clark, L.L.; Eakin, D.E.; Jarrett, J.H.; Katayama, Y.B.; McKee, R.W.; Morgan, L.G.; Nealey, S.M.; Platt, A.M.; Tingey, G.L.

    1989-06-01

    Pacific Northwest Laboratory reviewed the projected uses and demands for a variety of nuclear byproducts. Because the major large-scale near-term demand is for gamma irradiation sources, this report concentrates on the needs for gamma sources and evaluates the options for providing the needed material. Projections of possible growth in the irradiation treatment industry indicate that there will be a need for 180 to 320 MCi of /sup 60/Co (including /sup 137/Cs equivalent) in service in the year 2000. The largest current and projected use of gamma irradiation is for the sterilization of medical devices and disposable medical supplies. Currently, 40% of US disposable medical products are treated by irradiation, and within 10 years it is expected that 90% will be treated in this manner. Irradiation treatment of food for destruction of pathogens or parasites, disinfestation, or extension of allowable storage periods is estimated to require an active inventory of 75 MCi of /sup 60/Co-equivalent gamma source in about a decade. 90 refs., 7 figs., 25 tabs.

  1. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    E-Print Network [OSTI]

    Wu, Ying

    2009-01-01

    compact neutron generators, semiconductor manufacturing, and neutral beam diagnostics and heating in fusion

  2. The neutrino-induced neutron source in helium shell and r-process nucleosynthesis

    E-Print Network [OSTI]

    D. K. Nadyozhin; I. V. Panov; S. I. Blinnikov

    1998-07-06

    The huge neutrino pulse that occurs during the collapse of a massive stellar core, is expected to contribute to the origination of a number of isotopes both of light chemical elements and heavy ones. It is shown that, in general, the heating of stellar matter due to the neutrino scattering off electrons and the heat released from the neutrino-helium breakup followed by the thermonuclear reactions should be taken into account. On the base of kinetic network, using all the important reactions up to Z=8, the main features and the time-dependent character of the neutrino- driven neutron flux are investigated. The time-dependent densities of free neutrons produced in helium breakup, Y_n(t), were used to calculate the r-process nucleosynthesis with another full kinetic network for 3200 nuclides. It was found that in the case of metal-deficient stars, Z neutrons seems to be high enough to drive the r-process efficiently under favorable conditions. But it is impossible to obtain a sufficient amount of heavy nuclei in neutrino-induced r-process in a helium shell at radii R > R_cr \\approx 10^9 cm. We speculate that to make the neutrino-induced r-process work efficiently in the shell, one has to invoke nonstandard presupernova models in which helium hopefully is closer to the collapsed core owing, for instance, to a large scale mixing or/and rotation and magnetic fields. Apart from this exotic possibility, the neutrino-induced nucleosynthesis in the helium shell is certainly not strong enough to explain the observed solar r-process abundances.

  3. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect (OSTI)

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  4. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect (OSTI)

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  5. Project title: Sources, supply and bioavailability of soluble organic matter in relation to mineralization.

    E-Print Network [OSTI]

    Anderson, Charles W.

    and Food Research). Topic: Soluble organic matter is of interest due to its role in carbon and nitrogenProject title: Sources, supply and bioavailability of soluble organic matter in relation examined. The study will seek to understand the role that soluble organic matter plays in regulating

  6. Project Summary: Investigating Innovation in Free/Libre Open Source Software Development Teams

    E-Print Network [OSTI]

    Crowston, Kevin

    of fundamental processes of learning, process change and product innovation in dis- tributed teams. Our studyProject Summary: Investigating Innovation in Free/Libre Open Source Software Development Teams We behaviours leading to innovations? This question is important because organizational work is increasingly

  7. License Update and Migration Processes in Open Source Software Projects 1 License Update and Migration

    E-Print Network [OSTI]

    Scacchi, Walt

    License Update and Migration Processes in Open Source Software Projects 1 License Update, and distribution. At present, we have little understanding of, what happens when these licenses change, what motivates such changes, and how new licenses are created, updated, and deployed. Similarly, little attention

  8. Managing Open Source Contributions for Software Project Sustainability Bhuricha Deen Sethanandha1

    E-Print Network [OSTI]

    Massey, Bart

    is its leverage of outside innovation. All are free to take open source software and use it, evaluate it, application. An improved patch contribution process will lower the contribution barrier, helping to improve developer comes at high cost, particularly in mature OSS projects. It takes a significant amount of time

  9. Tensor calculus with open-source software: the SageManifolds project

    E-Print Network [OSTI]

    Eric Gourgoulhon; Michal Bejger; Marco Mancini

    2014-12-21

    The SageManifolds project aims at extending the mathematics software system Sage towards differential geometry and tensor calculus. Like Sage, SageManifolds is free, open-source and is based on the Python programming language. We discuss here some details of the implementation, which relies on Sage's parent/element framework, and present a concrete example of use.

  10. Value engineering study final report on -- Spallation Neutron Source, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1999-01-31

    The SNS Project has had numerous DOE/SC reviews to validate the technical baseline, management approach, cost, schedule, and Conceptual Design Report. As a result, in FY 1999 the SNS received $130 million and approval from Congress to initiate Title 1 design and construction activities. Since this funding was less than requested for FY 1999 ($157 million) and validated in previous reviews, and because of improved costing information, the SNS Project team will reassess the cost and schedule baselines in an upcoming DOE review in January 1999. In preparation for this reassessment, the SNS has initiated a value engineering process to improve the design and to recover cost and contingency. Value engineering will continue throughout the life of the project, but the results described in this report are our initial efforts.

  11. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  12. FISSION TARGET DESIGN AND INTEGRATION OF NEUTRON CONVERTER FOR EURISOL-DS PROJECT

    E-Print Network [OSTI]

    J. Bermudez, O. Alyakrinskiy, M. Barbui, F. Negoita, L. Serbina, L.B. Tecchio, E. Udup

    A study of a new fission target for EURISOL-DS is presented with a detailed description of the target. Calculations of several configurations were done using Monte Carlo code FLUKA aimed to obtaining 1015 fissions/s on single target. In Eurisol, neutrons inducing the fission reactions are produced by a proton beam 1GeV-4mA interacting with a mercury converter. The target configuration was customized to gain fission yield from the large amount of low energy neutrons produced by the Hg converter. To this purpose, the fissile material is composed by discs of 238-Uranium carbide enriched with 15 g of 235-U. Studies of several geometries were done in order to define the shape and composition of uranium target, taking into account the mechanical and space constraints

  13. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    E-Print Network [OSTI]

    Sy, Amy

    2013-01-01

    Accelerator-based neutron generators . . 1.3.1 D-D and D-Tyields . . . 1.4 Compact API generator components . . 2based neutron generator. . . . . D-D and D-T fusion reaction

  14. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  15. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    SciTech Connect (OSTI)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  16. The Global Threat Reduction Initiative's Orphan Source Recovery Project in the Russian Federation

    SciTech Connect (OSTI)

    Russell, J. W. [NSTec; Ahumada, A. D. [NSTec; Blanchard, T. A. [NNSA

    2012-06-04

    After 9/11, officials at the United States Department of Energy (DOE), National Nuclear Security Administration (NNSA) grew more concerned about radiological materials that were vulnerable to theft and illicit use around the world. The concern was that terrorists could combine stolen radiological materials with explosives to build and detonate a radiological dispersal device (RDD), more commonly known as a “dirty bomb.” In response to this and other terrorist threats, the DOE/NNSA formed what is now known as the Global Threat Reduction Initiative (GTRI) to consolidate and accelerate efforts to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. Although a cooperative program was already underway in the Russian Federation to secure nuclear materials at a range of different facilities, thousands of sealed radioactive sources remained vulnerable at medical, research, and industrial sites. In response, GTRI began to focus efforts on addressing these materials. GTRI’s Russia Orphan Source Recovery Project, managed at the Nevada National Security Site’s North Las Vegas facility, was initiated in 2002. Throughout the life of the project, Joint Stock Company “Isotope” has served as the primary Russian subcontractor, and the organization has proven to be a successful partner. Since the first orphan source recovery of an industrial cobalt-60 irradiator with 647 curies (Ci) at an abandoned facility in Moscow in 2003, the GTRI Orphan Source Recovery Project in the Russian Federation has accomplished substantial levels of threat reduction. To date, GTRI has recovered and securely disposed of more than 5,100 sources totaling more that 628,000 Ci. This project serves as an extraordinary example of how international cooperation can be implemented by partners with mutual interests to achieve significant goals.

  17. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  18. Neutronic Characterization of the Megapie Target

    E-Print Network [OSTI]

    Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

    2007-10-31

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

  19. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect (OSTI)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  20. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  1. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    E-Print Network [OSTI]

    Sy, Amy

    2013-01-01

    Compact Permanent Magnet Microwave-Driven Neutron Generator.generator. The planned replacement of this electromagnet with a permanent-magnet

  2. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  3. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  4. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    SciTech Connect (OSTI)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

  5. Abstract: Coalescing stellar mass compact objects (binary neutron stars and black holes) are promising sources for the direct detection of gravitational waves by Advanced LIGO and Virgo in the next few years. Maximizing the scientific return from such a d

    E-Print Network [OSTI]

    Richmond, Michael W.

    ) are promising sources for the direct detection of gravitational waves by Advanced LIGO and Virgo in the next few of a centrifugally supported torus onto the central black hole. Neutron star mergers are also accompanied

  6. Projected shell model study of neutron-rich deformed isotopes of Sr and Zr

    SciTech Connect (OSTI)

    Verma, Sonia; Dar, Parvaiz Ahmad; Devi, Rani [Department of Physics and Electronics, University of Jammu, Jammu-180006 (India)

    2008-02-15

    The projected shell model (PSM) study of {sup 98-102}Sr and {sup 100-104}Zr nuclei is carried out. The reliability of the ground-state wave function is checked by reproducing yrast spectra and electromagnetic properties. The mechanism for the onset of sudden and large deformation at N=60 is worked out. The present piece of research work has unified the two different, or conflicting, early explanations for the onset of deformation at N=60 by the spherical shell model and mean-field theory.

  7. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  8. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect (OSTI)

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  9. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  10. Evidence of a halo formation mechanism in the Spallation Neutron...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evidence of a halo formation mechanism in the Spallation Neutron Source linac Title: Evidence of a halo formation mechanism in the Spallation Neutron Source...

  11. NEUTRON INTERFEROMETRY Neutron Interferometry

    E-Print Network [OSTI]

    Jeanjean, Louis

    #12;NEUTRON INTERFEROMETRY #12;#12;Neutron Interferometry Lessons in Experimental Quantum Mechanics of the modern quantum mechanical literature. Neutron interferometry is a mature technique in experimental of many isotopes is given in Chapter 3. Very accurate measurements of the neutron scattering lengths

  12. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS configurations have a resolution of 7 microns or better. The 28 m LOS with a 7 x 7 array of 100-micron mini-penumbral apertures or 50-micron square pinholes meets the design requirements and is a very good design alternative.

