Powered by Deep Web Technologies
Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

International Neutron Scattering Instrumentation School (INSIS...  

NLE Websites -- All DOE Office Websites (Extended Search)

INSIS 2012 International Neutron Scattering Instrumentation School (INSIS) 15 - 27 July, 2012 INSIS 2012 INFN - Laboratori Nazionali di Frascati * Rome, Italy About the School How...

2

USANS: the Ultra-Small-Angle Neutron Scattering Instrument at...  

NLE Websites -- All DOE Office Websites (Extended Search)

USANS-Ultra-Small-Angle Neutron Scattering Instrument USANS is designed for the study of hierarchical structures in natural and artificial materials. It can be considered an...

3

Bio-SANS: the Biological Small-Angle Neutron Scattering Instrument...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Small-Angle Neutron Scattering Instrument at HFIR Detector tanks for the new SANS instruments at HFIR. The Bio-SANS detector is on the right. Detector tanks for the SANS...

4

Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments  

Science Conference Proceedings (OSTI)

Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L. [Neutron Sciences Directorate, Oak Ridge National Laboratory (United States)

2011-07-01T23:59:59.000Z

5

Instruments | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

NScD Careers NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Instruments SHARE Instruments at SNS and HFIR SNS Instrument Name HFIR Instrument Name 1B NOMAD - Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS - Backscattering Spectrometer CG-1D IMAGING - Neutron Imaging Prototype Facility 3 SNAP - Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS - Biological Small-Angle Neutron Scattering Instrument 4B LR - Liquids Reflectometer CG-4C CTAX - Cold Neutron Triple-Axis Spectrometer 5 CNCS - Cold Neutron Chopper Spectrometer HB-1 PTAX - Polarized Triple-Axis Spectrometer

6

ORNL Neutron Sciences Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Instruments banner Instruments banner ORNL Neutron Sciences Instruments SNS and HFIR provide researchers with two complementary world-class suites of neutron scattering instruments and beam lines. All the instruments are supported by a variety of sample environments and data analysis and visualization capabilities. Before submitting a proposal for a specific instrument, please contact the appropriate instrument scientist to make sure your research is feasible for that instrument. Instruments Currently Available to Users SNS Beam Line Instrument Name HFIR Beam Line Instrument Name 1B NOMAD Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS Backscattering Spectrometer CG-1D IMAGING Neutron Imaging Prototype Facility 3 SNAP Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS

7

Instrument - NG7 SANS - Small Angle Neutron Scattering  

Science Conference Proceedings (OSTI)

... Jointly developed and sponsored by the NCNR, the ExxonMobil Research and Engineering Co., and the University of Minnesota, the instrument ...

2012-09-17T23:59:59.000Z

8

ORNL Neutron Sciences Instrument Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

of each neutron scattering instrument at ORNL. You can also view SNS Instrument and HFIR Instrument pages that go to the related instrument's web pages. Detailed information...

9

The 30 m Small-Angle Neutron Scattering Instruments at the ...  

Science Conference Proceedings (OSTI)

... The 30 m SANS instrument on neutron guide NG-7, in operation since May 1991, was developed jointly by NIST, the Exxon Research and ...

2011-03-01T23:59:59.000Z

10

Neutron Scatter Camera for Radiaton Detection - Energy ...  

Patent 7,741,613: Neutron scatter camera An instrument that will directly image the fast fission neutrons from a special nuclear material source has ...

11

Imaging with Scattered Neutrons  

E-Print Network (OSTI)

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

12

Neutron Scattering Facilities 1982  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUTRON SOURCES NEUTRON SOURCES Types of Sources U.S. Sources Available for Users Plans for the Future The Neutron Scattering Society of America (NSSA) SNS/ANL School on Neutron and x-Ray Scattering, June 2011 Jim Rhyne Lujan Neutron Scattering Center Los Alamos National Lab. What do we need to do neutron scattering? * Neutron Source - produces neutrons * Diffractometer or Spectrometer - Allows neutrons to interact with sample - Sorts out discrete wavelengths by monochromator (reactor) or by time of flight (pulse source) - Detectors pick up neutrons scattered from sample * Analysis methods to determine material properties * Brain power to interpret results Sources of neutrons for scattering * Nuclear Reactor - Neutrons produced from fission of 235 U - Fission spectrum neutrons

13

ORNL Neutron Scattering User Meeting (ONSUM 2011)  

NLE Websites -- All DOE Office Websites (Extended Search)

and learning about the capabilities of neutron scattering instruments at SNS and HFIR Meeting fellow user scientists and engineers to discuss ongoing research and R&D needs...

14

Physics @ Oxford SCATTERING NEUTRONS  

E-Print Network (OSTI)

1 Neutron Scattering Society of America (NSSA) Purpose and New Initiatives www.neutronscattering.org SNS/ANL School on Neutron and X-Ray Scattering June 2011 Visit us now on Facebook #12;2 What is the NSSA? NSSA is an organization of scientists and engineers with a common interest in using neutron

Herz, Laura M.

15

Neutron Scattering Web  

NLE Websites -- All DOE Office Websites (Extended Search)

at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for...

16

Neutron Scattering Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgements The graphics used on the Neutron Scattering Web Pages were designed by Tami Sharley (Information and Publishing Services Division) and Jack Carpenter (Intense...

17

Neutron Scattering Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for archival purposes but no new content will be added. We encourage everyone interested in neutron scattering to take full advantage of this exciting new resource for our community. Neutronsources.org Data Formats NeXus: Neutron and X-ray Data Format Crystallographic Binary Format (CBF/imgCIF) Hierarchical Data Format (HDF) Data Analysis and Visualization Data Analysis for Neutron Scattering Experiments (DANSE): distributed data analysis project Large Array Manipulation Program (LAMP): IDL-based data analysis and visualization

18

Development of Lithium Lanthanide Borate Scintillator for Neutron Scattering Applications  

Science Conference Proceedings (OSTI)

We have completed the design and testing of neutron scattering instrument detectors for powder diffractometers and single crystal diffractometers. These detectors meet the performance requirements for these types of instruments at the Department of Energy Spallation Neutron Source facility.

Czirr, J.B.; McKnight, T.; Merrill, D.

2004-09-20T23:59:59.000Z

19

LANSCE | Lujan Neutron Scattering Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy, National Office of Science Department of Energy, National Office of Science science.energy.gov Department of Energy, National Nuclear Security Administration nnsa.energy.gov Lujan Neutron Scattering Center Logo Lujan Center Mission The Lujan Center delivers science by exploiting the unique characteristics of intense beams of pulsed neutrons for academia, national security, and industry. Lujan Center Vision The Lujan Center will operate a world class user program in the service of the nation. Lujan Center scientists will be recognized for their leadership and innovation in neutron scattering. Lujan Center at LANSCE The Lujan Center is one of five user facilities supported by the LANSCE accelerator which is stewarded. Funding to operate 10 instruments in a national user program is provided by the Department of Energy's Office of

20

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Neutron Instruments Added at Oak Ridge  

Science Conference Proceedings (OSTI)

The neutron scattering facilities at Oak Ridge National Laboratory continue their development as new instruments are commissioned and join the user program at the Spallation Neutron Source and High Flux Isotope Reactor. More than 640 proposals were received for beam time during the January-May 2011 period on SNS and HFIR instruments with about half either being accepted or identified as alternates. The proposal call for the period June-December 2011, announced at http://neutrons.ornl.gov, will close February 23, 2011.

Ekkebus, Allen E [ORNL

2011-01-01T23:59:59.000Z

22

HFIR Instrument Systems | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Click for more information about the HFIR beamline Experiment Hall Click for more information about the HFIR beamline Experiment Hall HFIR instrument layout. Click for details. Instruments at the High Flux Isotope Reactor The instrument suite at HFIR is supported by a variety of sample environments and on-site laboratories for user convenience. If you're unsure which instrument(s) would most benefit your research, or if you would like to request capabilities that you don't see here, please contact our user office. All HFIR Instrument fact sheets are also available in this single PDF document. Available to Users Beam Line Fact Sheet Instrument Name Contact CG-1 Development Beam Line Lee Robertson CG-1D PDF IMAGING - Neutron Imaging Prototype Facility Hassina Bilheux CG-2 PDF GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer Ken Littrell

23

Neutron Scattering Conference Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Archive Conference Archive A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for archival purposes but no new content will be added. We encourage everyone interested in neutron scattering to take full advantage of this exciting new resource for our community. Neutronsources.org 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 2000 June 12-14, 2000 Workshop on "New Opportunities for Better User Group Software (NOBUGS III)" Location Daresbury Laboratory, Cheshire, UK Contact Mark Enderby, Daresbury Laboratory Email M.J.Enderby@dl.ac.uk URL http://nobugs.dl.ac.uk/

24

Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors  

SciTech Connect

For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

McBee, M.R. (ed.); Axe, J.D.; Hayter, J.B.

1990-07-01T23:59:59.000Z

25

SNS Instrument Systems | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

instrument layout. Click for details. Instruments at the Spallation Neutron Source SNS currently has 13 instruments available for users. Each instrument is designed to complement...

26

The Versatile Neutron Imaging Instrument at SNS | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Versatile Neutron Imaging Instrument at SNS VENUS: Neutron imaging to advance energy efficiency VENUS: Neutron imaging to advance energy efficiency. As its name indicates,...

27

Moderators - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Moderators Moderators Detailed design of scattering instruments requires detailed knowledge of the neutron beam emitted from the moderator in question. We are currently providing moderator performance estimates based on the result of detailed Monte Carlo simulations of the entire target system. These simulations are being performed for both the High Power Target Station (HPTS) and the Long Wavelength Target Station (LWTS), and have been performed for the Intense Pulsed Neutron Source (IPNS) in the same manner. We make the IPNS source files available as a means to benchmark instrument simulation codes. These files follow a particular "source file format" which will adapt to the changing needs of instrument simulation as necessary. We also provide worked examples showing how to use the information in the source files

28

SNS Instrument System Beam Lines | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS Instrument Beam Lines SNS Instrument Beam Lines This diagram shows the beam lines designated for currently funded instruments. Clicking on an instrument description will take you to the page for that instrument. Clicking anywhere else on the image will open a full-size, printable PDF file. SNS Instrument Layout Backscattering Spectrometer (BASIS) Disordered Materials Diffractometer (NOMAD) Wide Angular-Range Chopper Spectrometer (ARCS) Fine-Resolution Fermi Chopper Spectrometer (SEQUOIA) Coming Soon - Vibrational Spectrometer (VISION) Neutron Spin Echo (NSE) Hybrid Spectrometer (HYSPEC) Fundamental Neutron Physics Beamline (FNPB) Single Crystal Diffractometer (TOPAZ) Versatile Neutron Imaging Instrument (VENUS) Macromolecular Diffractometer (MaNDi) Powder Diffractometer (POWGEN3) Engineering Diffractometer (VULCAN) Extended Q-Range Small Angle Neutron Diffractometer (EQ-SANS) Cold Neutron Chopper Spectrometer (CNCS) Liquids (horizontal surface) Reflectometer (LR) Magnetic Advanced Grazing InCidence Spectrometer (MAGICS) High Pressure Diffractometer (SNAP) Coming Soon - Elastic Diffuse Scattering Spectrometer (CORELLI)

29

Neutron Sciences - Neutron Scattering Dynamics in Polymer Family  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron scattering characterizes dynamics in polymer family Neutron scattering characterizes dynamics in polymer family Research Contact: Christine Gerstl December 2012, Written by Agatha Bardoel Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Now researchers have used quasielastic neutron scattering to investigate the hydrogen dynamics in poly(alkylene oxide)s with different side-chain lengths at temperatures below, as well as above, the glass transition. The combination of techniques and instruments used is bringing a more complete understanding of multiple contributions to system dynamics. The results

30

BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION  

SciTech Connect

In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

2008-10-01T23:59:59.000Z

31

NXS 2010 - Neutron Scattering School  

NLE Websites -- All DOE Office Websites (Extended Search)

2-26, 2010 2-26, 2010 Argonne National Laboratory, Argonne, IL Oak Ridge National Laboratory, Oak Ridge, TN NXS2010 Travel Airport Shuttles Departure Flights Schedule Participants Lectures Lecturers Lecture Notes/Videos Experiments Schedule, Desc, Groups Student Presentations ANL Facilities APS Facility ANL Map ANL Visitor's Guide ORNL Facilities HFIR Facility SNS Facility HFIR/SNS Map Access Requirements ANL ORNL Rad Worker Training Study Guide Wireless Networks ANL ORNL Safety & Security Rules ANL ORNL NSSA New Initiatives NSSA Weblink Contacts ANL ORNL 12th National School on Neutron & X-ray Scattering 2009 Neutron Scattering School participants 2010 National School Participants Students share their thoughts about NXS 2010. Purpose: The main purpose of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major neutron and x-ray facilities. Lectures, presented by researchers from academia, industry, and national laboratories, will include basic tutorials on the principles of scattering theory and the characteristics of the sources, as well as seminars on the application of scattering methods to a variety of scientific subjects. Students will conduct four short experiments at Argonne's Advanced Photon Source and Oak Ridge's Spallation Neutron Source and High Flux Isotope Reactor facilities to provide hands-on experience for using neutron and synchrotron sources.

32

Neutron Scattering Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA University of...

33

NXS 2013 - Neutron Scattering School  

NLE Websites -- All DOE Office Websites (Extended Search)

5th National School on Neutron and X-Ray Scattering 5th National School on Neutron and X-Ray Scattering August 10-24, 2013 Argonne National Laboratory, Argonne, IL Oak Ridge National Laboratory, Oak Ridge, TN NXS2013 Schedule Participants Image Gallery Travel Info Thank you Lectures Lecture Notes/Videos Experiments ANL Facilities ANL Map (jpg) ANL Map (pdf) ANL Visitor's Guide ORNL Facilities HFIR Facility SNS Facility HFIR/SNS Map Wireless Networks ORNL Safety & Security Rules ORNL NSSA Weblink Contacts ANL ORNL 2013 NXS School Participants 2013 NXS Participants. NXS interveiws 2013 Click the image to download the video. Video Interviews: Participants answer questions about their experiences at NXS 2011. Your feedback about lectures and experiments is important for evaluating this year's Neutron and X-ray Scattering School and for making improvements for future participants. We sincerely hope that each of you will complete the survey by the end of the school.

34

Capabilities of the ARCS Instrument - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the ARCS Instrument Capabilities of the ARCS Instrument ARCS Overview The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of 3He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and

35

Neutron Scattering Science User ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) will be accepted via the web-based proposal system...

36

Neutron Scattering Home Page (Low-Graphics)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Page A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to...

37

Neutron Scattering Experiment Automation with Python  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

Zolnierczuk, Piotr A [ORNL; Riedel, Richard A [ORNL

2010-01-01T23:59:59.000Z

38

Choppers - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Choppers Neutron Choppers The primary mission of the Neutron Chopper Team is to provide functional, reliable, safe, and operationally proven neutron chopper systems as required by the SNS instrument beam lines. Type of Choppers Activities Facilities Equipment TOP2 T0 chopper installed and operating in a CTF lower level chopper test bay. (Click for a larger picture) Chopper technician Bill Jordan recording chopper balance data. Types of Choppers Neutron choppers are rotating mechanical devices designed to block the neutron beam for some fraction of each revolution of the chopper. Our goal is to have at least three different functional classes of neutron choppers available for user experiments. Most, if not all, of these will be designed in standard forms that are interchangeable among the instruments. Most

39

NIST: N42-2011 Neutron Handheld Instruments  

Science Conference Proceedings (OSTI)

... The instrument's location and battery status is reported for each reading. Neutron handheld instrument file: http://physics ...

2012-02-09T23:59:59.000Z

40

American Conference on Neutron Scattering 2010 - ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Update on Sample Environment Plenary Session: Thom Mason: Neutron Scattering and Energy ACNS website with Program Back to Top an error occurred while processing this directive...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Neutron dosimetry at SLAC: Neutron sources and instrumentation  

Science Conference Proceedings (OSTI)

This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

1991-10-01T23:59:59.000Z

42

Detectors - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Detectors Detectors Detectors The detector design group, led by Yacouba Diawara is responsible for supporting the design of HFIR and SNS instruments by developing the necessary infrastructure and acquiring detector components that will be used to complete the functionality of the instruments. The group's mission also includes supporting detector research and development (R&D) for the various instruments and their different needs. The support effort for instrument design entails monitoring detector development worldwide as neutron facilities around the globe are getting upgraded and adopting the newest technologies. Detector group technician Ted Visscher inspects a parahedreal lens on an Anger camera Detector group technician Ted Visscher inspects a parahedreal lens on an

43

Workshop on Neutron Scattering Applications in Structural Biology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on Neutron Scattering Applications in Structural Biology Workshop on Neutron Scattering Applications in Structural Biology For the fourth consecutive year, NScD and JINS...

44

Measurements of the Thermal Neutron Scattering Kernel  

E-Print Network (OSTI)

world's most powerful neutron source, the $1.4 billion Spallation Neutron Source At 1.4MW, SNS produces. SNS will feature 24 beamlines for physics, chemistry, biology, materials research. www.sns.gov #12 · Coproduction of epithermal, thermal and cold neutrons #12;SNS Instrument Beam Lines 1st experimentproposed 2nd

Danon, Yaron

45

Phonon Studies with Inelastic Neutron Scattering and First ...  

Science Conference Proceedings (OSTI)

Presentation Title, Phonon Studies with Inelastic Neutron Scattering and .... by Asynchronous In-Situ Neutron Diffraction at the Spallation Neutron Source.

46

Data Acquisition System - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Acquisition & Controls The RAD Instrument Data Acquisition and Controls Group supports SNS neutron instruments by designing, building and maintaining custom electronics and...

47

CORELLI: the Elastic Diffuse Scattering Spectrometer at SNS | ORNL Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

The Elastic Diffuse Scattering Spectrometer The Elastic Diffuse Scattering Spectrometer CORELLI The CORELLI instrument. CORELLI is a statistical chopper spectrometer with energy discrimination. It's designed and optimized to probe complex disorder in crystalline materials through diffuse scattering of single-crystal samples. The momentum transfer ranges from 0.5 to 12 Å-1, and the energy of incident neutrons ranges from 10 to 200 meV. This instrument combines the high efficiency of white-beam Laue diffraction with energy discrimination by modulating the beam with a statistical chopper. A cross-correlation method is used to reconstruct the elastic signal from the modulated data. Accurate modeling of the short-range order associated with the diffuse scattering requires measurements over large volumes of three-dimensional reciprocal space, with sufficient momentum

48

Scattering and Instrumentation Sciences | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scattering and Instrumentation Sciences Scattering and Instrumentation Sciences Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Scattering and Instrumentation Sciences Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported on the fundamental interactions of photons, neutrons, and electrons with matter to understand the atomic, electronic, and magnetic structures and excitations of materials and the relationship of these structures and excitations to materials properties and behavior.

49

A workshop on enhanced national capability for neutron scattering  

SciTech Connect

This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

50

Neutron Scattering User Program | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

through programs such as internships and postdoctoral programs. The instruments at HFIR and SNS can be used free of charge with the understanding that researchers will publish...

51

Neutron and X-Ray Scattering - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Neutron and X-Ray Scattering Neutron and X-ray Scattering Science Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in energy-related materials. We use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and thermoelectricity. Phase competition can generate or enhance such properties, but it is extremely challenging to characterize fluctuations in the competing order, whether in bulk disordered materials, or artificial heterostructures. Our goal is to utilize efficient techniques that we have been developing for measuring nanoscale phase fluctuations, both static and dynamic, to enable the rational design of new materials for energy within MSD.

52

The Extended Q-Range Small Angle Neutron Scattering ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The Extended Q-Range Small Angle Neutron Scattering Diffractometer (EQ-SANS) at the Spallation Neutron Source (SNS) is a high intensity...

53

Industrial Applications at Small Angle Neutron Scattering and ...  

Science Conference Proceedings (OSTI)

... at Small Angle Neutron Scattering and Neutron Diffraction of HANARO Reactor .... Structure/Microstructure Analysis of Faulted and Modular Materials from...

54

Application of neutron scattering to biological and hydrogen ...  

Science Conference Proceedings (OSTI)

... Application of neutron scattering to biological and hydrogen storage materials. Yun Liu, NCNR, NIST. This talk covers two ...

