National Library of Energy BETA

Sample records for neutron source oak

  1. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    SciTech Connect (OSTI)

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  2. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  3. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  4. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  5. Neutron source

    DOE Patents [OSTI]

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  6. NEUTRON SOURCES

    DOE Patents [OSTI]

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  7. Neutron Instruments Added at Oak Ridge (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron Instruments Added at Oak Ridge Citation Details In-Document Search Title: Neutron Instruments Added at Oak Ridge The neutron scattering facilities at Oak Ridge National ...

  8. NEUTRON SOURCE

    DOE Patents [OSTI]

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  9. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  10. January 16, 2009: Expansion of Spallation Neutron Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009 The Department gives its initial approval to begin plans for the Oak Ridge National Laboratory (ORNL) to build a second target station for the Spallation Neutron Source, expanding what is already the world's most powerful pulsed neutron scattering facility. The new station, which will cost approximately $1

  11. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  12. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  13. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  14. A brief History of Neutron Scattering at the Oak Ridge High Flux...

    Office of Scientific and Technical Information (OSTI)

    A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor Citation Details In-Document Search Title: A brief History of Neutron Scattering at the Oak Ridge ...

  15. Search for the Neutron Electric Dipole Moment at the SNS at Oak Ridge

    SciTech Connect (OSTI)

    Kolarkar, Ameya

    2010-02-10

    The possible existence of a non-zero electric dipole moment (EDM) of the neutron is of fundamental interest for our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. A new experiment being developed at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory seeks to lower the current EDM limit of the neutron by a factor of 50 to 100 over the present upper limit of 2.9x10{sup -26} e cm.

  16. FABRICATION OF NEUTRON SOURCES

    DOE Patents [OSTI]

    Birden, J.H.

    1959-04-21

    A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

  17. FABRICATION OF NEUTRON SOURCES

    DOE Patents [OSTI]

    Birden, J.H.

    1959-01-20

    A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

  18. DOE Issues Sources Sought/Request for Information for Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources SoughtRequest for Information for Oak Ridge Office of Environmental Management Technical Support Services DOE Issues Sources SoughtRequest for Information for Oak Ridge ...

  19. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  20. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  1. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect (OSTI)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  2. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  3. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  4. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  5. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  6. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  7. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  8. Compact ion source neutron generator

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  9. CHINA SPALLATION NEUTRON SOURCE DESIGN.

    SciTech Connect (OSTI)

    WEI,J.

    2007-01-29

    The China Spallation Neutron Source (CSNS) is an accelerator-based high-power project currently in preparation under the direction of the Chinese Academy of Sciences (CAS). The complex is based on an H- linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV, a solid tungsten target station, and five initial instruments for spallation neutron applications. The facility will operate at 25 Hz repetition rate with a phase-I beam power of about 120 kW. The major challenge is to build a robust and reliable user's facility with upgrade potential at a fractional of ''world standard'' cost.

  10. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The recently commissioned 11 Tesla horizontal field magnet at GP-SANS will enable advanced neutron scattering research. Credit: Genevieve MartinORNL. 11 Tesla Magnet Commissioned ...

  11. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  12. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect (OSTI)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  13. Active neutron interrogation for verification of storage of weapons components at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.; Mullens, J.A.; Hughes, S.S.

    1998-02-23

    A nuclear weapons identification system (NWIS), under development since 1984 at the Oak Ridge Y-12 Plant and presently in use there, uses active neutron interrogation with low-intensity {sup 252}Cf sources in ionization chambers to provide a timed source of fission neutrons from the spontaneous fission of {sup 252}Cf. To date, measurements have been performed on {approximately}15 different weapons systems in a variety of configurations both in and out of containers. Those systems included pits and fully assembled systems ready for deployment at the Pantex Plant in Amarillo, Texas, and weapons components at the Oak Ridge Y-12 Plant. These measurements have shown that NWIS can identify nuclear weapons and/or components; nuclear weapons/components can be distinguished from mockups where fissile material has been replaced by nonfissile material; omissions of small amounts (4%) of fissile material can be detected; changes in internal configurations can be determined; trainer parts can be identified as was demonstrated by verification of 512 containers with B33 components at the Y-12 Plant (as many as 32 in one 8-hour shift); and nonfissile components can be identified. The current NWIS activities at the Oak Ridge Y-12 Plant include: (1) further development of the system for more portability and lower power consumption, (2) collection of reference signatures for all weapons components in containers, and (3) confirmation of a particular weapons component in storage and confirmation of receipts. This paper describes the recent measurements with NWIS for a particular weapons component in storage that have resolved an Inspector General (IG`s) audit finding with regard to performance of confirmation of inventory.

  14. (International Collaboration on Advanced Neutron Sources)

    SciTech Connect (OSTI)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  15. Neutron Sources for Standard-Based Testing

    SciTech Connect (OSTI)

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  16. Spallation Neutron Source reaches megawatt power

    SciTech Connect (OSTI)

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  17. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  18. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  19. Fission fragment driven neutron source

    DOE Patents [OSTI]

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  20. The Science Program at the Los Alamos Ultracold Neutron Source...

    Office of Scientific and Technical Information (OSTI)

    The Science Program at the Los Alamos Ultracold Neutron Source Citation Details In-Document Search Title: The Science Program at the Los Alamos Ultracold Neutron Source Authors: ...

  1. The Spallation Neutron Source (SNS) Project | Department of Energy

    Office of Environmental Management (EM)

    The Spallation Neutron Source (SNS) Project The Spallation Neutron Source (SNS) Project SNS03.31.10.pdf More Documents & Publications EIS-0247: Draft Environmental Impact...

  2. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source Authors: Kippen, Karen E. 1 ; Clayton, ...

  3. Spallation Neutron Source Power Level Exceeds 1 MW (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source Power Level Exceeds 1 MW Citation Details In-Document Search Title: Spallation Neutron Source Power Level Exceeds 1 MW No abstract prepared. Authors: ...

  4. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source Authors: Kippen, Karen E. ...

  5. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source You are accessing a ...

  6. The Spallation Neutron Source: A powerful tool for materials...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Spallation Neutron Source: A powerful tool for materials research Citation Details In-Document Search Title: The Spallation Neutron Source: A powerful tool for ...

  7. DOE Issues Sources Sought/Request for Information for Oak Ridge Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Technical Support Services | Department of Energy Sources Sought/Request for Information for Oak Ridge Office of Environmental Management Technical Support Services DOE Issues Sources Sought/Request for Information for Oak Ridge Office of Environmental Management Technical Support Services November 24, 2015 - 10:30am Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) Environmental

  8. LANSCE | International Collaboration on Advanced Neutron Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ICANS-XIX Paul Scherrer Institit (PSI) Gindelwald, Switzerland March 8012, 2010 ICANS-XVIII China Spallation Neutron Source, Beijing, China, April 26-29, 2007 ICANS-XVII Bishop's ...

  9. High Brightness Neutron Source for Radiography

    SciTech Connect (OSTI)

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  10. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  11. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    SciTech Connect (OSTI)

    Akimov, D. Moscow Engineering Physics Institute , Russia; Bernstein, A. Lawrence Livermore National Laboratory; BarbeauP.,; Barton, P. J. Lawrence Berkeley National Laboratory; Bolozdynya, A. Moscow Engineering Physics Institute , Russia; Cabrera-Palmer, B. Sandia National Laboratories; Cavanna, F. Yale University; Cianciolo, Vince ORNL; Collar, J. University of Chicago, Enrico Fermi Institute; Cooper, R. J. Indiana University; Dean, D. J. Oak Ridge National Laboratory; Efremenko, Yuri University of Tennessee and Oak Ridge National Laboratory; Etenko, A. Moscow Engineering Physics Institute , Russia; Fields, N. University of Chicago, Enrico Fermi Institute; Foxe, M. Pennsylvania State University, University Park, PA; Figueroa-Feliciano, E. Massachusetts Institute of Technology; Fomin, N. University of Tennessee, Knoxville; Gallmeier, F. Oak Ridge National Laboratory; Garishvili, I. University of Tennessee, Knoxville; Gerling, M. Sandia National Laboratories; Green, M. University of North Carolina, Chapel Hill; Greene, Geoffrey University of Tennessee, Knoxville; Hatzikoutelis, A. University of Tennessee, Knoxville; Henning, Reyco University of North Carolina, Chapel Hill; Hix, R. University of Tennessee and Oak Ridge National Laboratory; Hogan, D. University of California-Berkeley; Hornback, D. University of Tennessee and Oak Ridge National Laboratory; Jovanovic, I. Pennsylvania State University, University Park, PA; Hossbach, T. Pacific Northwest National Laboratory; Iverson, Erik B ORNL; Klein, S. R. Lawrence Berkeley National Laboratory; Khromov, A. Moscow Engineering Physics Institute , Russia; Link, J. Virginia Polytechnic Institute and State University; Louis, W. Los Alamos National Laboratory; Lu, W. Oak Ridge National Laboratory; Mauger, C. Los Alamos National Laboratory; Marleau, P. Sandia National Laboratories; Markoff, D. North Carolina Central University, Durham; Martin, R. D. University of South Dakota; Mueller, Paul Edward ORNL; Newby, J. Oak Ridge National Laboratory; Orrell, John L. Pacific Northwest National Laboratory; O'Shaughnessy, C. University of North Carolina, Chapel Hill; Penttila, Seppo Oak Ridge National Laboratory; Patton, K. North Carolina State University, Raleigh; Poon, A. W. Lawrence Berkeley National Laboratory; Radford, David C ORNL; Reyna, D. Sandia National Laboratories; Ray, H. University of Florida, Gainesville; Scholberg, K. Duke University, North Carolina; Sosnovtsev, V. Moscow Engineering Physics Institute , Russia; Tayloe, R. Indiana University; Vetter, K. Lawrence Berkeley National Laboratory; Virtue, C. Laurentian University, Canada; Wilkerson, J. University of North Carolina, Chapel Hill; Yoo, J. Fermi National Accelerator Laboratory; Yu, Chang-Hong ORNL

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  12. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  13. The Advanced Neutron Source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  14. The Advanced Neutron Source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  15. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  16. The Science Program at the Los Alamos Ultracold Neutron Source...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Science Program at the Los Alamos Ultracold Neutron Source Citation Details In-Document Search Title: The Science Program at the Los Alamos Ultracold Neutron ...

  17. Secondary electron ion source neutron generator

    DOE Patents [OSTI]

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  18. Secondary electron ion source neutron generator

    DOE Patents [OSTI]

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  19. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Broader source: Energy.gov (indexed) [DOE]

    the 4,000-gallon Tank W-1A, which was ORNLs greatest source of groundwater contamination. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of ...

  20. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically

  1. Spallation Neutron Source Radiation Shielding Issues

    SciTech Connect (OSTI)

    Azmy, Y.Y.; Barnes, J.M.; Drischler, J.D.; Johnston, J.O.; Lillie, R.A.; McNeilly, G.S.; Santoro, R.T.

    1999-11-14

    This paper summarizes results of Spallation Neutron Source calculations to estimate radiation hazards and shielding requirements for activated Mercury, target components, target cooling water, and {sup 7}Be plateout. Dose rates in the accelerator tunnel from activation of magnets and concrete were investigated. The impact of gaps and other streaming paths on the radiation environment inside the test cell during operation and after shutdown were also assessed.

  2. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  3. The COHERENT Experiment at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Elliott, Steven Ray

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  4. Oak Ridge Removes Laboratory’s Greatest Source of Groundwater Contamination

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – This month, Oak Ridge’s EM program bid farewell to the last shipment of waste from the Tank W-1A project.

  5. Surface preparation of IPNS (Intense Pulsed Neutron Source) booster target components prior to diffusion bonding

    SciTech Connect (OSTI)

    Simandl, R.F.; Richards, H.L.; Thompson, L.M.

    1988-10-06

    In support of Argonne National Laboratory's Intense Pulsed Neutron Source (IPNS) program, the Oak Ridge Y-12 Plant has fabricated 15 Zircaloy-2 clad, enriched uranium booster targets using hot isostatic pressing (HIP) to effect diffusion bonding between the enriched uranium core and the Zircaloy-2 cladding. Guided by x-ray photoelectron spectroscopy for chemical analysis (XPS/ESCA) data, surface preparation procedures for both the Zircaloy-2 and uranium were refined to ensure 100% bonding between the dissimilar metals and survival of the rigors of beta quenching. 7 refs., 11 figs., 4 tabs.

  6. Nuclear Physics: The Ultracold Neutron Source Kippen, Karen E...

    Office of Scientific and Technical Information (OSTI)

    Physics: The Ultracold Neutron Source Kippen, Karen E. Los Alamos National Laboratory Los Alamos National Laboratory; Clayton, Steven Los Alamos National Laboratory Los...

  7. Neutron source detection with high pressure capillary arrays...

    Office of Scientific and Technical Information (OSTI)

    Title: Neutron source detection with high pressure capillary arrays. No abstract prepared. Authors: Chinn, Douglas Alan ; McClain, Jaime L. ; Ballard, William Parker ; Galambos, ...

  8. Neutron calibration sources in the Daya Bay experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  9. The European scene regarding spallation neutron sources

    SciTech Connect (OSTI)

    Bauer, G.S.

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  10. Fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  11. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L; Debeer-Schmitt, Lisa M; Garlea, Vasile O; Granroth, Garrett E; Graves-Brook, Melissa K; Ehlers, Georg; Kolesnikov, Alexander I; Podlesnyak, Andrey A; Winn, Barry L

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  12. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B.; Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M.; Granroth, G. E.; Kolesnikov, A. I.

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  13. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  14. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  15. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  16. Slower, colder, longer : prospects for a very cold neutron source.

    SciTech Connect (OSTI)

    Micklich, B. J.; Carpenter, J. M.; Intense Pulsed Neutron Source

    2007-01-01

    The motivation for our study is to establish the prospects for a neutron source providing intense pulsed beams with spectra as cold as is realistic. The scientific motivation is to serve applications in nanoscience, biology and technology.

  17. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    SciTech Connect (OSTI)

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  18. Design and Demonstration of a Quasi-monoenergetic Neutron Source

    SciTech Connect (OSTI)

    Joshi, T.; Sangiorgio, Samuele; Mozin, Vladimir V.; Norman, E. B.; Sorensen, Peter F.; Foxe, Michael P.; Bench, G.; Bernstein, A.

    2014-03-05

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the 7Li(p,n)7Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative lters such as vanadium and manganese are also explored and the possibility of studying the response of di*erent materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  19. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-02

    Here we discuss a gripping capability that was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory.

  20. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory The HFIR facility is the United States' highest flux reactor-based neutron source, and is a major neutron ...

  1. Spallation Neutron Source (SNS) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities » Spallation Neutron Source (SNS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities Spallation Neutron Source (SNS) Print Text Size: A A A

  2. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  3. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOE Patents [OSTI]

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  4. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lecturers (Tentative) Lectures are primarily given by outside experts relevant to this year's topic. John Ankner | Oak Ridge National Laboratory John Ankner, Oak Ridge National Laboratory John Ankner is a Senior Research Scientist at the Spallation Neutron Source at Oak Ridge National Laboratory. His research centers on the design, optimization, and application of neutron reflectometers to the study of condensed-matter interfaces. Materials of interest include synthetic polymers, biological and

  5. Radiological Assessment for the Vance Road Facility Source Vault, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratories had been used for a broad range of nuclear medicine research involving numerous radionuclides. These radionuclides were stored in the a source vault located on the first floor of the facility. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault after it had been remediated and in preparation for converting the area to office space.