  13. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  14. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect (OSTI)

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  15. Optical identification of the LMC supersoft source RXJ0527.8-6954 from MACHO Project photometry

    E-Print Network [OSTI]

    C. Alcock et al

    1997-07-20

    We identify the likely optical counterpart to the LMC supersoft X-ray source RXJ0527.8-6954, and hence recover HV2554. This identification is based on an analysis of approximately 4 years of optical photometry obtained serendipitously via the MACHO project. We see a steady fading of the star of about 0.5 mag over the duration of the observations. Evidence is also presented for an orbital modulation of 0.05 mag semi-amplitude on a period of P=0.39262 +/- 00015 d. Our optical observations are consistent with the suggestion that the X-ray decline in this system is caused by cooling after a weak shell flash.

  16. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  17. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect (OSTI)

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  18. Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source

    SciTech Connect (OSTI)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?neutron flux. The final neutron flux is estimated to be 5?×?10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.

  19. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  20. REVIEW OF SCIENTIFIC INSTRUMENTS 83, 02B309 (2012) Novel methods for improvement of a Penning ion source for neutron

    E-Print Network [OSTI]

    2012-01-01

    for improving source performance, including optimization of wall materials and electrode geometry, ad- vanced configurations on proton fraction and beam current to be observed. II. METHODS A. Wall material optimization fraction in hydro- gen ion sources due to its low hydrogen atom recombina- tion coefficient.5 An ideal

  1. The uTPC Method: Improving the Position Resolution of Neutron Detectors Based on MPGDs

    E-Print Network [OSTI]

    Pfeiffer, Dorothea; Birch, Jens; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Iakovidis, George; Oliveri, Eraldo; Oksanen, Esko; Ropelewski, Leszek; Thuiner, Patrik

    2015-01-01

    Due to the Helium-3 crisis, alternatives to the standard neutron detection techniques are becoming urgent. In addition, the instruments of the European Spallation Source (ESS) require advances in the state of the art of neutron detection. The instruments need detectors with excellent neutron detection efficiency, high-rate capabilities and unprecedented spatial resolution. The Macromolecular Crystallography instrument (NMX) requires a position resolution in the order of 200 um over a wide angular range of incoming neutrons. Solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are proposed to meet the new requirements. Charged particles rising from the neutron capture have usually ranges larger than several millimetres in gas. This is apparently in contrast with the requirements for the position resolution. In this paper, we present an analysis technique, new in the field of neutron detection, based on the Time Projection Chamber (TPC) concept. Using a standard Single-GEM with the catho...

  2. use finance june 30 2014.htm[7/25/2014 12:03:12 PM] PROJECT DESCRIPTION PROJECT TIMELINE PROJECT COSTS FUNDING SOURCE

    E-Print Network [OSTI]

    -out includes air handling units, low connectivity water systems, and non-conventional utilities. The electrical University Number of Project to Report: 9 Estimated Impact on Tuition and Fee Rates : 0. The project will include a build out of the electrical, mechanical, and technical systems. The mechanical fit

  3. Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

  4. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  5. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  6. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  7. Neutron Imaging by Boric Acid

    E-Print Network [OSTI]

    Fabio Cardone; Giovanni Cherubini; Walter Perconti; Andrea Petrucci; Alberto Rosada

    2013-02-22

    In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source; a TRIGA type nuclear reactor; and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.

  8. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  9. Wolter mirror microscope : novel neutron focussing and imaging optic

    E-Print Network [OSTI]

    Bagdasarova, Yelena S. (Yelena Sergeyevna)

    2010-01-01

    In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

  10. Idea-Nation: A Unique Framework for Managing Crowd-Sourced Projects

    E-Print Network [OSTI]

    Palmer, Joseph

    2014-12-19

    of these technologies come new challenges for management such as effective knowledge sharing and project management of physically separated resources. This report introduces a framework for incorporating modern Web 2.0 technologies into while minimizing these challenges...

  11. Project planning workshop 6-GeV synchrotron light source: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A series of work sheets, graphs, and printouts are given which detail the work breakdown structure, cost, and manpower requirements for the 6 GeV Synchrotron Light Source. (LEW)

  12. Spin in the Neutron | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Neutron NEWPORT NEWS, Va. - Puzzling out the source of proton and neutron spin is part of the ongoing experimental effort at Jefferson Lab to understand their structure and...

  13. Review of radionuclide source terms used for performance-assessment analyses; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barnard, R.W.

    1993-06-01

    Two aspects of the radionuclide source terms used for total-system performance assessment (TSPA) analyses have been reviewed. First, a detailed radionuclide inventory (i.e., one in which the reactor type, decay, and burnup are specified) is compared with the standard source-term inventory used in prior analyses. The latter assumes a fixed ratio of pressurized-water reactor (PWR) to boiling-water reactor (BWR) spent fuel, at specific amounts of burnup and at 10-year decay. TSPA analyses have been used to compare the simplified source term with the detailed one. The TSPA-91 analyses did not show a significant difference between the source terms. Second, the radionuclides used in source terms for TSPA aqueous-transport analyses have been reviewed to select ones that are representative of the entire inventory. It is recommended that two actinide decay chains be included (the 4n+2 ``uranium`` and 4n+3 ``actinium`` decay series), since these include several radionuclides that have potentially important release and dose characteristics. In addition, several fission products are recommended for the same reason. The choice of radionuclides should be influenced by other parameter assumptions, such as the solubility and retardation of the radionuclides.

  14. Year Project Title USGS contact(s) Published paper, data source,

    E-Print Network [OSTI]

    _poster_Final.pdf Vulnerability assessment methods Energy Development, Williston Basin, Brine information Keywords 1 2003-present Delineation of brine contamination in and near the East Poplar oil field_poplar/index.html Project assesses brine contamination to the shallow aquifers and surface water. Energy Development

  15. DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources

    Broader source: Energy.gov [DOE]

    In a pilot-scale test supported by the U.S. Department of Energy Office of Fossil Energy, Clemson University researchers have shown that manmade or "constructed" wetlands can be used to treat non-traditional water sources which could then be used in power plants or for other purposes.

  16. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    SciTech Connect (OSTI)

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana, E-mail: s.dzib@crya.unam.mx [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58089 (Mexico)

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  17. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  18. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  19. Chandra Multiwavelength Project X-ray Point Source Number Counts and the Cosmic X-ray Background

    E-Print Network [OSTI]

    Minsun Kim; Belinda J. Wilkes; Dong-Woo Kim; Paul J. Green; Wayne A. Barkhouse; Myung Gyoon Lee; John D. Silverman; Harvey D. Tananbaum

    2006-11-28

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source number counts and the cosmic X-ray background (CXRB) flux densities in multiple energy bands. From the ChaMP X-ray point source catalog, ~5,500 sources are selected covering 9.6 deg^2 in sky area. To quantitatively characterize the sensitivity and completeness of the ChaMP sample, we perform extensive simulations. We also include the ChaMP+CDFs (Chandra Deep Fields) number counts to cover large flux ranges from 2x10^{-17} to 2.4x10^{-12} (0.5-2 keV) and from 2x10^{-16} to 7.1x10^{-12} (2-8 keV) erg/cm^2/sec. The ChaMP and the ChaMP+CDFs differential number counts are well fitted with a broken power law. The best fit faint and bright power indices are 1.49^{+0.02}_{-0.02} and 2.36^{+0.05}_{-0.05} (0.5-2 keV), and 1.58^{+0.01}_{-0.01} and 2.59^{+0.06}_{-0.05} (2-8 keV), respectively. We detect breaks in the differential number counts and they appear at different fluxes in different energy bands. Assuming a single power law model for a source spectrum, we find that the same population(s) of soft X-ray sources causes the break in the differential number counts for all energy bands. We measure the resolved CXRB flux densities from the ChaMP and the ChaMP+CDFs number counts with and without bright target sources. Adding the known unresolved CXRB to the ChaMP+CDF resolved CXRB, we also estimate total CXRB flux densities. The fractions of the resolved CXRB without target sources are 78^{+1}_{-1}% and 81^{+2}_{-2}% in the 0.5-2 keV and 2-8 keV bands, respectively, somewhat lower, though generally consistent with earlier numbers since their large errors. These fractions increase by ~1% when target sources are included.

  20. CENTRAL STORAGE FACILITY PROJECT IN COLOMBIA TO PROVIDE THE SAFE STORAGE AND PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES

    SciTech Connect (OSTI)

    Greenberg, Raymond; Wright, Kyle A.; McCaw, Erica E.; Vallejo, Jorge

    2009-10-07

    The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. Internationally, over 40 countries are cooperating with GTRI to enhance the security of these materials. The GTRI program has worked successfully with foreign countries to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources. GTRI began cooperation with the Republic of Colombia in April 2004. This cooperation has been a resounding success by securing forty high-risk sites, consolidating disused/orphan sources at an interim secure national storage facility, and developing a comprehensive approach to security, training, and sustainability. In 2005 the Colombian Ministry of Mines and Energy requested the Department of Energy’s support in the construction of a new Central Storage Facility (CSF). In December 2005, the Ministry selected to construct this facility at the Institute of Geology and Mining (Ingeominas) site in Bogota. This site already served as Colombia’s national repository, where disused sources were housed in various buildings around the complex. The CSF project was placed under contract in May 2006, but environmental issues and public protests, which led to a class action lawsuit against the Colombian Government, forced the Ministry to quickly suspend activities, thereby placing the project in jeopardy. Despite these challenges, however, the Ministry of Mines and Energy worked closely with public and environmental authorities to resolve these issues, and continued to be a strong advocate of the GTRI program. In June 2008, the Ministry of Mines and Energy was granted the construction and environmental licenses. As a result, construction immediately resumed and the CSF was completed by December 2008. A commissioning ceremony was held for the new facility in January 2009, which was attended by representatives from the Department of Energy, U.S. Embassy, and the Ministry of Mines and Energy, including the Minister and Vice Minister.

  1. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  2. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  3. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  4. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  5. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  6. Characteristics and sources of intermediate size particles in recovery boilers : final project report.

    SciTech Connect (OSTI)

    Baxter, Larry L.; Shaddix, Christopher R.; Verrill, Christopher L.; Wessel, Richard A.