55

Attosecond neutron Compton scattering from protons  

E-Print Network (OSTI)

The effect of "anomalous" scattering of neutrons and electrons from protons in the electron-volt energy-transfer range is considered, and related experimental results are mentioned. A recent independent confirmation of this effect with a new data analysis procedure is presented. Due to the very short characteristic scattering time, there is no well defined separation of time scales of electronic and protonic motions. An outline of a proposed theoretical interpretation is presented, which is based on the fact that scattering protons represent \\textit{open} quantum systems, thus being subject to decoherence.

C. Aris Chatzidimitriou-Dreismann

2007-02-01T23:59:59.000Z

56

2009 International Conference on Neutron Scattering (ICNS 2009)  

SciTech Connect

The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as ?¢????would-be?¢??? neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.

Gopal Rao, PhD; Donna Gillespie

2010-08-05T23:59:59.000Z

57

Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis  

Science Conference Proceedings (OSTI)

This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

2011-10-01T23:59:59.000Z

58

Scientific opportunities with advanced facilities for neutron scattering  

SciTech Connect

The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

Lander, G.H.; Emery, V.J. (eds.)

1984-01-01T23:59:59.000Z

59

Instrument and Source Design Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Crone, RRD Director Ron Crone, RRD Director ISDD Director Ron Crone. Instrument and Source Design Division The Instrument and Source Design Division (ISDD) supports the engineering and development of scientific instruments at the High Flux Isotope Reactor and the Spallation Neutron Source. ISDD continuously develops facilities and capabilities associated with neutron science through research and development. Organization Chart A PDF version of the ISDD Organization Chart is available. Key Division Contacts Director Ron Crone Administrative Assistant Wendy Brooks HFIR Instrument Engineering Doug Selby SNS Instrument Engineering David Vandergriff Instrumentation Projects and Development Ken Herwig Project Management/Operations and Analysis Barbara Thibadeau Source Development and Engineering Analysis Phil Ferguson

60

Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.28.2011]: Neutron Scattering and Full-Spectrum Solar .28.2011]: Neutron Scattering and Full-Spectrum Solar Cells Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells January 28, 2011 - 5:11pm Addthis Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Oak Ridge National Lab and North Carolina State University scientists are helping to develop medicines that will block the spread of viruses. Using the Bio-SANS instrument at ORNL's High Flux Isotope Reactor, these researchers are studying how viruses change their structure as they move

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inelastic neutron scattering in valence fluctuation compounds  

SciTech Connect

The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected for rare-earth-like Hund's rule behavior, essentially because the orbital moment is suppressed for itinerant 5f electrons. We also found that the standard local-moment-based theory of the temperature dependence of the specific heat, susceptibility and neutron scattering fails badly for URu{sub 2}Zn{sub 20} and UCo{sub 2}Zn{sub 20}, even though the theory is phenomenally successful for the closely related rare earth compound YbFe{sub 2}Zn{sub 20}. Both these results highlight the distinction between the itineracy of the 5f's and the localization of the 4f's. It is our hope that these results are sufficiently significant as to stimulate deeper investigation of these compounds.

Jon M Lawrence

2011-02-15T23:59:59.000Z

62

International Neutron Scattering Instrumentation School (INSIS...  

NLE Websites -- All DOE Office Websites (Extended Search)

New States of Matter and their Excitations Joint Meeting 12 - 14 September, 2012 Clinch River Cabin * Oak Ridge, Tennessee, USA About the School Agenda Organizers Venue filler...

63

Topology of forward scattering of neutrons from imperfect multilayers  

SciTech Connect

Neutrons sent at grazing incidence on imperfect multilayers of polymers are scattered both out of and within the plane of reflection. In the latter geometry the scattered intensity is highly structured in two series of ridges, whose loci can be labeled in terms of the neutron momenta. Intersecting ridges show evidence of mode coupling. Similar topology is expected for x-ray scattering.

Felcher, G.P.; Goyette, R.J. (Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Anastasiadis, S.; Russell, T.P. (IBM Almaden Research Center, San Jose, California 95120 (United States)); Foster, M.; Bates, F. (Department of Chemical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States))

1994-10-01T23:59:59.000Z

64

Capabilities of the CNCS Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

in one day. A recent example is a study of the phonon spectra in PbTe, one of the leading thermoelectric materials. Using a combination of inelastic neutron scattering measurements...

65

ORNL study uses neutron scattering, supercomputing to demystify...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production This graphical representation of lignocellulosic biomass based on...

66

MR Instrument Team - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MR-Instrument Team MR-Instrument Team MR instrument team MR Team (left to right): Valeria Lauter, Lead Instrument Scientist, Primary Contact Artur Glavic, Instrument Scientist Hailemariam Ambaye, Scientific Associate Rick Goyette, Scientific Associate Lead Instrument Scientist: Dr. Valeria Lauter Valeria Lauter Beam line 4A's lead instrument scientist is Valeria Lauter. Valeria received her PhD in Experimental and Theoretical Solid State Physics from the Joint Institute for Nuclear Research in Dubna, Russia. Her previous work has been as a Research Scientist at the Technical University of Munich, Germany; Research Scientist at the University of Konstanz, Germany; Visiting Scientist at the Institute Laue-Langevin in Grenoble, France; Research Scientist at the Laboratoire de Magnetisme CNRS in Grenoble,

67

The General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR -  

NLE Websites -- All DOE Office Websites (Extended Search)

General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR Instrument scientist Ken Littrell at GP-SANS. Instrument scientist Ken Littrell at GP-SANS. The General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) instrument is optimized for providing information about structure and interactions in materials in the size range of 0.5 - 200 nm. It has a cold neutron flux on sample and capabilities comparable to those of the best SANS instruments worldwide, including a wide range of neutron wavelengths λ 5 - 30 Å, resolution Δλ ⁄ λ 9=45%, and a 1m2 area detector with 5 × 5mm2 pixel resolution with a maximum counting capability of up to 2.5 kHz. The sample-to-detector distance can be varied from 1 to 20 m, and the detector can be offset horizontally by up to 45 cm, allowing

68

Capabilities of the FNPB Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the FNPB Instrument Capabilities of the FNPB Instrument Fundamental Physics with Cold and Ultracold Neutrons Fundamental Beamline The fundamental physics beam line showing the "cold neutron" area inside the SNS Experiment Hall and the external UCN facility. For scale, the existing n+ p → d + γ apparatus is shown in the "cold beam" position, and the proposed neutron electric dipole moment apparatus is shown in the external building. Cold neutrons and ultracold neutrons (UCNs) have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics in the determination of fundamental constants and in the study of fundamental symmetry violation. In many cases, these experiments provide information not available from existing

69

XII SoNS School of Neutron Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

XII School of Neutron Scattering (SoNS) XII School of Neutron Scattering (SoNS) "Francesco Paolo Ricci" "Introduction to the theory and techniques of neutron scattering and applications to Cultural Heritage" 30 April - 9 May 2014 A Course within the International School of Solid State Physics ETTORE MAJORANA FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE, Erice (I) Application deadline: 1 st April 2014 Application is now open for the XII School of Neutron Scattering (SoNS) "Francesco Paolo Ricci": Introduction to the theory and techniques of neutron scattering and applications to Cultural Heritage. The school will be held at the ETTORE MAJORANA FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE, Erice (Sicily, I) as a specialized course within the International School of Solid State Physics (Director: Giorgio Benedek), between the 30

70

Scattering of Ultra Cold Neutrons on Nano-size Bubbles  

E-Print Network (OSTI)

Inelastic scattering of ultra cold neutrons on bubbles with the size of nanometers is considered. It is shown that neutron-bubble cross section is large and sensitive to different vibration modes of bubbles. This process could be used for study of dynamics of nano-size bubbles and for new methods of ultra cold neutron production.

Vladimir Gudkov

2006-02-07T23:59:59.000Z

71

Detectors - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Detectors › R & D 100 Award Detectors › R & D 100 Award ORNL team wins R&D 100 award for wavelength-shifting scintillator detector Neutron facilities, national security monitoring will benefit from high-accuracy detector June 2012, Written by Agatha Bardoel A team of eight scientists and technicians in the Neutron Sciences Directorate has won a prestigious R&D 100 Award from R&D Magazine for developing a highly efficient new detector system that helps take pressure off dwindling worldwide supplies of 3He as an active neutron converter. Members of the team receiving an R&D 100 Award for the wavelength-shifting scintillator detector Members of the team receiving an R&D 100 Award for the wavelength-shifting scintillator detector are shown with their invention. They are (from left)

72

2011 U.S. National School on Neutron and X-ray Scattering  

Science Conference Proceedings (OSTI)

The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

2012-01-01T23:59:59.000Z

73

Deterministic Multigroup Modeling of Thermal Effect on Neutron Scattering by Heavy Nuclides.  

E-Print Network (OSTI)

??The principal physical phenomenon underlying the computation of neutron spectra is the nuclear reaction in which neutrons lose or gain energy, i.e., the neutron scattering (more)

Ghrayeb, Shadi

2013-01-01T23:59:59.000Z

74

Neutron Scattering | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Neutron Scattering Neutron Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Neutron Scattering Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research on the fundamental interactions of neutrons with matter to achieve an understanding of the atomic, electronic, and magnetic structures and excitations of materials and their relationship to materials properties. Major emphasis is on the application of neutron scattering, spectroscopy, and imaging for materials research, primarily at

75

Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center  

DOE Green Energy (OSTI)

We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

Mocko, Michal [Los Alamos National Laboratory; Muhrer, Guenter [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Kelsey, Charles T [Los Alamos National Laboratory; Duran, Michael A [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

76

Capabilities of the WAND Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the WAND Instrument Capabilities of the WAND Instrument The HFIR HB-2C Wide Angle Neutron Diffractometer (WAND) is a dual purpose instrument that can be used as a fast coarse-resolution powder diffractometer or as a single crystal diffractometer to explore broad regions of reciprocal space. This instrument is most beneficial to the condensed matter, materials science, as well as the planetary sciences communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. Most of the recent demand for this instrument has been focused in studies of unconventional superconductors, low-dimensional magnets, multiferroics and geophysics.

77

Capabilities of the CTAX Instrument - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the CTAX Instrument Capabilities of the CTAX Instrument The US-Japan Cold Neutron Triple Axis CTAX ideal for measuring low-lying magnetic and lattice excitations in solids, and in measuring structural and magnetic order parameters in bulk materials. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. Most of the recent demand for this instrument has been focused in studies of unconventional superconductors, quantum magnets, thermoelectrics, organometallic magnets and multiferroics. Examples of typical experiments carried out at CTAX since its commissioning

78

Neutron-deuteron elastic scattering and three-nucleon force  

E-Print Network (OSTI)

The differential cross section for neutron-deuteron elastic scattering was measured at six angles over the center-of-mass angular range 65? - 1300? and incident neutron energies 140 - 240 MeV at the LANSCE/WNR facility of ...

Chtangeev, Maxim B

2005-01-01T23:59:59.000Z

79

Investigating Microscopic Heat Transport with Neutron Scattering  

Science Conference Proceedings (OSTI)

In-Situ Neutron Diffraction and Crystal Plasticity Modeling of a-Uranium In-Situ Studies of the ... Thermal Residual Stresses and Strains in Depleted Uranium.

80

Neutron Scattering Analysis of Magnetostructural Phase ...  

Science Conference Proceedings (OSTI)

Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Introduction to Small-Angle Neutron Scattering and Neutron ...  

Science Conference Proceedings (OSTI)

... where g(r) is the pair correlation function for the scattering objects and lng(r) is directly related to the potential energy function that describes the ...

2010-04-29T23:59:59.000Z

82

Forum on Inelastic Neutron Scattering (FINS 2011)  

NLE Websites -- All DOE Office Websites (Extended Search)

sessions are planned for discussions of inelastic instrumentation needs for the SNS and HFIR, sample environment equipment for the inelastic suite, enabling programmatic research...

83

Capabilities of the SNAP Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the SNAP Instrument Capabilities of the SNAP Instrument As general note, we have now moved to the MANTID software package for most of our data reduction processing. This makes the reduction of raw data a much easier and automated process for most applications. Current General Capabilities Disordered materials studies (glasses/liquids/sloppy crystals at HP): low-resolution wide Q-range mode, 0.6neutron beam intensity falls off rapidly at

84

Neutron Form Factor from Neutrino-Nucleus Coherent Elastic Scattering  

E-Print Network (OSTI)

We analyze the prospect of measuring the neutron form factor of a nucleus through the detection of neutrino-nucleus coherent elastic scattering. We predict numbers of events in a liquid noble nuclear recoil detector at a stopped pion neutrino source. We discuss the precision required to distinguish between different theoretical models for the form factor.

Philip S. Amanik; Gail C. McLaughlin

2007-07-27T23:59:59.000Z

85

Bio-SANS Instrument Team | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrument Team Instrument team Bio-SANS Team (left to right): Qiu Zhang, Student Volker Urban, Lead Instrument Scientist Sai Venkatesh Pingali, Instrument Scientist Shuo Qian,...

86

A Neutron Scattering Kernel of Solid Methane in phase II  

E-Print Network (OSTI)

A neutron scattering cross section model for solid methane was studied in the temperature ranges of 20.4$\\sim$4K. The analytical scattering kernel was adapted from Ozaki.$\\it{et al.}$\\cite{ozaki:3442}\\cite{ozaki2} to describe molecular rotation in this temperature range. This model includes a molecular translation and intramolecular vibration as well as the rotational degree of freedom in effective ways. Total scattering cross sections were calculated from the model and evaluated by comparing with the cross section measurement of Grieger\\cite{grieger:3161} and Whittemore\\cite{Wittemore} for incident neutron energy of 0.1 \\textit{meV} $\\sim$ 1\\textit{eV}. We produced frequency spectra from the model in the temperature range. The results were also compared with the Harker $&$ Brugger frequency spectrum at 22K\\cite{HARKER1967}. For broader applications, neutron scattering kernels for MCNP (Monte Carlo N Particle Transport Code) were produced at 20K and 4K from the frequency spectra using NJOY code. The scatt...

Shin, Yunchang; Liu, Chen-yu; Lavelle, Christopher M; Baxter, David V

2007-01-01T23:59:59.000Z

87

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

88

Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

School on Neutron and X-ray Scattering Oak Ridge 10-24 August 2013 John M. Carpenter ANL, ORNLSNS 18 August 2013 2 Neutron Detection How does one detect a neutron? - It is...

89

Method for improving the angular resolution of a neutron scatter camera  

DOE Patents (OSTI)

An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

2012-12-25T23:59:59.000Z

90

Neutron and Synchrotron X-Ray Scattering Studies of Superconductors  

Science Conference Proceedings (OSTI)

Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

Tranquada,J.M.

2008-09-01T23:59:59.000Z

91

Neutron Scattering Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Neutron Scattering Facilities Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports the operation of three DOE neutron scattering facilities, which are unique and effective tools for probing the structure of matter. Neutron scattering is particularly well-suited for determining the atomic positions of both light and heavy atoms in a solid and thermal fluctuations in these positions. In addition the neutron

92

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

techniques with neutron scattering at the General-Purpose SANS instrument at the ORNL High Flux Isotope Reactor. The cell mimics were vesicles (hollow spheres) made of...

93

Clifford G. Shull: A Memoir of a Pioneer in Neutron Scattering  

Science Conference Proceedings (OSTI)

Clifford G. Shull: A Memoir of a Pioneer in Neutron Scattering. ... The memoir is a history, a love story, and an allegory on how to practice science. ...

2013-05-03T23:59:59.000Z

94

Small and Intermediate-Angle Scattering Instruments for Materials ...  

Science Conference Proceedings (OSTI)

It is becoming clear that even at such low power sources, we can conduct ... Scattering Methods for Investigations on Magnetic Thin Film Nanostructures.

95

Dr. Andrey Podlesnyak | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrey Podlesnyak Andrey Podlesnyak Dr. Andrey Podlesnyak Instrument Scientist: Cold Neutron Chopper Spectrometer (CNCS), SNS Education PhD in Physics, Institute for Metal Physics, Ekaterinburg, Russia Description of Research 2008 - present Instrument Scientist, Cold Neutron Chopper Spectrometer, Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2006 - 2008 Instrument Scientist, single crystal diffractometer E-4, Hahn-Meitner-Institut, Berlin, Germany 2002 - 2006 Instrument Scientist, TOF spectrometer FOCUS, Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institute, Switzerland 2000 - 2002 Instrument Scientist, triple-axis spectrometer TASP, Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institute, Switzerland 1994 - 2000 Physicist, Institute for Metal Physics, Ekaterinburg, Russia

96

Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering  

DOE Green Energy (OSTI)

We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

1995-12-31T23:59:59.000Z

97

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Scattering Neutron Scattering Facilities at HFIR The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor building. The currently available instruments and the status of new instruments can be found on the HFIR Instrument Systems pages. Particularly prominent in the cold neutron guide hall are the two small-angle neutron scattering (SANS) instruments, each terminating in a 70-ft-long evacuated cylinder containing a large moveable neutron detector. In addition to the instruments, laboratories are equipped for users to prepare samples. Perhaps the most exciting development at HFIR is the successfully

98

Calibration of neutron-yield diagnostics in attenuating and scattering environments  

Science Conference Proceedings (OSTI)

We have performed absolute calibrations of a fusion-neutron-yield copper-activation diagnostic in environments that significantly attenuate and scatter neutrons. We have measured attenuation and scattering effects and have compared the measurements to Monte Carlo simulations using the Monte Carlo N-Particle code. We find that measurements and simulations are consistent within 10%.

Hahn, K. D.; Ruiz, C. L.; Chandler, G. A.; Leeper, R. J.; McWatters, B. R.; Smelser, R. M.; Torres, J. A. [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87111 (United States); Cooper, G. W.; Nelson, A. J. [University of New Mexico, Department of Chemical and Nuclear Engineering, Albuquerque, New Mexico 87131 (United States)

2012-10-15T23:59:59.000Z

99

The use of chopper spectrometers for cold-to-epithermal neutron scattering at IPNS  

SciTech Connect

A multi-detector chopper spectrometer enables measurements of the scattering function S(Q,E) to be made over a wide range of momentum and energy transfer (Q,E). The application of pulsed-source chopper spectrometers for inelastic measurements at thermal and epithermal energies (50 meV < E < 1000 meV) is well known. Recently at IPNS, we have extended the energy-transfer region down to about 0.5 meV with a resolution of the order of 150 {mu}eV. It is made possible by utilizing the cold-neutron incident spectrum of the 100 K methane moderator in conjunction with a dual beryllium-body rotor system. Neutron incident energies can be changed efficiently over the 4 to 1000 meV region while maintaining an undisturbed sample environment. We describe the operation of the IPNS chopper spectrometers (HRMECS and LRMECS), the instrumental resolution and the background-suppression performance. The capability of measuring inelastic features from 0.5 to 100 meV with an energy resolution of {Delta}E/E{sub 0} = 2.5% is demonstrated by experimental results of crystal-field excitation spectra of a high-Tc superconductor ErBa{sub 2}Cu{sub 3}O{sub 7}. Preliminary data of quasielastic scattering from a room-temperature molten salt AlCl{sub 3}-EMIC are presented.

Loong, C.K.; Donley, L.I.; Ostrowski, G.E.; Kleb, R.; Hammonds, J.P.; Soderholm, L.; Takahashi, S.

1993-09-01T23:59:59.000Z

100

Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde  

E-Print Network (OSTI)

The New Munich Neutron Source FRM II: Overview and Uses for Biological Studies Wolfgang Doster Technical University Munich, Physics Department E 13, D-85748 Garching, Email: wdoster@ph.tum.de Abstract. The application of neutron scattering to biological systems using the new neutron source in Munich is discussed

Glyde, Henry R.

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

Nagler, Stephen E [ORNL; Mook Jr, Herbert A [ORNL

2008-01-01T23:59:59.000Z

102

NIST CENTER FOR NEUTRON RESEARCH LAYOUT  

Science Conference Proceedings (OSTI)

... 4 NG-7 30 m SANS Small Angle Neutron Scattering instrument for microstructure measurement sponsored by NIST, the ExxonMobil Research ...