  6. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect (OSTI)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  7. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  8. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Nigg, David W. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID)

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  9. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  10. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect (OSTI)

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  11. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA

    SciTech Connect (OSTI)

    Donovan, Patrick M.; Blum, Joel D.; Demers, Jason D.; Gu, Baohua; Brooks, Scott C.; Peryam, John

    2014-03-03

    In this paper, sediments were analyzed for total Hg concentration (THg) and isotopic composition from streams and rivers in the vicinity of the Y-12 National Security Complex (Y12) in Oak Ridge, TN (USA). In the stream directly draining Y12, where industrial releases of mercury (Hg) have been documented, high THg (3.26 to 60.1 μg/g) sediments had a distinct Hg isotopic composition (δ202Hg of 0.02 ± 0.15‰ and Δ199Hg of -0.07 ± 0.03‰; mean ± 1SD, n=12) compared to sediments from relatively uncontaminated streams in the region (δ202Hg = -1.40 ± 0.06‰ and Δ199Hg of –0.26 ± 0.03‰; mean ± 1SD, n=6). Additionally, several streams that are nearby but do not drain Y12 had sediments with intermediate THg (0.06 to 0.21 μg/g) and anomalous δ202Hg (as low as -5.07‰). We suggest that the low δ202Hg values in these sediments provide evidence for the contribution of an additional Hg source to sediments, possibly derived from atmospheric deposition. In sediments directly downstream of Y12 this third Hg source is not discernible and the Hg isotopic composition can be largely explained by the mixing of low THg sediments with high THg sediments contaminated by Y12 discharges.

  12. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donovan, Patrick M.; Blum, Joel D.; Demers, Jason D.; Gu, Baohua; Brooks, Scott C.; Peryam, John

    2014-03-03

    In this paper, sediments were analyzed for total Hg concentration (THg) and isotopic composition from streams and rivers in the vicinity of the Y-12 National Security Complex (Y12) in Oak Ridge, TN (USA). In the stream directly draining Y12, where industrial releases of mercury (Hg) have been documented, high THg (3.26 to 60.1 μg/g) sediments had a distinct Hg isotopic composition (δ202Hg of 0.02 ± 0.15‰ and Δ199Hg of -0.07 ± 0.03‰; mean ± 1SD, n=12) compared to sediments from relatively uncontaminated streams in the region (δ202Hg = -1.40 ± 0.06‰ and Δ199Hg of –0.26 ± 0.03‰; mean ± 1SD,more » n=6). Additionally, several streams that are nearby but do not drain Y12 had sediments with intermediate THg (0.06 to 0.21 μg/g) and anomalous δ202Hg (as low as -5.07‰). We suggest that the low δ202Hg values in these sediments provide evidence for the contribution of an additional Hg source to sediments, possibly derived from atmospheric deposition. In sediments directly downstream of Y12 this third Hg source is not discernible and the Hg isotopic composition can be largely explained by the mixing of low THg sediments with high THg sediments contaminated by Y12 discharges.« less

  13. Imaging of Diesel Particulate Filters using a High-Flux Neutron Source |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Imaging of Diesel Particulate Filters using a High-Flux Neutron Source Detailed images of deposits identified inside automotive DPFs using neutrons show how the deposits of soot, ash, and washcoat occurs within the filter. p-14_toops.pdf (380.82 KB) More Documents & Publications Neutron Imaging of Advanced Engine Technologies Neutron Imaging of Advanced Engine Technologies Non-Destructive Neutron

  14. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  15. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  16. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments [OSTI]

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  17. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  18. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect (OSTI)

    Milanese, M.; Moroso, R.; Barbaglia, M.; Universidad del Centro de la Provincia de Buenos Aires , Pinto 399, Tandil 7000, Buenos Aires ; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the in situ analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  19. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station

    SciTech Connect (OSTI)

    Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.

    2013-10-15

    The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ∼0.7 μs. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ∼1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

  20. Dynamics of a self-gravitating neutron source

    SciTech Connect (OSTI)

    Paret, D. Manreza; Martínez, A. Pérez; Rey, A. Ulacia; Sussman, Roberto A. E-mail: aurora@icmf.inf.cu E-mail: sussman@nucleares.unam.mx

    2010-03-01

    We examine the dynamics of a self-gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase space. Numerical solutions of this system reveal the emergence of a point-like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.

  1. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOE Patents [OSTI]

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  2. The advanced neutron source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  3. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    SciTech Connect (OSTI)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  4. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  5. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect (OSTI)

    Lisin, V. A.; Tomsk Polytechnic University, 30 Lenina av., Tomsk 634050 ; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  6. New precision measurements of free neutron beta decay with cold neutrons

    SciTech Connect (OSTI)

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; Počanić, Dinko

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  7. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect (OSTI)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  8. Materials Selection for the HFIR Cold Neutron Source

    SciTech Connect (OSTI)

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  9. A compact neutron generator using a field ionization source

    SciTech Connect (OSTI)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2011-10-31

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-#12;bers promise the high #12;eld-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of #12;field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  10. The Los Alamos National Laboratory Neutron Source Reclamation Program

    SciTech Connect (OSTI)

    Behrens, R.G.; Jones, S.W.

    1994-05-01

    Over the past fifty years, the Los Alamos National Laboratory has developed an extensive capability to handle significant quantities of nuclear materials as part of its role in support of DOE Defense Program activities. The goals and objectives of these activities are met through a base program in nuclear materials technology research, development, and demonstration as well as through additional programs (such as the Neutron Source Reclamation Program) aimed at specific, often near-term goals. This base program encompasses (1) plutonium process technology research, development and demonstration activities, (2) technology transfer and offsite technical support, (3) nuclear materials recycle and recovery, and (4) nuclear facility operations and maintenance.

  11. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  12. SPALLATION NEUTRON SOURCE RING-DESIGN AND CONSTRUCTION SUMMARY.

    SciTech Connect (OSTI)

    WEI,J.

    2005-05-16

    After six years, the delivery of components for the Spallation Neutron Source (SNS) accumulator ring (AR) and the transport lines was completed in Spring 2005. Designed to deliver 1.5 MW beam power (1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures were implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the design, R&D, and construction of the ring and transport systems.

  13. High-power linac for a US spallation-neutron source

    SciTech Connect (OSTI)

    Wangler, T.P.; Billen, J.; Jason, A. Krawczyk, F.; Nath, S.; Shafer, R.; Staples, J.; Takeda, H.; Tallerico, P.

    1996-09-01

    We present status of high-power linac design studies for a proposed National Spallation Neutron Source (NSNS), based on a linac/accumulator-ring accelerator system. Overall project is a collaboration involving 5 national laboratories. ORNL will be responsible for the target, facilities, and conceptual design; BNL will be responsible for the ring; LBNL will be responsible for the injector, including the RFQ and a low-energy chopper in front of the RFQ; LANL will be responsible for the main linac; and ANL will be responsible for the instrumentation. The facility will be built at Oak Ridge. In the first phase, the dual-frequency linac with 402.5 and 805 MHz frequencies must deliver to the accumulator ring an H{sup -} beam near 1 GeV, with about 1 ms pulse length, a repetition rate 60 Hz, and average beam power {ge} 1 MW. The linac can be upgraded by a factor of 4 in beam power by increasing the dc injector current, and by funneling the beams from two 402.5 MHz low-energy linacs into the 805-MHz high-energy linac. Requirements for low beam loss in both linac and ring have important implications for linac design, including the requirement to provide efficient beam chopping to provide low-loss extraction for the ring. Linac design options and initial parameters are presented together with initial beam-dynamics simulation results.

  14. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    SciTech Connect (OSTI)

    Buchanan, J.R.; Dumont, J.N.; Kendrick, C.M.; Row, T.H.; Thompson, P.B.; West, C.D.; Marchaterre, J.F.; Muhlheim, M.D.; McBee, M.R.

    1988-12-01

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants.

  15. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  16. Calculation Package: Derivation of Facility-Specific Derived Air Concentration (DAC) Values in Support of Spallation Neutron Source Operations

    SciTech Connect (OSTI)

    McLaughlin, David A

    2009-12-01

    Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.

  17. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect (OSTI)

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  18. Spin exchange optical pumping based polarized {sup 3}He filling station for the Hybrid Spectrometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L.; Graves-Brook, M. K.; Hagen, M. E.; Lee, W. T.; Winn, B.

    2013-06-15

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 Degree-Sign horizontal and 15 Degree-Sign vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized {sup 3}He filling station based on the spin exchange optical pumping method. It is designed to supply polarized {sup 3}He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the {sup 3}He pressure with respect to the scattered neutron energies. The depolarized {sup 3}He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  19. In the OSTI Collections: Neutron Sources for Studying Matter | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information Neutron Sources for Studying Matter Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Two sources and things explored with their use Neutron source technology Studying the neutron itself References Research Organizations and Facilities Reports available through OSTI's SciTech Connect Additional References Understanding what makes

  20. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  1. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect (OSTI)

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  2. Value engineering study final report on -- Spallation Neutron Source, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1999-01-31

    The SNS Project has had numerous DOE/SC reviews to validate the technical baseline, management approach, cost, schedule, and Conceptual Design Report. As a result, in FY 1999 the SNS received $130 million and approval from Congress to initiate Title 1 design and construction activities. Since this funding was less than requested for FY 1999 ($157 million) and validated in previous reviews, and because of improved costing information, the SNS Project team will reassess the cost and schedule baselines in an upcoming DOE review in January 1999. In preparation for this reassessment, the SNS has initiated a value engineering process to improve the design and to recover cost and contingency. Value engineering will continue throughout the life of the project, but the results described in this report are our initial efforts.

  3. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    SciTech Connect (OSTI)

    Doll, W.E.; Miller, R.D.; Xia, J.

    1997-02-01

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR).

  4. Room-temperature LINAC structures for the spallation neutron source

    SciTech Connect (OSTI)

    Billen, J. H.; Young, L. M.; Kurennoy, S.; Crandall, K. R.

    2001-04-01

    Los Alamos National Laboratory is building room-temperature rf accelerating structures for the Spallation Neutron Source (SNS). These structures, for H{sup -} ions, consist of six 402.5-MHz, 2-MW drift-tube linac (DTL) tanks from 2.5 to 87 MeV followed by four 805-MHz, 4-MW coupled-cavity linac (CCL) modules to 186 MeV. The DTL uses permanent magnet quadrupoles inside the drift tubes arranged in a 6{beta}{lambda} FFODDO lattice with every third drift tube available for diagnostics and steering. The CCL uses a 13{beta}{lambda} FODO electromagnetic quadrupole lattice. Diagnostics and magnets occupy the 2.5{beta}{lambda} spaces between 8-cavity segments. This paper discusses design of the rf cavities and low-power modeling work.

  5. Initial tests of the Spallation Neutron Source H{sup -} ion source with an external antenna

    SciTech Connect (OSTI)

    Welton, R.F.; Stockli, M.P.; Murray, S.N.; Kang, Y.; Peters, J.

    2006-03-15

    The ion source for the Spallation Neutron Source (SNS) is a radio-frequency (rf) multicusp source designed to deliver H{sup -} beam pulses of 40 mA to the SNS accelerator with a normalized root-mean-square emittance of less than 0.2{pi} mm mrad, with a pulse length of 1 ms and a repetition rate of 60 Hz. In order to achieve this performance the source must operate with both high-pulse rf power, {approx}50 kW, and high average rf power, {approx}3.5 kW, over a continuous operational period of 3 weeks. During operation at these power levels the plasma-immersed, porcelain-coated rf antenna is susceptible to damage, limiting source lifetime. We are therefore developing an ion source where the plasma is separated from the Cu antenna by an Al{sub 2}O{sub 3} discharge chamber. This article describes the ion source, presents initial beam extraction measurements, and details our ongoing effort to develop this concept into a suitable ion source for the SNS.

  6. Advances in the performance and understanding of the Spallation Neutron Source ion source

    SciTech Connect (OSTI)

    Welton, R.F.; Stockli, M.P.; Murray, S.N.

    2006-03-15

    The ion source developed for the Spallation Neutron Source (SNS) is a radio-frequency, multicusp source designed to produce {approx}40 mA of H{sup -} with a normalized rms emittance of less than 0.2 {pi} mm mrad. To date, the source has been utilized in the commissioning of the SNS accelerator and has already demonstrated stable, satisfactory operation at beam currents of 10-40 mA with duty factors of {approx}0.1% for operational periods of several weeks. Ultimately the SNS facility will require beam duty factors of 6% (1 ms pulse length, 60 Hz repetition rate). To ascertain the capability of the source to deliver beams at this duty factor over sustained periods, ongoing experiments are being performed in which the ion source is continuously operated on a dedicated test stand. The results of these tests are reported as well as a theory of the Cs release and transport processes that was derived from these data. The theory was then employed to develop a more effective source-conditioning procedure and a direct-transfer Cs collar, which led to a considerable improvement in source performance.

  7. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  8. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  9. DOE Science Showcase - Neutron Sources for Studying Matter |...

    Office of Scientific and Technical Information (OSTI)

    Portable Isotopic Neutron Spectroscopy System, INL Energy Frontier Research Center for ... carbon (blue), crystalline carbon (green), and hydrogen (white.) (hi-res image) ...

  10. In the OSTI Collections: Neutron Sources for Studying Matter...

    Office of Scientific and Technical Information (OSTI)

    ... by removing preexisting neutrons from nuclei using any of several nuclear reactions. ... The High Flux Isotope Reactor works like any nuclear reactor that involves a chain of ...

  11. Measurement of the neutron spectrum and ambient neutron dose rate equivalent from the small 252Cf source at 1 meter

    SciTech Connect (OSTI)

    Radev, R.

    2015-07-07

    NASA Langley Research Center requested a measurement of the neutron spectral distribution and fluence from the 252Cf source (model NS-120, LLNL serial # 7001677, referred as the SMALL Cf source) and determination of the ambient neutron dose rate equivalent and kerma at 100 cm for the Radiation Budget Instrument Experiment (Rad-X). The dosimetric quantities should be based on the neutron spectrum and the current neutron-to-dose conversion coefficients.

  12. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    SciTech Connect (OSTI)

    Jill Trewhella

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently

  13. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect (OSTI)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  14. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  15. Neutron Source Facility Training Simulator Based on EPICS

    SciTech Connect (OSTI)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.; Grelle, Austin L.; Dworzanski, Pawel L.; Gohar, Yousry

    2015-01-01

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has been widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.

  16. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  17. H{sup -} radio frequency source development at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.; Dudnikov, V. G.; Turvey, M. W.

    2012-02-15

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  18. Model-Based Least Squares Reconstruction of Coded Source Neutron Radiographs: Integrating the ORNL HFIR CG1D Source Model

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R

    2014-01-01

    At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.

  19. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; et al

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  20. Picture of the Week: Laser-driven neutron source for research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-driven neutron source for research and global security At Los Alamos's Trident facility, scientists are using an ultra-high intensity laser beam to produce high intensity ...

  1. Proceedings of the 10th meeting of the international collaboration on advanced neutron sources

    SciTech Connect (OSTI)

    Hyer, D.K.