    2005-02-01

    As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

  7. Comparisons on thin and thick neutron target for low energy proton beam

    SciTech Connect (OSTI)

    Zhong, B.; Yu, G.; Wang, X.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ., Beijing 100084 (China)

    2012-07-01

    As the progress on accelerator physics and neutronics, the compact neutron sources driven by low energy and high intensity beam are becoming extensively developed and researched all around the world. The neutron target of an accelerator driven neutron source is one of the key components, and the stability of the neutron target affect the operation and performance of the neutron facility. When a low energy proton is projected to the beryllium target, the main reaction is the inelastic scattering between the proton and extra-nuclear electrons. As the decreasing of proton energy, the rate of elastic scattering between proton and target nucleus begins to increase. When the energy of proton is very low, the pickup charge reaction begins to appear. Focus on the problems brought by high intensity proton beam such as proton implantation, radiation damages, heat deposition and gas production, we performed sufficient numerical simulations for both thin and thick target determined by proton range. The results show that the critical problem for thick target is the proton implantation, causing the forming of bubbles and beryllium flaked in vacuum. The thin target sacrifices a little neutron yield, but avoid the proton stopped in target, and decrease the radiation damage and energy deposition. (authors)

  8. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  9. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  10. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  11. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  12. A Test Stand for Ion Sources of Ultimate Reliability

    SciTech Connect (OSTI)

    Enparantza, R.; Uriarte, L.; Romano, P.; Alonso, J.; Ariz, I.; Egiraun, M.; Bermejo, F. J.; Etxebarria, V.; Lucas, J.; Del Rio, J. M.; Letchford, A.; Faircloth, D.; Stockli, M.

    2009-03-12

    The rationale behind the ITUR project is to perform a comparison between different kinds of H{sup -} ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning Type sources such as those currently in use in the injector for the ISIS (UK) Pulsed Neutron Source and those of volumetric type such as that driving the injector for the ORNL Spallation Neutron Source (TN, U.S.A.). The endeavour here pursued is thus to build an Ion Source Test Stand where virtually any type of source can be tested and its features measured and, thus compared to the results of other sources under the same gauge. It would be possible then to establish a common ground for effectively comparing different ion sources. The long term objectives are thus to contribute towards building compact sources of minimum emittance, maximum performance, high reliability-availability, high percentage of desired particle production, stability and high brightness. The project consortium is lead by Tekniker-IK4 research centre and partners are companies Elytt Energy and Jema Group. The technical viability is guaranteed by the collaboration between the project consortium and several scientific institutions, such the CSIC (Spain), the University of the Basque Country (Spain), ISIS (STFC-UK), SNS (ORNL-USA) and CEA in Saclay (France)

  13. TPC-like readout for thermal neutron detection using a GEM-detector

    E-Print Network [OSTI]

    Flierl, Bernhard; Hertenberger, Ralf; Zeitelhack, Karl

    2015-01-01

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  14. TPC-like readout for thermal neutron detection using a GEM-detector

    E-Print Network [OSTI]

    Bernhard Flierl; Otmar Biebel; Ralf Hertenberger; Karl Zeitelhack

    2015-09-08

    Spatial resolution of less than 200 um is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector. Thermal neutrons are captured in a single 2 um thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 um pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 um (FWHM 235 um) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Angstrom.

  15. Detecting fission from special nuclear material sources

    DOE Patents [OSTI]

    Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  16. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  17. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  18. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  19. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    SciTech Connect (OSTI)

    1997-12-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

  20. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    McMahan, M.A.

    2008-01-01

    Cross Section (mb/MeV/sr) Neutron Energy (MeV) 29 MeV, Tiand Technology 2007 DOI: Neutron beams from deuteron breakupUSA Abstract. Accelerator-based neutron sources offer many

  1. Academy Sharing Knowledge The NASA Source for Project Management and Engineering Excellence | APPEL S P R I N G | 2 0 0 7

    E-Print Network [OSTI]

    Rhoads, James

    Academy Sharing Knowledge The NASA Source for Project Management and Engineering Excellence | APPEL capabilities will enable NASA to carry robust science and exploration payloads to space and could possibly take in this issue. ImageCredit:NASA/JohnFrassanitoandAssociates #12;6 950 DEPARTMENTS 3 In This Issue 4 From

  2. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  3. Simulation of Neutron Backscattering applied to organic material detection

    SciTech Connect (OSTI)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-10-26

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied.0.

  4. SHIELDING ANALYSIS FOR PORTABLE GAUGING COMBINATION SOURCES

    SciTech Connect (OSTI)

    J. TOMPKINS; L. LEONARD; ET AL

    2000-08-01

    Radioisotopic decay has been used as a source of photons and neutrons for industrial gauging operations since the late 1950s. Early portable moisture/density gauging equipment used Americium (Am)-241/Beryllium (Be)/Cesium (Cs)-137 combination sources to supply the required nuclear energy for gauging. Combination sources typically contained 0.040 Ci of Am-241 and 0.010 Ci of CS-137 in the same source capsule. Most of these sources were manufactured approximately 30 years ago. Collection, transportation, and storage of these sources once removed from their original device represent a shielding problem with distinct gamma and neutron components. The Off-Site Source Recovery (OSR) Project is planning to use a multi-function drum (MFD) for the collection, shipping, and storage of AmBe sources, as well as the eventual waste package for disposal. The MFD is an approved TRU waste container design for DOE TRU waste known as the 12 inch Pipe Component Overpack. As the name indicates, this drum is based on a 12 inch ID stainless steel weldment approximately 25 inch in internal length. The existing drum design allows for addition of shielding within the pipe component up to the 110 kg maximum pay load weight. The 12 inch pipe component is packaged inside a 55-gallon drum, with the balance of the interior space filled with fiberboard dunnage. This packaging geometry is similar to the design of a DOT 6M, Type B shipping container.

  5. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B?+?n?????+?{sup 7}Li, with ? and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T?=?8?K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40?mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  6. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect (OSTI)

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  7. Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies Indiana University: M in the outer crust · Superbursts observed for accreting neutron stars · Fusion of neutron-rich light nuclei as a possible heat source in neutron star crust Fusion cross-section · Dynamics of fusion reaction with neutron

  8. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Feldman, Alexander

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  9. Delayed neutrons from the neutron irradiation of ²³?U 

    E-Print Network [OSTI]

    Heinrich, Aaron David

    2008-10-10

    two 235U samples, an array of three 3He cylindrical neutron detectors, signal processing circuitry, the PTS, a reactor core sensor and a computerized control system. A. Fissile Material Isotope Products Laboratories produced the two 235U samples... stream_source_info Heinrich.pdf.txt stream_content_type text/plain stream_size 107692 Content-Encoding UTF-8 stream_name Heinrich.pdf.txt Content-Type text/plain; charset=UTF-8 DELAYED NEUTRONS FROM THE NEUTRON...

  10. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  11. NEUTRON WALL LOADING OF TOKAMAK REACTORS

    E-Print Network [OSTI]

    California at Los Angeles, University of

    GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG OCTOBER 1999 #12;DISCLAIMER Government or any agency thereof. #12;GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG by General Atomics IR&D Funds GA PROJECT 4437 OCTOBER 1999 #12;C.P.C. WONG NEUTRON WALL LOADING OF TOKAMAK

  12. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  13. MEG (Magnetoencephalography) multipolar modeling of distributed sources using RAP-MUSIC (Recursively Applied and Projected Multiple Signal Characterization)

    SciTech Connect (OSTI)

    Mosher, J. C.; Baillet, S.; Jerbi, K.; Leahy, R. M.

    2001-01-01

    We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the procedure is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.

  14. Neutron Scattering User Program | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program SHARE Neutron Scattering Can Benefit Your Research Neutron scattering has applications in almost every technical and scientific field, from biology and chemistry to...

  15. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator 1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  16. Calibration Issues of the TFTR Multichannel Neutron Collimator.

    E-Print Network [OSTI]

    agrees within 10 % with the source strength from global neutron monitors in the TFTR test cell. Detector Neutron Collimator1,2,3,4 is an important diagnostic system on the Tokamak Fusion Test Reactor (TFTR), which measures radial profiles of the neutron emission from the hot plasma core and monitors the local

  17. Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS M.E. Hagen(1), S.M. Shapiro(2 Neutron Source, Oak Ridge National Lab., P.O. Box 2008, Oak Ridge, TN 37831, U.S.A (2)Dept. of Condensed spectrometer that utilizes Bragg focusing optics to obtain a high intensity at the sample position for neutron

  18. Neutron scattering at high pressure D. B. McWhan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    715 Neutron scattering at high pressure D. B. McWhan Room 1D-234, Murray Hill, New Jersey 07974, U scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X

  19. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  20. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Cold Neutron Triple-Axis Spectrometer CallforProposals neutrons.ornl.gov Neutron Scattering Science Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EDT, (NOON

  1. Ultra-short ion and neutron pulse production

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  2. The neutron imaging diagnostic at NIF (invited)

    SciTech Connect (OSTI)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  3. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  4. NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS

    E-Print Network [OSTI]

    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

  5. s-processing in AGB stars revisited. I. Does the main component constrain the neutron source in the {sup 13}C pocket?

    SciTech Connect (OSTI)

    Trippella, O.; Busso, M. [Department of Physics, University of Perugia, via A. Pascoli, I-06123 Perugia (Italy); Maiorca, E. [INFN, Section of Perugia, via A. Pascoli, I-06123 Perugia (Italy); Käppeler, F. [Karlsruhe Institute of Technology, Campus North, Institute of Nuclear Physics, P.O. Box 3640, D-76021 Karlsruhe (Germany); Palmerini, S., E-mail: oscar.trippella@fisica.unipg.it, E-mail: maurizio.busso@fisica.unipg.it [INFN, Laboratori Nazionali del Sud, via Santa Sofia 62, I-95125 Catania (Italy)

    2014-05-20

    Slow neutron captures at A ? 85 are mainly guaranteed by the reaction {sup 13}C(?,n){sup 16}O in asymptotic giant branch (AGB) stars, requiring proton injections from the envelope. These were so far assumed to involve a small mass (? 10{sup –3} M {sub ?}), but models with rotation suggest that in such tiny layers excessive {sup 14}N hampers s-processing. Furthermore, s-element abundances in galaxies require {sup 13}C-rich layers substantially extended in mass (? 4 × 10{sup –3} M {sub ?}). We therefore present new calculations aimed at clarifying those issues and at understanding whether the solar composition helps to constrain the {sup 13}C 'pocket' extension. We show that: (1) mixing 'from bottom to top' (as in magnetic buoyancy or other forced mechanisms) can form a {sup 13}C reservoir substantially larger than assumed so far, covering most of the He-rich layers; (2) on the basis of this idea, stellar models at a fixed metallicity reproduce the main s-component as accurately as before; and (3) they make nuclear contributions from unknown nucleosynthesis processes (LEPP) unnecessary, against common assumptions. These models also avoid problems of mixing at the envelope border and fulfil requirements from C-star luminosities. They yield a large production of nuclei below A = 100, so that {sup 86,} {sup 87}Sr may be fully synthesized by AGB stars, while {sup 88}Sr, {sup 89}Y, and {sup 94}Zr are contributed more efficiently than before. Finally, we suggest tests suitable for providing a final answer regarding the extension of the {sup 13}C pocket.