2000-02-29T23:59:59.000Z

103

NIST CENTER FOR NEUTRON RESEARCH LAYOUT  

Science Conference Proceedings (OSTI)

... 4 NG-7 30m SANS Small Angle Neutron Scattering instrument for microstructure measurement sponsored by NIST, the Exxon Research and ...

1999-06-25T23:59:59.000Z

104

Neutron Data Analysis & Visualization | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities' users require significant advances in...

105

Quantum Condensed Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

instruments used for diffraction and inelastic neutron scattering at both SNS and HFIR. The science conducted by our staff members emphasizes materials with emergent...

106

News Releases and Features | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

June 29, 2012 - Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance...

107

The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report  

Science Conference Proceedings (OSTI)

This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

Farrer, R.; Longshore, A. [comps.

1995-06-01T23:59:59.000Z

108

Neutron scattering analysis with microscopic optical model potentials  

Science Conference Proceedings (OSTI)

A review of microscopic optical model potentials used in the analysis of neutron scattering and analyzing power data below 100 MeV (5 {le}E{sub n}{le}100 MeV) is presented. The quality of the fits to the data over a wide massd ({sup 6}Li-{sup 239}Pu) and energy range is discussed. It is shown that reasonably good agreement with the data is obtained with only three parameters, {lambda}{sub V}, {lambda}{sub W}, and {lambda}{sub SO}, which show a smooth mass and energy dependence. These parameters are normalizing constants to the real (V), and imaginary (W) central potentials and the real spin-orbit (V{sub SO}) potential. 14 refs., 7 figs.

Hansen, L.F.

1991-09-03T23:59:59.000Z

109

Specifications of the SNAP Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

& Education Specifications of the SNAP Instrument Moderator Decoupled poisoned supercritical hydrogen Source to sample distance 15 m Sample to detector distance 50 cm Angular...

110

Capabilities of the PTAX Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

few years most of the demand for this instrument has been focused in studies of unconventional superconductors, quantum magnets, thermoelectrics, and multiferroics. Examples of...

111

Capabilities of the TAX Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the TAX Instrument Capabilities of the TAX Instrument The HB-3 is a high-intensity triple axis spectrometer that is ideal for measuring magnetic excitations in solids, up to 100 meV and for measuring structural and magnetic order parameters in bulk materials. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. During the last few years most of the demand for this instrument has been focused in studies of unconventional superconductors, quantum magnets, thermoelectrics, ferroelectrics and multiferroics.

112

Capabilities of the FIE-TAX Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the FIE-TAX Instrument Capabilities of the FIE-TAX Instrument The HB-1A triple axis spectrometer is an excellent instrument for measuring low-lying magnetic excitations in solids, and for measuring structural and magnetic order parameters in bulk materials as well as in nanostructured materials such as thin films and nanoparticles. In the case of thin films the use of energy analysis is key capability which enables the desired signal to be separated from the massive background due to the substrate. This instrument is most beneficial to the condensed matter and materials science communities. Due to its versatility and easy access this instrument can be used for parametric studies using a variety of ancillary sample environments to provide a complete control of thermodynamic

113

Time-of-Flight Bragg Scattering from Aligned Stacks of Lipid Bilayers using the Liquids Reflectometer at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

Time-of-flight (TOF) neutron diffraction experiments on aligned stacks of lipid bilayers using the horizontal Liquids Reflectometer at the Spallation Neutron Source are reported. Specific details are given regarding the instrumental setup, data collection and reduction, phase determination of the structure factors, and reconstruction of the one-dimensional neutron scattering length density (NSLD) profile. The validity of using TOF measurements to determine the one-dimensional NSLD profile is demonstrated by reproducing the results of two well known lipid bilayer structures. The method is then applied to show how an antimicrobial peptide affects membranes with and without cholesterol.

Pan, Jianjun [ORNL; Heberle, Frederick A [ORNL; Carmichael, Justin R [ORNL; Ankner, John Francis [ORNL; Katsaras, John [ORNL

2012-01-01T23:59:59.000Z

114

Thirteenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Spallation-Driven Cold Neutron Sources Dr. Bradley J. Micklich Senior Physicist, Physics Division physics research Want neutron wavelengths about the dimensions of interest, or neutron energies that can using an intense source of longerwavelength neutrons ­ fundamental nuclear physics (neutron halflife

115

Capabilities of the POWDER Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities of the POWDER Instrument Capabilities of the POWDER Instrument The scientific areas that may benefit from using the HB-2A instrument are condensed matter physics, chemistry, geology, and material science. Due to its versatility, this instrument can be employed for a large variety of experiments, but it is particularly adapted for determining crystal structures with relatively large unit cells (dmax ≈ 28 Å), as well as complex magnetic structures. Furthermore, studies of phase transitions, thermal expansion, quantitative analysis, and ab-initio structure solution from powder data can be undertaken. A full range of ancillary sample environments can be used to provide a complete control of thermodynamic variables such as temperature, magnetic field, and pressure. The following examples highlight some of the basic features and

116

Specifications of the NOMAD Instrument | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Specifications of the NOMAD Instrument Beam line 1B Moderator decoupled poisoned supercritical hydrogen Moderator-to-sample distance 19.5 m Sample-to-detector distance 0.5 - 3 m...

117

HFIR Instrument System Beam Lines | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Clicking anywhere else on the image will open a full-size, printable PDF file. HFIR Instrument Layout HB-1A Ames Lab Triple-Axis Spectrometer CG-2 SANS CG-3 BioSANS CG-4C...

118

Applied Neutron Scattering in Engineering and Materials Science ...  

Science Conference Proceedings (OSTI)

Neutron Diffraction Studies of Residual Stresses around Gouges and Gouged Dents in Pipelines Neutron Diffraction Study and EVPSC Modeling of the...

119

Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions  

SciTech Connect

We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45 cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

2009-10-25T23:59:59.000Z

120

Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility  

E-Print Network (OSTI)

Neutron spectrum and scattered neutrons caused distortions are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-II in Technische Universit\\"at M\\"unchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by neutron spectrum, as well as the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve images qualities. Good analysis results prove the sounded effects of above two corrections.

Shu-Quan, Liu; Hang, Li; Yu-Bin, Zou; Yuan-Rong, Lu; Zhi-Yu, Guo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle  

SciTech Connect

This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

Hyer, D.K.; DiStravolo, M.A. (comps.)

1990-10-01T23:59:59.000Z

122

New detector array improves neutron count capability at HFIR...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ron Maples. Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance...

123

A humidity temperature test on the HLNC (high-level neutron coincidence counter) instrument  

SciTech Connect

This paper presents the findings of a laboratory study made to determine the effects of unusual climatic conditions on high-level neutron coincidence counters (HLNCs). The capability of the instrument, when undesirable temperatures and/or humidities are present, the change in count rate as temperature and humidity increase, and the extent of humidity/temperature interaction are examined.

Goldman, A.; Augustson, R.; Karlin, E.W.

1987-07-01T23:59:59.000Z

124

IMPROVED TECHNIQUE OF HYDROGEN CONTENT ANALYSIS BY SLOW NEUTRON SCATTERING  

SciTech Connect

A slow-neutron-transmission method fro dertermining the hydrogen content of fluorcarbons is described (G.Y.).

Rainwater, L.J.; Havens, W.W. Jr.

1945-02-28T23:59:59.000Z

125

Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering  

DOE R&D Accomplishments (OSTI)

A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

Rainwater, L. J.; Havens, W. W. Jr.

1945-02-28T23:59:59.000Z

126

Fourteenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

either nuclear physics parameters such as the effective delayed neutron fraction, or the so- called several new features in the physics of the ADS that require further development of the theory of neutron / q 3.784= #12;Neutron Fluctuations in Reactors R111 The physical reason for the above

Pennycook, Steve

127

National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Cooling of isolated neutron stars as a probe of superdense matter physics Alexander Kaminker physics Alexander Kaminker 1. Introduction Microscopic theories of superdense matter in neutron star cores #12;Cooling of isolated neutron stars as a probe of superdense matter physics Alexander Kaminker

128

Neutron Scattering Society of America Purpose and New Initiatives  

E-Print Network (OSTI)

's personal copy Dosimetry and spectrometry at accelerator based neutron source for boron neutron capture Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia Federation a r t i c l e i n f Keywords: Epithermal neutrons Accelerator Time-of-flight technique a b s t r a c t An innovative

129

Neutron scattering study of MnSi proving no exchange hole  

SciTech Connect

Neutron scattering experiments have been performed in MnSi below T/sub c/ with the double-axis powder scattering technique using unpolarized neutrons, and also with the polarization analysis technique. The magnetic scattering intensity has not shown any anomaly around q = 0.5 A/sup -1/, in contrast to the previous results of Ziebeck et al. who found a large intensity peak at this momentum transfer. Thus the hypothesis of Ziebeck et al. of observing an Exchange Hole is excluded.

Uemura, Y.J.; Majkrzak, C.F.; Shirane, G.; Ishikawa, Y.

1983-01-01T23:59:59.000Z

130

Neutron Scattering Studies of Fundamental Processes in Earth Materials, Final Report  

DOE Green Energy (OSTI)

The aim of this work was to use neutron scattering techniques to explore the dynamics and structure of water in rock samples. The dynamics of water in rock at low (residual) saturation are directly related to the transport properties of fluids within the host rock. The structure of water in rock may be related to the elastic behavior of the rock, which in many cases is nonlinear and hysteretic. Neutron scattering techniques allow us to study water in intact rock samples at both the molecular and microstructural scales. Our samples were Berea sandstone, Calico Hills and Prow Pass tuffs from Yucca Mountain, NV, and pure samples of the tuff constituents, specifically mordenite and clinoptilolite. We chose Berea sandstone because its macroscopic elastic behavior is known to be highly unusual, and the microscopic mechanisms producing this behavior are not understood. We chose Yucca Mountain tuff, because the fluid transport properties of the geologic structure at Yucca Mountain, Nevada could be relevant to the performance of a high level nuclear waste repository at that site. Neutron scattering methods have a number of properties that are extremely useful for the study of earth materials. In contrast to X-rays, neutrons have very low absorption cross-sections for most elements so that entire bulk samples of considerable size can be 'illuminated' by the neutron beam. Similarly, samples that are optically opaque can be readily investigated by inelastic neutron scattering techniques. Neutrons are equally sensitive to light atoms as to heavy atoms, and can, for example, readily distinguish between Al and Si, neighboring atoms in the periodic table that are difficult to tell apart by X-ray diffraction. Finally, neutrons are particularly sensitive to hydrogen and thus can be used to study the motions, both vibrational and diffusive, of H-containing molecules in rocks, most notably of course, water. Our studies were primarily studies of guest molecules (in our case, water) in a host material (rock). We used three neutron scattering techniques: quasielastic neutron scattering (QNS), inelastic neutron scattering (INS), and neutron powder diffraction (NPD). We used QNS to measure the translational and rotational diffusional motion of water in rock; INS vibrational spectra allowed us to determine the nature of residual water in a sample (disassociated, chemisorbed, or physisorbed); and NPD measurements may allow us to determine the locations of residual water molecules (and the associated dynamic disorder), and thereby understand the binding of water molecules in our samples.

McCall, K. R.

2007-06-11T23:59:59.000Z

131

A High Intensity Neutron Scattering Techniques for Hydrogen ...  

Science Conference Proceedings (OSTI)

Nucleation and Growth Observed by Ultrafast SAXS and WAXS O10: Effect of Nickel on the Neutron Irradiation Sensitivity of Nuclear Reactor Pressure Vessel...

132

Doing Neutron Scattering Science with the Multi-Axis Crystal ...  

Science Conference Proceedings (OSTI)

... at the NIST Center for Neutron Research began commissioning operation on ... and Internal Stress Analysis after High Temperature Corrosion in Power Plants.

133

Microsoft PowerPoint - Herwig-QuasielasticNeutronScattering.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ken Herwig Ken Herwig Deputy Director Neutron Facilities Development Division p Oak Ridge National Laboratory J 14 2011 June 14, 2011 OUTLINE * Background - the incoherent...

134

The Neutron Scattering Society www.neutronscattering.org  

E-Print Network (OSTI)

Abstract submitted to the XXXIst International Conference on High Energy Physics 24--31 July 2002, Amsterdam, The Netherlands Abstract: 000 Parallel Sessions: 0,0 Leading neutron production in e + p collisions at HERA ZEUS Collaboration Abstract The production of neutrons carrying at least 20% of the proton

Chen, Sow-Hsin

135

Educational Programs - National School on Neutron & X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

and national laboratories, will include basic tutorials on the principles of scattering theory and the characteristics of the sources, as well as seminars on the application of...

136

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

137

EQ-SANS: the Extended Q-Range Small-Angle Neutron Scattering Diffractometer  

NLE Websites -- All DOE Office Websites (Extended Search)

The Extended Q-Range Small-Angle Neutron Scattering Diffractometer at SNS The Extended Q-Range Small-Angle Neutron Scattering Diffractometer at SNS Extended Q-Range Small Angle Diffractometer EQ-SANS detector array The EQ-SANS Diffractometer is designed to study non-crystalline, nano-sized materials in solid, liquid, or gas forms such as polymers, micelles, proteins, and other large biological molecular complexes in solution. It offers high neutron flux, high wavelength resolution (precision), and wide Q-coverage. EQSANS is located on beam line 6, viewing the top-downstream, coupled supercritical hydrogen moderator. It has a curved multichannel beam bender to avoid the direct line of sight of the moderator, which cleans out the background from the prompt neutron pulse quite effectively. The cutoff wavelength of the optics is ~1.5 Å. Above this minimum wavelength, the

138

Neutron scattering characterization of pure and rare-earth modified zirconia catalysis.  

SciTech Connect

The combined application of neutron powder diffraction, small angle neutron scattering and neutron inelastic scattering has led to improved understanding of the crystal phases, defect structure, microstructure and hydroxyl/water dynamics in pure and lanthanide-modified zirconia catalysts. Powder diffraction experiments quantified the degree of stabilization and provided evidence for static, oxygen vacancy-induced atomic displacements in stabilized zirconia. Quantitative assessment of Bragg peak breadths led to measurements of ''grain size'', representing coherency length of long-range ordered atomic arrangements (crystals). Small angle neutron scattering provided a separate measurement of ''grain size'', representing the average size of the primary particles in the aggregates, and the evolution of porosity (micro- versus meso-) and surface roughness caused by RE modification and heat treatment. Finally, the dynamics of hydrogen atoms associated with surface hydroxyls and adsorbed water was investigated by neutron-inelastic scattering, revealing changes in frequency and band breadth of O-H stretch, H-O-H bend, and librational motion of water molecules.

Loong, C.-K.; Ozawa, M.; Richardson, J. W., Jr.; Suzuki, S.; Thiyagarajan, P.

1997-11-18T23:59:59.000Z

139

MCNP benchmarking of an inelastic neutron scattering system for...  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon signal depends on the transport conditions of neutrons and gamma rays in the soil matrix, which are affected by the soil moisture and bulk density. While variations in the...

140

Neutron scattering workshop promotes high-pressure research ...  

NLE Websites -- All DOE Office Websites (Extended Search)

long-term goals in these areas closer to reality, Oak Ridge National Laboratory (ORNL), home of the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor, is hosting...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering  

DOE Green Energy (OSTI)

The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

2002-11-01T23:59:59.000Z

142

Is there an Ay problem in low-energy neutron-proton scattering?  

E-Print Network (OSTI)

We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low-energy data, conclude that there is no Ay problem in low-energy np scattering.

Gross, Franz

2008-01-01T23:59:59.000Z

143

Is there an Ay problem in low-energy neutron-proton scattering?  

E-Print Network (OSTI)

We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low-energy data, conclude that there is no Ay problem in low-energy np scattering.

Franz Gross; Alfred Stadler

2008-08-21T23:59:59.000Z

144

Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper  

E-Print Network (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

D. Akimov; A. Bernstein; P. Barbeau; P. Barton; A. Bolozdynya; B. Cabrera-Palmer; F. Cavanna; V. Cianciolo; J. Collar; R. J. Cooper; D. Dean; Y. Efremenko; A. Etenko; N. Fields; M. Foxe; E. Figueroa-Feliciano; N. Fomin; F. Gallmeier; I. Garishvili; M. Gerling; M. Green; G. Greene; A. Hatzikoutelis; R. Henning; R. Hix; D. Hogan; D. Hornback; I. Jovanovic; T. Hossbach; E. Iverson; S. R. Klein; A. Khromov; J. Link; W. Louis; W. Lu; C. Mauger; P. Marleau; D. Markoff; R. D. Martin; P. Mueller; J. Newby; J. Orrell; C. O'Shaughnessy; S. Pentilla; K. Patton; A. W. Poon; D. Radford; D. Reyna; H. Ray; K. Scholberg; V. Sosnovtsev; R. Tayloe; K. Vetter; C. Virtue; J. Wilkerson; J. Yoo; C. H. Yu

2013-10-01T23:59:59.000Z

145

Use of a high repetition rate neutron generator for in vivo body composition measurements via neutron inelastic scattering  

DOE Green Energy (OSTI)

A small D-T neutron generator with a high pulse rate is used for the in vivo measurement of body carbon, oxygen and hydrogen. The core of the neutron generator is a 13 cm-long Zetatron tube pulsed at a rate of 10 kHz delivering 10/sup 3/ to 10/sup 4/ neutrons per pulse. A target-current feedback system regulates the source of the accelerator to assure constant neutron output. Carbon is measured by detecting the 4.44 MeV ..gamma..-rays from inelastic scattering. The short half-life of the 4.44 MeV state of carbon requires detection of the ..gamma..-rays during the 10 ..mu..s neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurements because of their low duty-cycle (high neutron output during the pulse). In vivo measurements were performed with normal volunteers using a scanning bed facility for a dose less than 25 mrem. This technique offers medical as well as general bulk analysis applications. 8 refs., 5 figs.

Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Weinlein, J.H.

1986-01-01T23:59:59.000Z

146

Neutron Data Analysis and Visualization Division - ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

develops software and hardware for the reduction and analysis of data taken on SNS and HFIR neutron scattering instruments. We work closely with the SNS and HFIR Data Acquisition...

147

Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother  

Science Conference Proceedings (OSTI)

Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando[reg] phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10 000 children.

Mesoloras, Geraldine; Sandison, George A.; Stewart, Robert D.; Farr, Jonathan B.; Hsi, Wen C. [School of Health Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Midwest Proton Radiotherapy Institute (MPRI), Bloomington, Indiana 47408 (United States)

2006-07-15T23:59:59.000Z

148

Small-Angle Neutron Scattering Studies of a-Si:H and a-Si:D  

DOE Green Energy (OSTI)

The heterogeneity of hydrogen and deuterium on the nanometer scale has been probed by samll-angle neutron scattering (SANS) from a-Si:H and a-Si:D films. Films were depsoited by two techniques, plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) using conditions that yield high quality films and devices.

Williamson, D. L.; Marr, D. W. M.; Nelson, B. P.; Iwaniczko, E.; Yang, J.; Yan, B.; Guha, S.

2000-01-01T23:59:59.000Z

149

The Los Alamos Neutron Scattering Center data acquisition system  

Science Conference Proceedings (OSTI)

The FASTBUS subsystem of the LANSCE data acquisition system consists of a single FASTBUS crate segment with four custom modules and a QPI interface for the VAX. Since experiments at the LANSCE facility always include a time-of-flight parameter for the detected neutron and may optionally include additional position parameters characterizing the event, a time stamp is generated for each event by the Programmable Master Clock (PMC) module. The time and any position information are latched into the Time-Of-Flight buffer (TOF) module. After all events associated with a single neutron burst have been captured in a frame buffer internal to the TOF module, each event is analyzed by the MAPPER module and reduced to a histogram address to increment in the BULKSTORE module. Software access to the histogram is provided through the QPI interface.

Nelson, R.O.; Cort, G.; Gjovig, A.; Goldstone, J.A.; McMillan, D.E.; Ross, J.; Seal, J.; Machen, D.R.