    1989-03-01

    This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

  2. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  3. Evidence of a halo formation mechanism in the Spallation Neutron Source

    Office of Scientific and Technical Information (OSTI)

    linac (Journal Article) | SciTech Connect Journal Article: Evidence of a halo formation mechanism in the Spallation Neutron Source linac Citation Details In-Document Search Title: Evidence of a halo formation mechanism in the Spallation Neutron Source linac Authors: Jeon, Dong-O Publication Date: 2013-04-23 OSTI Identifier: 1091911 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 16; Journal Issue:

  4. Nuclear Physics: The Ultracold Neutron Source (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source Authors: Kippen, Karen E. [1] ; Clayton, Steven [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-04-10 OSTI Identifier: 1127473 Report Number(s): LA-UR-14-22440 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org:

  5. Radiological Assessment Survey of the Vance road Facility Source Vault Building Materials, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    J. R. Morton

    2000-09-01

    From the 1950s, the Vance Road laboratory was the site of extensive nuclear medical research and involved the used of numerous radionuclides. These nuclides were stored in a source vault stored on the first floor of the facility. Nuclear medical research is no longer conducted in this facility, and the source vault was remediated in preparation for converting the area to office space and general use. The Environmental Survey and Site Assessment Program (ESSAP) of ORISE performed a radiological assessment survey of the source vault and its associated miscellaneous building materials and laboratory equipment in preparation for the conversion to general use space.

  6. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDDC 869 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE DIFFRACTION OF NEUTRONS BY CRYSTALLINE POWDERS by E. 0. Wollan C. G. Shull Clinton Laboratories Published ...

  7. Reliability of Oak Ridge Facilities Grows (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Neutron News; Journal Volume: 22; Journal Issue: 2 Research Org: ... Subject: 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; RELIABILITY; OAK RIDGE; ...

  8. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect (OSTI)

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  9. Improved Lithium-Loaded Liquid Scintillators for Neutron Detection - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Improved Lithium-Loaded Liquid Scintillators for Neutron Detection Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary A liquid scintillator with a substantially increased lithium weight was developed by ORNL researchers. Scintillators are widely used for the detection of neutron radiation emitted by radioactive sources. Conventional liquid scintillators are loaded with neutron absorbers. However, these scintillators generally have

  10. Development of a Time-tagged Neutron Source for SNM Detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; Waldron, Will; Tinsley, Jim

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  11. Development of a Time-tagged Neutron Source for SNM Detection

    SciTech Connect (OSTI)

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; Waldron, Will; Tinsley, Jim

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for the extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.

  12. Pulsed reactor experiments at Oak Ridge

    SciTech Connect (OSTI)

    Mihalczo, J.T.

    1994-12-31

    This paper describes dynamic experiments for 3 pulsed reactors. 1st reactor was pulsed from some average power by rotating a partial Be reflector past an unreflected core face; the other 2 reactors were pulsed by rapid insertion of a fuel rod into the unmoderated and unreflected reactor at essentially zero neutron level with no significant neutron source present. The first reactor was a mockup of an EURATOM design (never constructed) of the proposed SORA Reactor, and the other two were the Health Physics Research Reactor and the Army Pulse Radiation Facility Reactor (APRFR). This paper describes the experiments performed in initial testing of these systems, including destructive tests of APRFR, to set operating limits for this type of reactor in pulsed operation. All the experiments described were performed at the Oak Ridge Critical Experiments Facility.

  13. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    SciTech Connect (OSTI)

    Gheisari, R.; Firoozabadi, M. M.; Mohammadi, H.

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  14. A TARGETED SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    SciTech Connect (OSTI)

    Aab, A.; Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Arqueros, F.; Collaboration: Pierre Auger Collaboration101; and others

    2014-07-10

    A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine ''target sets'', in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.

  15. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect (OSTI)

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  16. Reactor physics analyses of the advanced neutron source three-element core

    SciTech Connect (OSTI)

    Gehin, J.C.

    1995-08-01

    A reactor physics analysis was performed for the Advanced Neutron Source reactor with a three-element core configuration. The analysis was performed with a two-dimensional r-z 20-energy-group finite-difference diffusion theory model of the 17-d fuel cycle. The model included equivalent r-z geometry representations of the central control rods, the irradiation and production targets, and reflector components. Calculated quantities include fuel cycle parameters, fuel element power distributions, unperturbed neutron fluxes in the reflector and target regions, reactivity perturbations, and neutron kinetics parameters.

  17. OSTIblog Articles in the Spallation Neutron Source Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Spallation Neutron Source Topic The NXS Class of 2014 by Kathy Chambers 19 Nov, 2014 in Every summer for the past 16 years, the Department of Energy has invited the best and brightest graduates from across the country to attend the National School on Neutron and X-ray Scattering (NXS). This year, 65 graduate students attending North American universities, and studying physics, chemistry, materials science, or related fields, participated

  18. DOE Science Showcase - Neutron Sources for Studying Matter | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information Neutron Sources for Studying Matter Understanding the properties of matter on the atomic scale and then using this knowledge to optimize those properties or develop new materials and functionality is a key priority of the Department of Energy (DOE) Office of Basic Energy Sciences. This activity supports the operation of three neutron scattering facilities, one of the most powerful tools for characterizing matter. These facilities are

  19. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect (OSTI)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  20. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect (OSTI)

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  1. Pulsed neutrons: one year of experience with the new source at Argonne National Laboratory

    SciTech Connect (OSTI)

    Lander, G.H.

    1982-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source based on a 500-MeV proton accelerator operating at 30 Hz and with an average proton current of approx. 10 ..mu..A. Neutron-scattering instruments for elastic scattering include two powder diffractometers, a single-crystal diffractometer based on the Laue method and employing a large (30 x 30 cm) position-sensitive scintillation detector, a small-angle diffractometer using a position-sensitive detector, and a polarized-neutron diffractometer which will utilize the spin-refrigerator device to obtain a beam of white polarized neutrons. For inelastic scattering, we presently have the crystal-analyzer spectrometer and two chopper spectrometers capable of providing monoenergetic incident neutron beams of between 100 and 600 MeV. From its inception IPNS has been operating in a user mode and the selection of experiments is made by a Program Committee twice a year on the basis of the scientific merit of submitted proposals.

  2. The Science Program at the Los Alamos Ultracold Neutron Source (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect The Science Program at the Los Alamos Ultracold Neutron Source Citation Details In-Document Search Title: The Science Program at the Los Alamos Ultracold Neutron Source Authors: Saunders, Alexander [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-13 OSTI Identifier: 1083838 Report Number(s): LA-UR-13-24322 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL)

  3. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    SciTech Connect (OSTI)

    Wilson, W. B.; Perry, R. T.; Shores, E. F.; Charlton, W. S.; Parish, Theodore A.; Estes, G. P.; Brown, T. H.; Arthur, Edward D. ,; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E.

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  4. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  5. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect (OSTI)

    Rees, Lawrence B. [Brigham Young University, Provo, UT (United States); Czirr, J. Bart [Brigham Young University, Provo, UT (United States)

    2012-11-01

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  6. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  7. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    SciTech Connect (OSTI)

    Doyle, Barney Lee; King, Michael; Rossi, Paolo; McDaniel, Floyd Del; Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak; Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  8. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  9. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  10. Impact of switching to the ICRP-74 neutron flux-to-dose equivalent rate conversion factors at the Sandia National Laboratory Building 818 Neutron Source Range.

    SciTech Connect (OSTI)

    Ward, Dann C.

    2009-03-01

    Sandia National Laboratories (SNL) maintains a neutron calibration facility which supports the calibration, maintenance, and repair of Radiation Protection Instruments. The SNL neutron reference fields are calibrated using the following methodology: Fluence rate is initially established by calculation using the NIST traceable source emission rate (decay corrected). Correction factors for the effects of room return or scatter, and source anisotropy are then developed by using a suitable radiation transport code to model the geometry of the facility. The conventionally true neutron dose rates are then determined using the appropriate fluence-todose equivalent conversion coefficients at several reference positions. This report describes the impact on calculated neutron dose rates of switching from NCRP-38 to CRP-74 neutron flux-todose equivalent rate conversion factors. This switch is driven by recent changes to dosimetry requirements addressed in 10 CFR 835 (Occupational Radiation Protection).

  11. Development of the radio frequency driven H{sup {minus}} ion source for the National Spallation Neutron Source

    SciTech Connect (OSTI)

    Leitner, M.A.; Gough, R.A.; Leung, K.N.; Rickard, M.L.; Scott, P.K.; Wengrow, A.B.; Williams, M.D.; Wutte, D.C.

    1998-02-01

    The ion source for the 1 MW National Spallation Neutron Source (NSNS) is required to provide 35mA of H{sup {minus}} beam current (1 ms pulses at 60 Hz) at 65 keV with a normalized root-mean-square emittance of {lt}0.2 pimmmrad. The same ion source should be able to produce 70 mA of H{sup {minus}}at 6{percent} duty factor when the NSNS is upgraded to 2 MW of power. For this application, a radio-frequency driven, magnetically filtered multicusp source is being developed at Lawrence Berkeley National Laboratory. The design of this R and D ion source, which is equipped with a cesium dispenser-collar, a fast ion beam prechopper (rise times {lt}100 ns) and a strong permanent-magnet insert for electron deflection, will be presented.{copyright} {ital 1998 American Institute of Physics.}

  12. Computational Assessment of Naturally Occurring Neutron and Photon Background Radiation Produced by Extraterrestrial Sources

    SciTech Connect (OSTI)

    Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.

    2015-10-28

    In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained by NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.

  13. IPNS neutron scattering instrumentation: A -- Existing and planned; B -- Possibilities for IPNS upgrade, a 1-MW spallation source

    SciTech Connect (OSTI)

    Brown, B.; Crawford, K.

    1994-12-01

    The Intense Pulsed Neutron Source (IPNS) is a pulsed spallation neutron source located at Argonne National Laboratory near Chicago, Illinois in the US. This facility is the outgrowth of a long line of pioneering work on pulsed spallation neutron sources begun at Argonne in the early 1970s. IPNS uses protons accelerated in the Rapid Cycling Synchrotron to produce neutrons via the spallation process (effectively a nuclear evaporation in which 10--50 neutrons are released per incident proton) in a heavy-element target. These neutrons are then moderated to produce spectra peaked at thermal or subthermal energies, and directed into beams which serve a variety of instruments. This paper discusses the diffractometers, various spectrometers, and reflectometers in existence and those planned for the upgrade of the IPNS.

  14. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less

  15. Applications of compact accelerator-driven neutron sources: An updated assessment from the perspective of materials research in Italy

    SciTech Connect (OSTI)

    Andreani, C.; Anderson, I. S.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C. -K.; Senesi, R.

    2014-12-24

    In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10² MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.

  16. Cryogenic Neutron Protein Crystallography: routine methods and potential benefits

    SciTech Connect (OSTI)

    Weiss, Kevin L; Tomanicek, Stephen J; NG, Joseph D

    2014-01-01

    The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

  17. Laser fusion neutron source employing compression with short pulse lasers

    DOE Patents [OSTI]

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  18. Use of PuBe source to simulate neutron-induced single event upsets in static RAMS

    SciTech Connect (OSTI)

    Normand, E.; Wert, J.L.; Doherty, W.R.; Oberg, D.L.; Measel, P.R.; Criswell, T.L.

    1988-12-01

    Neutron induced single event upsets were measured in static memory devices using a 10 curie PuBe source. The PuBe source conservatively overestimates the spectrum of fast neutrons emitted by a radioisotope thermoelectric generator (RTG). For the 93L422, the neutron-induced upset rate compared favorably with calculated values derived using the burst generation concept. By accounting for the production of the ionizing particles by the PuBe and RTG neutron spectra, convenient upper bound SEU upset rates for memory devices near an RTG can be derived.

  19. OAK RIDGE

    Office of Legacy Management (LM)

    or _^ *ORNL/RASA-89/1 I : OAK RIDGE _NATIONAL LABORATORY |*H~~~~~ -~~Results of the I'I-------_____ ~ Preliminary Radiological * "~ i, .irri uSurvey at B&T Metals, _" 425 West Town Street, i * !' V Columbus, Ohio (C0001) I i. U Wo. 0aa-. r m ~~~~~~~~~ if? _ ~ W. D. Cottrell J. L Quillen J. W. Crutcher , I OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY ORNL/RASA-89/1 3*1~~ ~HEALTH AND SAFETY RESEARCH DIVISION Waste Management Research and

  20. Oak Ridge Office

    Office of Environmental Management (EM)

    PO. Box 2001 Oak Ridge, Tennessee 37831 July 21, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3783 1 Dear Mr....

  1. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect (OSTI)

    Shinohara, K. Ochiai, K.; Sukegawa, A.; Ishii, K.; Kitajima, S.; Baba, M.; Sasao, M.

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  2. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  3. Oak Ridge Office

    Office of Environmental Management (EM)

    Board Post Office Box 2001 Oak Ridge, Tennessee 37831 Dear Ms. ... ON FISCAL YEAR 2014 DOE OAK RIDGE ENVIRONMENTAL MANAGEMENT BUDGET REQUEST Reference: Letter from ...

  4. Summary of dynamic analyses of the advanced neutron source reactor inner control rods

    SciTech Connect (OSTI)

    Hendrich, W.R.

    1995-08-01

    A summary of the structural dynamic analyses that were instrumental in providing design guidance to the Advanced Neutron source (ANS) inner control element system is presented in this report. The structural analyses and the functional constraints that required certain performance parameters were combined to shape and guide the design effort toward a prediction of successful and reliable control and scram operation to be provided by these inner control rods.

  5. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect (OSTI)

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  6. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  7. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect (OSTI)

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  8. Computational Assessment of Naturally Occurring Neutron and Photon Background Radiation Produced by Extraterrestrial Sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.

    2015-10-28

    In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained bymore » NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.« less

  9. OAK FMSXSE

    Office of Legacy Management (LM)

    d x-' . J ' T* ,I, fJ&w h5z8 - ornl r* OAK FMSXSE ~A~,O~A~ L tABORblTORY r c LI I C L * I _ CII II c I -hw LV tlilAm@ ENEROY 8YwEMs, lr4c. ~T~~~~~T~~$ W EkUD%GY I uauws79~fm ORNL/RASA-95115 Results of the Independent Radiological Verification Survey at the Former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio (FOHOOl) D. E. Rice M. E. Murray K. S. Brown Thii report has been reproduced directly from the best avaitable ccpy. Available to DOE and DOE contractors from

  10. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that

  11. Simulation of H{sup -} ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator

    SciTech Connect (OSTI)

    Kalvas, T.; Tarvainen, O.; Welton, R. F.; Han, B. X.; Stockli, M. P.

    2012-02-15

    A three-dimensional ion optical code IBSimu, which is being developed at University of Jyvaeskylae, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H{sup -} ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H{sup -} currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  12. Ion source and beam guiding studies for an API neutron generator

    SciTech Connect (OSTI)

    Sy, A.; Ji, Q.; Persaud, A.; Ludewigt, B. A.; Schenkel, T.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ion current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.