  6. The University of Texas at Austin Procedure for Releasing Software as Open Source or Contributing Software to Existing Projects

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    The University of Texas at Austin Procedure for Releasing Software as Open Source or Contributing ..............................................................................................................................................3 1. Procedure The University of Texas System has an existing Administrative Policy governing disclosure, licensing, and distribution of software developed by University of Texas System employees

  7. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  8. Non-Destructive Testing with Neutron Radiography at the UC Davis/ McClellan Nuclear Radiation Center

    E-Print Network [OSTI]

    Boussoufi, M.; Steingass, W.; Egbert, H.; Liu, H. B.; Flocchini, R.

    2006-01-01

    for research and non-destructive testing projects. • OurNon-Destructive Testing with Neutron Radiography M.

  9. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    SciTech Connect (OSTI)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  10. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    SciTech Connect (OSTI)

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  11. Chandra Multi-wavelength Project (ChaMP). II. First Results of X-ray Source Properties

    E-Print Network [OSTI]

    D. -W. Kim; B. J. Wilkes; P. J. Green; R. A. Cameron; J. J. Drake; N. R. Evans; P. Freeman; T. J. Gaetz; H. Ghosh; F. R. Harnden, Jr.; M. Karovska; V. Kashyap; P. W. Maksym; P. W. Ratzlaff; E. M. Schlegel; J. D. Silverman; H. D. Tananbaum; A. A. Vikhlinin

    2003-08-27

    We present the first results of ChaMP X-ray source properties obtained from the initial sample of 62 observations. The data have been uniformly reduced and analyzed with techniques specifically developed for the ChaMP and then validated by visual examination. Utilizing only near on-axis, bright X-ray sources (to avoid problems caused by incompleteness and the Eddington bias), we derive the Log(N)-Log(S) relation in soft (0.5-2 keV) and hard (2-8 keV) energy bands. The ChaMP data are consistent with previous results of ROSAT, ASCA and Chandra deep surveys. In particular, our data nicely fill in the flux gap in the hard band between the Chandra Deep Field data and the previous ASCA data. We check whether there is any systematic difference in the source density between cluster and non-cluster fields and also search for field-to-field variations, both of which have been previously reported. We found no significant field-to-field cosmic variation in either test within the statistics (~1 sigma) across the flux levels included in our sample. In the X-ray color-color plot, most sources fall in the location characterized by photon index = 1.5-2 and NH = a few x 10^20 cm^2, suggesting that they are typical broad-line AGNs. There also exist a considerable number of sources with peculiar X-ray colors (e.g., highly absorbed, very hard, very soft). We confirm a trend that on average the X-ray color hardens as the count rate decreases. Since the hardening is confined to the softest energy band (0.3-0.9 keV), we conclude it is most likely due to absorption. We cross-correlate the X-ray sources with other catalogs and describe their properties in terms of optical color, X-ray-to-optical luminosity ratio and X-ray colors.

  12. Neutron multiplication error in TRU waste measurements

    SciTech Connect (OSTI)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.

  13. 2015 LaCNS Neutron Scattering Seed Funding Request for White Papers

    E-Print Network [OSTI]

    pg. 1 2015 LaCNS Neutron Scattering Seed Funding Request for White Papers DEADLINE: January 12, 2015 The Louisiana Consortium for Neutron Scattering (LaCNS), a Department of Energy ­ EPSCo projects involving neutron scattering. These projects can be in any area of Materials Science

  14. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect (OSTI)

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  15. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  16. High Power, High Energy Cyclotrons for Decay-At-Rest Neutrino Sources: The DAEdALUS Project

    E-Print Network [OSTI]

    Jose R. Alonso for the DAEdALUS Collaboration

    2011-09-30

    Neutrino physics is a forefront topic of today's research. Large detectors installed underground study neutrino properties using neutrino beams from muons decaying in flight. DAEdALUS looks at neutrinos from stopped muons, "decay at rest" (DAR) neutrinos. The DAR neutrino spectrum has effectively no electron antineutrinos (essentially all pi- are absorbed), so a detector with free protons is sensitive to appearance of nu-e-bar oscillating from nu-mu-bar via inverse-beta-decay (IBD). Oscillations are studied using sources relatively near the detector, but which explore the same physics as the high-energy neutrino beams from Long Baseline experiments. As the DAR spectrum is fixed, the baseline is varied: plans call for 3 accelerator-based neutrino sources at 1.5, 8 and 20 km with staggered beam-on times. Compact, cost-effective superconducting ring cyclotrons accelerating molecular hydrogen ions (H2+) to 800 MeV/n with stripping extraction are being designed by L. Calabretta and his group. This revolutionary design could find application in many ADS-related fields.

  17. High Power, High Energy Cyclotrons for Decay-At-Rest Neutrino Sources: The DAEdALUS Project

    E-Print Network [OSTI]

    ,

    2011-01-01

    Neutrino physics is a forefront topic of today's research. Large detectors installed underground study neutrino properties using neutrino beams from muons decaying in flight. DAEdALUS looks at neutrinos from stopped muons, "decay at rest" (DAR) neutrinos. The DAR neutrino spectrum has effectively no electron antineutrinos (essentially all pi- are absorbed), so a detector with free protons is sensitive to appearance of nu-e-bar oscillating from nu-mu-bar via inverse-beta-decay (IBD). Oscillations are studied using sources relatively near the detector, but which explore the same physics as the high-energy neutrino beams from Long Baseline experiments. As the DAR spectrum is fixed, the baseline is varied: plans call for 3 accelerator-based neutrino sources at 1.5, 8 and 20 km with staggered beam-on times. Compact, cost-effective superconducting ring cyclotrons accelerating molecular hydrogen ions (H2+) to 800 MeV/n with stripping extraction are being designed by L. Calabretta and his group. This revolutionary de...

  18. The IPHI Project

    SciTech Connect (OSTI)

    Ferdinand, Robin; Beauvais, Pierre-Yves

    2005-06-08

    High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule. The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.

  19. Nov. 21, 1999 Neutron Irradiation Tests of an S-LINK-over-G-link System

    E-Print Network [OSTI]

    Nov. 21, 1999 Neutron Irradiation Tests of an S-LINK-over-G-link System K. Anderson, J. Pilcher, H and was carefully monitored. 2. Neutron Source Characteristics The test was performed at the National Institute, MD 1. Objective This note describes neutron irradiation tests of an S-LINK [1] source card (LSC

  20. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  1. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  2. Instruments | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS -...

  3. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect (OSTI)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  4. Cryogenic Neutron Protein Crystallography: routine methods and potential benefits

    SciTech Connect (OSTI)

    Weiss, Kevin L [ORNL; Tomanicek, Stephen J [ORNL; NG, Joseph D [ORNL

    2014-01-01

    The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

  5. What are Neutrons? | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are Neutrons SHARE What are Neutrons? Visualization of An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. a...

  6. Tagged Neutron, Anti-neutron and K-Long beams in an Upgraded MIPP Spectrometer

    E-Print Network [OSTI]

    Rajendran Raja

    2007-01-23

    The MIPP experiment operating with an upgraded data acquisition system will be capable of acquiring data at the rate of 3000 events per second. Currently we are limited to a rate of 30 Hz due to the bottlenecks in the data acquisition electronics of the Time Projection Chamber (TPC). With the speeded up DAQ, MIPP will be capable of acquiring data at the rate of $\\approx$5 million events per day. This assumes a conservative beam duty cycle of 4~sec spill every 2 minutes with a 42% downtime for main injector beam manipulations for the $\\bar{p}$ source. We show that such a setup is capable of producing tagged neutron, anti-neutron and $K^0_L$ beams that are produced in the MIPP cryogenic hydrogen target using proton, anti-proton and $K^{\\pm}$ beams. These tagged beams can be used to study calorimeter responses for use in studies involving the Particle Flow Algorithm (PFA). The energy of these tagged beams will be known to better than 2% on a particle by particle level by means of constrained fitting. We expect a tagged beam rate in the tens of thousands a day. The MIPP spectrometer thus offers a unique opportunity to study the response of calorimeters to neutral particles.

  7. Compact neutron imaging system using axisymmetric mirrors

    DOE Patents [OSTI]

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  8. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  9. Fission meter and neutron detection using poisson distribution comparison

    DOE Patents [OSTI]

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  10. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  11. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  12. Recent activities for ?-decay half-lives and ?-delayed neutron emission of very neutron-rich isotopes

    SciTech Connect (OSTI)

    Dillmann, Iris; Abriola, Daniel; Singh, Balraj

    2014-05-02

    Beta-delayed neutron (?n) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material ?-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure ?n-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 ?-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 ?-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of ?-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and theoretical models.

  13. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  14. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  15. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-06-01

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  16. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  17. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect (OSTI)

    James Simpson; David Chichester

    2011-06-01

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  18. Uranium Neutron Coincidence Collar Model Utilizing Boron-10 Lined Tubes

    SciTech Connect (OSTI)

    Rogers, Jeremy L.; Ely, James H.; Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-09-18

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report, providing results for model development of Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) designs, is a deliverable under Task 2 of the project.

  19. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Spectrometer (ARCS) CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak Ridge National Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  20. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574Proposals neutrons.ornl.gov Neutron Scattering Science - Oak Ridge National Laboratory Due March 6, 2013 #12; Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  1. WHITE PAPER A "VolumetricNeutron Source" -

    E-Print Network [OSTI]

    -machine scenario could significantly reduce the risks associated with fusion power development simply because 2005, initially on a ten year physics phase, then on a subsequent ten year nuclear testing phase developmentoptions were compared: Unified scenarioof physics and nuclear testing -basically the ITER program

  2. Solid Targets for Neutron Spallation Sources

    E-Print Network [OSTI]

    McDonald, Kirk

    Channel Cartridge Heaters Copper Test Section Channel Flow Rate 10 m/s Cartridge heaters in tapered copper

  3. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  4. Artificial Neural Networks in Spectrometry and Neutron Dosimetry

    SciTech Connect (OSTI)

    Vega-Carrillo, H. R.; Martinez-Blanco, M. R. [Unidad Academica de Estudios Nucleares de la Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Ortiz-Rodriguez, J. M.; Hernandez-Davila, V. M. [Unidad Academica de Estudios Nucleares de la Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Escuela Politecnica Superior de la Universidad de Cordoba, Cordoba (Spain)

    2010-12-07

    The ANN technology has been applied to unfold the neutron spectra of three neutron sources and to estimate their dosimetric features. To compare these results, neutron spectra were also unfolded with the BUNKIUT code. Both unfolding procedures were carried out using the count rates of a Bonner sphere spectrometer. The spectra unfolded with ANN result similar to those unfolded with the BUNKIUT code. The H*(10) values obtained with ANN agrees well with H*(10) values calculated with the BUNKIUT code.

  5. Hand Held Neutron Detector Development for Physics and Security Applications 

    E-Print Network [OSTI]

    Campbell, Caitlin E

    2013-10-04

    energy neutrons may penetrate through the shielding and cause nuclear recoils on the detector that may be mistaken for a WIMP interaction event. The purpose of this project was to create a detector that shields as well as tags incoming neutrons to measure...