1987-05-20T23:59:59.000Z

150

Collocation method for the solution of the neutron transport equation with both symmetric and asymmetric scattering  

SciTech Connect

A collocation method is developed for the solution of the one-dimensional neutron transport equation in slab geometry with both symmetric and polarly asymmetric scattering. For the symmetric scattering case, it is found that the collocation method offers a combination of some of the best characteristics of the finite-element and discrete-ordinates methods. For the asymmetric scattering case, it is found that the computational cost of cross-section data processing under the collocation approach can be significantly less than that associated with the discrete-ordinates approach. A general diffusion equation treating both symmetric and asymmetric scattering is developed and used in a synthetic acceleration algorithm to accelerate the iterative convergence of collocation solutions. It is shown that a certain type of asymmetric scattering can radically alter the asymptotic behavior of the transport solution and is mathematically equivalent within the diffusion approximation to particle transport under the influence of an electric field. The method is easily extended to other geometries and higher dimensions. Applications exist in the areas of neutron transport with highly anisotropic scattering (such as that associated with hydrogenous media), charged-particle transport, and particle transport in controlled-fusion plasmas. 23 figures, 6 tables.

Morel, J.E.

1981-01-01T23:59:59.000Z

151

Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Print Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray and neutron diffraction. From advanced ceramics to catalysts, from semiconductor technology to the frontiers of medicine, and from new magnetic materials and devices to framework compounds used to sequester radioactive waste, crystallography using hard x-ray diffraction techniques at synchrotron radiation facilities plays a crucial role in our ability to understand and control the world in which we live.

152

Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Print Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray and neutron diffraction. From advanced ceramics to catalysts, from semiconductor technology to the frontiers of medicine, and from new magnetic materials and devices to framework compounds used to sequester radioactive waste, crystallography using hard x-ray diffraction techniques at synchrotron radiation facilities plays a crucial role in our ability to understand and control the world in which we live.

153

The LANSCE (Los Alamos Neutron Scattering Center) target system  

DOE Green Energy (OSTI)

During the summer of 1985, we replaced the WNR T-shaped target/moderator scheme with the LANSCE split-target/flux-trap-moderator design. The intent of this 'LANSCE upgrade' was to increase (to 12) the number of neutron beam lines serviced simultaneously, and to enhance the target area shielding and target system to accept 200 ..mu..A of 800-MeV protons. The four LANSCE moderators consist of three (chilled) water moderators, and a liquid hydrogen (20 K) moderator. The LANSCE target is machinable tungsten.

Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.; Whitaker, E.R.; Bridge, A.; Hughes, K.J.

1986-09-22T23:59:59.000Z

154

Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009  

SciTech Connect

The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

155

Kinetic energy of hydrogen in. beta. -V sub 2 H studied by neutron Compton scattering  

DOE Green Energy (OSTI)

Hydrogen dissolves in nearly all metals in large quantities, occupying interstitial sites which are energetic minima of the hydrogen potential. Experimentally, this potential can be determined by neutron vibrational spectroscopy (NVS) and, recently, by neutron Compton scattering (NCS) i.e. either by a measurement of the excitation energies of the localized hydrogen vibrations or by a measurement of the hydrogen momentum distribution. In this brief communication we report on what we believe is the first NCS experiment on a metal hydride. For the system to be investigated we chose {beta}-V{sub 2}H, an ordered hydride phase with hydrogen on pseudotetragonal octahedral sites. 3 figs., 7 refs.

Hempelmann, R.; Richter, D. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Festkoerperforschung); Price, D.L. (Argonne National Lab., IL (USA))

1990-08-01T23:59:59.000Z

156

Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.  

Science Conference Proceedings (OSTI)

Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.

McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

2010-11-01T23:59:59.000Z

157

Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized [sup 3]He  

SciTech Connect

We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized [sup 3]He target. The neutron magnetic form factor [ital G][sup [ital n

Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L. (California Institute of Technology, Pasadena, California 91125 (United States)); Jones, C.E. (Argonne National Laboratory, Argonne, Illinois 60439 (United States)); DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P. (Bates Linear Accelerator Center, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Masschusetts 02139 (United States)); Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C. (Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)); Lorenzon, W. (TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada))

1994-08-01T23:59:59.000Z

158

Dynamic behavior of hydration water in calcium-silicate-hydrate gel: A quasielastic neutron scattering spectroscopy investigation  

E-Print Network (OSTI)

The translational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel was studied by quasielastic neutron scattering spectroscopy in the temperature range from 280 to 230 K. The stretch exponent ...

Li, Hua

159

Instruments  

Science Conference Proceedings (OSTI)

Instruments. A, B, C, D, E, F, G, H. 1, Time (s), T (deg C), Rel Humidity (%), Ion chamber 1 (volts), Ion chamber 2 (volts), Mass conc. ...

2012-01-10T23:59:59.000Z

160

Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007  

SciTech Connect

To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

2007-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Neutron scattering from elemental indium, the optical model, and the bound-state potential  

Science Conference Proceedings (OSTI)

Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))

1990-06-01T23:59:59.000Z

162

Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering  

SciTech Connect

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD{sub 4}, in four bituminous coals in the range of pore sizes between {approx}10 {angstrom} and {approx}5 {micro}m. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD{sub 4}, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD{sub 4} varied from {approx}13 to {approx}36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO{sub 2} and CD{sub 4} were conducted as a function of the pressure in the range of 1-400 bar. The neutron scattering intensity from small pores with radii less than 35 {angstrom} in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO{sub 2} and supercritical methane in small pores.

He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Sakurovs, Richard [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

163

ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Neutron Science Future: Integrating Neutron Scattering Across the Laboratory Greg Smith, HFIR Center for Neutron Scattering Upgrade Status and Scientific Opportunities...

164

Data Analysis & Visualization Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

develops software and hardware for the reduction and analysis of data taken on SNS and HFIR neutron scattering instruments. We work closely with the SNS and HFIR Data Acquisition...

165

ORNL neutron facilities deliver neutrons  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) resumed full power operations on May 16, 2007. There were three experiment cycles of 23 to 25 days in FY2007 and another six are proposed for FY2008 beginning in November 2007. During FY 2007, the High Flux Isotope Reactor delivered 1178 operating hours to users. Commissioning of two SANS instruments is under way and these instruments will join the user program in 2008. The Neutron Scattering Science Advisory Committee endorsed language encouraging development of the science case for two instruments proposed for HFIR.

Ekkebus, Allen E [ORNL

2008-01-01T23:59:59.000Z

166

Instrument and method for focusing x rays, gamma rays, and neutrons  

DOE Patents (OSTI)

A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

Smither, R.K.

1982-03-25T23:59:59.000Z

167

Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Instruments Instruments Available to Users CISA 5500XL SOLiD Sequencers Electron Microscope: Dual FIB/SEM (FEI Helios) Electron Microscope: Transmission, CRYO 2005 Flow Cytometer: Influx Laser Capture Microdissection Mammalian Cell Culture Microbial Bioreactors Microscope: Confocal, Multi-Photon/FLIM Integrated Microscope: Fluorescence, Confocal, Real-Time Microscope: Fluorescence, Single-Molecule Microscope: Fluorescence, Single-Molecule / Patch Clamp Microscope: Fluorescence, Super Resolution STORM Microscope: Helium Ion Microscope: Scanning Probe - AFM Compound DepoSItIon AnD MICrofAbrICAtIon Deposition: Hybrid Thin Film Deposition System Deposition: Molecular Beam Epitaxy #1 Deposition: Pulsed Laser Deposition System Electron Microscope: Dual FIB/SEM (FEI

168

Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane  

Science Conference Proceedings (OSTI)

Neutrons scattering techniques are ideally suited to directly probe H in materials due to the large incoherent scattering cross-section of hydrogen atom, and have been invaluable in providing direct insight into the local fluctuations and large amplitude motions in AB. Dihydrogen bonding may have a significant affect on materials to be used to store hydrogen for fuel-cell powered applications. We have noticed a trend of low temperature release of H2 in materials composed of hydridic and protonic hydrogen. This phenomenon has caught our attention and motivated our interest to gain more insight into dihydrogen bonding interactions in AB. We present results from a thorough Quasielastic Neutron Scattering (QENS) investigation of diffusive hydrogen motion in NH311BH3 and ND311BH3 to obtain (1) a direct measure of the rotational energy barriers the protonated species and (2) a confirmation of the 3-site jump model for rotational motion. The amplitude of the energy barrier of rotation of BH3 and NH3 determined by QENS are compared to those determined for BD3 and ND3 determined by 2H NMR studies.

Hess, Nancy J.; Hartman, Michael R.; Brown, Craig; Mamontov, Eugene; Karkamkar, Abhijeet J.; Heldebrant, David J.; Daemen, Luke L.; Autrey, Thomas

2008-06-27T23:59:59.000Z

169

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory  

SciTech Connect

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

Malek Mazouz

2006-12-08T23:59:59.000Z

170

Synthesis and characterization of nanophase zirconia : reverse micelle method and neutron scattering study.  

DOE Green Energy (OSTI)

Zirconia is an important transition-metal oxide for catalytic applications. It has been widely used in automotive exhaust treatment, methanol synthesis, isomerization, alkylation, etc. [1]. Nanophase materials have unique physiochemical properties such as quantum size effects, high surface area, uniform morphology, narrow size distribution, and improvement of sintering rates[2]. Microemulsion method provides the means for controlling the microenvironment under which specific chemical reactions may occur in favoring the formation of homogeneous, nanometer-size particles. In this paper, we report the synthesis of nanophase zirconia and the characterization of the microemulsions as well as the powders by small- and wide-angle neutron scattering techniques.

Li, X.

1998-11-23T23:59:59.000Z

171

Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS  

Science Conference Proceedings (OSTI)

This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH{sub 3}) and deuterons (ND{sub 3}) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

Silvia Niccolai

2012-04-01T23:59:59.000Z

172

Use of Small Angle Neutron Scattering to Study Various Properties of Wool and Mohair Fibres  

SciTech Connect

To maintain a competitive edge in the wool and mohair industry, a detailed knowledge and understanding of the properties of wool fibres is essential. Standard techniques are used to determine fibre diameter, length and strength; however, properties such as hydroscopicity, lustre and changes in fibre structure following chemical or mechanical treatment are not so well understood. The unique capabilities of small angle neutron scattering to study changes in the supermolecular structure of wool fibres, particularly at the level of the microfibril-matrix complex, have been used to provide previously unknown features of the fibres. The results of these studies are presented.

Franklyn, C. B. [Radiation Science Department, Necsa, PO Box 582, Pretoria 0001 (South Africa); Toeroek, Gy. [Research Institute for Solid State Physics and Optics, H-1525 Budapest, POB 49 (Hungary)

2011-12-13T23:59:59.000Z

173

Consilience: Radiocarbon, Instrumental Neutron Activation Analysis, and Litigation in the Ancestral Caddo Region  

E-Print Network (OSTI)

Through the creation and analysis of databases for radiocarbon, instrumental neutron activation analysis (INAA), and law, macro-level trends are exposed that form the framework of a broader research program aimed at advancing ideas of craft specialization and archaeological theory in the ancestral Caddo region of Southwest Arkansas, Northwest Louisiana, Northeast Texas, and Southeast Oklahoma. The findings of this investigation illustrate the research potential that remains buried within the context of cultural resource management (CRM) reports and legal databases (Westlaw and LexisNexis) that is awaiting consumption within regional research designs aimed at exploring the nuances and trends that appear through synthetic research. While more canand shouldbe done to exploit these resources, this endeavor represents the first logical step toward a more general comprehension of Woodland and Caddo occupations in the region. As a testament to those projects that generated these data, the findings herein are representative of decades of work by numerous academic institutions, archaeological firms, undergraduate as well as graduate students, and avocational archaeologists alike; all of which have and continue to contribute to a more synthetic and dynamic understanding of the things, peoples, and cultures that lie underfoot.

Selden, Robert Zachary

2013-08-01T23:59:59.000Z

174

New thermal neutron scattering files for ENDF/B-VI release 2  

SciTech Connect

At thermal neutron energies, the binding of the scattering nucleus in a solid, liquid, or gas affects the cross section and the distribution of secondary neutrons. These effects are described in the thermal sub-library of Version VI of the Evaluated Nuclear Data Files (ENDF/B-VI) using the File 7 format. In the original release of the ENDF/B-VI library, the data in File 7 were obtained by converting the thermal scattering evaluations of ENDF/B-III to the ENDF-6 format. These original evaluations were prepared at General Atomics (GA) in the late sixties, and they suffer from accuracy limitations imposed by the computers of the day. This report describes new evaluations for six of the thermal moderator materials and six new cold moderator materials. The calculations were made with the LEAPR module of NJOY, which uses methods based on the British code LEAP, together with the original GA physics models, to obtain new ENDF files that are accurate over a wider range of energy and momentum transfer than the existing files. The new materials are H in H{sub 2}O, Be metal, Be in BeO, C in graphite, H in ZrH, Zr in ZrH, liquid ortho-hydrogen, liquid para-hydrogen, liquid ortho-deuterium, liquid para-deuterium liquid methane, and solid methane.

MacFarlane, R.E.

1994-03-01T23:59:59.000Z

175

Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs  

Science Conference Proceedings (OSTI)

The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

Ayman Hawari

2008-06-20T23:59:59.000Z

176

Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR  

Science Conference Proceedings (OSTI)

Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

2012-01-01T23:59:59.000Z

177

SNS | Spallation Neutron Source | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS SNS Instruments Working with SNS Contact Us User Program Manager Laura Morris Edwards 865.574.2966 Spallation Neutron Source Home | User Facilities | SNS SNS | Spallation Neutron Source SHARE SNS is an accelerator-based neutron source in Oak Ridge, Tennessee, USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located on Chestnut Ridge and is part of Oak Ridge National Laboratory. Although most people don't know it, neutron scattering research has a lot to do with our everyday lives. For example, things like medicine, food, electronics, and cars and airplanes have all been improved by neutron scattering research. Neutron research also helps scientists improve materials used in a

178

FUNDAMENTAL STUDIES OF CO2-COAL INTERACTIONS USING NEUTRON SCATTERING AT CONDITIONS RELEVANT TO SUBSURFACE CARBON SEQUESTRATION  

E-Print Network (OSTI)

FUNDAMENTAL STUDIES OF CO2-COAL INTERACTIONS USING NEUTRON SCATTERING AT CONDITIONS RELEVANT sites CARBON CAPTURE AND STORAGE IN UNMINABLE COAL SEAMS IS IMPORTANT COMPONENT OF A PORTFOLIO OF CO2 AND SORPTION CAPACITY FOR CO2 IN DIFFERENT COAL SEAMS NEEDS: ACHIEVE FUNDAMENTAL UNDERSTANDING OF FLUID

179

Neutron Scattering Study of Quantum Phase Transitions inIntegral Spin Chains.  

SciTech Connect

Quite a few low-dimensional magnets are quantum-disordered 'spin liquids' with a characteristic gap in the magnetic excitation spectrum. Among these are antiferromagnetic chains of integer quantum spins. Their generic feature are long-lived massive (gapped) excitations (magnons) that are subject to Zeeman splitting in external magnetic fields. The gap in one of the magnon branches decreases with field, driving a soft-mode quantum phase transition. The system then enters a qualitatively new high-field phase. The actual properties at high fields, particularly the spin dynamics, critically depend on the system under consideration. Recent neutron scattering studies of organometallic polymer crystals NDMAP (Haldane spin chains with anisotropy) and NTENP (dimerized S = 1 chains) revealed rich and unique physics.

Zheludev, Andrey I [ORNL

2006-01-01T23:59:59.000Z

180

Small angle neutron scattering analysis of novel carbons for lithium secondary batteries.  

DOE Green Energy (OSTI)

Small angle neutron scattering analyses of carbonaceous materials used as anodes in lithium ion cells have been performed. The carbons have been synthesized using pillared clays (PILCs) as inorganic templates. Pillared clays are layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props. The calcined PILC was loaded with five different organic precursors and heated at 700 C under nitrogen. When the inorganic pillars were removed by acid treatment, carbon sheets are produced with holes. The fitting of the data in the high q region suggested that the carbon sheets have voids with radii ranging from 4 to 8 {angstrom}. Similar radii were obtained for the PILC and PILC/organic precursor, which suggests that the carbon was well distributed in the clay prior to pyrolysis.

Sandi, G.; Thiyagarajan, P.; Winans, R.; Carrado, K.

1998-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Instruments and Methods in Physics Research A 566 (2006) 598608 The number distribution of neutrons and gamma photons generated in a  

E-Print Network (OSTI)

that are based on nuclear physics constants (fission neutron and gamma photon multi- plicities), weighted by nonNuclear Instruments and Methods in Physics Research A 566 (2006) 598­608 The number distribution of neutrons and gamma photons generated in a multiplying sample Andreas Enqvista,?, Imre Pa´ zsita , Sara

Pázsit, Imre

182

In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion  

SciTech Connect

There is a well-documented need for new in situ technologies for elemental analysis of soil, particularly for carbon (C), that overcome the limitations of the currently established chemical method by dry combustion (DC). In this work, we evaluated the concordance between the new INS (inelastic neutron scattering) technology and the DC method. The comparisons were carried out in the high C content (30-40%) organic soils of Willard, Ohio (4 sites), in natural forest in Willard, Ohio (1 site), and in a watershed pasture, with an {approx} 10{sup o} slope, in Coshocton, Ohio (5 sites). In addition to these stationary measurements, the organic soil and the pasture were continuously scanned with the inelastic neutron scattering (INS) system to obtain the transects mean C value. Both types of measurements, INS and DC, registered a decline in the surface density of C along transects in the watershed and in the organic soil. Similarly, both recorded a drop in C in the organic soil of about 0.16%. In the pastureland, declines in C levels of 0.08% and 0.10% were observed, respectively, by DC and INS. Combining the results from the three sites yielded a very satisfactory correlation between the INS- and DC-responses, with a regression coefficient, r{sup 2}, value of about 0.99. This suggests the possibility of establishing a universal regression line for various soil types. In addition, we demonstrated the ability of INS to measure the mean value over transect. In organic soil the mean value of an INS scan agreed, {approx} 0.5%, with the mean values of the DC analysis, whereas large discrepancy between these two was recorded in the pastureland. Overall, the various trends observed in C measurements by INS concurred with those determined by the DC method, so enhancing the confidence in the new INS technology.

Wielopolski, L.; Mitra, S.; Chatterjee, A.; Lal, R.

2011-01-01T23:59:59.000Z

183

Neutron Physics Group  

Science Conference Proceedings (OSTI)

... spectrum and fluencies is essential for several ... Neutron Interferometer and Optics Facility performed a ... other neutron scattering facilities depends on ...

2011-10-24T23:59:59.000Z

184

CG-1: The Instrument Development Beam Line at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrument Development Beam Line at HFIR Four instrument development beam lines are in varying stages of development or completion at the Cold Guide 1 (CG-1) position at HFIR. CG1...

185

The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report  

Science Conference Proceedings (OSTI)

This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

DiStravolo, M.A. [comp.

1993-09-01T23:59:59.000Z

186

Neutron total and scattering cross sections of /sup 6/Li in the few MeV region  

Science Conference Proceedings (OSTI)

Neutron total cross sections of /sup 6/Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;..cap alpha..)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file.

Smith, A.; Guenther, P.; Whalen, J.

1980-02-01T23:59:59.000Z

187

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

DOE Green Energy (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

188

A Search for non-Newtonian force in a precision measurement of the scattering of slow neutrons in Xenon gas  

E-Print Network (OSTI)

An experimental search for non-newtonian, gravity-like force in a precision measurement of the scattering of slow neutrons in Xenon gas is proposed. A preliminary experiment with small statistics of 25 hours irradiation time was performed and the observed scattering distribution is consistent with the expectation with no additional forces. A 95% CL limit on the coupling strength for a hypothetical force of 1 nm interaction range was evaluated to be 2*10^-15. The expected sensitivity for a planned high statistics runs is discussed.

Yoshio Kamiya; Misato Tani; Sachio Komamiya; Guinyun Kim; Kyungsuk Kim

2013-09-13T23:59:59.000Z

189

SINGLE CRYSTAL NEUTRON DIFFRACTION.  

SciTech Connect

Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

KOETZLE,T.F.

2001-03-13T23:59:59.000Z

190

Scattering  

Science Conference Proceedings (OSTI)

Most computer-generated imagery represents scenes with clear atmospheres, neglecting light scattering effects. But scattering is a fundamental aspect of light transport in a wide range of applications, whether one is simulating it or interpreting it, ...