  13. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    SciTech Connect (OSTI)

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  14. Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Campbell, Stuart I; Kohl, James Arthur; Granroth, Garrett E; Miller, Ross G; Doucet, Mathieu; Stansberry, Dale V; Proffen, Thomas E; Taylor, Russell J; Dillow, David

    2014-01-01

    ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

  15. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    SciTech Connect (OSTI)

    Marzec, B.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  16. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  17. 1989 neutron and gamma personnel dosimetry intercomparison study using RADCAL (Radiation Calibration Laboratory) sources

    SciTech Connect (OSTI)

    Sims, C.S.; Casson, W.H.; Patterson, G.R. ); Murakami, H. . Dept. of Health Physics); Liu, J.C. )

    1990-10-01

    The fourteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 14) was conducted during May 1-5, 1989. A total of 48 organizations (33 from the US and 15 from abroad) participated in PDIS 14. Participants submitted by mail a total of 1,302 neutron and gamma dosimeters for this mixed field study. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (40%), direct interaction TLD (22%), track (20%), film (7%), combination (7%), and bubble detectors (4%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: TLD (84%) and film (16%). Radiation sources used in the six PDIS 14 exposures included {sup 252}Cf moderated by 15-cm D{sub 2}O, {sup 252}Cf moderated by 15-cm polyethylene (gamma-enhanced with {sup 137}Cs), and {sup 238}PuBe. Neutron dose equivalents ranged from 0.44--2.63 mSv and gamma doses ranged from 0. 01-1.85 mSv. One {sup 252}Cf(D{sub 2}O) exposure was performed at a 60{degree} angle of incidence (most performance tests are at perpendicular incidence). The average neutron dosimeter response for this exposure was 70% of that at normal incidence. The average gamma dosimeter response was 96% of that at normal incidence. A total of 70% of individual reported neutron dosimeter measurements were within {plus minus}50% of reference values. If the 0.01 mSv data are omitted, approximately 90% of the individual reported gamma measurements were within {plus minus}50% of reference values. 33 refs., 9 figs., 27 tabs.

  18. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  19. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  20. Recovery of {sup 241}Am/Be neutron sources, Wooster, Ohio

    SciTech Connect (OSTI)

    Tompkins, J.A.; Wannigman, D.; Hatler, V.

    1998-07-01

    In August 1997, the Nuclear Regulatory Commission (NRC) submitted to the US Department of Energy (DOE) a partial list of licensed radioactive sealed sources to be recovered under a pilot project initiating Radioactive Source Recovery Program (RSRP) operations. The first of the pilot project recoveries was scheduled for September 1997 at Eastern Well Surveys in Wooster, Ohio, a company with five unwanted sealed sources on the NRC list. The sources were neutron emitters, each containing {sup 241}Am/Be with activities ranging from 2.49 to 3.0 Ci. A prior radiological survey had established that one of these sources, a Gulf Nuclear Model 71-1 containing 3 Ci of {sup 241}Am, was contaminated with {sup 241}Am and might be leaking. The other four sources were obsolete and could no longer be used by Eastern Well Surveys for their intended application in well-logging applications due to NRC decertification of these sources. All of the sources exceeded the limits established for Class C waste under 10 CFR 61.55 and, as a result, are the ultimate responsibility of the DOE under the provisions of PL 99-240. This report describes the cooperative effort between the DOE and NRC to recover the sources and transport them to Los Alamos National Laboratory (LANL) for deactivation under the RSRP. This operation alleviated any potential risk to the public health and safety from the site which might result from the leaking neutron sources or the potential mismanagement of unwanted sources. The on-site recovery occurred on September 23, 1997, and was performed by personnel from LANL and its contractor and was observed by staff from the Region III office of the NRC. All aspects of the recovery were successfully accomplished, and the sources were received at LANL on September 29, 1997. Experience gained during this operation will be used to formulate operational poilicies and procedures which will contribute to the eventual routine recovery operations of a full-scale RSRP.

  1. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation

    SciTech Connect (OSTI)

    Han, B. X.; Welton, R. F.; Murray, S. N. Jr.; Pennisi, T. R.; Santana, M.; Stockli, M. P.; Kalvas, T.; Tarvainen, O.

    2012-02-15

    The H{sup -} injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with {approx}38 mA beam current in the linac at 60 Hz with a pulse length of up to {approx}1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  2. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    SciTech Connect (OSTI)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  3. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a shortmore » RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  4. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  5. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  6. Advanced Neutron Source Dynamic Model (ANSDM) code description and user guide

    SciTech Connect (OSTI)

    March-Leuba, J.

    1995-08-01

    A mathematical model is designed that simulates the dynamic behavior of the Advanced Neutron Source (ANS) reactor. Its main objective is to model important characteristics of the ANS systems as they are being designed, updated, and employed; its primary design goal, to aid in the development of safety and control features. During the simulations the model is also found to aid in making design decisions for thermal-hydraulic systems. Model components, empirical correlations, and model parameters are discussed; sample procedures are also given. Modifications are cited, and significant development and application efforts are noted focusing on examination of instrumentation required during and after accidents to ensure adequate monitoring during transient conditions.

  7. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect (OSTI)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  8. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect (OSTI)

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  9. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    SciTech Connect (OSTI)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  10. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    SciTech Connect (OSTI)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10/sup 12/ protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10/sup 12/ ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses.

  11. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect (OSTI)

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  12. Oak Ridge Office

    Office of Environmental Management (EM)

    Martin , Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 I Oak Ridge, Tennessee 37831 Dear Mr. Martin : May 22, 2013 RESPONSE TO YOUR LETTER DATED MAY 9, 2013, RECOMMENDATION 216: RECOMMENDATIONS ON FISCAL YEAR 2015 DOE OAK RIDGE ENVIRONMENT AL MANAGEMENT BUDGET REQUEST Reference: Letter from David Martin to Mark Whitney, Recommendation 216: Recommendation on Fiscal Year 2015 DOE Oak Ridge Environmental Management Budget Request, dated May 9, 2013. I would like to express my

  13. Oak Ridge Office

    Office of Environmental Management (EM)

    I Oak Ridge, Tennessee 37831 Dear Mr. Martin : September 12, 2013 ru:SPONSE TO YOUR LETTER DATED .JUNE 13, 2013, RECOMMENDATION 217: RECOMMENDATION ON STEWARDSHIP POINT OF CONT ACT FOR THE OAK RIDGE RESERVATION Reference: June 13 , 2013, Letter from David Martin to Susan Cange, Recommendation 217: Recommendation on Stewardship Point of Contact for the Oak Ridge Reservation. We appreciate the recommendation provided by the Oak Ridge Site Specific Advisory Board regard in g having a dedicated

  14. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect (OSTI)

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  15. Final Report US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources

    SciTech Connect (OSTI)

    Miley, George, H.

    2008-06-04

    Abstract The history of IEC development will be briefly described, and some speculation about future directions will be offered. The origin of IEC is due to the brilliance of Phil Farnsworth, inventor of electronic TV in the US. Early experiments were pioneered in the late 1960s by Robert Hirsch who later became head of the DOE fusion program. At that time studies of IEC physics quickly followed at the University of Illinois and at Penn State University. However, despite many successes in this early work, IEC research died as DOE funding stopped in the mid 1980s. In the early 90’s, R. W. Bussard of EMC revived work with a new major project based on a magnetic assisted IEC. While doing supportive studies for that project, G. Miley proposed a grided “STAR mode” IEC as a neutron source for NAA. This concept was later used commercially by Daimler- Benz in Germany to analysis impurities in incoming ores. This represented a first practical application of the IEC. During this period other research groups at LANL, U of Wisconsin and Kyoto University entered IEC research with innovative new concepts and approaches to IEC physics and applications. Much of this work is documented in the present and in past US-Japan Workshops. At present we stand on the threshold of a new area of IEC applications as neutron source, for isotope production, and as a plasma source. These applications provide a way to continue IEC understanding and technology development with the ultimate goal being a fusion power plant. Indeed, a distinguishing feature of the IEC vs. other fusion confinement approaches is the unique opportunity for “spin off” applications along the way to a power producing plant.

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  17. Advanced Neutron Source enrichment study -- Volume 1: Main report. Final report, Revision 12/94

    SciTech Connect (OSTI)

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-12-31

    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations.

  18. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect (OSTI)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  19. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  20. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  1. Department of Energy review of the National Spallation Neutron Source Project

    SciTech Connect (OSTI)

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic.

  2. A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11agg?

    SciTech Connect (OSTI)

    Wu, Xue-Feng; Gao, He; Ding, Xuan; Zhang, Bing; Dai, Zi-Gao; Wei, Jian-Yan

    2014-01-20

    The Palomar Transient Factory (PTF) team recently reported the discovery of a rapidly fading optical transient source, PTF11agg. A long-lived scintillating radio counterpart was identified, but the search for a high-energy counterpart showed negative results. The PTF team speculated that PTF11agg may represent a new class of relativistic outbursts. Here we suggest that a neutron star (NS)-NS merger system with a supra-massive magnetar central engine could be a possible source to power such a transient, if our line of sight is not on the jet axis direction of the system. These systems are also top candidates for gravitational wave sources to be detected in the advanced LIGO/Virgo era. We find that the PTF11agg data could be explained well with such a model, suggesting that at least some gravitational wave bursts due to NS-NS mergers may be associated with such a bright electromagnetic counterpart without a γ-ray trigger.

  3. Oak Ridge Associated

    Office of Legacy Management (LM)

    ])\D Oak Ridge ,.(\\~ Associated ru~ Universities Post Office Box 11 7 Oak Ridge, Tennessee 37831-0117 October 21, 1986 Manpower Education, Research, and Training Division Mr. Edward G. Delaney, Director Division of Facility and Site Decommissioning Projects Office of Nuclear Energy U.S. Department of Energy Washington, DC 20545 Subject: VERIFICATION OF NIAGARA FALLS STORAGE SITE VICINITY PROPERTIES - 1983/1984 REMEDIAL ACTIONS Dear Mr. Delaney: Oak Ridge Associated Universities <ORAU) has

  4. Manager, Oak Ridge Office

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide overall executive leadership to and integration of the Oak Ridge Integrated Support Center, which houses mission critical activities and support...

  5. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda; Ekkebus, Allen E

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  6. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect (OSTI)

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  7. Oak Ridge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Oak Ridge Oak Ridge's compliance agreements - which help support the development of effective compliance approaches and strategies - are listed below. Summaries of the agreements also are included. Oak Ridge Reservation Compliance Order, September 26, 1995 (164.23 KB) Oak Ridge Reservation Compliance Order, September 26, 1995 Summary (40.23 KB) Federal Facility Agreement for the Oak Ridge Reservation, January 1, 1992 (1.92 MB) Federal Facility Agreement for the Oak Ridge Reservation,

  8. Ultracold neutrons

    SciTech Connect (OSTI)

    Saunders, Alexander

    2015-06-22

    This series of slides describes ultracold neutrons (UCN) and their properties, various UCN sources, and an overview of UCN-based experiments. Numerous diagrams and photographs are included.

  9. Production of High-purity Radium-223 from Legacy Actinium-Beryllium Neutron Sources

    SciTech Connect (OSTI)

    Z. Soderquist, Chuck; K. McNamara, Bruce; R. Fisher, Darrell

    2012-06-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclides with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing 223Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity 223Ra from 227Ac. We obtained 227Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity 223Ra. We extracted 223Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free 223Ra product, and does not disturb the 227Ac/227Th equilibrium. A high purity, carrier-free 227Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of 223Ra for research and new alpha-emitter radiopharmaceutical development.

  10. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  11. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  12. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    SciTech Connect (OSTI)

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoiding generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.

  13. SNS nEDM | Ultracold Neutrons at Los Alamos National Laboratory (pRad)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SNS nEDM An electric dipole moment (EDM) measures the separation of positive and negative charges within a system and is an extremely sensitive probe of physics beyond the standard model. A new neutron EDM (nEDM) experiment is being developed to be installed at the Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, with a goal sensitivity of δdn~5 x10-28 e-cm, an improvement of two orders of magnitude over the current limit set

  14. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect (OSTI)

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  15. Oak Ridge City Center Technology Demonstration Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale GSHP technology, and the design considerations that will impact front-end costs, ongoing maintenance costs, future energy savings, and system breakeven/lifecycle cost. gshp_thrash_oak_ridge_city_center.pdf (463.1 KB) More Documents & Publications Ground Source Heat Pump System Data Analysis Analysis of

  16. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect (OSTI)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  17. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    SciTech Connect (OSTI)

    Phillips, R. E.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)] [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-07-15

    A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  18. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  19. Californium Electrodepositions at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boll, Rose Ann

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  20. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora; Jones, Amy; Bailey, William Barton; Vandergriff, David H

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very

  1. An Oak Ridge baseball team | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Oak Ridge baseball team An Oak Ridge baseball team An Oak Ridge baseball team

  2. A spherical shell target scheme for laser-driven neutron sources

    SciTech Connect (OSTI)

    He, Min-Qing Zhang, Hua; Wu, Si-Zhong; Wu, Jun-Feng; Chen, Mo; Cai, Hong-Bo Zhou, Cang-Tao; Cao, Li-Hua; Zheng, Chun-Yang; Zhu, Shao-Ping; He, X. T.; Dong, Quan-Li; Sheng, Zheng-Ming; Pei, Wen-Bing

    2015-12-15

    A scheme for neutron production is investigated in which an ultra-intense laser is irradiated into a two-layer (deuterium and aurum) spherical shell target through the cone shaped entrance hole. It is found that the energy conversion efficiency from laser to target can reach as high as 71%, and deuterium ions are heated to a maximum energy of several MeV from the inner layer surface. These ions are accelerated towards the center of the cavity and accumulated finally with a high density up to tens of critical density in several picoseconds. Two different mechanisms account for the efficient yield of the neutrons in the cavity: (1) At the early stage, the neutrons are generated by the high energy deuterium ions based on the “beam-target” approach. (2) At the later stage, the neutrons are generated by the thermonuclear fusion when the most of the deuterium ions reach equilibrium in the cavity. It is also found that a large number of deuterium ions accelerated inward can pass through the target center and the outer Au layer and finally stopped in the CD{sub 2} layer. This also causes efficient yield of neutrons inside the CD{sub 2} layer due to “beam-target” approach. A postprocessor has been designed to evaluate the neutron yield and the neutron spectrum is obtained.

  3. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 2001 Oak Ridge, Tennessee 37831 - August 28, 2008 Oak Ridge Associated Universities Attn : Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R231 00, MODIFICATION A050 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $25,539,179.05, resulting in total obligations to this contract of $541 ,282,961.6 1. If you have any queslions regarding this action, you may

  4. Oak Ridge Reservation Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security Complex production workers.

  5. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  6. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOE Patents [OSTI]

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  7. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  8. Oak Ridge Associated Universities Procurement Questionnaire Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Supplier Profile PIA, Oak ridge Operations Office | Department of Energy Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities

  9. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  10. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  11. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  12. Oak Ridge National Laboratory- Neutron Imaging

    Broader source: Energy.gov [DOE]

    Characterizing flow through fractures is critical towards understanding dominant flow processes before, during, and after stimulation of an enhanced geothermal system (EGS) reservoir. Directly...

  13. Liquid lithium target as a high intensity, high energy neutron source

    DOE Patents [OSTI]

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  14. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Kppeler, and R. Stieglitz, Intense pulsed neutron source FRANZ in the 1500 keV range, ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  15. The early development of neutron diffraction: Science in the wings of the Manhattan Project

    SciTech Connect (OSTI)

    Mason, Thom; Gawne, Timothy J; Nagler, Stephen E; Nestor, Margaret Boone {Bonnie}; Carpenter, John M

    2012-01-01

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.

  16. The early development of neutron diffraction: science in the wings of the Manhattan Project

    SciTech Connect (OSTI)

    Mason, T. E. Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.

    2013-01-01

    Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.