  6. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  7. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  8. Theory of Neutron Noise in a Temporally Fluctuating Multiplying Medium

    E-Print Network [OSTI]

    Pázsit, Imre

    Energy Research Institute, H-1525 Budapest 114, POB 49, Hungary and Imre Pázsit* Chalmers University to the inherent statistical properties of the individual neutron reactions and the statistics of the source! statistics of the neutron distribution is generated by the branching process, due to fission. When two

  9. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  10. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  11. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V. (Pleasanton, CA); Hankins, Dale E. (Livermore, CA); Tomasino, Luigi (Rome, IT); Gomaa, Mohamed A. M. (Heliopolis, EG)

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  12. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  13. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  14. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    E-Print Network [OSTI]

    Seung Kyu Lee; Byoung-Hwi Kang; Gi-Dong Kim; Yong-Kyun Kim

    2011-12-27

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutron source. In the results, the designed and fabricated stilbene neutron diagnostic system performed well in discriminating neutrons from gamma-rays under the high magnetic field conditions during KSTAR operation. Fast neutrons of 2.45 MeV were effectively measured and evaluated during the 2011 KSTAR campaign.

  15. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  16. More about neutron - mirror neutron oscillation

    E-Print Network [OSTI]

    Zurab Berezhiani

    2009-11-12

    It was pointed out recently that oscillation of the neutron $n$ into mirror neutron $n'$, a sterile twin of the neutron with exactly the same mass, could be a very fast process with the the baryon number violation, even faster than the neutron decay itself. This process is sensitive to the magnetic fields and it could be observed by comparing the neutron lose rates in the UCN storage chambers for different magnetic backgrounds. We calculate the probability of $n-n'$ oscillation in the case when a mirror magnetic field $\\vec{B}'$ is non-zero and show that in this case it can be suppressed or resonantly enhanced by applying the ordinary magnetic field $\\vec{B}$, depending on its strength and on its orientation with respect to $\\vec{B}'$. The recent experimental data, under this hypothesis, still allow the $n-n'$ oscillation time order 1 s or even smaller. Moreover, they indicate that the neutron losses are sensitive to the orientation of the magnetic field. %at about $3\\sigma$ level. If these hints will be confirmed in the future experiments, this would point to the presence of the mirror magnetic field on the Earth of the order of 0.1 G, or some equivalent spin-dependent force of the other origin that makes a difference between the neutron and mirror neutron states.

  17. Bouncing Neutrons and the Neutron Centrifuge

    E-Print Network [OSTI]

    P. J. S. Watson

    2003-02-26

    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.

  18. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  19. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  20. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, Eddy L. (Albuquerque, NM)

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  1. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  2. Angular Anisotropy of Correlated Neutrons in Lab Frame of Reference and Application to Detection and Verification 

    E-Print Network [OSTI]

    Holewa, Laura

    2012-07-16

    emitting the neutrons. Coincident neutrons can be detected from a shielded source, so a study of the angular anisotropy between coincident neutrons is useful for this context. This could allow for the dynamic determination of the ratio of the rate of (alpha...

  3. 1TABLE OF CONTENTS 2014 ORNL NEUTRON SCIENCES STRATEGIC PLAN

    E-Print Network [OSTI]

    #12;#12;1TABLE OF CONTENTS 2014 ORNL NEUTRON SCIENCES STRATEGIC PLAN Executive Summary Director Facilities Strategic Planning and Research Community Involvement New Opportunities Science Priorities and Upgraded Capabilities Enabling Technologies Sources Executing the Plan Strategic Timeline Appendices

  4. The neutron-gamma Feynman variance to mean approach: gamma detection and total neutron-gamma detection (theory and practice)

    E-Print Network [OSTI]

    Dina Chernikova; Kåre Axell; Senada Avdic; Imre Pázsit; Anders Nordlund

    2015-01-23

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have a particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with inclusion of general reactions and passage intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source enclosed in a steel container. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma, are evaluated experimentally for a weak 252Cf neutron-gamma source in a steel container, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-Y formulas.

  5. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect (OSTI)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  6. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  7. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  8. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  9. Review of Current Neutron Detection Systems for Emergency Response

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Maurer, R.; Guss, P.; Kruschwitz, C.

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern micro-fabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  10. The Neutron Lifetime

    E-Print Network [OSTI]

    F. E. Wietfeldt

    2014-11-13

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

  11. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  12. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.

  13. Neutron Optics Optimization for the SNS EQ-SANS Diffractometer

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL

    2011-01-01

    The extended Q-range small angle neutron scattering (EQ-SANS) diffractometer at the Spallation Neutron Source has recently been completed. Initial commissioning has shown that it has achieved its high intensity, low background, and wide dynamic range design goals. One of the key components that enable these performances is its neutron optics, which are extensively optimized using analytical and Monte Carlo methods. The EQ-SANS optics consist of a curved multichannel beam bender and sections of straight neutron guides on both ends of the bender. The bender and the guide are made of float glass coated with supermirror multilayers. The function of the optics is to ensure low instrument background by avoiding the direct line of sight of the neutron moderator at downstream locations, while transporting thermal and cold neutrons to the sample with maximum efficiency. In this work, the optimization of the EQ-SANS optics is presented.

  14. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Wright, Michael C [ORNL; Mullens, James Allen [ORNL

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  15. Nondestructive examination using neutron activated positron annihilation

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  16. Neutron apparatus for measuring strain in composites

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL); Majumdar, Saurindranath (Naperville, IL); Faber, Jr., John F. (Downers Grove, IL); Singh, J. P. (Bolingbrook, IL)

    1990-01-01

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  17. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  18. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  19. March, 2001 Neutron Scattering Group

    E-Print Network [OSTI]

    Johnson, Peter D.

    March, 2001 Neutron Scattering Group A High Performance Hybrid Spectrometer for theA High of the instrument performance · Igor Zaliznyak · Laurence Passell OutlineOutline #12;Neutron Scattering GroupNeutron states in single crystals.single crystals. #12;Neutron Scattering GroupNeutron Scattering Group What

  20. Synchrotron-driven spallation sources

    E-Print Network [OSTI]

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  1. Project X

    E-Print Network [OSTI]

    Holmes, Steve

    2014-01-01

    high energy neutron spectrum test environment at relevant temperatures Room for separate lead, helium, water loops

  2. Measurements of ultracold neutron lifetimes in solid deuterium

    E-Print Network [OSTI]

    C. L. Morris; J. M. Anaya; T. J. Bowles; B. W. Filippone; P. Geltenbort; R. E. Hill; M. Hino; S. Hoedl; G. E. Hogan; T. M. Ito; T. Kawai; K. Kirch; S. K. Lamoreaux; C. -Y. Liu; M. Makela; L. J. Marek; J. W. Martin; R. N. Mortensen; A. Pichlmaier; A. Saunders; S. J. Seestrom; D. Smith; W. Teasdale; B. Tipton; M. Utsuro; A. R. Young; J. Yuan

    2001-09-28

    We present the first measurements of the survival time of ultracold neutrons (UCNs) in solid deuterium SD2. This critical parameter provides a fundamental limitation to the effectiveness of superthermal UCN sources that utilize solid ortho-deuterium as the source material. Superthermal UCN sources offer orders of magnitude improvement in the available densities of UCNs, and are of great importance to fundamental particle-physics experiments such as searches for a static electric dipole moment and lifetime measurements of the free neutron. These measurements are performed utilizing a SD2 source coupled to a spallation source of neutrons, providing a demonstration of UCN production in this geometry and permitting systematic studies of the influence of thermal up-scatter and contamination with para-deuterium on the UCN survival time.

  3. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  4. Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Office User Program Manager Laura Morris Edwards 865.574.2966 ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production Full...

  5. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  6. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    SciTech Connect (OSTI)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A; McGreevy, Robert L; Ekkebus, Allen E; Kszos, Lynn A; Anderson, Ian S

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

  7. New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    E-Print Network [OSTI]

    K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P. E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn

    2015-04-24

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function $g(r)$ inferred from neutron scattering measurements of the differential cross section $d\\sigma \\over d\\Omega$ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  8. The neutron star mass distribution

    E-Print Network [OSTI]

    Kiziltan, B; Kottas, A; De Yoreo, M; Thorsett, SE

    2013-01-01

    Science Library, Vol. 326, Neutron Stars 1 : Equation ofBlack holes, white dwarfs, and neutron stars: The physics ofPhys. Rev. , 55, 364 The Neutron Star Mass Distribution van

  9. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect (OSTI)

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  10. Superfluid effects on gauging core temperatures of neutron stars in low-mass X-ray binaries

    E-Print Network [OSTI]

    Wynn C. G. Ho

    2011-10-06

    Neutron stars accreting matter from low-mass binary companions are observed to undergo bursts of X-rays due to the thermonuclear explosion of material on the neutron star surface. We use recent results on superfluid and superconducting properties to show that the core temperature in these neutron stars may not be uniquely determined for a range of observed accretion rates. The degeneracy in inferred core temperatures could contribute to explaining the difference between neutron stars which have very short recurrence times between multiple bursts and those which have long recurrence times between bursts: short bursting sources have higher temperatures and normal neutrons in the stellar core, while long bursting sources have lower temperatures and superfluid neutrons. If correct, measurements of the lowest luminosity from among the short bursting sources and highest luminosity from among the long bursting sources can be used to constrain the critical temperature for the onset of neutron superfluidity.

  11. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  12. Status Summary of 3He and Neutron Detection Alternatives for Homeland Security

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.

    2010-04-28

    This is a short summary whitepaper on results of our alternatives work: Neutron detection is an important aspect of interdiction of radiological threats for homeland security purposes since plutonium, a material used for nuclear weapons, is a significant source of fission neutrons [Kouzes 2005]. Because of the imminent shortage of 3He, which is used in the most commonly deployed neutron detectors, a replacement technology for neutron detection is required for most detection systems in the very near future [Kouzes 2009a]. For homeland security applications, neutron false alarms from a detector can result in significant impact. This puts a strong requirement on any neutron detection technology not to generate false neutron counts in the presence of a large gamma ray-only source [Kouzes et al. 2008].

  13. Compact D-D/D-T neutron generators and their applications

    E-Print Network [OSTI]

    Lou, T P

    2003-01-01

    Neutron generators based on the sup 2 H(d,n) sup 3 He and sup 3 H(d,n) sup 4 He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield...

  14. Neutron Science Research Areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Neutron Science | Research Areas SHARE Research Areas Neutron scattering research at ORNL covers four broad research areas: biology and soft...