Diego Gutierrez; Henrik Wann Jensen; Wojciech Jarosz; Craig Donner

2009-12-01T23:59:59.000Z

191

Scattering  

Science Conference Proceedings (OSTI)

Most of current computer-generated imagery represents scenes with clear atmospheres, neglecting light scattering effects, and most computer-vision systems have not enjoyed success when deployed in uncontrolled outdoor environments. Nevertheless, scattering ...

Diego Gutierrez; Wojciech Jarosz; Craig Donner; Srinivasa G. Narasimhan

2009-08-01T23:59:59.000Z

192

Soluble Hydrogen-bonding Interpolymer Complexes in Water: A Small-Angle Neutron Scattering Study  

E-Print Network (OSTI)

The hydrogen-bonding interpolymer complexation between poly(acrylic acid) (PAA) and the poly(N,N-dimethylacrylamide) (PDMAM) side chains of the negatively charged graft copolymer poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM), containing 48 wt % of PDMAM, and shortly designated as G48, has been studied by small-angle neutron scattering in aqueous solution. Complexation occurs at low pH (pH hydrogen-bonding interpolymer complexes, whose radius is estimated to be around 165 A. As these particles involve more than five graft copolymer chains, they act as stickers between the anionic chains of the graft copolymer backbone. This can explain the characteristic thickening observed in past rheological measurements with these mixtures in the semidilute solution, with decreasing pH. We have also examined the influence of pH and PAA molecular weight on the formation of these nanoparticles.

Maria Sotiropoulou; Julian Oberdisse; Georgios Staikos

2006-04-03T23:59:59.000Z

193

''Inelastic Neutron Scattering and Periodic Density Functional Studies of Hydrogen Bonded Structures''  

DOE Green Energy (OSTI)

This project is directed at a fundamental understanding of hydrogen bonding, the primary reversible interaction leading to defined geometries, networks and supramolecular aggregates formed by organic molecules. Hydrogen bonding is still not sufficiently well understood that the geometry of such supramolecular aggregates can be predicted. In the approach taken existing quantum chemical methods capable of treating periodic solids have been applied to hydrogen bonded systems of known structure. The equilibrium geometry for the given space group and packing arrangement were computed and compared to that observed. The second derivatives and normal modes of vibration will then be computed and from this inelastic neutron scattering (INS) spectra were computed using the normal mode eigenvectors to compute spectral intensities. Appropriate inclusion of spectrometer line width and shape was made in the simulation and overtones, combinations and phonon wings were be included. These computed spectra were then compared with experimental results obtained for low-temperature polycrystalline samples at INS spectrometers at several facilities. This procedure validates the computational methodology for describing these systems including both static and dynamic aspects of the material. The resulting description can be used to evaluate the relative free energies of two or more proposed structures and so ultimately to be able to predict which structure will be most stable for a given building block.

Bruce S. Hudson

2004-10-27T23:59:59.000Z

194

Status report on the analysis of inelastic neutron scattering from carbon, iron, yttrium and lead at 96 MeV  

E-Print Network (OSTI)

This work is part of an effort to provide more experimental data for the (n,n'x) reaction. The experiments were carried out at The Svedberg Laboratory in Uppsala, Sweden, at the quasi-mono-energetic neutron beam of 96 MeV, before the facility was upgraded in 2004. Using an extended data analysis of data primarily intended for measuring elastic neutron scattering only, it was found to be possible to extract information on the inelastic scattering from several nuclei. In the preliminary data analysis, an iterative forward-folding technique was applied, in which a physically reasonable trial spectrum was folded with the response function of the detector system and the output was compared to the experimental data. As a result, double-differential cross sections and angular distributions of inelastic neutron scattering from 12-C, 56-Fe, 89-Y and 208-Pb could be obtained. In this paper, a status update on the efforts to improve the description of the detector response function is given.

C. Gustavsson; C. Hellesen; S. Pomp; A. hrn; J. Blomgren; U. Tippawan

2013-03-27T23:59:59.000Z

195

Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility  

SciTech Connect

In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

Radev, R

2009-09-04T23:59:59.000Z

196

Arsenic and antimony in laundry aids by instrumental neutron activation analysis  

SciTech Connect

>The measurement of trace amounts of arsenic and antimony in laundry aids by neutron activation analysis is described. The results for arsenic are compared with those obtained by other analytical techniques. The concentratlons ln the various laundry aids tested ranged from 5 to 51 ppM of arsenic and from 1 to 8 ppM of antimony. (auth)

Tanner, J.T.; Friedman, M.H.; Holloway, G.E.

1973-10-01T23:59:59.000Z

197

Neutron Diffraction @ TOPAZ  

NLE Websites -- All DOE Office Websites (Extended Search)

Topaz Guide Bender Topaz Guide Bender Neutron Diffraction @ TOPAZ Workshop on Single Crystal Neutron Diffraction picture 2 September 29 - October 1, 2011 * Spallation Neutron Source * Oak Ridge National Laboratory * Oak Ridge TN, USA TOPAZ 2011 Home Contacts Agenda and Important Deadlines Registration and Payment filler Workshop summary and purpose A workshop on single crystal neutron diffraction will be held at the Spallation Neutron Source at the Oak Ridge National Laboratory (ORNL). It will present invited and contributed talks to showcase cutting edge science and examples where neutron diffraction can make significant contributions; and provide training in neutron structure analysis and sample screening for the preparation of instrument beam-time proposals. TOPAZ is a high resolution wavelength-resolved Laue diffractometer with a versatile sample environment. Commissioning user experiments have demonstrated successfully the instrument capability for structural study of a vitamin B12 derivative, ion distribution in Li-ion battery materials, order and disorder in shape memory intermetallics, magnetic phase transition in multiferroic single crystal and functional thin films. The workshop is directed towards experienced neutron diffraction users and new users alike and encourages members to highlight their research and interest in structure analysis and investigation. The workshop will give opportunity to bring your own single crystal and screen sample quality and scattering power on TOPAZ @ room temperature, to evaluate data collection time and quality for an anticipated experiment. Finally, an opportunity to compose a proposal for neutron beam time (http://neutrons.ornl.gov/users/proposals.shtml) with staff will be provided in the framework of the workshop. The workshop format is well suited for researchers to contribute by showcasing their research and bring their research group or graduate student, who would like to test a single crystal sample. User access training for the ORNL neutron scattering facility will be included. It will be valid for future experiments.

198

Determination of Pu content in a Spent Fuel Assembly by Measuring Passive Total Neutron count rate and Multiplication with the Differential Die-Away Instrument  

Science Conference Proceedings (OSTI)

Inspired by approach of Bignan and Martin-Didier (ESARDA 1991) we introduce novel (instrument independent) approach based on multiplication and passive neutron. Based on simulations of SFL-1 the accuracy of determination of {sup tot}Pu content with new approach is {approx}1.3-1.5%. Method applicable for DDA instrument, since it can measure both multiplication and passive neutron count rate. Comparison of pro's & con's of measuring/determining of {sup 239}Pu{sub eff} and {sup tot}Pu suggests a potential for enhanced diversion detection sensitivity.

Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

199

Instrumental neutron activation analysis (INAA) characterization of pre-contact basalt quarries on the American Samoan Island of Tutuila  

E-Print Network (OSTI)

This thesis presents a material-centered characterization of 120 geologic samples from four fine-grained basalt quarries on the Samoan Island of Tutuila. Previous unsuccessful attempts at definitive Tutuilan quarry differentiation have utilized x-ray fluorescence (XRF). In this study, clear differentiation of each analyzed quarry was achieved using instrumental neutron activation analysis (INAA). Biplots of canonical discriminant function scores for the INAA data illustrate clear separation based on the variation in chemical composition between each quarry. The samples analyzed not only define quarry separation, but also provide the "core group" for a preliminary baseline necessary for future artifact-centered provenance studies. Inclusion of these "core group" samples in the baseline was confirmed by stepwise discriminant analysis. These findings suggest the ability to determine quarry of origin on the island of Tutuila, which can elucidate the importance of individual Tutuilan quarries in the export and exchange of fine-grained basalts.

Johnson, Phillip Ray, II

2005-12-01T23:59:59.000Z

200

Diffuse Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Diffuse Scattering Diffuse Scattering * Anticipatory (trick) question: If you have an x-ray or neutron detector looking at a small sample volume, which will scatter more x- rays or neutrons into the detector 1 atom 100 atoms or 1000 atoms? X-ray or neutron beam Answer: Depends! Diffuse Scattering Gene E. Ice Materials Science and Technology Division Oak Ridge National Laboratory, USA National School on Neutron and X-ray Scattering ORNL/SNS June 2011 Presentation concentrates year graduate-level course into 1 hour * Skip mathematical complexities * Expose to range of applications * Develop intuition for length scales * Talk like x-ray/neutron scattering guru - Reciprocal space - Debye Temperature - Laue monotonic - Krivoglaz defects of 1st/2nd kinds! Great for cocktail parties or impressing attractive strangers-

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National School on Neutron and X-Ray Scattering Held at APS&IPNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Chemistry Divisions but also from several Collaborative Access Teams (CATS) and the Spallation Neutron Source generously provided their time and expertise. We are...

202

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

203

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

phase behavior in carbon pores phase behavior in carbon pores Neutrons measure phase behavior in pores at angstrom size Compelling new methods for assessing carbon pores for hydrogen storage in fuel cells Research Contact: Yuri Melnichenko Jan. 2012, Written by Agatha Bardoel Yuri Melnichenko and Lilin He GP-SANS instrument scientist Yuri Melnichenko (left) and postdoctoral associate Lilin He. Researchers have measured the phase behavior of green house gases in pores at the angstrom level, using small-angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators

204

A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

Bryant, Rebecca [Bryant Research, LLC

2010-12-01T23:59:59.000Z

205

Research Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Research Highlights Biology & Medicine Biotechnology & Energy Fundamental Physics Imaging Magnetism Materials Nanotechnology Superconductivity Facilities and Capabilities Instruments User Program Publications and Resources Science and Education News and Awards NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Research Highlights SHARE Research Highlights No current Research Highlights found. 1-10 of 43 Results Comprehensive phonon "map" offers direction for engineering new thermoelectric devices January 08, 2014 - To understand how to design better thermoelectric materials, researchers are using neutron scattering at SNS and HFIR to study how a compound known as AgSbTe2, or silver antimony telluride, is

206

Exploring local atomic arrangements in amorphous and metastable phase change materials with x-ray and neutron total scattering  

SciTech Connect

Very little experimental work has conclusively explored the structural transformation between the amorphous and metastable crystalline phases of phase change chalcogenides. A recent flurry of theoretical work has supported likely mechanisms for the phase transition process in Ge-Sb-Te (GST) compositions and invigorated efforts at probing local atomic arrangements experimentally. The pair distribution function (PDF) formalism of total scattering data provides directly both local structure correlations at low real-space dimensions, and intermediate range order at higher length scales, a distinct advantage for following the relevant phase transition in phase change materials (PCM). A challenge facing the field is the difficulty in distinguishing separate peak contributions to pair correlation functions in amorphous and highly disordered samples. For example, various types of local order have been reported for Ge{sub x}Te{sub 1-x} phases, including both random mixtures and discrete structural units, and both 4-fold and 6-fold coordination around Ge. We describe our efforts in advancing capabilities for extracting and refining differential or partial pair distribution function data sets by combining neutron and x-ray total scattering, with extensions to isotopic substitution and anomalous x-ray scattering. Our results combining neutron and x-ray scattering for the Ge{sub x}Te{sub 1-x} series, for example, clearly distinguish Ge-Te and Te-Te contributions in nearest neighbor correlations. Presenting an additional challenge, phase change materials with fast switching speeds (those arguably of greatest technological interest) have stable bulk crystalline phases and do not readily form glasses until reduced to small dimensions. Thin film samples are inherently difficult to probe with conventional crystallographic methods. We demonstrate successful synchrotron x-ray total scattering experiments for PCM thin films with thicknesses between 100 nm and 1 um and describe how chemical short-range order and local bonding environments vary in amorphous, metastable and crystalline GeSb{sub 2}Te{sub 4} films. Total scattering methods for powders and thin films allow for a direct comparison of PCM properties (crystallization temperature, optical contrast between phases, phase change speed, etc.) with observed local structure and motivate further exploration into the atomic configurations enabling this fascinating class of materials.

Page, Katharine [Los Alamos National Laboratory; Daemen, Luc [Los Alamos National Laboratory; Proffen, Thomas [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

207

Portable Neutron Sensors for Emergency Response Operations  

SciTech Connect

This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing LaboratoryAndrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains ?eV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

,

2012-06-24T23:59:59.000Z

208

Awards 2007 | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Staff Awards: 2007 Chakoumakos elected MSA Fellow Bryan Chakoumakos Neutron scientist Bryan Chakoumakos was recently elected a fellow of the Mineralogical Society of America. A member of the Neutron Scattering Science Division, Bryan leads the Single-Crystal Diffraction Group. The group has five neutron scattering instruments in various stages of design and construction, located at HFIR and SNS. The MSA was founded in 1919 and, among other goals, encourages fundamental research on natural materials and supports education through its publications, educational grants, and courses. Pharos Neutron Detector System Researchers at the Department of Energy's Oak Ridge National Laboratory have won six R&D 100 Awards, given annually by R&D Magazine to the year's

209

Instrument performance on the short and long pulse second SNS target stations  

Science Conference Proceedings (OSTI)

In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

Zhao, Jinkui [ORNL; Herwig, Kenneth W [ORNL; Robertson, Lee [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

2013-01-01T23:59:59.000Z

210

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering  

Science Conference Proceedings (OSTI)

The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

Kim, Min Gyu [Ames Laboratory

2012-08-28T23:59:59.000Z

211

Structure of light neutron-rich nuclei and mechanism of elastic proton scattering  

Science Conference Proceedings (OSTI)

Differential cross sections for elastic p{sup 6}He, p{sup 8}Li, and p{sup 9}Li scattering at two energies of 70 and 700 MeV per nucleon were calculated within the Glauber theory of multiple diffractive scattering. Threeparticle wave functions ({alpha}-n-n for {sup 6}He, {alpha}-t-n for {sup 8}Li, and {sup 7}Li-n-n for {sup 9}Li) were used for realistic potentials of intercluster interactions. The sensitivity of elastic scattering to proton-nucleus interaction and to the structure of nuclei was explored. In particular, the dependence of the differential cross section on the contribution of higher order collisions, on scattering on the core and peripheral nucleons, and on the contribution of small wave-function components and their asymptotic behavior was determined. A comparison with available experimental data and with the results of calculations within different formalisms was performed.

Ibraeva, E. T., E-mail: ibr@inp.kz [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Zhusupov, M. A. [Al-Farabi Kazakh National University (Kazakhstan); Imambekov, O. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan)

2011-11-15T23:59:59.000Z

212

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.241.2897 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

213

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.576.2779 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

214

Journal of the Korean Physical Society, Vol. 55, No. 4, October 2009, pp. 13891393 Measurements of the Neutron Scattering Spectrum from 238  

E-Print Network (OSTI)

scattering, Resonance, Time-of-flight, Depleted uranium, LINAC experiment DOI: 10.3938/jkps.55.1389 I and p = ­1.2. Two different thickness depleted uranium, with 0.3% U-235, samples were used the neutron time-of-flight (TOF) method and a 6 Li scintillation detector. Two different thickness depleted

Danon, Yaron

215

Using polarized Neutrons for elastic and dynamic studies on protein systems  

SciTech Connect

We report about measurements at the new Neutron Resonance Spin Echo (NRSE) instrument RESEDA (FRM II, Munich). We have performed polarization analysis, providing information about the fraction of neutrons scattered without and with spin flip at the sample. From comparison with the resolution function measured on a standard sample, the dynamics of the incoherent fraction is detected by NRSE measurements at low temperatures.

Haeussler, W. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85747 Garching (Germany); Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Kindervater, J. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85747 Garching (Germany)

2010-06-02T23:59:59.000Z

216

Structure of neutron-rich Isotopes {sup 8}Li and {sup 9}Li and allowance for it in elastic scattering  

Science Conference Proceedings (OSTI)

The differential cross sections for elastic proton scattering on the unstable neutron-rich nuclei {sup 8}Li and {sup 9}Li at E = 700 and 60 MeV per nucleon were considered. The {sup 8}Li nucleus was treated on the basis of the three-body {alpha}-t-n model, while the {sup 9}Li nucleus was considered within the {alpha}-t-n and {sup 7}Li-n-n models. The cross sections in question were calculated within Glauber diffraction theory. A comparison of the results with available experimental data made it possible to draw conclusions on the quality of the wave functions and potential used in the calculations.

Ibraeva, E. T., E-mail: ibr@inp.k [National Nuclear Center of the Republic of Kazakhstan, Institute for Nuclear Physics (Kazakhstan); Zhusupov, M. A.; Imambekov, O.; Sagindykov, Sh. Sh. [Al Farabi Kazakh National University (Kazakhstan)

2008-07-15T23:59:59.000Z

217

A unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear resonance and inelastic neutron scattering  

SciTech Connect

In this paper a unified view of coherent and incoherent dihydrogen exchange in transition metal hydrides by nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) is presented. It is shown that both exchange processes coexist i.e. do not transform into each other although they may dominate the spectra in different temperature ranges. This superposition is the consequence of the incorporation of the tunnel frequency J of the coherent process into the nuclear two-spin hamiltonian of hydrogen pairs which allows to treat the problem using the well known density matrix theory of NMR line-shapes developed by Alexander and Binsch. It is shown that this theory can also be used to predict the line-shapes of the rotational tunneling transitions observed in the INS spectra of transition metal dihydrogen complexes and that both NMR and INS spectra depend on similar parameters.

Limbach, H.H.; Ulrich, S.; Buntkowsky, G. [Freie Univ. Berlin (Germany). Inst. fuer Organische Chemie; Sabo-Etienne, S.; Chaudret, B. [Toulouse-3 Univ., 31 (France). Lab. de Chimie de Coordination du C.N.R.S.; Kubas, G.J.; Eckert, J. [Los Alamos National Lab., NM (United States)

1995-08-12T23:59:59.000Z

218

A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target  

SciTech Connect

Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q{sup 2} and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized {sup 3}He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. G{sup n}{sub E} was measured to be 0.0242 0.0020(stat) 0.0061(sys) and 0.0247 0.0029(stat) 0.0031(sys) at Q{sup 2} = 1.7 and 2.5 GeV{sup 2}, respectively.

Aidan Kelleher

2010-10-01T23:59:59.000Z

219

The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments  

SciTech Connect

The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K < T < 296 K, using Inelastic Neutron Scattering (INS). The hydrogen projected density of states and the proton mean kinetic energy, _OH, were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of _OH is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initio electronic structure calculations, using non-local van der Waals functionals, provided _OH values in agreement with INS experiments. We also found that the ratio of the stretching (_OH) to the total (_exp) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice.

Senesi, Roberto [ORNL; Flammini, Davide [ORNL; Kolesnikov, Alexander I [ORNL; Murray, Eamonn D. [University of California, Davis; Galli, Giulia [University of California, Davis; Andreani, Carla [ORNL

2013-01-01T23:59:59.000Z

220

Science | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Neutron Science Neutron Scattering Science Neutrons are one of the fundamental particles that make up matter and have properties that make them ideal for certain types of research. In the universe, neutrons are abundant, making up more than half of all visible matter. Neutron scattering provides information about the positions, motions, and magnetic properties of solids. When a beam of neutrons is aimed at a sample, many neutrons will pass through the material. But some will interact directly with atomic nuclei and "bounce" away at an angle, like colliding balls in a game of pool. This behavior is called neutron diffraction, or neutron scattering. Using detectors, scientists can count scattered neutrons, measure their energies and the angles at which they scatter, and map their final position

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

In-Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering  

Science Conference Proceedings (OSTI)

The aim of this work was to better understand the electrochemical processes occurring during the cycling of a lithium-ion half-cell containing ordered mesoporous hard carbon using time-resolved in situ small-angle neutron scattering (SANS). Utilizing electrolytes containing mixtures of deuterated (2H) and non-deuterated (1H) carbonates, we have addressed the challenging task of monitoring the formation and evolution of the solid-electrolyte interphase (SEI) layer. An evolution occurs in the SEI layer during discharge from a composition dominated by a higher scattering length density (SLD) lithium salt, to a lower SLD lithium salt for the ethylene carbonate/dimethyl carbonate (EC/DMC) mixture employed. By comparing half-cells containing different solvent deuteration levels, we show that it is possible to observe both SEI formation and lithium intercalation occurring concurrently at the low voltage region in which lithium intercalates into the hard carbon. These results demonstrate that SANS can be employed to monitor complicated electrochemical processes occurring in rechargeable batteries, in a manner that simultaneously provides information on the composition and microstructure of the electrode.

Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL; Sun, Xiao-Guang [ORNL; Zhao, Jinkui [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

222

Introduction to Neutron Spin Echo Spectroscopy  

Science Conference Proceedings (OSTI)

... Nuclear Interaction Neutrons are scattered by the nuclei. Scattering power varies randomly from isotope to isotope. ... segment dynamics hydro gels ...

2011-06-22T23:59:59.000Z

223

Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis  

Science Conference Proceedings (OSTI)

Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.

Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Rother, Gernot [ORNL; Allard Jr, Lawrence Frederick [ORNL; Jackson, Andrew [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Littrell, Ken [ORNL

2013-01-01T23:59:59.000Z

224

Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizontal Beam Tubes Horizontal Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on the HFIR instrument page. Each of the beam tubes that supply these instruments with neutrons is described subsequently. HB-1 and HB-3 The HB-1 and HB-3 thermal neutron beam tube designs are identical except for the length. Both are situated tangential to the reactor core so that the tubes point at reflector material and do not point directly at the fuel. An internal collimator is installed at the outboard end. This collimator is fabricated out of carbon steel and is plated with nickel. The collimator provides a 2.75-in by 5.5-in. rectangular aperture. A rotary shutter is located outboard of each of these beam tubes. The

225

Science Education Programs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons Why Research with Neutrons Graduate & Post-doctoral Programs Student & Teacher Programs Science Forum Neutron Scattering Tutorials Kids' Corner News and Awards...

226

Dr. Michael Agamalian | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Michael Agamalian Dr. Michael Agamalian Lead Scientist, Ultra-Small-Angle Neutron Scattering (USANS), SNS Education PhD in Physics, St. Petersburg Nuclear Physics Institute, Russia Description of Research Michael Agamalian and collaborators have made important contributions to the development of the ORNL Bonse-Hart Ultra-Small-Angle Neutron Scattering instrument (USANS). In particular, they adopted the classical X-ray Bonse-Hart technique for neutrons by modifying the Si channel-cut crystal and introducing an additional element, a Cd absorber. This innovation, combined with application of a specialized chemical-mechanical treatment of the diffractive surfaces of the Si channel-cut crystal, has increased the sensitivity of the ORNL USANS instrument by three orders of magnitude. This

227

A small angle neutron scattering investigation of the kinetics of phase separation in an Fe-27. 5 at. % Cr-5. 6 at. % Ni alloy  

Science Conference Proceedings (OSTI)

The small angle neutron scattering has been investigated in situ at 450{degree} and 500{degree}C for a polycrystalline, duplex Fe-27.5 at. % Cr-5.6 at. % Ni steel. A broad diffuse maximum in the scattering function is the signature of the {alpha}{prime}-phase formation, and this maximum is superimposed on a strong, temperature-dependent component due to critical magnetic scattering. The time dependence of the shift in the peak intensity position to lower scattering vectors and the increase in peak intensity obey power law scaling behavior. Furthermore, the structure function exhibits dynamical scaling, after about three hours annealing. It is suggested that this behavior could be utilized to predict the microstructure, and hence some of the properties, after significantly longer annealing times. 21 refs., 3 figs.

Epperson, J.E. (Argonne National Lab., IL (USA)); Rainey, V.S.; Windsor, C.G. (UKAEA Atomic Energy Research Establishment, Harwell (UK). Materials Physics and Metallurgy Div.); Hawick, K.A. (Edinburgh Univ. (UK). Dept. of Physics); Chen, H. (Illinois Univ., Urbana, IL (USA). Dept. of Materials Science and Engineering)

1990-10-01T23:59:59.000Z

228

Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study  

SciTech Connect

Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays cover 30 cm/nanosecond). The main advantage of the technique is its ability to simultaneously provide 2D and 3D imaging of objects and their elemental composition. This work reports on the efficacy of using 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to extract neutron induced characteristic gamma-rays from an object-of-interest with high SNR and without interference from nearby clutter.

Mitra, S.; Dioszegi, I.

2011-10-23T23:59:59.000Z

229

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

230

TABLE OF CONTENTS 2014 ORNL NEUTRON SCIENCES STRATEGIC PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

TABLE OF CONTENTS 2014 ORNL NEUTRON SCIENCES STRATEGIC PLAN Executive Summary Director's Message Introduction Neutron Scattering User Facilities Comparison with Leading International Neutron Facilities Strategic Planning and Research Community Involvement New Opportunities Science Priorities Introduction Quantum Materials Materials Synthesis and Performance Soft Molecular Matter Biosciences New and Upgraded Capabilities Enabling Technologies Sources Executing the Plan Strategic Timeline Appendices and Acronyms 3 6 17 55 43 51 59 9 3 EXECUTIVE SUMMARY 2014 ORNL NEUTRON SCIENCES STRATEGIC PLAN EXECUTIVE SUMMARY AND DIRECTOR'S MESSAGE * Optimizing existing instrumentation with targeted de-

231

WAND: Wide-Angle Neutron Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

US/Japan Wide-Angle Neutron Diffractometer US/Japan Wide-Angle Neutron Diffractometer WAND Instrument scientist Jaime Fernandez-Baca (left) with a visiting researcher at WAND. The Wide-Angle Neutron Diffractometer (WAND) at the HFIR HB-2C beam tube was designed to provide two specialized data-collection capabilities: (1) fast measurements of medium-resolution powder-diffraction patterns and (2) measurements of diffuse scattering in single crystals using flat-cone geometry. For these purposes, this instrument is equipped with a curved, one-dimensional 3He position-sensitive detector covering 125º of the scattering angle with the focal distance of 71 cm. The sample and detector can be tilted in the flat-cone geometry mode. These features enable measurement of single-crystal diffraction patterns in a short time over a

232

Growth Kinetics of Lipid-Based Nanodiscs to Unilamellar Vesicles: A Time-Resolved Small Angle Neutron Scattering (SANS) Study  

Science Conference Proceedings (OSTI)

Mixtures of dimyristoyl-phosphatidylcholine (DMPC), dimyristoyl-phosphatidylglycerol (DMPG) and dihexanoylphosphatidylcholine (DHPC) in aqueous solutions spontaneously form monodisperse, bilayered nanodiscs (also known as bicelles ) at or below the melting transition temperature of DMPC (TM ~23 C). In dilute systems above the main transition temperature TM of DMPC, bicelles coalesce (increasing their diameter) and eventually self-fold into unilamellar vesicles (ULVs). Time resolved small angle neutron scattering was used to study the growth kinetics of nanodiscs below and equal to TM over a period of hours as a function of temperature at two lipid concentrations in presence or absence of NaCl salt. Bicelles seem to undergo a sudden initial growth phase with increased temperature, which is then followed by a slower reaction-limited growth phase that depends on ionic strength, lipid concentration and temperature. The bicelle interaction energy was derived from the colloidal theory of Derjaguin and Landau, and Verwey and Overbeek (DLVO). While the calculated total energy between discs is attractive and proportional to their growth rate, a more detailed mechanism is proposed to describe the mechanism of disc coalescence. After annealing at low temperature (low-T), samples were heated to 50 C in order to promote the formation of ULVs. Although the low-T annealing of samples has only a marginal effect on the mean size of end-state ULVs, it does affect their polydispersity, which increases with increased T, presumably driven by the entropy of the system.

Mahabir, Suanne [University of Western Ontario, The; Small, Darcy [University of Western Ontario, The; Li, Ming [University of Connecticut, Storrs; Wan, Wankei [University of Western Ontario, The; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Littrell, Ken [ORNL; Katsaras, John [ORNL; Nieh, Mu-Ping [University of Connecticut, Storrs

2013-01-01T23:59:59.000Z

233

Structure and dynamics of water adsorbed in carbon nanotubes : a joint neutron scattering and molecular-dynamics study.  

DOE Green Energy (OSTI)

The advent of nanocarbons, from single- and multiple-walled nanotubes to nanohorns, avails model studies of confined molecules on the nanoscale. Water encapsulated inside the quasi-one-dimensional channels of these materials is expected to exhibit anomalous behavior due to the unique geometry of nanotubes and the weak interaction between the water molecules and the carbon atoms. We have employed neutron small-to-wide angle diffraction, quasielastic and inelastic scattering in conjunction with molecular-dynamics simulations to characterize the structures and dynamics of water adsorbed in open-ended single- and double-walled nanotubes over a wide range of spatial and temporal scales. We find that a square-ice sheet wrapped next to the inner nanotube wall and a water chain in the interior are the key structural elements of nanotube-confined water/ice. This configuration results in a hydrogen-bond connectivity that markedly differs from that in bulk water. This significantly softened hydrogen-bond network manifests in strong energy shifts of the observed and simulated inter- and intra-molecular vibrations. The very large mean-square displacement of hydrogen atoms observed experimentally and the strong anharmonicity inferred from simulations explain the fluid-like behavior at temperatures far below the freezing point of normal water.

de Souza, N. R.; Kolesnikov, A. I.; Loong, C.-K.; Moravsky, A. P.; Loutfy, R. O.; Burnham, C. J.; Intense Pulsed Neutron Source; MER Corp.; Univ. of Utah

2004-01-01T23:59:59.000Z

234

IBIS: An inverse geometry Brillouin inelastic neutron spectrometer for the SNS  

Science Conference Proceedings (OSTI)

The high power target station at the Spallation Neutron Source (SNS) currently has about 20 completed neutron scattering instruments. With a broad coverage of the momentum transfer (Q)-energy (E) space, these instruments serve an extensive user community. In an effort to further expand the scientific capabilities of the SNS instrument suites, we propose a low background, inverse geometry Brillouin inelastic spectrometer for the SNS which will expand the Q-E coverage of the current instrument suite and facilitate the study of inelastic and quasi-elastic scatterings at low Q values. The possible location for the proposed instrument is either beamline 8 which views the decoupled water moderator, or beamline 14A, which views a cold, coupled super critical hydrogen moderator. The instrument parameters, optimizations, and performances at these two beamline locations are discussed.

Zhao, Jinkui [ORNL; Wildgruber, Christoph U [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL

2013-01-01T23:59:59.000Z

235

Instrument Schedule for dcs 200801  

Science Conference Proceedings (OSTI)

... Neutron Powder Scattering, Yan* and McQueeney Chang*, Ames Laboratory NCNR, CCR ... Sugiyama* Sato* and Iida*, Toyota Central R&D Labs., Inc ...

236

Science Opportunities at ORNL's Neutron Sources  

Science Conference Proceedings (OSTI)

The Neutron Sciences Directorate at Oak Ridge National Laboratory (ORNL) operates two of the world's most advanced neutron scattering research facilities: the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). Our vision is to provide unprecedented capabilities for understanding structure and properties across the spectrum of biology, chemistry, physics, and engineering, and to stay at the leading edge of neutron science by developing new instruments, tools, and services. This talk will provide an update on the operations of the two research facilities and highlight the significant research that is emerging. For example, scientists from ORNL are at the forefront of research on a new class of iron-based superconductors based on experiments performed at the Triple-Axis Spectrometer at HFIR and ARCS at SNS. The complementary nature of neutron and x-ray techniques will be discussed to spark discussion among attendees.

Anderson, Ian [ORNL, SNS

2010-02-03T23:59:59.000Z

237

Neutrons for Materials Science and Engineering - ASM Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

of NST2 Attendees Click for full Size Image Welcome Overview - Michelle Buchanon Fundamentals of Neutron Scattering Research - Ian Anderson Neutron Scattering on Magnetic...

238

Design of the Mechanical Parts for the Neutron Guide System at HANARO  

SciTech Connect

The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S. [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2008-03-17T23:59:59.000Z

239

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Studies Battery Studies A Wealth of New Battery Research at SNS and HFIR Technical Contacts: Xun-Li Wang, Ashfia Huq, Jung-Hyun Kim October 2010, Written by Carolyn Krause Neutron scattering, capable of looking deep inside the structures of materials used in technologies such as batteries and fuel cells, is a natural tool for research in energy storage and production. Several users of neutron scattering instruments at the SNS and HFIR presented details of their energy-related research to prospective scientific facility users attending the opening session of ORNL's User Week at SNS. Most of the energy-related research reported in the session dealt with batteries for electric and hybrid electric cars. Better batteries are also needed for storing excess electricity generated by wind and solar power so

240

Dr. George Wignall | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. George D. Wignall Dr. George D. Wignall Consultant: General-Purpose SANS Instrument (CG-2), HFIR Education Ph.D. in Physics, Sheffield University, England Description of Research Dr. Wignall uses small-angle neutron scattering (SANS) to study the structure of homo-polymers, block-copolymers and polymer blends, using deuterium labeling techniques to "color" polymer molecules and make them "visible" in the condensed state. He makes SANS techniques and instrumentation available to the scientific community through the operation of user-friendly facilities. Selected Publications (from over 240) Y. B. Melnichenko and G. D. Wignall, "Small Angle Neutron Scattering in Materials Science: Recent Practical Applications," Journal of Applied Physics 102 021102 (2007)

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument  

Science Conference Proceedings (OSTI)

A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

242

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

by: Agatha Bardoel Melissa Sharp and Michael Ohl at the Neutron Spin Echo Instrument at SNS. Melissa Sharp, NSE instrument scientist, and ORNL biophysicist Alex Johs at the...

243

Analytical Calculation of the Neutrons Spectrum for Direct Measurement of N-N Scattering at Pulsed Reactor Yaguar  

E-Print Network (OSTI)

Analytical calculation of a single neutron detector counts per YAGUAR reactor pulse is presented and comparison with coincidence scheme is given.

V. K. Ignatovich

2008-06-23T23:59:59.000Z

244

HFIR History - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › History Home › Facilities › HFIR › History History of HFIR HFIR was constructed in the mid-1960s to fulfill a need for the production of transuranic isotopes (i.e., "heavy" elements such as plutonium and curium). Since then its mission has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its 40-year history. During a shutdown of more than a year, the facility was refurbished and a number of new instruments were installed, as well as a cold neutron source. The reactor was restarted in mid-May; it attained its full power of 85 MW within a couple of days, and experiments resumed within a week. Improvements and upgrades to HFIR include an overhaul of the

245

Procurement - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

for the acquisition of goods and services for neutron scattering operations at SNS and HFIR. If you're interested in conducting business with the Neutron Sciences Directorate or...

246

Instrument Scientist: Souleymane Omar Diallo, omardiallos@ornl.gov, 865.576.6188  

NLE Websites -- All DOE Office Websites (Extended Search)

Eugene Mamontov, mamontove@ornl.gov, 865.574.5109 Eugene Mamontov, mamontove@ornl.gov, 865.574.5109 Instrument Scientist: Souleymane Omar Diallo, omardiallos@ornl.gov, 865.576.6188 Instrument Scientist: Niina H. Jalarvo, jalarvonh@ornl.gov, 865.360.0304 neutrons.ornl.gov/basis BASIS is designed to provide extremely high-energy resolution near the elastic peak, enabling studies of the diffusive dynamics of molecules on the atomic length scale (quasi-elastic neutron scattering). This instrument features very high flux and a dynamic range in energy transfer that is approximately five times greater than what is available on comparable instruments today. In addition, this instrument provides the capability of

247

Dynamics and Neutron Scattering  

Science Conference Proceedings (OSTI)

... energy window ... if there is more than one isotope and/or nonzero nuclear ... Comparisons with theory and/or computer simulations are commonly ...

2013-06-17T23:59:59.000Z

248

Neutron Scattering and Dynamics  

Science Conference Proceedings (OSTI)

... "Molecule" H2O (N2)0.8(O2)0.2 Al Cd sigma_s barn 168.3 20.1 1.5 6.5 ... 31 Collective dynamics Animation courtesy of A. Zheludev (ORNL) ...

2009-09-15T23:59:59.000Z

249

Neutron Scattering Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

8-12, 2013 International Workshop: Powder & Electron Crystallography Location Patras, Greece Contact Partha Pratim Das Email partha@upatras.gr URL http:crystallographypatras.wor...

250

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

251

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Physics Neutron Scattering in Quantum Condensed Matter Physics flyer The first cyber enabled collaborative graduate course was launched in Fall semester 2012. It addresses...

252

Neutron Activation Calculator  

Science Conference Proceedings (OSTI)

... and incoherent scattering cross sections). Source neutrons (Ang, meV or m/s), Density (g/cm 3 or lattice), Thickness (cm). ...

253

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Division Oak Ridge National Laboratory Phone: 865.241.5176 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

254

Dr. J. K. (Jinkui) Zhao - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. J.K. (Jinkui) Zhao Dr. J.K. (Jinkui) Zhao Research Staff Dr. Zhao is a research staff in the Neutron Facility Development Division at the Spallation Neutron Source. He has broad interests in many areas ranging from biophysics to neutrons scattering techniques. He was the lead scientist for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument during its design, construction and commissioning phases. Resources Software by J.K. Zhao EQ-SANS design documentation Selected Publications Metabolic Scaling in Biology Zhao, Jinkui. "A common origin for 3/4- and 2/3-power rules in metabolic scaling" Submitted Zhao, Jinkui. "Plants' metabolism and metabolic scaling" Submitted Zhao, Jinkui. "Tree growth model" In preparation Biomolecular Structures

255

Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen  

SciTech Connect

The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve non-linear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semi-quantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.

Miller, William; Liu, Jian; Miller, William H.

2008-03-15T23:59:59.000Z

256

Instrument development continues in Oak Ridge  

Science Conference Proceedings (OSTI)

Peer review panels composed of 80 external scientists recently visited Oak Ridge National Laboratory (ORNL) to review almost 700 proposals for experiments on 23 instruments at the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR). These were proposed for the time period from January-June 2012. About 40% of the proposals were approved for beam time and 20% were placed on an alternate list if time becomes available. The Hybrid Spectrometer HYSPEC at SNS began its commissioning in September 2011. HYSPEC is otpimized for studying low energy dynamics in single-crystal samples using a broad variety of sample environments, and is equipped with a polarization analysis capability. It is expected to be available for users on a limited basis in the second half of 2012. The detector tank of CORELLI has been installed on beamline 9 at SNS. Now that the tank is in place, banks of neutron detectors and boron carbide shielding will be installed around the interior. CORELLI is optimized to probe complex disorder in crystalline materials through diffuse scattering from single-crystal samples. It will begin commissioning in 2014. CORELLI is one of four instruments being developed under the SING II (SNS Instruments Next Generation II) project. The others are the Macromolecular Neutron Diffractometer (MANDI), the Vibrational Spectrometer (VISION, scheduled to begin commissioning in 2012), and the Time of Flight Ultra Small Angle Neutron Scattering Instrument (TOF-USANS). The single crystal neutron diffractometer IMAGINE, was deliverd to HFIR in October 2011. Preliminary testing has been carried out. IMAGINE will provide atomic resolution information on chemical, organic, metallo-organic and protein single crystals that will enable their chemical, physical and biological structure and function to be understood. This instrument will benefit scientists with interests in pharmaceuticals, minerals and other inorganic crystals, small molecules, molecular organo-metallic crystals and metal-organic frameworks (MOFs) molecular crystal structures. The quasi-Laue geometry, combined with a large solid angle detector, will enable rapid data collection from crystals with volume < 1mm{sup 1} and unit cell < 100 {angstrom}. Construction and installation of the optical system is in progress. Commissioning is expected to start in April 2012.

Ekkebus, Allen E [ORNL

2012-01-01T23:59:59.000Z

257

Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor. The pulsed neutron source at SNS and the continuous neutron source at HFIR complement each other well and, along with their state-of-the-art instruments, provide...

258

Neutron Imaging of Hydrogen in Steels  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research. Presentation Title, Neutron Imaging of Hydrogen in Steels. Author(s)...