  17. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  18. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - II: Pion Production Target

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Cavalleri, Emanuela; Karmanov, Fedor I.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Vecchi, Marcello

    2001-03-15

    The possibility of using a liquid lithium primary target for the 14-MeV intense neutron source (INS) based on muon-catalyzed fusion ({mu}CF) (the {mu}CF-INS) is discussed. The description of the thermohydraulic and mechanical analysis that suggested the proposed geometry is presented. Particular attention is given to the thermal parameter evaluation since these quantities have a great influence on the choice of target design. According to the calculations, the lithium primary target variant can be considered for future {mu}CF-INS realization.

  19. Oak Ridge O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Forum & Expo | Department of Energy Oak Ridge National Laboratory Wins DOE Mentor of the Year Award at Small Business Forum & Expo Oak Ridge National Laboratory Wins DOE Mentor of the Year Award at Small Business Forum & Expo October 10, 2014 - 10:30am Addthis Leanne Stribley (center), with Sonny Rogers and Cassandra Stuart, of ORNL, accepts the DOE Mentor of the Year Award from Kevin Knobloch, DOE Chief of Staff, and John Hale III, Director of DOE's Office of Small and

  20. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 30, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R231 00, MODIFICATION A049 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $14,265 ,839.77, resulting in total obligations to this contract of $515,743,782 .56 . If you have any questions regarding this action, you may contact me at 576-0757 or via e-mail at

  1. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge , Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R23100, MODIFICATION A051 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $32,445,437.04, resulting in total obligations to this contract of $573,728,398.65. If you have any questions regarding this action, you may contact me at 576-0757 or via e-mail at

  2. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 1, 2008 Oak Ridge Associated Universities Attn: Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R23100, MODIFICATION A052 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $1,231,037.73, resulting in total obligations to this contract of $574,959,436.38 . If you have any questions regarding this action, you may contact me at 576-0757 or via e-mail at

  3. Oak Ridge Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 31, 2008 Oak Ridge Associated Universities Attn : Mr. Ivan Boatner, General Counsel P.O. Box 117 Oak Ridge, Tennessee 37831 Dear Mr. Boatner: SUBJECT: CONTRACT NO. DE-AC05-060R23100, MODIFICATION A054 Enclosed is one fully executed copy of the subject document. This modification obligates the sum of $10,799,1 39.34, resulting in total obligations to this contract of $585,758,575.72. If you have any questions regarding this action, you may contact me at 576-0757 or via e-mail at

  4. Oak Ridge Operations.

    Office of Legacy Management (LM)

    4s - 22 Department of Energy Oak Ridge Operations. S~I9J>liB~~ ~P.O. Box 2001 Oak Ridge. Tennessee 37831-8723 October 21, 1994 Mr. Charles A. Duritsa Regional Director Pennsylvania Department of Environmental Resources 400 Waterfront Drive Pittsburgh, Pennsylvania 15222-4745 Dear Mr. Duritsa: FUSRAP PENNSYLVANIA SITES - LETTER OF APPRECIATION I would like to express my appreciation for the assistance Jim Yusko, Hark Russell, Dennis Angelo, Steve Hepler, and Roy Woods provided to the

  5. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  6. cityOakRidgeWeb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 miles 1 12 HIGH SCHOOL Oak Ridge Playhouse Methodist Medical Center CIVIC CENTER Art Ctr. Oak Ridge Associated Universities (ORAU) Hampton Inn DoubleTree Hotel Days Inn MUSEUM OF SCIENCE AND ENERGY Y-12 NATIONAL SECURITY COMPLEX Oak Ridge Mall Jameson Inn Numbered and unnumbered tra c lights Staybridge Suites Comfort Inn Commerce Park Jack Case Center New Hope Center Y-12 Visitor Center Children 's Museum OFFICE OF SCIENTIFIC & TECHNICAL INFORMATION Oak Ridge Marina Centennial Golf Course

  7. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOE Patents [OSTI]

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  8. NEUTRONIC REACTOR SHIELDING

    DOE Patents [OSTI]

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  9. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect (OSTI)

    Grammer, K. B.; Alarcon, R.; Barrn-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velzquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttil, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section d?/d? from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  10. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  11. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect (OSTI)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  12. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  13. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect (OSTI)

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  14. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - III: Thermohydraulic Regime of the Synthesizer

    SciTech Connect (OSTI)

    Anisimov, Viatcheslav V.; Cavalleri, Emanuela; Karmanov, Fedor I.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Vecchi, Marcello

    2001-03-15

    Design calculations of thermohydraulic parameters of the secondary target of the intense neutron source (INS) based on muon-catalyzed fusion ({mu}CF) (the {mu}CF-INS) are presented for a liquid deuterium-tritium (D-T) mixture. The synthesizer is connected to an external cooler by input and output pipelines. The optimal mixture composition, synthesizer layout, and dimensions are determined. The possibility of creating a D-T mixture flow with a quasi-uniform velocity distribution is demonstrated. Possible vortexes were found to be eliminated by installation of corresponding hydraulic resistance in the shape of a spherical shell segment. At the {mu}CF-INS operation with its design parameters [neutron flux as high as 10{sup 14} n/(cm{sup 2}.s)], the total heat deposit in the D-T mixture due to fusion and charged-particle ionization losses is estimated at {approx}117 kW. However, even at such conditions, with the appropriate synthesizer geometry and mass flow rate, the mixture temperature does not exceed the boiling point in any part of the synthesizer.

  15. OakRidge-cert-OPEIU 1981.pdf

    Office of Environmental Management (EM)

    Oak Ridge Site Oak Ridge Site Demolition progress at Oak Ridge Demolition progress at Oak Ridge Recovery Act workers at Alpha 5 at the Y-12 National Security Complex at Oak Ridge, Tenn., survey waste as part of the characterization process to determine its proper disposition path Recovery Act workers at Alpha 5 at the Y-12 National Security Complex at Oak Ridge, Tenn., survey waste as part of the characterization process to determine its proper disposition path Demolition progress at Oak Ridge

  16. Oak Ridge Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Site Oak Ridge Site Demolition progress at Oak Ridge Demolition progress at Oak Ridge Recovery Act workers at Alpha 5 at the Y-12 National Security Complex at Oak Ridge, Tenn., survey waste as part of the characterization process to determine its proper disposition path Recovery Act workers at Alpha 5 at the Y-12 National Security Complex at Oak Ridge, Tenn., survey waste as part of the characterization process to determine its proper disposition path Demolition progress at Oak Ridge

  17. Oak Ridge Associated Llniversities

    Office of Legacy Management (LM)

    ii!fil Prepared by Oak Ridge Associated Llniversities Prepared for U.S. Nuclear Regulatory Commission's Region I Office Supported by Safeguards dnd Materials Program Branch; Division of Quality Assurance, Safeguards, and Inspection Programs; Off ice of Inspection and r Enforcement I - CONFIRMATORY RADIOLOGICAL SURVEYS OF BUILDING 10 AND OUTSIDE AREAS ASSOCIATED WITH BUILDINGS 7 AND 8 WESTINGHOUSE NUCLEAR FUEL DIVISION CHESWICK, PENNSYLVANIA A. J. BOERNER Radiological Site Assessment Program

  18. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Alderman, O. L. G.; Benmore, C. J.

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å-1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å-1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å-1 was significantly decreased when the collimators were installed.

  19. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Tamalonis, A.; Weber, J. K. R. Alderman, O. L. G.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Benmore, C. J.

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  20. Conceptual design station blackout and loss-of-flow accident analyses for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Fletcher, C.D.; Ghan, L.S.; Determan, J.C.; Nielsen, H.H. )

    1994-04-01

    A system model of the Advanced Neutron Source Reactor (ANSR) has been developed and used to perform conceptual safety analyses. To better represent thermal-hydraulic behavior in the unique geometry and conditions of the ANSR core, three specific changes in the RELAP5/MOD3 computer code were implemented: a turbulent forced-convection heat transfer correlation, a critical heat flux correlation, and an interfacial drag correlation. The system model includes representations of the ANSR core, heat exchanger coolant loops, and the pressurizing and letdown systems. Analyses of ANSR station blackout and loss-of-flow accident scenarios are described. The results show that the core can survive without exceeding the flow excursion or critical heat flux thermal limits defined for the conceptual safety analysis, if the proper mitigation options are provided.

  1. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect (OSTI)

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  2. Oak Ridge EM Program DOE Oak Ridge Environmental Management Program

    Office of Environmental Management (EM)

    DOE establishes the Oak Ridge Site Specifc Advisory Board (ORSSAB) under the Federal ... Reuse Organization of East Tennessee (a DOE leasing agent) and a private company. ...

  3. Oak Ridge ARI Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge ARI Overview Oak Ridge ARI Overview This fact sheet covers the asset revitalization initiative in Oak Ridge, TN. Oakridge_Fact_Sheet.pdf (382.48 KB) More Documents & Publications ARI Quarterly Newsletter Oak Ridge ARI Overview ARI: Creating a 2020 DOE Recommendation 225: Recommendation on DOE Oak Ridge GIS Fact Sheets

  4. Effects of an RTG power source on neutron spectroscopy measurements on the martian surface.

    SciTech Connect (OSTI)

    Lawrence, David J. ,; Elphic, R. C.; Wiens, R. C.

    2003-01-01

    A continuing goal of Mars science is to identify the exact locations of near-surface water and/or hydrated minerals using in situ measurements. Recent data from the Mars Odyssey mission has used both neutron and gamma-ray spectroscopy to measure large amounts of water ice near both polar regions . Furthermore, these data have also determined that in the mid-latitude regions, there likely exist relatively large amounts of hydrogen (-4-7 equivalent H2O wt.%), although it is not certain in which form this hydrogen exists . While these are exciting results, one drawback of these measurements is that they are averaged over a large (-400 km) footp ri nt and do not reflect any small (<1 km) inhomogenieties in hydrogen abundance that likely exist on the Martian surface. For any future in situ mission (e g, Mars Smart Lander (MSL)) that seeks to measure and characterize nearsurface H 2O, especially in the mid-latitude regions, is will be necessary to know th e locati ons of the H20.

  5. DOE Oak Ridge Operations managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons production, and basic scientific research. Additional responsibilities have been placed on the federal offices in Oak Ridge during the years. It can be said, if the...

  6. Characterization of the neutron source term and multiplicity of a spent fuel assembly in support of NSDA safeguards of spent nuclear fuel

    SciTech Connect (OSTI)

    Richard, Joshua G; Fensin, Michael L; Tobin, Stephen J; Swinhoe, Martyn T; Menlove, Howard O; Baciak, James

    2010-01-01

    The gross neutron signal (GNS) is being considered as part of a fingerprinting or neutron balance approach to safeguards of spent nuclear fuel (SNF). Because the GNS is composed of many derivative components, understanding the time-dependent contribution of these derivative components is crucial to gauging the limitations of these approaches. The major components of the GNS are ({alpha}, n), spontaneous fission (SF), and multiplication neutrons. A methodology was developed to link MCNPX burnup output files to SOURCES4C input files for the purpose of automatically generating both the ({alpha}, n) and SF signals. Additional linking capabilities were developed to write MCNPX multiplication input files using the data obtained from the SOURCES4C output files. In this paper, the following are presented: (1) the relative contributions by source nuclide to the ({alpha}, n) signal as a function of initial enrichment/burnup/cooling time; (2) the relative contributions by source nuclide to the SF signal as a function of initial enrichment/burnup/cooling time; (3) the relative contributions by reaction type ({alpha},n vs. SF) to the GNS; and (4) the multiplication of the GNS as a function of initial enrichment/burnup/cooling time/counting environment. By developing these technologies to characterize the GNS, we can better evaluate the viability of the GNS fingerprint and neutron balance concepts for SNF.

  7. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  8. Neutron activation analysis system

    DOE Patents [OSTI]

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  9. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    POST OFFICE 80X 2008 OAK RIDGE, TENNESSEE 37831 MANAGED BY MARTIN MARlElTA ENERGY SYSTEMS. INC. FOR THE U.S. DEPARTMENT OF ENERGY July 15, 1992 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per agreement between DOE-HQ and Uniroyal of Painesville, on June 25, 1992, a member, the undersigned, from the Health and Safety

  10. Oak Ridge Associated

    Office of Legacy Management (LM)

    2012 IL.06 *128 Oak Ridge Associated Post Of/ICE: 80 '17 Unl e Sllles Oa d. )Cp€ T nness £: 37 1 *01 '7 '-1.\0.-»"--" 10. June 14, 1989 Mr. Andrew Wallo ruSRAP/Surplus Facilities Group Division of Facili y & Site Decommissioning Projects Office of Nuclear Energy U.S. D~partment of Energy Washington, D.C. 20545 Subject: LETTER REPORT - VERIFIC~TION ACTIVITIES AT UNIVERSITY OF CHICAGO Dear Mr. Wallo: Enclosed is the report for the recent ORAU verification activities involving

  11. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    SciTech Connect (OSTI)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  12. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  13. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831 ... * Internet: www.oakridge.doe.govemssab Oak Ridge Site ... and maintenance budget, funding, and personnel ...

  14. Oak Ridge Office of Environmental Management

    Office of Environmental Management (EM)

    Board Post Office Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. ... ON FISCAL YEAR 2016 DOE OAK RIDGE ENVIRONMENTAL MANAGEMENT BUDGET REQUEST Reference: Letter from ...

  15. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

  16. Blue Oak Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Blue Oak Energy Inc Jump to: navigation, search Name: Blue Oak Energy Inc Place: Davis,, California Zip: 95618 Sector: Services Product: Focused on PV system design, planning,...

  17. Oak Ridge shoppers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shoppers Oak Ridge shoppers Oak Ridge shoppers in a crowded grocery store

  18. Producing persistent, high-current, high-duty-factor H{sup -} beams for routine 1 MW operation of Spallation Neutron Source (invited)

    SciTech Connect (OSTI)

    Stockli, Martin P.; Han, B. X.; Hardek, T. W.; Kang, Y. W.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.

    2012-02-15

    Since 2009, the Spallation Neutron Source (SNS) has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of {approx}50 mA H{sup -} ions from the ion source with a {approx}5% duty factor. The 50 mA are achieved after an initial dose of {approx}3 mg of Cs and heating the Cs collar to {approx}170 deg. C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H{sup -} beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 deg. C.

  19. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  20. Field Use of NMIS at Oak Ridge

    SciTech Connect (OSTI)

    Chiang, L.G.; Conger, M.; Hughes, S.S.; Mattingly, J.K.; McEvers, J.A.; Mihalczo, J.T.; Mullens, J.A.; Perez, R.B.; Turner, C.R.; Uckan, T.; Valentine, T.E.

    1999-08-26

    The Nuclear Materials Identification System (NMIS), developed by the Oak Ridge National Laboratory and Oak Ridge Y-12 Plant (Y-12), has been successfully used at Y-12 for nuclear material control and accountability (NMC&A). It is particularly useful in the high gamma-ray background of storage arrays and for shielded HEU. With three systems in use at Y-12, NMIS has enhanced the NMC&A capability for verification and for confirmation of materials in storage and for HEU receipts by providing capability not available or practical by other NDA methods for safeguards. It has recently cost-effectively quantified the HEU mass and enrichment of hundreds of HEU metal items to within a total spread of {+-} 5% (3 sigma) with and mean deviations for all HEU verified of + 0.2% for mass and {minus}0.2% for enrichment. Three cart portable systems are easily moved around with minimal impact on facility operations since no permanent dedicated floor space is required. The positive impact of NMIS at the Oak Ridge Y-12 Plant is improved and more cost effective NMC&A as well as the resolution of NMC&A findings. Its operation at the Y-12 Plant is essential for compliance with the NMC&A requirements of the US Department of Energy. NMIS portability has allowed one system to be moved temporarily to the former K-25 Gaseous Diffusion Plant for characterization of a large deposit of hydrated uranyl fluoride. The impact of this NMIS application was enhanced and verified nuclear criticality safety that led to the safe removal of a large deposit originally estimated by gamma-ray spectrometry and neutron counting to contain 1300 kg of 3.3 wt% {sup 235}U material. NMIS has also been operational at Los Alamos National Laboratory and Pantex.