  15. Neutron Stars and Fractal Dimensionality

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-05-06

    We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

  16. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C

    2013-01-01

    The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

  17. Current Status and Future Works of Neutron Scattering Laboratory at BATAN in Serpong

    SciTech Connect (OSTI)

    Ikram, A. [Center of Technology for Nuclear Industrial Materials, National Nuclear Energy Agency of Indonesia (BATAN) Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

    2008-03-17

    Current status of neutron beam instruments using neutrons produced by the Multi Purpose Research Reactor--30MWth (MPR 30, RSG GA Siwabessy) located in Serpong is presented. Description of the reactor as the neutron source is mentioned briefly. There are six neutron beam tubes coming from the beryllium reflector surrounding half of the reactor core providing neutrons in the experimental hall of the reactor (XHR). Four of them are dedicated to R and D in materials science using neutron scattering techniques. Neutron Radiography Facility (NRF), Triple Axis Spectrometer (TAS) and Residual Stress Measurement (RSM) Diffractometer are installed respectively at beam tubes S2, S4 and S6. The largest neutron beam tube (S5) is exploited to accommodate two neutron guide tubes that transfer the neutrons to a neighbouring building called neutron guide hall (NGH). There are three other neutron beam instruments installed in this building, namely Small Angle Neutron Scattering (SANS) Spectrometer (SMARTer), High Resolution SANS (HRSANS) Spectrometer and High Resolution Powder Diffractometer (HRPD). In the XHR, a Four Circle and Texture Diffractometer (FCD/TD) is attached to one of the neutron guide tubes. These seven instruments were installed to utilize the neutrons for materials science research, and recently the RSM diffractometer has shown its capabilities in identifying different amount of stress left due to different treatments of welding in fuel cladding, while the SANS spectrometer is now gaining capabilities in identifying different sizes and shapes of macromolecules in polymers as well as investigations of magnetic samples. In the mean time, non-destructive tests using the NRF is gathering more confidence from some latest real time measurements eventhough there are still some shortcomings in the components and their alignments. Future works including improvement of each facility and its components, even replacement of some parts are necessary and have to be carried out carefully. A plan for developing a neutron reflectometer at one of the neutron guide in the Neutron Guide Hall is also part of the near future activities.

  18. Beam characterization at the Neutron Radiography Facility (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.

    1992-07-01

    An ongoing project to characterize the neutron beams at the Neutron Radiography Reactor (NRAD) is described in this paper. The effort has consisted of computer modelling with three dimensional diffusion theory to obtain a trail spectrum, foil activation measurements, and the use of SAND-II unfolding code. It was expected and found that diffusion theory will underpredict the fast flux. However, it is claimed that precise characterization of the entire spectrum is not necessary for comparisons among neutron radiography facilities; rather, the use of simple fast neutron indicators should be adequate. A specific example used at NRAD is the U-235/U-238 fission reaction rate ratio. A ratio such as this could be used in the same manner as the classic gold cadmium ratio for interfacility comparisons with regard to fast neutrons. 5 refs.

  19. Beam characterization at the Neutron Radiography Facility (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.

    1992-01-01

    An ongoing project to characterize the neutron beams at the Neutron Radiography Reactor (NRAD) is described in this paper. The effort has consisted of computer modelling with three dimensional diffusion theory to obtain a trail spectrum, foil activation measurements, and the use of SAND-II unfolding code. It was expected and found that diffusion theory will underpredict the fast flux. However, it is claimed that precise characterization of the entire spectrum is not necessary for comparisons among neutron radiography facilities; rather, the use of simple fast neutron indicators should be adequate. A specific example used at NRAD is the U-235/U-238 fission reaction rate ratio. A ratio such as this could be used in the same manner as the classic gold cadmium ratio for interfacility comparisons with regard to fast neutrons. 5 refs.

  20. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect (OSTI)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

  1. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  2. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  3. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  4. Title: Exploring Earth Source Heat (ESH) as a demonstration project at Cornell Hosts: Bert Bland, Todd Cowen, Katherine McComas

    E-Print Network [OSTI]

    Walter, M.Todd

    , the Climate Action Plan has proposed Earth Source Heat (previously termed Enhanced Geothermal System), supplemented by bioenergy, as the way to heat the Ithaca campus. ESH is an engineered system to access

  5. Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV A.M. Daskalakis a, , R Measurement Neutron scattering Time-of-flight experiment Benchmark a b s t r a c t The Rensselaer Polytechnic scattering sample 30 m from the source. Eight liquid scintillator (EJ-301) proton recoil fast neutron

  6. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON. Information and instructions To learn more about submitting a proposal for beam time, go to http://neutrons

  7. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574.ornl.gov Neutron Scattering Science - Oak Ridge National Laboratory Due February 26, 2014 #12; Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  8. Derivation of a Stochastic Neutron Transport Equation

    E-Print Network [OSTI]

    Edward J. Allen

    2010-04-14

    Stochastic difference equations and a stochastic partial differential equation (SPDE) are simultaneously derived for the time-dependent neutron angular density in a general three-dimensional medium where the neutron angular density is a function of position, direction, energy, and time. Special cases of the equations are given such as transport in one-dimensional plane geometry with isotropic scattering and transport in a homogeneous medium. The stochastic equations are derived from basic principles, i.e., from the changes that occur in a small time interval. Stochastic difference equations of the neutron angular density are constructed, taking into account the inherent randomness in scatters, absorptions, and source neutrons. As the time interval decreases, the stochastic difference equations lead to a system of Ito stochastic differential equations (SDEs). As the energy, direction, and position intervals decrease, an SPDE is derived for the neutron angular density. Comparisons between numerical solutions of the stochastic difference equations and independently formulated Monte Carlo calculations support the accuracy of the derivations.

  9. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles

    SciTech Connect (OSTI)

    Steven Wallace

    2007-08-28

    A gamma-free neutron-sensitive scintillator is needed to enhance radiaition sensing and detection for nonproliferation applications. Such a scintillator would allow very large detectors to be placed at the perimeter of spent-fuel storage facilities at commercial nuclear power plants, so that any movement of spontaneously emitted neutrons from spent nuclear fuel or weapons grade plutonium would be noted in real-time. This task is to demonstrate that the technology for manufacturing large panels of fluor-doped plastic containing lithium-6 phosphate nanoparticles can be achieved. In order to detect neutrons, the nanoparticles must be sufficiently small so that the plastic remains transparent. In this way, the triton and alpha particles generated by the capture of the neutron will result in a photon burst that can be coupled to a wavelength shifting fiber (WLS) producing an optical signal of about ten nanoseconds duration signaling the presence of a neutron emitting source.

  10. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    E-Print Network [OSTI]

    Sergey Polosatkin; Evgeny Grishnyaev; Alexander Dolgov

    2014-07-10

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  11. Neutron Interactions as Seen by A Segmented Germanium Detector

    E-Print Network [OSTI]

    I. Abt; A. Caldwell; K. Kroeninger; J. Liu; X. Liu; B. Majorovits

    2007-11-14

    The GERmanium Detector Array, GERDA, is designed for the search for ``neutrinoless double beta decay'' (0-nu-2-beta) with germanium detectors enriched in Ge76. An 18-fold segmented prototype detector for GERDA Phase II was exposed to an AmBe neutron source to improve the understanding of neutron induced backgrounds. Neutron interactions with the germanium isotopes themselves and in the surrounding materials were studied. Segment information is used to identify neutron induced peaks in the recorded energy spectra. The Geant4 based simulation package MaGe is used to simulate the experiment. Though many photon peaks from germanium isotopes excited by neutrons are correctly described by Geant4, some physics processes were identified as being incorrectly treated or even missing.

  12. Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei; P. Davis; B. Woltman; F. Gray

    2013-06-12

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron-gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  13. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  14. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    E-Print Network [OSTI]

    R. Alba; M. Barbagallo; P. Boccaccio; A. Celentano; N. Colonna; G. Cosentino; A. Del Zoppo; A. Di Pietro; J. Esposito; P. Figuera; P. Finocchiaro; A. Kostyukov; C. Maiolino; M. Osipenko; G. Ricco; M. Ripani; C. M. Viberti; D. Santonocito; M. Schillaci

    2012-08-08

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  15. Characterization of an INVS Model IV Neutron Counter for High Precision ($?,n$) Cross-Section Measurements

    E-Print Network [OSTI]

    C. W. Arnold; T. B. Clegg; H. J Karwowski; G. C. Rich; J. R. Tompkins; C. R. Howell

    2011-01-17

    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for ($\\gamma,n$) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of $\\pm$ 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.

  16. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect (OSTI)

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  17. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    E-Print Network [OSTI]

    Horowitz, C J; Berry, D K

    2007-01-01

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with $Z=8$ or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase sep...

  18. Fusion of neutron rich oxygen isotopes in the crust of accreting neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz; H. Dussan; D. K. Berry

    2008-04-07

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge $Z$. Nuclei with $Z\\le 6$ can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the $S$ factor for fusion reactions of neutron rich nuclei including $^{24}$O + $^{24}$O and $^{28}$Ne + $^{28}$Ne. We use a simple barrier penetration model. The $S$ factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in $S$ should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear $^{24}$O + $^{24}$O fusion and find that $^{24}$O should burn at densities near $10^{11}$ g/cm$^3$. The energy released from this and similar reactions may be important for the temperature profile of the star.

  19. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    SciTech Connect (OSTI)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  20. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  1. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  2. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect (OSTI)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  3. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    E-Print Network [OSTI]

    Michalis Agathos; Jeroen Meidam; Walter Del Pozzo; Tjonnie G. F. Li; Marco Tompitak; John Veitch; Salvatore Vitale; Chris Van Den Broeck

    2015-07-12

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  4. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  5. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  6. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    SciTech Connect (OSTI)

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  7. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    THERMAL HYDRAULICS KEYWORDS: neutron activation, flow measurements, evaluation methods FLOWACT, FLOW RATE MEASUREMENTS IN PIPES WITH THE PULSED-NEUTRON ACTIVATION METHOD PER LINDÉN,* GUDMAR GROSSHÖG- neutron activation (PNA) in a specially designed test loop. A stationary neutron generator was used

  8. Neutron Scattering Group February, 2001

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Scattering Group February, 2001 A High Performance Instrument for the Single Crystal Igor Zaliznyak Outline #12;Neutron Scattering Group Neutron spectrometer for studies of the low-energy coherent excitations in single crystals. Common requirements for a single crystal neutron spectrometer

  9. Scanning Cargo Containers with Tagged Neutrons

    SciTech Connect (OSTI)

    Viesti, G.; Botosso, C.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Zenoni, A.; Donzella, A.; Perot, B.; Carasco, C.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Valkovic, V.; Sudac, D.; Nad, K.; Peerani, P.; Sequeira, V.

    2007-10-26

    A new Tagged Neutron Inspection System (TNIS) able to detect illicit materials such as explosives and narcotics in cargo containers has been developed within the EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) project. After the R and D phase, the inspection portal has been installed and commissioned at the Rijeka seaport in Croatia, where it has been operated in connection with the existing X-ray scanner for a first two-month demonstration campaign. Results obtained are presented and discussed in this paper.