259

Data Management Practices | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

to data generated from neutron scattering experiments at the High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). Any changes to these guidelines will be...

260

Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization  

Science Conference Proceedings (OSTI)

The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.

Lebedev, D. V., E-mail: isaev@omrb.pnpi.spb.ru; Filatov, M. V. [Russian Academy of Sciences, Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I.; Islamov, A. Kh. [Joint Institute of Nuclear Research (Russian Federation); Stellbrink, J. [Research Centre Juelich (Germany); Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V. [Russian Academy of Sciences, Petersburg Nuclear Physics Institute (Russian Federation)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.  

E-Print Network (OSTI)

-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation of these instruments. HFIR SNS These facilities are funded by the U.S. Department of Energy. 08-G00986H

262

ARM - Instrument -  

NLE Websites -- All DOE Office Websites (Extended Search)

list contains a mix of naming conventions-individual instruments versus instruments suites. Please see the instrument handbooks for a list of sensors in the instrument suites....

263

Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron  

Office of Scientific and Technical Information (OSTI)

Clifford Shull, Neutron Diffraction, and Neutron Scattering Clifford Shull, Neutron Diffraction, and Neutron Scattering Resources with Additional Information Clifford G. Shull was awarded the 1994 Nobel Prize in Physics "for the development of the neutron diffraction technique". 'Professor Shull's prize was awarded for his pioneering work in neutron scattering, a technique that reveals where atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge National Laboratory When a beam of neutrons is directed at a given material, the neutrons bounce off, or are scattered by, atoms in the sample being investigated. The neutrons' directions change, depending on the location of the atoms they hit, and a diffraction pattern of the atoms' positions can then be obtained.

264

A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV  

E-Print Network (OSTI)

piece of depleted uranium was used to attenuate the intense gamma flash. With the sample placed for the experiment. To eliminate gamma flash associated recovery issues, 2.54 cm (1 in.) of depleted uranium, the neutron flux was measured through a one inch thick piece of depleted uranium. By a simple calculation

Danon, Yaron

265

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464469 Fusion neutron detector calibration using a table-top laser  

E-Print Network (OSTI)

BINP accelerator based epithermal neutron source V. Aleynik a , A. Burdakov a , V. Davydenko a , A Institute of Nuclear Physics,11 Lavrentiev avenue, 630090 Novosibirsk, Russia b Neurosurgery Center, 2a: Boron neutron capture therapy Epithermal neutron source Accelerator a b s t r a c t Innovative facility

Ditmire, Todd

266

Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization  

Science Conference Proceedings (OSTI)

Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

Vaknin, D. [Ames Laboratory; Garlea, Vasile O [ORNL; Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory; Mamontov, Eugene [ORNL; Nojiri, H [Institute for Materials Research, Tohoku University, Sendai, Japan; Martin, Catalin [Florida State University; Chiorescu, Irinel [Florida State University; Qiu, Y. [National Institute of Standards and Technology (NIST); Luban, M. [Ames Laboratory; Kogerler, P. [Ames Laboratory; Fielden, J. [Ames Laboratory; Engelhardt, L [Francis Marion University, Florence, South Sarolina; Rainey, C [Francis Marion University, Florence, South Sarolina

2010-01-01T23:59:59.000Z

267

Diffusion and adsorption of methane confined in nanoporous carbon aerogel: a combined quasi-elastic and small-angle neutron scattering study  

SciTech Connect

The diffusion of methane confined in nano-porous carbon aerogel with the average pore size 48 {angstrom} and porosity 60% was investigated as a function of pressure at T = 298 K using quasi-elastic neutron scattering (QENS). The diffusivity of methane shows a clear effect of confinement: it is about two orders of magnitude lower than in bulk at the same thermodynamic conditions and is close to the diffusivity of liquid methane at 100 K (i.e. {approx} 90 K below the liquid-gas critical temperature T{sub C} {approx} 191 K). The diffusion coefficient (D) of methane initially increases with pressure by a factor of {approx}2.5 from 3.47 {+-} 0.41 x 10{sup -10} m{sup 2} s{sup -1} at 0.482 MPa to D = 8.55 {+-} 0.33 x 10{sup -10} m{sup 2} s{sup -1} at 2.75 MPa and starts to decrease at higher pressures. An explanation of the observed non-monotonic behavior of the diffusivity in the confined fluid is based on the results of small-angle neutron scattering experiments of the phase behavior of methane in a similar carbon aerogel sample. The initial increase of the diffusion coefficient with pressure is explained as due to progressive filling of bigger pores in which molecular mobility in the internal pore volume is less affected by the sluggish liquid-like molecular mobility in the adsorbed phase. Subsequent decrease of D, is associated with the effect of intermolecular collisions, which result in a lower total molecular mobility with pressure, as in the bulk state. The results are compared with the available QENS data on the methane diffusivity in zeolites, metal organic frameworks, and porous silica as well as with the molecular dynamics simulations of methane in nano-porous carbons and silica zeolites.

Mavila Chathoth, Suresh [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL; Zamponi, Michaela M [ORNL

2010-01-01T23:59:59.000Z

268

Dzyaloshinsky-Moriya interaction and long life time of the spin state in the Cu$_3$ triangular spin cluster by inelastic neutron scattering measurements  

E-Print Network (OSTI)

Inelastic neutron scattering (INS) experiments have been performed on the Cu$_3$ triangular molecular nanomagnet using powder samples. In the medium resolution INS spectrum measured, there are two peaks at $\\hbar\\omega=0.5$ and 0.6 meV. Comparing the observed $Q$ dependences of these peaks with calculations, these two INS peaks originate from the Cu$_3$ cluster. From the observed peak position, width, and intensity, we have determined the optimum parameters of the spin Hamiltonian consisted of the antiferromagnetic exchange and the Dzyaloshinsky-Moriya interactions, which can also reproduce the magnetic susceptibility measurement. In addition, we have directly observed that the ground state quartet is split into two doublets with the energy separation of 0.103 meV using high-resolution neutron spectroscopy, which exactly corresponds to that expected from the optimum parameters obtained from the medium resolution xperiment. The temperature dependences of the integrated intensities of the 0.5 and 0.6 meV peaks are well reproduced by the Boltzmann distribution of the energy levels of the model Hamiltonian below 10 K. Furthermore, the inelastic peaks were visible even at very high temperatures as 50 K. This indicates extraordinary weak coupling between phonons (or any other perturbations) and spin states in the Cu$_3$ cluster, compared to the other known molecular nanomagnets.

Kazuki Iida; Yiming Qiu; Taku J Sato

2010-05-21T23:59:59.000Z

269

Souleymane Omar Diallo | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Souleymane Omar Diallo Souleymane Omar Diallo Quantum Condensed Matter Division Education Ph.D. Physics, University of Delaware, Newark, DE, USA (2007). BSc. Physics, Université Cadi-Ayyad, Marrakesh, Morocco (1999). Description of Research Dynamics of Water in Confinement, Proteins Dynamics, Porous Materials, Neutron and X-ray Scattering, Soft Condensed Matter Physics, Supefluidity and Superconductivity, Quantum Fluids and Solids, Ferroelectricity. Selected Publications J. Charmichael and S.O. Diallo, "A cryogenic high pressure cell for neutron scattering measurements of quantum fluids and solids", submitted Review of Scientific Instruments (2012) S.O. Diallo, E. Mamontov, S. Inagaki, Y. Fukushima, and N. Wada, "Enhanced Translational Dynamics of Water under Electric Field" Phys.

270

Search for the First-Order Liquid-to-Liquid Phase Transition in Low-Temperature Confined Water by Neutron Scattering  

SciTech Connect

It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

Chen, Sow-Hsin [Massachusetts Institute of Technology (MIT); Wang, Zhe [Massachusetts Institute of Technology (MIT); Kolesnikov, Alexander I [ORNL; Zhang, Yang [ORNL; Liu, Kao-Hsiang [National Taiwan University

2013-01-01T23:59:59.000Z

271

The Spallation Neutron Source: A powerful tool for materials research  

SciTech Connect

When completed in 2006, the Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of pulsed neutrons in the world. This unique facility is being built by a collaboration of six US Department of Energy laboratories and will serve a diverse community of users drawn from academia, industry, and government labs. The project continues on schedule and within budget, with commissioning and installation of all systems going well. Installation of 14 state-of-the-art instruments is under way, and design work is being completed for several others. These new instruments will enable inelastic and elastic-scattering measurements across a broad range of science such as condensed-matter physics, chemistry, engineering materials, biology, and beyond. Neutron Science at SNS will be complemented by research opportunities at several other facilities under way at Oak Ridge National Laboratory.

Mason, Thom [ORNL; Anderson, Ian S [ORNL; Ankner, John Francis [ORNL; Egami, Takeshi [ORNL; Ekkebus, Allen E [ORNL; Herwig, Kenneth W [ORNL; Hodges, Jason P [ORNL; Horak, Charlie M [ORNL; Horton, Linda L [ORNL; Klose, Frank Richard [ORNL; Mesecar, Andrew D. [University of Illinois, Chicago; Myles, Dean A A [ORNL; Ohl, M. [Forschungszentrum Julich, Julich, Germany; Zhao, Jinkui [ORNL

2006-01-01T23:59:59.000Z

272

Pulsed-neutron monochromator  

DOE Patents (OSTI)

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

273

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Pores: Greenhouse Gases and Coal Pores: Greenhouse Gases and Methane Energy and Environmental Solutions Under Our Feet Mix of neutron scattering techniques helps resolve critical problems of confining greenhouse gases and extracting methane Research Contact: Yuri Melnichenko August 2011, Written by Agatha Bardoel Yuri Melnichenko at the GPSANS instrument GP-SANS instrument scientist Yuri Melnichenko (left) and postdoctoral associate Lilin He. When you heat water in a kettle, you can make tea or coffee. But what happens if the vessel is sealed? Ultimately, at a temperature called the liquid-gas critical point, the density of the liquid and the vapor become identical: There is no more water, there is no more gas. What you have is a supercritical fluid. The phenomenon of liquid-liquid and liquid-gas coexistence was a

274

Neutron Physics at NIST 8th UCN Workshop  

E-Print Network (OSTI)

The Neutron Scattering Society of America www.neutronscattering.org Press Release, February 4, 2008 The Neutron Scattering Society of America is pleased to announce the 2008 recipients of its 3 major prizes. The Neutron Scattering Society of America (NSSA) established the Clifford G. Shull Prize in Neutron Science

Titov, Anatoly

275

Instrument Schedule for ng7refl  

Science Conference Proceedings (OSTI)

Instrument Schedule For NG-7 -- Cold neutron reflectometer-horizontal sample. ... 12/12/2012 11:00, 6, 18041, Dependence of the fusion of Dengue E ...

276

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

277

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

reveals semiconducting phase and contributes to new understanding of iron-based superconductors Contact: Huibo Cao Neutron scattering measures samples too hot to hold Contact:...

278

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Polytechnic Institute used small-angle neutron scattering (SANS) at the High-Flux Isotope Reactor at Oak Ridge National Laboratory to identify these early stage aggregates in...

279

BASIS Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

in water and other glass-forming liquids, covering six research collaborations at ORNL Neutron scattering provides window into surface interactions High-performance...

280

Nuclear Instruments and Methods in Physics Research A 562 (2006) 401406 Generating a multi-line neutron beam using an electron  

E-Print Network (OSTI)

. Glasstone, Nuclear Reactor Theory, Robert E. Krieger Publishing Company (1970). [17] W.E. Lamb, Phys. Rev with the steady-state filtered neutron beams obtained using nuclear reactors [1­4]. The filter materials used in conjuc- tion with nuclear reactors are scandium (producing 2.03 keV neutron beams with a width DE$1:3 ke

Danon, Yaron

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biology and Soft Matter Division - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Neutron Sciences Directorate › Biology and Soft Matter Division Home › Neutron Sciences Directorate › Biology and Soft Matter Division Biology and Soft Matter Division Paul Langan, BSMD Director BSMD Director Paul Langan. The Biology and Soft Matter Division (BSMD) operates an external user program for biological and soft matter research using neutron techniques at SNS and HFIR. Division personnel enable the research initiated by external users by acting as instrument responsible scientists and local contacts on a range of different beam lines. BSMD works closely with the Center for Structural Molecular Biology. Diffraction, small-angle scattering, and reflectometry are ideal methods for studying structure and organization from the atomic to the micron length scales, and neutron spectroscopic methods characterize self and

282

INSTRUMENT STANDARDS  

SciTech Connect

Hanford Atomic Production Operation specification guides for instruments, radiation detection instruments, instrumentation, thermocouples, orifices, process control instruments, and electronic design are presented. Details of this manual are given in TID-4100(Suppl.). (N.W.R.)

1963-01-01T23:59:59.000Z

283

New detector array improves neutron count capability at HFIR's Bio-SANS |  

NLE Websites -- All DOE Office Websites (Extended Search)

Bio-SANS neutron count capability improves Bio-SANS neutron count capability improves New detector array improves neutron count capability at HFIR's Bio-SANS Agatha Bardoel - June 29, 2012 Bio-SANS team that worked on installation of the new detector system. Front row, left to right: Doug Selby, Steve Hicks, Shuo Qian, Sai Venkatesh Pingali, Kathy Bailey, Amy Black Jones, and Derrick Williams. Back row, left to right: Ed Blackburn, John Palatinus, William Brad O'Dell, Mike Humphreys, Justin Beal, Ken Littrell, Greg Jones, Kevin Berry, Volker Urban, Randy Summers, and Ron Maples. Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance that is more in line with the instrument's capability. Shorter experiment times are expected, which means more experiments can be

284

LIGHT SCATTERING STUDIES OF SILICA AEROGELS  

E-Print Network (OSTI)

van de Hulst, H.C. , Light Scattering by Small Particles,A New Polarization-Modulated Light Scattering Instrument,"and interpretation of light scattering effects in aerogels.

Hunt, A.J.

2010-01-01T23:59:59.000Z

285

Neutron Science and Supercomputing Come Together at Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science and Supercomputing Come Together at Oak Ridge National Lab (HPCWire) June 24, 2013 Next-generation neutron scattering requires next-generation data analysis...

286

Physics design of a cold neutron source for KIPT neutron source facility.  

SciTech Connect

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The accelerator driven subcritical facility is designed with a provision to add a cryogenically cooled moderator system. This cold neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

2009-02-17T23:59:59.000Z

287

Physics design of a cold neutron source for KIPT neutron source facility.  

Science Conference Proceedings (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

2009-02-17T23:59:59.000Z

288

Dynamics of quantum spin liquid and spin solid phases in IPA-CuCl3 under an applied magnetic field studied with neutron scattering  

SciTech Connect

Inelastic and elastic neutron scattering is used to study spin correlations in the quasi-one-dimensional quantum antiferromagnet IPA-CuCl3 in strong applied magnetic fields. A condensation of magnons and commensurate transverse long-range ordering is observe at a critical field Hc=9.5 T. The field dependencies of the energies and polarizations of all magnon branches are investigated both below and above the transition point. Their dispersion is measured across the entire one-dimensional Brillouin zone in magnetic fields up to 14 T. The critical wave vector of magnon spectrum truncation Masuda et al., Phys. Rev. Lett. 96, 047210 2006 is found to shift from hc0,35 at HHC to hc=0.25 for HHC. A drastic reduction of magnon bandwidths in the ordered phase Garlea et al., Phys. Rev. Lett. 98, 167202 2007 is observed and studied in detail. New features of the spectrum, presumably related to this bandwidth collapse, are observed just above the transition field.

Zheludev, Andrey I [ORNL; Garlea, Vasile O [ORNL; Masuda, T. [Yokohama City University, Japan; Manaka, H. [Kagoshima University, Kagoshima JAPAN; Regnault, L.-P. [CEA, Grenoble, France; Ressouche, E. [CEA, Grenoble, France; Grenier, B. [CEA, Grenoble, France; Chung, J.-H. [National Institute of Standards and Technology (NIST); Qiu, Y. [National Institute of Standards and Technology (NIST); Habicht, Klaus [Hahn-Meitner Institut, Berlin, Germany; Kiefer, K. [Hahn-Meitner Institut, Berlin, Germany; Boehm, Martin [Institut Laue-Langevin (ILL)

2007-01-01T23:59:59.000Z

289

Characterization of nanostructured zirconia prepared by hydrolysis and reverse micelle synthesis by small-angle neutron and X-ray scattering  

DOE Green Energy (OSTI)

Low temperature techniques such as hydrolysis and reverse micelle syntheses provide the opportunity to determine the relationship between the structural properties and preparation conditions of zirconia powders as well as to tailor their physicochemical properties. The authors have performed small-angle neutron and synchrotron X-ray scattering (SANS and SAXS) experiments to study the nucleation and organization of zirconia nanoparticles via different preparation routes. First, the formation of reverse micelles in individual and mixed solutions of (ZrOCl{sub 2}+D{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3}, and (NH{sub 4}OH+H{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3} systems at water/AOT molar ratio of 20 was characterized. Second, the aggregation of zirconia gels obtained from the reaction of the reverse micelle solutions after heat treatments was studied. Third, the nanostructure of zirconia powders prepared by the reverse micelle method is compared with the corresponding powders prepared by hydrolysis after different heat treatments.

Thiyagarajan, P.; Li, X.; Littrell, K.; Seifert, S.; Csencsits, R.; Loong, C.

1999-12-07T23:59:59.000Z

290

Hazard Analysis for the High Power Accelerator Production of Tritium (APT) Experiments at the Los Alamos Neutron Scattering Center (LANSCE).  

SciTech Connect

The Accelerator Production of Tritium (APT) Target/Blanket and Materials Engineering Demonstration and Development (ED and D) Project has undertaken a major program of high-power materials irradiation at the Los Alamos Neutron Science Center (LANSCE) Accelerator. Five experiments have been installed in the Target A-6 area, immediately before the Isotope Production facility and the LANSCE bearnstop, where they will take a 1.0-mAmp-proton beam for up to 10 months. This operation is classed as a Nuclear Category (cat)-3 activity, since enough radionuclides buildup in the path of tie beam to exceed cat-3 threshold quantities. In the process of analyzing this buildup, it was realized that a loss of coolant accident (LOCA) could result in oxidation and subsequent vaporization of certain tungsten elements contained in our experiments. If this process occurs in the presence of steam, breakup of the water molecule would also provide a potentially explosive source of hydrogen, causing maximum release of radioactive aerosols to the surrounding environment. This process can occur in a matter of seconds. Such a release would result in potentially unacceptable dose to the public at the LANSCE site boundary, 800 meters from the A-6 area.

Waters, L.S.

1999-06-08T23:59:59.000Z

291

Michael Ohl | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael Ohl Lead Instrument Scientist: Neutron Spin Echo Spectrometer (NSE), SNS http:www.jcns.info Education PhD in Physics, University of Augsburg, Germany Description of...

292

Teacher Programs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Diffractometer, explains neutron diffractometry to teachers participating in the STARs program. Ashfia Huq (front), instrument scientist for the SNS Powder Diffractometer, explains...

293

Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of {sup 3}He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O. [Neutron Scattering Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Tang, X.; Lin, J. Y. Y.; Fultz, B. [California Institute of Technology, W. M. Keck Laboratory 138-78, Pasadena, California 91125 (United States)

2012-01-15T23:59:59.000Z

294

Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically-focused neutron guide, high speed magnetic bearing choppers and a massive array of 3He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program, and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

Abernathy, Douglas L [ORNL; Stone, Matthew B [ORNL; Loguillo, Mark [ORNL; Lucas, Matthew [Air Force Research Laboratory, Wright-Patterson AFB, OH; Delaire, Olivier A [ORNL; Tang, Xiaoli [California Institute of Technology, Pasadena; Lin, J. Y. Y. [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena

2012-01-01T23:59:59.000Z

295

ORNL Neutron Sciences Users  

NLE Websites -- All DOE Office Websites (Extended Search)

SHUG banner SNS-HFIR User Group The SNS-HFIR User Group (SHUG) consists of all persons interested in using the neutron scattering facilities at Oak Ridge. It provides input to the...