  1. Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Office | Department of Energy Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office Oak Ridge Office Document Management Ststem(HummingbirdDM) PIA, Oak Ridge Operations Office (78.91 KB) More Documents & Publications Integrated Safety Management Workshop Registration, PIA,

  2. Development of a 27.12 MHz radio frequency driven ion source with 3 mTorr operation pressure for neutron generators

    SciTech Connect (OSTI)

    Jiang Ximan; Chen Ye; Ji Lili; Ji Qing; Leung, K.-N.

    2005-10-15

    An inductively coupled rf plasma ion source has been developed for neutron generators. The ion source configuration has been optimized for low pressure operation. Both 13.56 and 27.12 MHz rf powers have been used to generate hydrogen plasma. Experimental results show that 27.12 MHz operation is more efficient than 13.56 MHz in a low pressure region. The ion source can also be operated in pulsed mode. Current density higher than 30 mA/cm{sup 2} can be extracted from a 2-mm-diam aperture at 2 kW rf input power and 3 mTorr operation pressure.

  3. Oak Ridge Associ Universities

    Office of Legacy Management (LM)

    ir.\ "'t-"' , i 'Prepared by Oak Ridge Associ Universities Prepared for Division of Remedial Action Proiects 'U.S. Department of Energy 5 : ! l :;"i\ r l!! ,iri$, t . r ' i , , . 1 . E".:r- i{$, i. 'ii idi 1, . :{. I i:li C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y W N I A G A R A F A L L S S T O R A G E S I T E LEWlsToN, NEW YORK J . D . B E R G E R Radiol-oglcal Site Assessment Program Manpower Education, Research, and

  4. Oak Ridge Associated

    Office of Legacy Management (LM)

    l/s1 Prepared by Oak Ridge Associated 'Universities Prepared for Division of Remedial Action Froiects ilJ..S. Department of Energy N( , /7 C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F . S I T E P R O P E R T Y F N I A G A R A F A L L S S T O R A G E S I T E L E W I S T O N , N E W Y O R K J. D. BERGER Radiologieal Site Assessment Program . Manpower Education, Research, and Training Division FINAL REPORT February 1984 COMPREHENSIVE RADIOLOGICAI SURVEY OFF-SITE PROPERTY F

  5. Oak Ridge Universities

    Office of Legacy Management (LM)

    Oak Ridge Universities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y X N I A G A R A F A L L S S T O R A G E S I T E L E W l s T o N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l M a n p o w e r E d u c a t i o n ' Site Assessment Program Research, and Training Division FINA], May REPORT 1 9 8 4 COMPREHENSIVE MDIOLOGICAI SURVEY OFF-SITE PROPERTY X NIAGARA

  6. Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source

    SciTech Connect (OSTI)

    Kokubo, Y.; Kamei, T.

    2012-07-01

    A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

  7. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    SciTech Connect (OSTI)

    Carpenter J.M.

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  8. Prototype Neutron Energy Spectrometer

    SciTech Connect (OSTI)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  9. 2010 Neutron Review: ORNL Neutron Sciences Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: 2010 Neutron Review: ORNL Neutron Sciences Progress Report Citation Details In-Document Search Title: 2010 Neutron Review: ORNL Neutron Sciences Progress Report During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown

  10. Oak Ridge OPEIU 2001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge OPEIU 2001 Oak Ridge OPEIU 2001 Oak Ridge OPEIU 2001 The Oak Ridge Office of Environmental Management is a U.S. Department of Energy (DOE) field site located in Oak Ridge, TN. The site dates back to 1942 as part of the Manhattan Project. Engineers developed three distinct campuses within the Oak Ridge Reservation, and each pursued a different technology to enrich uranium. In the decades since, each of these campuses the Oak Ridge National Laboratory (ORNL), Y-12 National Security

  11. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  12. Oak Ridge National Laboratory Cleanup

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the Oak Ridge National Laboratory.

  13. Deputy Secretary visits Oak Ridge

    Broader source: Energy.gov [DOE]

    As Deputy Secretary Sherwood-Randall traveled across the Oak Ridge Reservation, she stopped at the East Tennessee Technology Park for a first-hand perspective of the environmental cleanup happening there.

  14. AEC and Oak Ridge Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to residents in 1953 - opening the way for extensive construction 3. In 1956 the first property was sold to private owners 4. In 1959 Oak Ridger's voted to incorporate and...

  15. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  16. Neutron streak camera

    DOE Patents [OSTI]

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  17. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  18. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    3, 2013 Susan Cange Deputy Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 217: Recommendation on Stewardship Point of Contact for the Oak Ridge Reservation The Oak Ridge Site Specific Advisory Board (ORSSAB) Stewardship Committee believes it is important for the Department of Energy Oak Ridge Environmental Management (EM) Program to have a dedicated point of contact that the committee and the full board can go to

  19. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  20. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory An aerial view of the Oak Ridge National Laboratory campus. An aerial view of the Oak Ridge National Laboratory campus. The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global

  1. Fundamental neutron physics at LANSCE

    SciTech Connect (OSTI)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  2. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect (OSTI)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  3. Oak Ridge Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Supplier Profile PIA, Oak ridge Operations Office | Department of Energy Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities

  4. Oak Ridge National Laboratory Evaluation for Drum Characterization and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source Term Report | Department of Energy Evaluation for Drum Characterization and Source Term Report Oak Ridge National Laboratory Evaluation for Drum Characterization and Source Term Report This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process to

  5. LAHET calculations for accelerator neutron production

    SciTech Connect (OSTI)

    Prael, R.E.

    1993-07-01

    LAHET is a Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons in complex geometry; it is the result of a major effort at Los Alamos National Laboratory to develop a code system based on the LANL version of the HETC Monte Carlo code for the transport of nucleons, pions, and muons, which was originally developed at Oak Ridge National Laboratory. The system of codes based on LAHET is designated as the LAHET Code System (LCS). LAHET, as all the variants of HETC, has been widely used over the years for design of neutron production targets, facility shielding, and experimental analysis. LAHET is now widely used for medical accelerator facility design and application. Particle tracking uses the general geometry model of the LANL MCNP code, and shares the geometry description and input of MCNP, except for lattices and/or repeated structures. HMCNP is a modification of MCNP which accepts an. external neutron/photon source created by LAHET. Neutron transport from 20 MeV to thermal and all photon/electron transport is done with HMCNP.

  6. How Argonne's Intense Pulsed Neutron Source came to life and gained its niche : the view from an ecosystem perspective.

    SciTech Connect (OSTI)

    Westfall, C.; Office of The Director

    2008-02-25

    At first glance the story of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory (ANL) appears to have followed a puzzling course. When researchers first proposed their ideas for an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, the project seemed so promising that both Argonne managers and officials at the laboratory's funding agency, the Department of Energy (DOE), suggested that it be made larger and more expensive. But then, even though prototype building, testing, and initial construction went well a group of prominent DOE reviewers recommended in fall 1980 that it be killed, just months before it had been slated to begin operation, and DOE promptly accepted the recommendation. In response, Argonne's leadership declared the project was the laboratory's top priority and rallied to save it. In late 1982, thanks to another review panel led by the same scientist who had chaired the panel that had delivered the death sentence, the project was granted a reprieve. However, by the late 1980s, the IPNS was no longer top priority within the international materials science community, at Argonne, or within the DOE budget because prospects for another, larger materials science accelerator emerged. At just this point, the facility started to produce exciting scientific results. For the next two decades, the IPNS, its research, and its experts became valued resources at Argonne, within the U.S. national laboratory system, and within the international materials science community. Why did this Argonne project prosper and then almost suffer premature death, even though it promised (and later delivered) good science? How was it saved and how did it go on to have a long, prosperous life for more than a quarter of a century? In particular, what did an expert assessment of the quality of IPNS science have to do with its fate? Getting answers to such questions is important. The U.S. government spends a lot

  7. Recommendation 208 : Use White Paper on Oak Ridge Reservation...

    Office of Environmental Management (EM)

    8 : Use White Paper on Oak Ridge Reservation Recommendation 208 : Use White Paper on Oak Ridge Reservation The ORSSAB approved the enclosed recommendation suggesting DOE Oak Ridge...

  8. Recommendation 217: Stewardship Point of Contact for the Oak...

    Office of Environmental Management (EM)

    7: Stewardship Point of Contact for the Oak Ridge Reservation Recommendation 217: Stewardship Point of Contact for the Oak Ridge Reservation The Oak Ridge Site Specific Advisory...

  9. Oak Ridge Operations Office of Environmental Management Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Operations Office of Environmental Management Overview Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge Operations Office of...

  10. The {sup 13}C(α,n){sup 16}O reaction as a neutron source for the s-process in AGB low-mass stars

    SciTech Connect (OSTI)

    Trippella, O.; Busso, M.; La Cognata, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Puglia, S. M.R.; Romano, S.; Spartà, R.; Kiss, G. G.; Rogachev, G. V.; Avila, M.; Koshchiy, E.; Kuchera, A.; Santiago, D.; Mukhamedzhanov, A. M.; Maiorca, E.; Palmerini, S.

    2014-05-09

    The {sup 13}C(α,n){sup 16}O reaction is considered to be the most important neutron source for producing the main component of the s-process in low mass stars. In this paper we focus our attention on two of the main open problems concerning its operation as a driver for the slow neutron captures. Recently, a new measurement of the {sup 13}C(α,n){sup 16}O reaction rate was performed via the Trojan Horse Method greatly increasing the accuracy. Contemporarily, on the modelling side, magnetic mechanisms were suggested to justify the production of the {sup 13}C pocket, thus putting the s-process in stars on safe physical ground. These inputs allow us to reproduce satisfactorily the solar distribution of elements.

  11. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  12. Early Oak Ridge Trailer Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Trailer Home A typical trailer home

  13. Small Business Administration Honors Oak Ridge Subcontractor

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – The U.S. Small Business Administration (SBA) recently honored an environmental cleanup company that supports Oak Ridge’s EM program as its Subcontractor of the Year in an eight-state region.

  14. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    May 9, 2013 Susan Cange Deputy Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 215:...

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Box 2001, EM-90 Oak Ridge, TN 37831 Dear Ms. Cange: Recommendation 228: Recommendation on Fiscal Year 2017 DOE Oak Ridge Environmental Management Budget Request At our June 10, ...

  16. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    on Fiscal Year 2016 DOE Oak Ridge Environmental Management Budget Request At our May 14, 2014, ... Advisory Board * P.O. Box 2001, EM-91, Oak Ridge, TN 37831 ...

  17. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Box 2001, EM-90 Oak Ridge, TN 37831 Dear Mr. Whitney: Recommendation 216: Recommendations on Fiscal Year 2015 DOE Oak Ridge Environmental Management Budget Request At our May 8, ...

  18. Independent Oversight Review, Oak Ridge Office- August 2011

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge Office Oversight of the Fire Protection Program at the Oak Ridge Reservation

  19. Oak Ridge Environmental Management: 30 years in 30 minutes |...

    Office of Environmental Management (EM)

    Oak Ridge Environmental Management: 30 years in 30 minutes Oak Ridge Environmental Management: 30 years in 30 minutes Addthis

  20. Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).

    SciTech Connect (OSTI)

    Smith, David Lewis; Heames, Terence John; Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma

    2007-09-01

    This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

  1. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    March 14, 2008 Mr. Steve McCracken Assistant Manager for Environmental Management DOE-Oak Ridge Office P.O. Box 2001, EM-90 Oak Ridge, TN 37831 Dear Mr. McCracken: Recommendation 165: Recommendation on Conducting Future Verifications of Cleanup At our March 12 meeting, the Oak Ridge Site Specific Advisory Board approved the enclosed recommendation. The successes of independent verification of cleanup on the Oak Ridge Reservation, the David Witherspoon Site in Knoxville, and at many other sites

  2. Oak Ridge Site Specific Advisory Board Meetings

    Broader source: Energy.gov [DOE]

    Lists links to the Oak Ridge Site Specific Advisory Board Meetings. The links provide meeting documents available for download.

  3. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  4. DOE Names Oak Ridge Cleanup Manager

    Broader source: Energy.gov [DOE]

    Oak Ridge, Tenn. – The U.S. Department of Energy (DOE) announced today the selection of Sue Cange as the manager of the Oak Ridge Office of Environmental Management (EM). Previously, Cange served as the acting manager of EM’s Oak Ridge Office since May 2014, and she has served as the deputy manager since March 2011.

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  6. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  7. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    SciTech Connect (OSTI)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  8. UCN Nab | Ultracold Neutrons at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nab The Nab experiment will detect protons and electrons in coincidence from the decay of unpolarized cold neutrons at the SNS facility at Oak Ridge National Lab. The specialized silicon particle detectors for the Nab experiment are being designed and assembled at LANL and tested using the neutrons and superconducting magnets at the LANSCE UCN facility

  9. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  10. neutron | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    neutron A snapshot of NNSA's counterterrorism mission NNSA's mission of counterterrorism and counterproliferation is supported through innovative science and technology. Recently, Associate Administrator and Deputy Undersecretary for Counterterrorism and Counterproliferation Jay Tilden visited Oak Ridge National Laboratory (ORNL) and met with... Sniffing out danger from above NNSA's efforts to prevent, counter, and respond to the dangers of nuclear proliferation and terrorism are vital to U.S.

  11. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    SciTech Connect (OSTI)

    Baker, Ann E; Barker, Ashley D; Bland, Arthur S Buddy; Boudwin, Kathlyn J.; Hack, James J; Kendall, Ricky A; Messer, Bronson; Rogers, James H; Shipman, Galen M; Wells, Jack C; White, Julia C; Hudson, Douglas L

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of

  12. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  13. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  14. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    SciTech Connect (OSTI)

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.

  15. Oak%20Ridge.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information Oak%20Ridge

  16. High power neutron production targets

    SciTech Connect (OSTI)

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  17. Spallation Neutrons and Pressure ?? SNAP ?? DE-FG02-03ER46085 CLOSE-OUT MAY 2009

    SciTech Connect (OSTI)

    John B Parise

    2009-05-22

    The purpose of the grant was to build a community of scientist and to draw upon their expertise to design and build the world's first dedicated high pressure beamline at a spallation source - the so called Spallation Neutron And Pressure (SNAP) beamline at the Spallation Neutron Source (SNS) at OAk Ridge NAtional LAboratory. . Key to this endeavor was an annual meeting attended by the instrument design team and the executive committee. The discussions at those meeting set an ambitious agenda for beamline design and construction and highlighted key science areas of interest for the community. This report documents in 4 appendices the deliberations at the annual SNAP meetings and the evolution of the beamline optics from concept to construction. The appendices also contain key science opportunities for extreme conditions research.