  10. Hypernuclear Physics for Neutron Stars

    E-Print Network [OSTI]

    Jurgen Schaffner-Bielich

    2008-01-24

    The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

  11. Neutron-induced nucleosynthesis

    E-Print Network [OSTI]

    H. Oberhummer; H. Herndl; T. Rauscher; H. Beer

    1996-08-20

    Neutron--induced nucleosynthesis plays an important role in astrophysical scenarios like in primordial nucleosynthesis in the early universe, in the s--process occurring in Red Giants, and in the $\\alpha$--rich freeze--out and r--process taking place in supernovae of type II. A review of the three important aspects of neutron--induced nucleosynthesis is given: astrophysical background, experimental methods and theoretical models for determining reaction cross sections and reaction rates at thermonuclear energies. Three specific examples of neutron capture at thermal and thermonuclear energies are discussed in some detail.

  12. An investigation of magnesium production in silicon by neutron transmutation 

    E-Print Network [OSTI]

    Davis, Freddie Joe

    1986-01-01

    NEUTRON TRANSMUTATION DOPING CHAPTER II. THEORY APPROACH IRRADIATION AND PRODUCTS NUMERICAL PREDICTIONS 10 REGISTRATION EFFICIENCY CHAPTER III. EXPERIMENT FILM SELECTION 23 PRELIMINARY TESTS OF LR-115 FILM 25 TARGET CONFIGURATION 29 INHERENT... approach. CHAPTER II THEORY APPROACH The general procedure was to irradiate silicon target materially using the NSCR as a neutron source. The desired interaction, that producing magnesium, gives rise to an alpha particle, which may escape the silicon...

  13. Event-Based Processing of Neutron Scattering Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniquesmore »will be shown for comparison.« less

  14. Millisecond time resolution neutron reflection from a nematic liquid crystal

    SciTech Connect (OSTI)

    Dalgliesh, R.M.; Lau, Y.G.J.; Richardson, R.M.; Riley, D.J. [ISIS Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS (United Kingdom)

    2004-09-01

    The director reorientation of the liquid crystal 4,4' octyl cyanobiphenyl in the nematic phase under application of bursts of ac field have been observed using time-resolved neutron scattering in reflection geometry. The relaxation of the director has been shown to agree with existing theory, as determined by material and cell parameters. This result shows that it is possible to use neutron reflection measurements from buried interfaces to follow kinetic processes on a time scale comparable with the pulse length of the ISIS neutron source (20 ms)

  15. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect (OSTI)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  16. Neutron skin uncertainties of Skyrme energy density functionals

    E-Print Network [OSTI]

    M. Kortelainen; J. Erler; W. Nazarewicz; N. Birge; Y. Gao; E. Olsen

    2013-07-16

    Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron skin increase with neutron excess. Statistical errors due to uncertain coupling constants of the density functional are found to be larger than systematic errors, the latter not exceeding 0.06 fm in most neutron-rich nuclei across the nuclear landscape. The single major source of uncertainty is the poorly determined slope L of the symmetry energy that parametrizes its density dependence. Conclusions: To provide essential constraints on the symmetry energy of the nuclear energy density functional, next-generation measurements of neutron skins are required to deliver precision better than 0.06 fm.

  17. Supplementary materials of "High-resolution back-projection at regional distance: application to the Haiti M7.0 earthquake and comparisons with finite source studies"

    E-Print Network [OSTI]

    Ampuero, Jean Paul

    of the synthetic seismograms of the mainshock filtered from 0.2 to 0.7 Hz, assuming a point source with mechanism given by the CMT solution. Fig. S2 Fit of the teleseismic P and SH waveforms for the kinematic slip joint kinematic slip model. The P and SH waveforms are sorted with increasing azimuth angle (number

  18. A solenoidal electron spectrometer for a precision measurement of the neutron $\\beta$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    Plaster, B; Filippone, B W; Harrison, D; Hsiao, J; Ito, T M; Liu, J; Martin, J W; Tipton, B; Yuan, J

    2008-01-01

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  19. EPA Source Reduction Assistance Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.

  20. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  1. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  2. Leading neutron spectra

    E-Print Network [OSTI]

    A. B. Kaidalov; V. A. Khoze; A. D. Martin; M. G. Ryskin

    2006-05-27

    It is shown that the observation of the spectra of leading neutrons from proton beams can be a good probe of absorptive and migration effects. We quantify how these effects modify the Reggeized pion-exchange description of the measurements of leading neutrons at HERA. We are able to obtain a satisfactory description of all the features of these data. We also briefly discuss the corresponding data for leading baryons produced in hadron-hadron collisions.

  3. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

  4. Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

    2014-09-29

    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

  5. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  6. Neutron Capture Experiments on Unstable Nuclei

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Sudowe, Ralf; Folden, Charles M., III; Nitsche, Heino; Hoffman, Darleane C.

    2005-01-15

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for the first time at the DANCE facility in early 2004. The Eu targets, suitable blanks, Be backing foils, and standards had been sent to the DANCE group in early fall 2003. Some preliminary data analysis was performed and more sophisticated analysis has begun. We developed plans for a suitable computer system for data analysis within our group at Berkeley and had meetings with counterparts at Lawrence Livermore National Laboratory (LLNL) and LANL concerning analysis of these data. Our major emphasis in 2004 has been to develop the separations and processes ultimately required to prepare radioactive targets of 4.7-year 155Eu. Efforts continued to devise an optimum multiprocess procedure suitable for use in separating radioactive 155Eu already produced by irradiation of stable 154Sm in a high neutron flux reactor at the Institut Laue-Langevin in France and shipped to LANL (the 22-min 155Sm neutron-capture product decays to 155Eu). This separation is extremely demanding because the highly radioactive 155Eu must be isolated from about 20 times as much mass of samarium before a target can be prepared for DANCE measurements. After all the procedures have been fully tested the radioactive 155Eu will be separated. The same electroplating methods already used successfully to prepare stable Eu isotope targets will be used to prepare the 155Eu target for DANCE. Discussions were held with LANL radiochemists in the Chemistry (C) Division about appropriate facilities at LANL for conducting the full-scale separation and purification of the radioactive targets. Three more multiprocess separations were developed that generated less chemical and radioactive waste, but they must still be adapted for processing hundred-milligram quantities. Until these separations can be successfully implemented at this scale, standard HPLC procedures will be used for separating and preparing radioactive 155Eu, 2.6-year 147Pm, and 1.9-year 171Tm target materials. Future directions beyond the preparation of radioactive lanthanide targets include closer collaboration with both LLNL and LANL to prepare ac

  7. FLEXIBLE NEUTRON SHIELDING FOR A GLOVEBOX WITHIN THE IDAHO NATIONAL LABORATORY RADIOISOTOPE POWER SYSTEM PROGRAM

    SciTech Connect (OSTI)

    Stephanie Walsh

    2007-07-01

    Neutron shielding was desired to reduce worker exposure during handling of plutonium-238 (Pu-238) in a glovebox at the Idaho National Laboratory. Due to the unusual shape of the glovebox, standard methods of neutron shielding were impractical and would have interfered with glovebox operations. A silicon-based, boron-impregnated material was chosen due to its flexibility. This paper discusses the material, the installation, and the results from neutron source testing.

  8. International Conference on Surface X-ray and Neutron Scattering (SXNS-11)

    SciTech Connect (OSTI)

    Michael J. Bedzyk

    2011-06-17

    The 11th International Surface X-ray and Neutron Scattering (SXNS) Conference was held on July 13-17, 2010, on the Northwestern University (NU) campus, in Evanston Illinois and hosted by the NU Materials Research Science and Engineering Center. This biennial conference brought together a community of 164 attendees from 16 countries. The field now makes use of a broad range of new experimental capabilities that have been made possible through the development of increasingly brilliant X-ray and neutron sources around the world, including third generation synchrotron sources, neutron reactor and spallation sources, as well as the recent development of X-ray lasers.

  9. How to produce a reactor neutron spectrum using a proton accelerator

    SciTech Connect (OSTI)

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-01-01

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  10. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  11. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  12. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    E-Print Network [OSTI]

    A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

    2009-02-02

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

  13. Fast Neutron - Mirror Neutron Oscillation and Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Zurab Berezhiani; Luis Bento

    2006-02-24

    If there exists the mirror world, a parallel hidden sector of particles with exactly the same microphysics as that of the observable particles, then the primordial nucleosynthesis constraints require that the temperature of the cosmic background of mirror relic photons should be smaller than that of the ordinary relic photons, T'/T neutron - mirror neutron oscillation in vacuum, with an oscillation time $\\tau \\sim 1$ s, much smaller than the neutron lifetime. We show that this could provide a very efficient mechanism for transporting ultra high energy protons at large cosmological distances. The mechanism operates as follows: a super-GZK energy proton scatters a relic photon producing a neutron that oscillates into a mirror neutron which then decays into a mirror proton. The latter undergoes a symmetric process, scattering a mirror relic photon and producing back an ordinary nucleon, but only after traveling a distance $(T/T')^{3}$ times larger than ordinary protons. This may relax or completely remove the GZK-cutoff in the cosmic ray spectrum and also explain the correlation between the observed ultra high energy protons and far distant sources as are the BL Lacs.

  14. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  15. Review of Subcritical Source-Driven Noise Analysis Measurements

    SciTech Connect (OSTI)

    Valentine, T.E.

    1999-11-01

    Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossia measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor.

  16. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  17. Intense Pulsed Neutron Emission from a Compact Pyroelectric Driven Accelerator

    SciTech Connect (OSTI)

    Tang, V; Meyer, G; Falabella, S; Guethlein, G; Sampayan, S; Kerr, P; Rusnak, B; Morse, J

    2008-10-08

    Intense pulsed D-D neutron emission with rates >10{sup 10} n/s during the pulse, pulse widths of {approx}100's ns, and neutron yields >10 k per pulse are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal which provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compare well with theory. Results show neutron output per pulse that scales with voltage as V{approx}1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof-of-principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work, and notably increase the potential applications of pyroelectric based neutron generators.

  18. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  19. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect (OSTI)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  20. Measurement and Simulation of Neutron/Gamma-Ray Cross-Correlation

    E-Print Network [OSTI]

    Eustice, Ryan

    . These techniques are based on the thermal- ization of neutrons from fission in polyethylene moderators- nation (PSD) technique [4] to the identification of shielded neutron sources by visual inspection window of a few tens of nanoseconds. The experiments are performed with and without lead (Pb) shielding

  1. Neutron-induced fission measurements at the time-of-flight facility nELBE

    SciTech Connect (OSTI)

    Kögler, T. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden, Dresden (Germany); Beyer, R. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Junghans, A. R. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Massarczyk, R. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwengner, R. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2015-01-01

    Neutron-induced fission of ²?²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  2. Neutron-induced fission measurements at the time-of-flight facility nELBE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kögler, T.; Beyer, R.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²?²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  3. Neutron Science | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL's long history of neutron science began in the 1940s with the pioneering neutron scattering studies of Ernest Wollan and Clifford Shull. Shull was co-recipient of...