  18. High Performance Computing at the Oak Ridge Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing at the Oak Ridge Leadership Computing Facility Go to Menu Page 2 Outline * Our Mission * Computer Systems: Present, Past, Future * Challenges Along the Way * Resources for Users Go to Menu Page 3 Our Mission Go to Menu Page 4 * World's most powerful computing facility * Nation's largest concentration of open source materials research * $1.3B budget * 4,250 employees * 3,900 research guests annually * $350 million invested in modernization * Nation's most diverse energy

  19. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  20. Vehicle Technologies Office Merit Review 2015: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  1. Vehicle Technologies Office Merit Review 2014: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  2. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  3. Oak Rigde Associated Universities (ORAU) Radiation Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    Rigde Associated Universities (ORAU) Radiation Emergency Assistance CenterTraining Site (REACTS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency ...

  4. Oak Ridge, Tennessee, Warehouses Site Fact Sheet

    Office of Legacy Management (LM)

    ... After reviewing records and radiological surveys for more than 600 sites connected with the nuclear weapons program, DOE identifed 46 sites that required cleanup, including the Oak ...

  5. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    8 Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920 This report provides the results of an inspection of...

  6. Oak Ridge Centers for Manufacturing Technology ? testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

  7. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had...

  8. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction followed by the first of three letters...

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    4 Annual Meeting Oak Ridge Site Specific Advisory Board Saturday, August 16, 2014, 8 a.m. to noon DOE Information Center, 1 Science.gov Way Oak Ridge, Tenn. The Oak Ridge Site Specific Advisory Board (ORSSAB) met for its annual planning meeting beginning at 8 a.m., on Saturday, August 16, 2014, at the Department of Energy (DOE) Information Center, 1 Science.gov Way, Oak Ridge, Tenn. The objectives of the meeting were to: * Develop an increased understanding of and commitment to the goals of the

  10. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Tool 4 References 4.1 References Overview "Oak Ridge National Laboratory (ORNL) is a science and technology laboratory managed for the United States Department of Energy by...

  11. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    February 12, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) ......

  12. Oak Ridge Site Specific Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expedite Milestones C. Recommendation on DOE Oak Ridge GIS Fact Sheets (C. Staley) D. Election of FY 2015 Board Officers (B. Price) VII. Responses to Recommendations & Comments (D. ...

  13. Oak Ridge Site Specific Advisory Board Committees

    Broader source: Energy.gov [DOE]

    Oak Ridge’s Site Specific Advisory Board uses its committee structure to achieve its mission and conduct many of its tasks.

  14. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    January 13, 2016, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (B. Price) ......

  15. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    January 14, 2015, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright) ......

  16. Oak Ridge - A Center of Innovation & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy property at the East Tennessee Technology Park (ETTP) and the Oak Ridge Science & Technology Park. CROET's award-winning program to revitalize former DOE...

  17. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the direction and maintanence of the core code * The code base is platform- neutral ... Its core function is to allow users to merge multiple sources of building energy data into ...

  18. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  19. Leadership Oak Ridge visits Y-12 | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Leadership Oak Ridge visits Y-12 NNSA Blog The 2015 Leadership Oak Ridge class recently ... The 2015 Leadership Oak Ridge class recently visited the Y-12 National Security Complex. ...

  20. Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy

    Office of Energy Efficiency and Renewable Energy (EERE)

    OAK RIDGE, Tenn. – The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation.

  1. Recommendation 216: FY 2015 DOE Oak Ridge EM Budget Request ...

    Office of Environmental Management (EM)

    6: FY 2015 DOE Oak Ridge EM Budget Request Recommendation 216: FY 2015 DOE Oak Ridge EM Budget Request At the May 8, 2013, meeting, the Oak Ridge Site Specific Advisory Board ...

  2. Trailer homes in Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traffic Safety Traffic Safety Addthis Description Traffic safety promotion video

    Trailer homes in Oak Ridge Trailer homes in Oak Ridge An aerial of Oak Ridge showing the extensive use of trailer homes

  3. Oak Ridge Operations Office of Environmental Management Overview...

    Office of Environmental Management (EM)

    Oak Ridge Operations Office of Environmental Management Overview PDF icon Oak Ridge ... 2013 Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. ...

  4. Epithermal Neutron Source for Neutron Resonance Spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 42 ENGINEERING; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 70 PLASMA ...

  5. OSTIblog Articles in the Oak Ridge National Laboratory Topic | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information Oak Ridge National Laboratory Topic The NXS Class of 2014 by Kathy Chambers 19 Nov, 2014 in Every summer for the past 16 years, the Department of Energy has invited the best and brightest graduates from across the country to attend the National School on Neutron and X-ray Scattering (NXS). This year, 65 graduate students attending North American universities, and studying physics, chemistry, materials science, or related fields,

  6. Oak Ridge recognized for bird protection practices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge’s efforts to protect migratory birds recently garnered honorable mention for the 2013 Presidential Migratory Bird Federal Stewardship Award. The Energy Department championed the effort through partnerships with the Tennessee Wildlife Resources Agency, UT-Battelle, and URS | CH2M Oak Ridge.

  7. Oak Ridge Office of Environmental Management

    Broader source: Energy.gov [DOE]

    This website highlights activities that support the mission of the Oak Ridge Office of Environmental Management (Oak Ridge Office of EM), which is to remove environmental legacies resulting from more than 60 years of nuclear weapons development and government-sponsored nuclear energy and scientific research.

  8. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  9. ITER movie created by Oak Ridge National Laboratory, National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences American Fusion News Category: U.S. ITER Link: ITER movie created by Oak Ridge ...

  10. FTCP Site Specific Information - Nuclear Energy Oak Ridge Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Oak Ridge Site Office FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office Annual Workforce Analysis and Staffing Plan Report Calendar Year 2013...

  11. Oak Ridge Site Specific Advisory Board Committees | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committees Oak Ridge Site Specific Advisory Board Committees Oak Ridge's Site Specific Advisory Board uses its committee structure to achieve its mission and conduct many of its...

  12. Oak Creek Energy Systems Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Oak Creek Energy Systems Wind Farm II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. PIA - Oak Ridge Institute for Science and Education Program Applicant...

    Office of Environmental Management (EM)

    Oak Ridge Institute for Science and Education Program Applicant and Participant Status System (APSS) PIA - Oak Ridge Institute for Science and Education Program Applicant and ...

  14. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE

    Broader source: Energy.gov [DOE]

    Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation....

  15. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Director Thom Mason, Governor Bill Haslam and ... Dr. Thom Mason, Oak Ridge National Laboratory Director Industry representatives, including ...

  16. Turtle Search Highlights Oak Ridge's Support to Environmental...

    Office of Environmental Management (EM)

    Turtle Search Highlights Oak Ridge's Support to Environmental Education Initiative Turtle Search Highlights Oak Ridge's Support to Environmental Education Initiative July 14, 2016 ...

  17. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Institute for Science and Education - January 2015 January 2015 ... of Oak Ridge Institute for Science and Education (ORISE) during the period of January ...

  18. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science and Education - October 2011 October 2011 Evaluation to determine whether Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education is continuing ...

  19. Voluntary Protection Program Onsite Review, Oak Ridge Associated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Science and Education - April 2008 Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education - April 2008 ...

  20. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus....

  1. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf (4.58 ...

  2. 2012 Annual Workforce Analysis and Staffing Plan Report - Oak...

    Energy Savers [EERE]

    2 Annual Workforce Analysis and Staffing Plan Report - Oak Ridge Office of Environmental Management 2012 Annual Workforce Analysis and Staffing Plan Report - Oak Ridge Office of...

  3. Evaluation of Side Stream Filtration Technology at Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Document provides ...

  4. Former Oak Ridge Bechtel Jacobs Employee Charged with Violating...

    Office of Environmental Management (EM)

    Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of ...

  5. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 ...EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste ...

  6. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  7. White Oak Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name White Oak Wind Energy Center Facility White Oak Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  8. Human Resources at Oak Ridge National Laboratory | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Contact Information The main contact for human resources for CMI at Oak Ridge National Laboratory: David Lett Phone: 865-576-5675 Email: ...

  9. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect (OSTI)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  10. Neutrons for technology and science

    SciTech Connect (OSTI)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  11. Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education- October 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education is continuing to perform at a level deserving DOE-VPP Star recognition.

  12. Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; Ma, Dong; Vogel, S. C.; Carpenter, J. S.; Wang, Xun-Li

    2014-11-28

    The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less

  13. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    SciTech Connect (OSTI)

    Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E; Horak, Charlie M; Nagler, Stephen E; Kszos, Lynn A

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and

  14. Oak Ridge Office of Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Office of Environmental Management Congressional Nuclear Cleanup Caucus Mark Whitney Manager Oak Ridge, TN May 16, 2013 www.energy.gov/EM 2 EM Program Overview ETTP ORNL Y-12 City of Oak Ridge * Work is organized by Cleanup Por7olios * ETTP * Y-12 * ORNL www.energy.gov/EM 3 -3- * Approximately 10-Year Scope of Work * Regulatory Agreements * Partners and Stakeholders U-233 DisposiKon Project ETTP Cleanup and S&M TRU Waste Processing Center * Diverse, complex projects * Ongoing DOE

  15. Independent Oversight Inspection, Oak Ridge National Laboratory- October 2008

    Broader source: Energy.gov [DOE]

    Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920

  16. Oak Ridge Facilities Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Oak Ridge Environmental Management: 30 years in 30 minutes Oak Ridge Environmental Management: 30 years in 30 minutes Addthis

    Facilities ... Oak Ridge Facilities Construction Work in wet and mud was common during the construction of Oak Ridge facilities

  17. Early Oak Ridge Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Home A typical dwelling predating the Manhattan Project homes

  18. Early Oak Ridge Trailer Homes | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early Oak Ridge Trailer Homes A row of trailer homes used

  19. Enforcement Letter, Oak Ridge National Laboratory- May 31, 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to UT-Battelle, LLC related to Unplanned Radiation Exposures at Oak Ridge National Laboratory

  20. Michelle Buchanan > Oak Ridge National Laboratory > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Michelle Buchanan Oak Ridge National Laboratory

  1. Independent Oversight Review, Oak Ridge National Laboratory- January 2013

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes

  2. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  3. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  4. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge ...

  5. Energy Secretary Steven Chu Visits Oak Ridge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visits Oak Ridge Energy Secretary Steven Chu Visits Oak Ridge March 23, 2010 - 12:00am Addthis OAK RIDGE, TN - At an event earlier this afternoon at Oak Ridge National Laboratory, U.S. Energy Secretary Steven Chu announced that DOE has issued a five-year extension to its current management and operating contractor, UT-Battelle, LLC, for the continued operation of the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. While at Oak Ridge, Secretary Chu also met with staff from the

  6. Ultracold Neutrons at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UCN Facility LANSCE is home to one of the most intense sources of some of the coldest subatomic particles: ultracold neutrons (UCNs). The LANSCE Ultracold Neutron (UCN) source is a unique facility that produces high energy spallation neutrons and uses solid deuterium to cool the neutrons by one million billion-fold. The resulting UCNs have some unique properties that allow them to be studied precisely: they move at speeds of only a few meters per second, and are completely confined by magnetic

  7. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    migration studies. These recommendations were the result of the Groundwater Strategy Document for the Oak Ridge Reservation (DOEOR01-2628V1&V2D1) that was developed...

  8. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    Specific Advisory Board Wednesday, March 12, 2014, 6:00 p.m. DOE Information Center 1 Science.gov Way, Oak Ridge, Tenn. AGENDA I. Welcome and Announcements (D. Hemelright)...

  9. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    A. EMStewardship (B. Hatcher, C. Staley) B. Executive (D. Hemelright) 1. Public Outreach-Earth Day Festival (M. Smalling) 2. Center for Oak Ridge Oral History (C. Staley) IX....

  10. Oak Ridge Visitors Center Solar Array

    Broader source: Energy.gov [DOE]

    This photograph features a 5-kilowatt photovoltaic (PV) system in front of the Oak Ridge National Laboratory Visitors Center that was dedicated in 2007 to kick off the first Southeast Solar Summit....

  11. AEC and Oak Ridge High School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    what happened. The Atomic Energy Commission spent 3,000,000 to build a new state- of-the-art high school in Oak Ridge in a very central and special location. This was done at a...

  12. Contractor Fee Payments- Oak Ridge Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to date at the Oak Ridge Operations on these charts.  

  13. 16th National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-02

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  14. 16th National School on Neutron and X-ray Scattering

    ScienceCinema (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-23

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  15. Michael Starke, Oak Ridge National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Starke, Oak Ridge National Laboratory starkemr@ornl.gov Team: Sachin Nimbalkar, Brandon Johnson Oak Ridge National Laboratory Prashant More, Carlos Silva ENBALA Power Networks Anna Shipley SRA September 17, 2014 Berkeley, CA DOE/OE Transmission Reliability R&D Load as a Resource (LaaR) Objectives * ORNL is examining potential for manufacturing processes to provide regulation service. This includes: ▪ Conducting modeling analysis (more detailed understanding on impact of industrial

  16. Oak Ridge Site Specific Advisory Board

    Office of Environmental Management (EM)

    30: Final Proposed Plan for Soils in Zone 1 at East Tennessee Technology Park, Oak Ridge, Tennessee Background The East Tennessee Technology Park (ETTP) - formerly known as the Oak Ridge Gaseous Diffusion Plant - was built in the 1940s as part of the Manhattan Project to enrich uranium for use in nuclear weapons. Over time, the mission of the facility changed to that of producing low enriched uranium to fuel commercial and research nuclear reactors and researching new technologies for uranium

  17. Potential nuclear safeguards applications for neutron generators

    SciTech Connect (OSTI)

    Lindquist, L.O.

    1980-01-01

    Many nuclear safeguards inspection instruments use neutron sources to interrogate the fissile material (commonly /sup 235/U and /sup 239/Pu) to be measured. The neutron sources currently used in these instruments are isotopics such as Californium-252, Americium-Lithium, etc. It is becoming increasingly more difficult to transport isotopic sources from one measurement location to another. This represents a significant problem for the International Atomic Energy Agency (IAEA) safeguards inspectors because they must take their safeguards instruments with them to each nuclear installation to make an independent measurement. Purpose of this paper is to review the possibility of replacing isotopic neutron sources now used in IAEA safeguards instruments with electric neutron sources such as deuterium-tritium (D-T, 14-MeV neutrons) or deuterium-deuterium (D-D, 2-MeV neutrons). The potential for neutron generators to interrogate spent-light water reactor fuel assemblies in storage pools is also reviewed.

  18. Oak Ridge Reservation environmental report for 1989

    SciTech Connect (OSTI)

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  19. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy`s (DOE) Oak Ridge Operations Office (Operations Office). Energy Systems` environmental restoration program is responsible for eliminating or reducing the risk posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. The remedial investigation and feasibility study (RI/FS) is being conducted as part of Energy Systems` environmental restoration program. The objective of the audit was to determine if the proposed interim source control action identified in the ``Proposed Plan for the Oak Ridge National Laboratory Waste Area Grouping 6 Interim Remedial Action`` had been adequately justified. The audit disclosed that the proposed source control interim remedial action, three flexible membrane caps estimated to cost $140 million for waste area grouping 6, was not adequately justified. We recommended that DOE justify the proposed action before agreeing to proceed. The Manager, Oak Ridge Operations Office, generally concurred with the audit recommendations.

  20. NEUTRON MEASURING METHOD AND APPARATUS

    DOE Patents [OSTI]

    Seaborg, G.T.; Friedlander, G.; Gofman, J.W.

    1958-07-29

    A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.