  4. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  5. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  6. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  7. Fusion neutron yield from high intensity laser-cluster interaction

    SciTech Connect (OSTI)

    Davis, J.; Petrov, G.M.; Velikovich, A.L. [Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-06-15

    The fusion neutron yield from a compact neutron source is studied. Laser-irradiated deuterium clusters serve as a precursor of high-energy deuterium ions, which react with the walls of a fusion reaction chamber and produce copious amounts of neutrons in fusion reactions. The explosion of deuterium clusters with initial radius of 50-200 A irradiated by a subpicosecond laser with intensity of 10{sup 16} W/cm{sup 2} is examined theoretically. We studied the conversion efficiency of laser energy to ion kinetic energy, the mean and maximum ion kinetic energy, and ion energy distribution function by a molecular dynamics model. A yield of {approx}10{sup 5}-10{sup 6} neutrons/J is obtainable for a peak laser intensity of 10{sup 16}-10{sup 17} W/cm{sup 2} and clusters with an initial radius of 200-400 A.

  8. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector

    E-Print Network [OSTI]

    Kole, Merlin; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mózsi; Moretti, Elena; Salinas, Maria Fernanda Muñoz; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2013-01-01

    PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high rad...

  11. Neutron Detection Efficiency of the

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Neutron Detection Efficiency of the CLAS12 Detector M. Moog and G. Gilfoyle University Of Richmond - Department of Physics Software We simulated the neutron detection efficiency of the forward time of flight scintillators for quasielastic electron-neutron scattering using a series of software packages. Elastic

  12. Neutron - Mirror Neutron Oscillations: How Fast Might They Be?

    E-Print Network [OSTI]

    Zurab Berezhiani; Luis Bento

    2006-02-20

    We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron (n'), a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal n-n' oscillation in vacuum with a characteristic time $\\tau$ much shorter than the neutron lifetime, in fact as small as 1 sec. This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to present experimental capabilities and may also have interesting astrophysical consequences, in particular for the propagation of ultra high energy cosmic rays.

  13. COALESCING NEUTRON STARS AS GAMMA RAY BURSTERS ?

    E-Print Network [OSTI]

    M. Ruffert; H. -Th. Janka; W. Keil; G. Schaefer

    1995-03-06

    We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the `Piecewise Parabolic Method' However, we do include the effects of the emission of gravitational waves on the hydrodynamics. The properties of neutron star matter are described by the equation of state of Lattimer & Swesty. In addition to the fundamental hydrodynamic quantities, density, momentum, and energy, we follow the time evolution of the electron density in the stellar gas. Energy losses and changes of the electron abundance due to the emission of neutrinos are taken into account by an elaborate ``neutrino leakage scheme'', which employs a careful calculation of the lepton number and energy source terms of all neutrino types. The grid is Cartesian and equidistant with a resolution of 64**3 or 128**3, which allows us to calculate the self-gravity via fast Fourier transforms.

  14. BACKSCATTER GUAGE DESCRIPTION FOR INSPECTION OF NEUTRON ABSORBER AND UNIFORMITY

    SciTech Connect (OSTI)

    Dewberry, R.; Gibbs, K.; Couture, A.

    2012-05-23

    This paper describes design, calibration, and testing of a dual He-3 detector neutron backscatter gauge for use in the Savannah River Site Mixed Oxide Fuel project. The gauge is demonstrated to measure boron content and uniformity in concrete slabs used in the facility construction.

  15. Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

    SciTech Connect (OSTI)

    Bell, Z.W.; Lamberti, V.E.

    2002-06-20

    A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.

  16. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect (OSTI)

    Ullmann, J. L. (John L.); Haight, Robert C.; Hunt, L. F. (Lloyd F.); Reifarth, R. (Rene); Rundberg, R. S. (Robert S.); Bredeweg, T. A. (Todd A); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Heil, M.; Käppeler, F. (Franz); Chamberlin, E. P. (Edwin P.)

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  17. The Neutron_Time of Flight Facility at CERN: First Commissioning Results.

    E-Print Network [OSTI]

    Borcea, C; Cennini, P; Dahlfors, M; Dangenhorf, V; Ferrari, A; García-Muñoz, G; Kadi, Y; Lacoste, V; Nolte, R; Radermacher, E; Rubbia, Carlo; Saldaña, F; Vlachoudis, V; Zanini, L; CERN. Geneva. SPS and LHC Division

    2001-01-01

    Recently the CERN neutron spallation source became operational. Information concerning this new facility will be given as for installation, expected performances and physics program. Some preliminary results of the commisioning campaign of measurements will also be presented.

  18. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOE Patents [OSTI]

    Zaitseva, Natalia P.; Hull, Giulia; Cherepy, Nerine J.; Payne, Stephen A.; Stoeffl, Wolfgang

    2012-06-26

    A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.

  19. Monte Carlo model of a low-energy neutron interrogation system for detecting fissile material

    E-Print Network [OSTI]

    Johnson, Erik D., Ph. D. Massachusetts Institute of Technology

    2006-01-01

    (cont.) Further MCNP simulations of the neutron source impinging on cargo containers suggest that this technique can respond, as expected, qualitatively differently to containers containing SNM from containers that do not. ...

  20. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  1. IAEA-CN-60/F-II-6 Requirements and Design Envelope for Volumetric Neutron

    E-Print Network [OSTI]

    Tillack, Mark

    IAEA-CN-60/F-II-6 Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities Scientific Research Institute, RF #12;IAEA-CN-60/F-II-6 Requirements and Design Envelope for Volumetric

  2. Small Angle Neutron Scattering

    SciTech Connect (OSTI)

    Urban, Volker S [ORNL

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  3. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  4. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  5. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  6. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  7. Laser induced neutron production by explosion of the deuterium clusters

    SciTech Connect (OSTI)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani 333 031 (India); Mishra, Gaurav, E-mail: gauravm@barc.gov.in; Gupta, N. K., E-mail: nkgupta@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-01-15

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 10{sup 15} to 10{sup 19}?W/cm{sup 2} is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  8. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  9. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    SciTech Connect (OSTI)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  10. An Inverse Source Location Algorithm for Radiation Portal Monitor Applications 

    E-Print Network [OSTI]

    Miller, Karen Ann

    2011-08-08

    the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron...

  11. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  12. Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars

    E-Print Network [OSTI]

    C. J. Horowitz; J. Piekarewicz

    2002-01-08

    Parity violating electron scattering can measure the neutron density of a heavy nucleus accurately and model independently. This is because the weak charge of the neutron is much larger then that of the proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to measure the root mean square neutron radius of $^{208}$Pb with an absolute accuracy of 1% ($\\pm 0.05$ Fm). This is more accurate then past measurements with hadronic probes, which all suffer from controversial strong interaction uncertainties. PREX should clearly resolve the neutron-rich skin. Furthermore, this benchmark value for $^{208}$Pb will provide a calibration for hadronic probes, such as proton scattering, which can then be used to measure neutron densities of many exotic nuclei. The PREX result will also have many implications for neutron stars. The neutron radius of Pb depends on the pressure of neutron-rich matter: the greater the pressure, the larger the radius as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity. The Pb radius is sensitive to the equation of state at normal densities while the radius of a 1.4 solar mass neutron star also depends on the equation of state at higher densities. Measurements of the radii of a number of isolated neutron stars such as Geminga and RX J185635-3754 should soon improve significantly. By comparing the equation of state information from the radii of both Pb and neutron stars one can search for a softening of the high density equation of state from a phase transition to an exotic state. Possibilities include kaon condensates, strange quark matter or color superconductors.

  13. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

  14. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect (OSTI)

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  15. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect (OSTI)

    Dr. Jay Theodore Cremer, Jr

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 ���� to 2.6 ���� neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2 ����. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313�¢����315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  16. AFCI-2.0 Neutron Cross Section Covariance Library

    SciTech Connect (OSTI)

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Covariances are given in 33-energy groups, from 10?5 eV to 19.6 MeV, obtained by processing with LANL processing code NJOY using 1/E flux. In addition to these 110 files, the library contains 20 files with nu-bar covariances, 3 files with covariances of prompt fission neutron spectra (238,239,240-Pu), and 2 files with mu-bar covariances (23-Na, 56-Fe). Over the period of three years several working versions of the library have been released and tested by ANL and INL reactor analysts. Useful feedback has been collected allowing gradual improvements of the library. In addition, QA system was developed to check basic properties and features of the whole library, allowing visual inspection of uncertainty and correlations plots, inspection of uncertainties of integral quantities with independent databases, and dispersion of cross sections between major evaluated libraries. The COMMARA-2.0 beta version of the library was released to ANL and INL reactor analysts in October 2010. The final version, described in the present report, was released in March 2011.

  17. Guest Project: Personal Information Title of the Project

    E-Print Network [OSTI]

    ! ! Guest Project: Personal Information ! ! Title of the Project: ! ! Project Coordinator: ! Name? ! 1. 2. 3... #12;! Rules and Acceptance: ! The primary purpose of the ICTP SciFabLab is to support, models, and codes developed within the ICTP Scientific FabLab as open source / open hardware

  18. Ortho- and para-hydrogen in neutron thermalization

    SciTech Connect (OSTI)

    Daemen, L. L.; Brun, T. O.

    1998-01-01

    The large difference in neutron scattering cross-section at low neutron energies between ortho- and para-hydrogen was recognized early on. In view of this difference (more than an order of magnitude), one might legitimately ask whether the ortho/para ratio has a significant effect on the neutron thermalization properties of a cold hydrogen moderator. Several experiments performed in the 60`s and early 70`s with a variety of source and (liquid hydrogen) moderator configurations attempted to investigate this. The results tend to show that the ortho/para ratio does indeed have an effect on the energy spectrum of the neutron beam produced. Unfortunately, the results are not always consistent with each other and much unknown territory remains to be explored. The problem has been approached from a computational standpoint, but these isolated efforts are far from having examined the ortho/para-hydrogen problem in neutron moderation in all its complexity. Because of space limitations, the authors cannot cover, even briefly, all the aspects of the ortho/para question here. This paper will summarize experiments meant to investigate the effect of the ortho/para ratio on the neutron energy spectrum produced by liquid hydrogen moderators.

  19. The Fate of the Compact Remnant in Neutron Star Mergers

    E-Print Network [OSTI]

    Chris L. Fryer; Krzysztoff Belczynski; Enrico Ramirez-Ruiz; Stephan Rosswog; Gang Shen; Andrew W. Steiner

    2015-04-28

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  20. The Fate of the Compact Remnant in Neutron Star Mergers

    E-Print Network [OSTI]

    Fryer, Chris L; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W

    2015-01-01

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constr...