  1. Waste Area Grouping 4 Site Investigation Sampling and Analysis Plan, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL), on the Oak Ridge Reservation in Oak Ridge, Tennessee. WAG 4 is located along Lagoon Road south of the main facility at ORNL. WAG 4 is a shallow-waste burial site consisting of three separate areas: (1) Solid Waste Storage Area (SWSA) 4, a shallow-land burial ground containing radioactive and potentially hazardous wastes; (2) an experimental Pilot Pit Area, including a pilot-scale testing pit; and (3) sections of two abandoned underground pipelines formerly used for transporting liquid, low-level radioactive waste. In the 1950s, SWSA 4 received a variety of low-and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data indicate that a significant amount of {sup 90}Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk. In an effort to control the sources of the {sup 90}Sr release and to reduce the off-site risk, a site investigation is being implemented to locate the trenches containing the most prominent {sup 90}Sr sources. This investigation has been designed to gather site-specific data to confirm the locations of {sup 90}Sr sources responsible for most off-site releases, and to provide data to be used in evaluating potential interim remedial alternatives prepared to direct the site investigation of the SWSA 4 area at WAG 4.

  2. Neutrons find "missing" magnetism of plutonium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium's magnetism, which scientists have long theorized but have never been able to experimentally observe. July 10, 2015 Doug Abernathy, left, ARCS instrument scientist at Oak Ridge National Laboratory, and Marc Janoschek, Los Alamos National Laboratory, prepare their sample for experiments at

  3. Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery in Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo, Mark Hagen & Thomas Proffen Neutron Data Analysis & Visualization Division Galen Shipman & Bobby Sumpter Computational Science & Mathematics Division Center for Nanophase Materials Science Olivier Delaire Materials Science and Technology Division Oak Ridge National Laboratory NERSC 40 th Anniversary User's Meeting February 5, 2014 Analysis - "data on disk is useless" * Data on disk is

  4. Neutron skins and neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J.

    2013-11-07

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  5. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associated with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.

  6. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore » with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  7. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect (OSTI)

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  8. Typical Oak Ridge cemesto houses and city bus | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Typical Oak Ridge cemesto ... Typical Oak Ridge cemesto houses and city bus Typical Oak Ridge cemesto houses and city bus

  9. Sue Cange Provides Insight on Oak Ridge’s Cleanup Progress, Partnerships

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Sue Cange, manager for the Oak Ridge Office of Environmental Management, is responsible for safely executing the environmental cleanup of the Oak Ridge Reservation.

  10. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  11. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  12. Neutron dosimetry

    DOE Patents [OSTI]

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  13. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  14. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  15. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  16. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  17. Commercial IEC portable neutron source

    SciTech Connect (OSTI)

    Sved, J.

    1997-12-01

    The inertial electrostatic confinement (IEC) fusion grade plasma devices are being developed as a commercial industrial product by Daimler-Benz Aerospace (DASA), Center Trauen, which has an exclusive license from the University of Illinois (UI) to manufacture the commercial implementation of the Miley et al. IEC inventions. DASA is funding the UI Fusion Studies Laboratory basic IEC research and the intellectual property protection process. The association of the DASA Space Infrastructure division with an apparently unrelated technology has arisen from the perception that IEC technology may benefit from certain aerospace technologies and eventually create a market for space infrastructure services. In addition, DASA Center Trauen has a number of environmental technology businesses.

  18. Oak Ridge Site Specific Advisory Board Contacts | Department of Energy

    Office of Environmental Management (EM)

    Contacts Oak Ridge Site Specific Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-942 Oak Ridge, TN 37831 Phone Numbers (865) 241-4583, (865) 241-4584 (800) 382-6938, option 4 Melyssa Noe, Alternate Deputy Designated Federal Officer U.S. DOE-OREM, P.O. Box 2001, EM-942, Oak Ridge, TN 37831 Phone: (865) 241-3315 Fax: (865) 241-6932 Email: Melyssa.Noe@orem.doe.gov Pete Osborne, ORSSAB Support Office Oak Ridge SSAB, P.O. Box 2001, EM-942, Oak Ridge,

  19. Oak Ridge Makes Safety a Community Affair | Department of Energy

    Energy Savers [EERE]

    Finds Ways to Remove K-25 Faster, Cheaper Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper February 1, 2012 - 12:00pm Addthis Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper Oak Ridge Finds Ways to Remove K-25 Faster, Cheaper OAK RIDGE, Tenn. - K-25, once the world's largest building under one roof, reflects less of its former title every day. Due to the partnership between the U.S

  20. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  1. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  2. Neutron coincidence detectors employing heterogeneous materials

    DOE Patents [OSTI]

    Czirr, J. Bartley (Mapleton, UT); Jensen, Gary L. (Orem, UT)

    1993-07-27

    A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.

  3. Field Of?b, Oak Rldge

    Office of Legacy Management (LM)

    Field Of?b, Oak Rldge P.O. Box 2001 Oak Ridge, Tennes~e 37831- 8723 April 20, 1993 Dr. Paul Merges Chief, Bureau of Radiation New York State Department of Environmental Conservation 50 Yolf Road Room 506 Albany, New York 12233-7255 Dear Dr. Merges: BAKER AND NILLIANS WRMOUSES SITE - CORPLETION OF CLEANUP ACTI(rIT1ES The purpose of this notice is to inform you about further scheduled cleanup activities to be conducted by the Department of Energy (DDE) at 513-519 West 20th Street In New York, New

  4. Oak Ridge: Approaching 4 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  5. Oak Ridge Project Opens Possibilities for Future Mission Work, Development

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – EM is refining the picture of uncontaminated areas within the 33,500-acre Oak Ridge Reservation through a review of historic documents and extensive sampling, analysis and characterization.

  6. Oak Ridge Centers for Manufacturing Technology ? Insights from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Dave Beck from Y-12, as well as Co-Director of the Oak Ridge Centers for Manufacturing Technology (ORMCT), was Jack Cook of Oak Ridge National Laboratory"s (ORNL"s)...

  7. Oak Ridge Focuses on Old and New in 2013

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. - In 2013, the Oak Ridge Office of Environmental Management completed numerous projects. Some of the major accomplishments involved reaching two long-standing goals and progressing on the design of a new construction project.

  8. Oak Ridge Site Specific Advisory Board Meetings | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting with Oak Ridge City Manager about the city's perspective on DOE EM work on the Oak Ridge Reservation. March 6, 2015 ORSSAB Meeting - March 2015 Discussion about the FY 2017 ...

  9. Oak Ridge Lays Out Big Plans for 2012

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Last year, Oak Ridge’s Environmental Management (EM) program logged one of its most successful years due to sound project management and achievements in American Recovery and Reinvestment Act work.

  10. Oak Ridge Site Specific Advisory Board Contacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-942 Oak Ridge, TN ... Melyssa Noe, Alternate Deputy Designated Federal Officer U.S. DOE-OREM, P.O. Box 2001, ...

  11. Oak Ridge Operations Office of Environmental Management Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Reservation * High levels of rainfall coupled with shallow groundwater carry contaminants to local waterways Oak Ridge is not an isolated or arid site Oak Ridge has a Unique...

  12. P.O. Box 117, Oak Ridge, TN 37831

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Box 117, Oak Ridge, TN 37831 g (865) 241-8893 g IVsurveys@orau.org On the Web: www.orau.orgenvironmental-assessments-health-physics Oak Ridge Associated Universities (ORAU) is a...

  13. EM's Oak Ridge Office Contractor Scores High in Latest Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 27, 2016 - 12:50pm Addthis OAK RIDGE, Tenn. - EM gave URS | CH2M Oak Ridge LLC ... Each year, EM releases information relating to contractor fee payments - earned by ...

  14. Oak Ridge: Approaching 4 Million Safe Work Hours | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours February 27, 2013 - 12:00pm Addthis Mike Tidwell performs a leak check and ...

  15. Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...

    Office of Environmental Management (EM)

    Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 The ...

  16. Oak Ridge Reflects on 30 Years of Cleanup

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge’s EM program hosted an event this month that documented the site’s environmental cleanup efforts since 1983, six years before the official founding of the Department’s EM.

  17. New EM Facility Treats Groundwater at Oak Ridge

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge’s EM program is operating a new facility that reduces the amount of contaminants entering Mitchell Branch, a stream at DOE’s East Tennessee Technology Park.

  18. Oak Ridge Reservation Compliance Order, September 26, 1995

    Office of Environmental Management (EM)

    Box 2001, Oak Ridge, TN 37831. Go to Table of Contents http:www.em.doe.govffaaorrffca.html 4252001 Oak Ridge Reservation Compliance Order, September 26, 1995 Page 2 of 5...

  19. EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract July 12, 2012 - 12:00pm Addthis DOE and UCOR employees held an event ...

  20. DOE's Oak Ridge Office and UCOR Sign Partnering Agreement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Oak Ridge Office and URS | CH2M Oak Ridge, LLC (UCOR) met to sign a partnering agreement that defines the working arrangement and expectations between the two entities. ...

  1. FTCP Site Specific Information - Oak Ridge Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FTCP Site Specific Information - Oak Ridge Office FTCP Agent Organization Name Phone E-Mail Oak Ridge Patrick Smith 865574-0960 smithpn@oro.doe.gov Annual Workforce Analysis and ...

  2. Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation

    Broader source: Energy.gov [DOE]

    The Oak Ridge Site Specific Advisory Board approved the enclosed recommendation on remaining legacy materials on the Oak Ridge Reservation.

  3. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2005-03-02

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for

  4. Prompt Neutron Time Decay in Single HEU and DU Metal Annular Storage Castings

    SciTech Connect (OSTI)

    Pena, Kirsten E [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL

    2010-01-01

    Previous measurements of highly enriched uranium (HEU) storage castings performed by Oak Ridge National Laboratory (ORNL) at the Y-12 National Security Complex showed a prompt neutron time decay that is not exponential. These measurements showed that multiple time constants originating from multiplication, time-of-flight, scattering in the assembly and room return could be associated with this prompt neutron decay. In this work, the contribution not associated with neutron multiplication was investigated via measurements with a depleted uranium (DU) casting. The measurements at ORNL used an annular (5.0-in OD, 3.5-in ID, 6.0-in H) DU casting with a time-tagged 252Cf source, centered vertically on the axis, and four closely coupled 1 1 6-in.-long plastic scintillators with -in.- thick lead shielding adjacent to the outer surface of the casting. This setup was identical to the configuration used in the previously performed measurements with HEU castings at Y-12. The time correlation between fission events and detections in the plastic scintillators was measured, as well as the time distribution of coincidences between multiple detectors within a 512-ns time window. The measurement results were then compared to MCNP-PoliMi calculations and the previous HEU measurements. Time constants from decay fits to the HEU and DU data were compared to characterize the contributions resulting from multiplication, time-of-flight, and scattering.

  5. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    SciTech Connect (OSTI)

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; Kahlal, Samia; Saillard, Jean -Yves; Liu, C. W.

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu20(H)11{S2P(OiPr)2}9], was determined by single-crystal neutron diffraction. Cu20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu2H5}3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ3-hydrides in pyramidal geometry, two μ4-hydrides in tetrahedral cavity, and three μ4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal of the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.

  6. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; Kahlal, Samia; Saillard, Jean -Yves; Liu, C. W.

    2014-10-07

    The structure of a nanospheric polyhydrido copper cluster, [Cu20(H)11{S2P(OiPr)2}9], was determined by single-crystal neutron diffraction. Cu20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu2H5}3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ3-hydrides in pyramidal geometry, two μ4-hydrides in tetrahedral cavity, and three μ4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal of the size 0.20 mm x 0.50 mm x 0.65 mm for seven daysmore » using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less

  7. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    SciTech Connect (OSTI)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup } 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 Nm, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  8. 2012 Annual Planning Summary for Oak Ridge Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Oak Ridge Office.

  9. August 1, 2005: Bodman visits Oak Ridge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2005: Bodman visits Oak Ridge August 1, 2005: Bodman visits Oak Ridge August 1, 2005: Bodman visits Oak Ridge August 1, 2005 Secretary Bodman visits (pdf) DOE's Oak Ridge National Laboratory to tour the facility and host an all-hands meeting with lab employees. The Secretary tells the employees that he is pleased and enthusiastic, on the whole, with the Energy Policy Act, particularly in that it has measures to encourage more nuclear energy generation. When asked what methods of generation he

  10. Oak Ridge Reservation annual site environmental report summary 1998

    SciTech Connect (OSTI)

    Hamilton, L.V.

    1999-12-01

    This report summarizes the information found in the Oak Ridge Reservation Annual Site Environmental for 1998 (DOE/ORO/2091).

  11. Oak Ridge National Laboratory - Computing and Computational Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Oak Ridge to acquire next generation supercomputer Oak Ridge to acquire next generation supercomputer The U.S. Department of Energy's (DOE) Oak Ridge Leadership Computing Facility (OLCF) has signed a contract with IBM to bring a next-generation supercomputer to Oak Ridge National Laboratory (ORNL). The OLCF's new hybrid CPU/GPU computing system, Summit, will be delivered in 2017. (more) Links Department of Energy Consortium for Advanced Simulation of Light Water Reactors Extreme

  12. 2013 Annual Planning Summary for the Oak Ridge Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge Office.

  13. Independent Oversight Environment, Oak Ridge National Laboratory - June

    Office of Environmental Management (EM)

    2006 | Department of Energy Environment, Oak Ridge National Laboratory - June 2006 Independent Oversight Environment, Oak Ridge National Laboratory - June 2006 June 2006 Inspection of the Environmental Management Program at the Oak Ridge National Laboratory This report documents the results of an inspection of the environment, safety, and health programs for the environmental management program activities at the Department of Energy's (DOE) Oak Ridge National Laboratory. The inspection was

  14. Oak Ridge's EM Program Realizes Successful 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge's EM Program Realizes Successful 2010 Oak Ridge's EM Program Realizes Successful 2010 February 7, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - Cleanup at the Oak Ridge Reservation took a major leap forward in 2010, as the U.S. Department of Energy's (DOE) Office of Environmental Management (EM) completed numerous projects that reduced risks, decreased the site's footprint, and paved the way for new development for DOE missions. Major accomplishments were completed across the Oak Ridge

  15. 2013 Annual Planning Summary for the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge National Laboratory.

  16. DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Services | Department of Energy Oak Ridge Transuranic Waste Processing Center Services DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing Center Services October 9, 2015 - 4:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) awarded a contract on June 18, 2015 to North Wind Solutions, LLC for support services at the Oak Ridge Transuranic Waste Processing Center (TWPC) in Oak

  17. Oak Ridge Metrology Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Services Oak Ridge Metrology Center Capabilities Disciplines Contacts Secure Manufacturing Technical Services Ultrasonic cleaner cuts costs, enhances safety Nuclear...

  18. Waste Management Conference Highlights Oak Ridge's Progress and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships | Department of Energy Management Conference Highlights Oak Ridge's Progress and Partnerships Waste Management Conference Highlights Oak Ridge's Progress and Partnerships March 31, 2016 - 1:10pm Addthis Oak Ridge Office of Environmental Management Manager Sue Cange, center, listens to Atomic Trades and Labor Council President Mike Thompson Mike Thompson speak at the Waste Management Conference. Betsy Child, chief of staff and regulatory officer for URS|CH2M Oak Ridge, is at

  19. Independent Activity Report, Oak Ridge Office- June 2011

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge Office FY 2012 Draft Schedules for Oversight Activities [HIAR-ORO-2011-06-21

  20. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.