296

Neutron Detection Efficiency of the  

E-Print Network (OSTI)

on improving the physical model used for neutron scattering in the resonance region. In many cases, the physical model for neutron scattering must take into account the motion of the target nuclei [2International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

Gilfoyle, Jerry

297

Neutronics studies for a long-wavelength target station at SNS.  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS), under construction at Oak Ridge National Laboratory, will be the premier facility for neutron scattering studies in the United States. From the outset the SNS can achieve additional flexibility and accommodate a broader range of scientific investigation than would be possible with only the High Power Target Station by utilizing two target stations, each operating under a separate set of conditions and optimized for a certain class of instruments. A second target station, termed the Long-Wavelength Target Station (LWTS), would operate at a lower pulse rate (e.g., 10 vs. 60 Hz) and utilize very cold moderators to emphasize low-energy (long wavelength) neutrons. The LWTS concept discussed here obtains the highest low-energy fluxes possible for neutron scattering instruments by using a heavy-water-cooled solid tungsten target with two moderators in slab geometry and one in a front wing position. The primary focus has been on solid methane moderators, with liquid methane and hydrogen also considered. We used MCNPX to conduct a series of optimization and sensitivity studies to help determine the optimal neutronic parameters of the LWTS. We compared different options based on the thermal and epithermal fluxes as determined by fitting the spectral intensity of the moderators with a Maxwellian peak and a modified Westcott function. The primary parameters are the moderator positions and composition and the target size. We report results for spectral intensity, pulse shapes, high-energy neutron emission, heating profiles in the target, and target activation.

Micklich, B. J.; Iverson, E. B.; Carpenter, J. M.

2001-09-21T23:59:59.000Z

298

Neutron Science TeraGrid Gateway  

Science Conference Proceedings (OSTI)

The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

Lynch, Vickie E [ORNL; Chen, Meili [ORNL; Cobb, John W [ORNL; Kohl, James Arthur [ORNL; Miller, Stephen D [ORNL; Speirs, David A [ORNL; Vazhkudai, Sudharshan S [ORNL

2010-01-01T23:59:59.000Z

299

Neutron Scattering Graduate Programs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

at ORNL and the higher education sector. A major focus has been on the development of cyber-enabled collaborative graduate courses with participation from multiple university and...

300

Neutron Scattering Portal | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

services can be accessed through the User Portal. Helpful web links to other useful ORNL sites are also available via the portal. Getting Access to Resources Our computing...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Instrument - hsrl  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentshsrl govInstrumentshsrl Documentation HSRL : Instrument Mentor Monthly Summary (IMMS) reports HSRL : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : High Spectral Resolution Lidar (HSRL) Beneficiary of Recovery Act funding. Instrument Categories Aerosols, Cloud Properties The High Spectral Resolution Lidar (HSRL ) provides calibrated measurements of aerosol optical depth, volume backscatter coefficient, cross section, and depolarization. Measurements are computed from ratios of the particulate scattering to the measured molecular scattering. This provides absolute calibration and makes the calibration insensitive to dirt or precipitation on the output window. A very narrow, angular field-of-view

302

Neutron Diffraction Study of Crystal Structure and Magnetic ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Magnetic refrigeration based on the magnetocaloric effect ... Small and Wide Angle Neutron Scattering for Industrial Applications at HANARO.

303

Compact D-D/D-T neutron generators and their applications  

E-Print Network (OSTI)

cold neutrons have an excellent resolution for the fusion-the fusion-based neutron source is more suitable for coldCold neutron source for Small Angle Neutron Scattering51 5.4 Summary of fusion-

Lou, Tak Pui

2003-01-01T23:59:59.000Z

304

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

a surprising lack of information about the magnetic excitation spectrum of these unconventional systems. SEQUOIA is an ideal instrument to study weak magnetic scattering,...

305

LANSCE | Lujan Center | Instruments | ASTERIX  

NLE Websites -- All DOE Office Websites (Extended Search)

Asterix Asterix Surfaces and Interfaces Asterix is a reflectometer/diffractometer/grazing-incidence-SANS/SESAME-enabled-SANS spectrometer that is primarily used for experiments or neutron scattering techniques requiring polarized neutron beams. These experiments involve studies of magnetic materials and to a smaller (though growing) extent non-magnetic systems-the latter taking advantage of the Spin Echo Scattering Angle Measurement (SESAME) technique. Examples of programs using Asterix include: polarized neutron reflectometry of magnetic materials (in low and 11 T-strong fields), long-wavelength/large-d-spacing diffraction (d-spacing > 2 Å) and measurements of pair correlation lengths up to 2 µm in soft matter. Asterix views an intense polychromatic neutron beam through a 36-cm2

306

EEE 562 Nuclear Reactor Theory and Design (3 hrs) Catalog Description: Principles of neutron chain reacting systems. Neutron diffusion and moderation.  

E-Print Network (OSTI)

important part of reactor physics. As the neutrons are produced in neutron induced fission of a fissile physical processes like neutron capture, elastic and inelastic scattering, upscattering, etc. Neutron technique is a scattering of free neutrons by matter. It is used in biophysics, physics, chemistry

307

Supercool Neutrons (Ultracold Neutrons)  

E-Print Network (OSTI)

in the USA. Why neutrons? Neutrons possess physical properties that make them valuable investigative tools Spallation Neutron Source (SNS) The world's most intense pulsed accelerator-based neutron source. High Flux Isotope Reactor (HFIR) The highest flux reactor-based neutron source for condensed matter research

Martin, Jeff

308

BASIS Equipment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment Equipment BASIS Schematic Schematic of the SNS Backscattering Spectrometer. Helium dewer cooling a sample Helium dewer cooling a sample (bird's eye view). The heart of the work in a typical experiment is setting up the sample in the desired environment. A typical neutron sample ranging from a millimeter to a few centimeters is placed in a specialized cylindrical can and sealed. For liquids, the backscattering instrument often uses an annular can, created by placing a smaller can within a larger can and inserting the liquid sample between the two cans. This picture shows a helium dewer cooling the environment encompassing the sample can, which has been lowered into the beam from the top of the scattering tank. Crystals Crystals. The backscattering spectrometer is defined by the reflection of specific

309

ARM - Instrument Datastreams  

NLE Websites -- All DOE Office Websites (Extended Search)

govDataInstrument Datastreams govDataInstrument Datastreams Measurement Categories Select below to highlight datastreams in specified measurement categories. Aerosols The effect of aerosols is measured by instrument systems and lidars that provide data on the size distribution, optical properties, scattering, and extinction of aerosols. Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more information about these measurements, see the ARM Carbon Project website. Coming soon: Aircraft carbon profile samples Atmospheric State Cloud Properties Active and passive remote sensing instruments are used to measure the macroscopic properties (horizontal and vertical distributions) of clouds, and the microphysical properties (sizes, shapes, and phases [water or ice])

310

NCNR NG3-SANS Instrument Schedule B. Hammouda Tel ...  

Science Conference Proceedings (OSTI)

... Poly(acrylic acid) in 10CB Hammouda various solvents Jun 15 3 M. Diwekar +J. Shi 4602 Small Angle Neutron DI Kline (U. Utah) Scattering (SANS ...

311

NIST CNR SANS NG7 30 Meter SANS Instrument  

Science Conference Proceedings (OSTI)

... 7, Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS), YB ...

312

NIST CNR SANS NG3 30 Meter SANS Instrument  

Science Conference Proceedings (OSTI)

... 3, Characterization of Fly Ash Reactivity in Hydrating Cement by Neutron Scattering, W. Bumrongjaroen, RA Livingston, DA Neumann, AJ Allen, J ...

313

Using Neutrons to Study Radioactive Materials  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive...

314

Instrument Scientist  

Science Conference Proceedings (OSTI)

... (2009) 102, 127201; "Neutron Transmission of Single-Crystal Magnesium Fluoride" by JG Barker, DFR Mildner JA Rodriguez and P. Thiyagarajan. ...

2013-01-03T23:59:59.000Z

315

Exertion instruments  

E-Print Network (OSTI)

This dissertation describes the research, development and reasoning behind a family of musical instruments called Exertion Instruments. They use inline electrical generators to run a synthesizer and an amplifier while ...

Vawter, Noah (Noah Theodore)

2011-01-01T23:59:59.000Z

316

Neutron scattering and hydrogenous materials  

Science Conference Proceedings (OSTI)

... The next molecules, shown in brown, reside above the line defined by adjacent oxygen atoms, and in the sites above the benzene ring, shown in ...

2012-11-26T23:59:59.000Z

317

NXS 2012 - Neutron Scattering School  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL Facilities ANL Map (jpg) ANL Map (pdf) ANL Visitor's Guide ORNL Facilities HFIR Facility SNS Facility HFIRSNS Map Wireless Networks ORNL Safety & Security Rules ORNL...

318

NXS 2011 - Neutron Scattering School  

NLE Websites -- All DOE Office Websites (Extended Search)

NotesVideos Experiments ANL Facilities ANL Map ANL Visitor's Guide ORNL Facilities HFIR Facility SNS Facility HFIRSNS Map Wireless Networks ORNL Safety & Security Rules ORNL...

319

Neutron Scattering School (NXS2008)  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda updated 93008 Experiment Groups ORNL Experiments Experiments ORNL Facilities HFIR Facility SNS Facility HFIRSNS Map Access Requirements Wireless Network Access Rules &...

320

Neutron Scattering School (NXS2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiments Abstracts Discussion Schedule Experiments Experiment Groups ORNL Facilities HFIR Facility SNS Facility HFIRSNS Map Access Requirements Wireless Network Access Safety &...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Filter-Analyzer Neutron Spectrometer (FANS)  

Science Conference Proceedings (OSTI)

... Soc., Div. Fuel Chem ... H. Kabbour, and CC Ahn, "Hydrogen Adsorption in MOF-74 Studied by Inelastic Neutron Scattering", in Life Cycle Analysis for ...

322

Quantum Condensed Matter | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

323

Filter-Analyzer Neutron Spectrometer (FANS)  

Science Conference Proceedings (OSTI)

... J. Hwang, "Probing the Unusual Proton and Anion Mobility of LiBH ... Analysis of the Inelastic Neutron Scattering Spectra of Electron Donor-Acceptor ...

324

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

325

Licenses Available in Analytical Instrumentation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Instrumentation Analytical Instrumentation SHARE Analytical Instrumentation 199700361 Neutron Detection Using an Embedded Sol-Gel Neutron Absorber 199700370 Bioluminescent Bioreporter Integrated Circuits 199900683 Microscale Ion Trap Mass Spectrometer 200101009 Automated Sampling for Microarray Readout Using Electrospray Mass Spectrometry 200201069 Planar Flow-By Electrode Capacitive Electrospray Ion Source 200201145 Fluorescent Nanoparticles for Radiation Detection 200301290 Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc 200401367 Composite Solid-State Scintillators for Neutron Detection 200501505 Resistive-Glass Drift Tube for Use as a Controlled Kinetic Energy Ion Source 200601675 Functionalized Gold Nanoparticles for Rapid,

326

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

327

TOPAZ: the Single Crystal Diffractometer at SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

TOPAZ-Single-Crystal Diffractometer TOPAZ-Single-Crystal Diffractometer TOPAZ instrument scientist Christina Hoffmann and scientific associate Matt Frost at TOPAZ. TOPAZ instrument scientist Christina Hoffmann and scientific associate Matt Frost at TOPAZ. TOPAZ is an elastic scattering instrument that allows for probing of material structures and responses under controlled environmental conditions. It enables neutron measurement of the same single-crystal samples that is possible with x-ray diffraction. Data are collected on samples of 0.1 mm3 or less. Resolution is such that an average unit cell size of [50 × 50 × 50] Å3 for compounds of moderate complexity can be easily accommodated. This includes inorganic large and porous framework and guest-host materials, metal (in-)organic cluster and

328

Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector  

Science Conference Proceedings (OSTI)

Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs.

LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.

1986-01-01T23:59:59.000Z

329

Neutron sources and applications  

Science Conference Proceedings (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

330

ARM - Instrument - aos  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaos govInstrumentsaos Documentation AOS : Handbook AOS : Instrument Mentor Monthly Summary (IMMS) reports AOS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aerosol Observing System (AOS) Beneficiary of Recovery Act funding. Instrument Categories Aerosols General Overview The aerosol observing system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal measurements are those of the aerosol absorption and scattering coefficients as a function of the particle size and radiation wavelength. Additional measurements include those of the particle number concentration, size distribution, hygroscopic growth, and inorganic

331

Instrumented SSH  

E-Print Network (OSTI)

LBNL-****** Instrumented SSH NERSC Center Division Lawrence05CH11231. Introduction NERSC recently undertook a projectof SSH is now running on all NERSC production systems. This

Campbell, Scott

2009-01-01T23:59:59.000Z

332

Other Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

(nuclear magnetic resonance) are used in studies of components for advanced batteries and fuel cells. Chemical analysis instrumentation such as high-performance liquid...

333

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Education banner Education banner Sunil Sinha A Chat with Sunil Sinha, Distinguished Professor of Physics at the University of California-San Diego and speaker at the recent CNMS-SNS Research Forum more... The purpose of the Spallation Neutron Source and the High Flux Isotope Reactor is to facilitate neutron scattering as an integral tool for scientific research and technological development across many scientific and engineering domains within the scientific, academic,and industrial communities. Coupled with this role is a recognized need to inspire, educate, and facilitate the next generation of users and hence foster enhanced use of the unique neutron scattering facilities at ORNL. This is the central theme of the education activities within the Neutron Sciences Directorate (NScD).

334

About US | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

banner What's the Big Deal About Neutron Scattering? Who Conducts Research at SNS and HFIR? Why Do They Come Here? Where Are We? Oak Ridge National Laboratory is home to two of...

335

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

particles of her milk using small-angle neutron scattering at ORNL's High Flux Isotope Reactor (HFIR). Casein micelles, a family of related phosphorus-containing proteins, make up...

336

ARM - Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstruments govInstruments Instruments Location Table Contacts Instrument Categories Select below to highlight instruments in specified categories. Aerosols Airborne Observations Atmospheric Carbon Measurements of atmospheric carbon are obtained from samples collected at the Southern Great Plains site. For more information about these measurements, see the ARM Carbon Project website. Now available: Aircraft carbon profile samples These data (and more) are freely available in the ARM Archive. The first time you visit the Archive you will need to create a new account-a relatively short form asking for contact information-you can use right away. Coming soon: Airborne continuous CO2 profile samples Atmospheric Profiling Cloud Properties Derived Quantities and Models Ocean Observations

337

Light and Color in Nature -Scattering Effects -  

E-Print Network (OSTI)

in reactor, nuclear bomb · Limit: Diffusion Theory ­ Very many scattering events ­ Effective anisotropy · Strongly wavelength-dependent (1/4) WS03/04: Light and Color in Nature ­ Scattering Scattering Theory equation · Astrophysics ­ Radiation density inside stars · Nuclear physics ­ Neutron density & velocity

Assarsson, Ulf

338

RIJKSUNIVERSITEIT GRONINGEN In-situ element analysis from gamma-ray and neutron spectra using a  

E-Print Network (OSTI)

experimentally. Figure 2.1: Schematic presentation of the neutron elastic scattering process (CANDU04). #12 process (CANDU04). Instead of re-emitting a neutron as in inelastic scattering, the compound nucleus may

Groningen, Rijksuniversiteit

339

2010 Neutron Review: ORNL Neutron Sciences Progress Report  

SciTech Connect

During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and chalcogenides), a class of materials discovered in 2008. This research is yielding new insights into the relationship between magnetism and superconductivity and has established several key features of this family of high-temperature superconducting (HTS ) materials: the maximum magnetic field at which they can function, the nature of the electrons involved in the superconductivity, the dependence of the properties upon chemical substitution, and the character of the magnetic fluctuations in the material. The results suggest that despite important differences between these materials and the HTS copper oxides, a universal mechanism may be responsible for the unconventional superconductivity. (4) Coal Sequestration Research: A New Home for Greenhouse Gases - One possibility for slowing down the increasing levels of carbon dioxide (CO{sub 2}) in the atmosphere is to capture the gas in natural underground features such as coal seams. Critical to the feasibility of this technology is determining how much CO{sub 2} can be stored, no method for which has been found - until now. (5) Accelerator Reliability Passes 92% - In December 2010, SNS set a new record for itself when the accelerator ran at 1 MW with 100% reliability. Target Performance Exceeds All Expectations - The mercury target used at SNS is the first of its kind. During the design and planning for SNS, many people were skeptical that the target would work. In 2010, it was confirmed that the target was working not only well but much better than anyone would have imagined. (6) Changing the World of Data Acquisition - Researchers at SNS are starting to benefit from event-based data analysis. Event data mode captures and stores an individual data set for every single neutron that strikes a detector - precisely when and where the neutron is detected. This technique provides numerous advantages over traditional methods. Event data mode allows researchers to process their data at the highest resolution possible with no loss of data. This method of data collection provides a much more efficient way for users to gather data a

Bardoel, Agatha A [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

2011-06-01T23:59:59.000Z

340

NCNR BT5-USANS Instrument Schedule D. Mildner Tel: (301) ...  

Science Conference Proceedings (OSTI)

... Jul 13 1 Barker, Kim Instrument Testing Jul 14 1 I Lini (South 6312 Scattering Study of the 5P Jackson Dakota State) NIST Clay-Polysaccharide ...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nanostructure of a-Si:H and related alloys by small-angle scattering of neutrons and X-rays: Annual technical progress report: May 22, 1998 -- May 21, 1999  

DOE Green Energy (OSTI)

This report describes work being performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys on the nanometer scale. The materials under study are being prepared by state-of-the-art deposition methods, as well as by new and emerging deposition techniques. The purpose is to establish the role of nanostructural features in controlling opto-electronic and photovoltaic properties. The approach centers around the use of the uncommon technique of small-angle scattering of both X-rays (SAXS) and neutrons (SANS). SAXS has already been established as highly sensitive to microvoids and columnar-like microstructure. A major goal of this research is to establish the sensitivity of SANS to the hydrogen nanostructure. Conventional X-ray diffraction techniques are being used to examine medium-range order and microcrystallinity, particularly near the boundary between amorphous and microcrystalline material.

Williamson, D. L.

1999-12-21T23:59:59.000Z

342

Neutron proton crystallography station (PCS)  

SciTech Connect

The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

343

News & Events | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source. ORNL said the Spin Echo was installed on Beam Line 15 at the SNS. Eventually, there'll be 25 research instruments of varying types and capabilities,...

344

Biology and Soft Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Soft Matter Division Biology and Soft Matter Division SHARE Biology and Soft Matter Division BSMD Director Paul Langan The Biology and Soft Matter Division (BSMD) operates an external user program for biological and soft matter research using neutron techniques at SNS and HFIR. Division personnel enable the research initiated by external users by acting as instrument responsible scientists and local contacts on a range of different beam lines. BSMD works closely with the Center for Structural Molecular Biology. Diffraction, small-angle scattering, and reflectometry are ideal methods for studying structure and organization from the atomic to the micron length scales, and neutron spectroscopic methods characterize self and collective motions from picosecond to microsecond timescales. These

345

Neutron Polarizers Based on Polarized 3He  

SciTech Connect

The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest for possible applications in spintronics. With the temperature at 12 K and H=235G which saturated both layers' moment to be parallel to the guide field we saw ferromagnetic alignment (FM) of the two outer layers. We also have evidence that the two magnetic layers have different Tc's, and can therefore be used to fabricate a spin-valve. We see a peak at a location in q-space that could correspond to an anti-ferromagnetic state. Finally, we made progress in assembling a spin-exchange optical pumping system which will eventually be relocated to IPNS as an on-site neutron spin filter. As this is written we are preparing for the first effort to optically pump 3He using spin exchange at Indiana. This device will be operational before the end of the present grant. The goal of the work funded by the subcontract to Hamilton College was to support the work of NIST and Indiana in developing 3He-based neutron spin filters for use in polarized neutron scattering applications. Most of the grant period was used by Hamilton to construct the required infrastructure, including 3He cell filling and NMR systems. The main achievement at Hamiltonin is the successful operation of the spin exchange filling system to make a 3He spin exchange cell with a spin relaxation time of 300 hours. This very long relaxation time bodes well for the further development of spin exchange 3He spin filters. Hamilton also constructed a portable NMR device that was used at Indiana to conduct the compression system measurements.

William M. Snow

2005-05-01T23:59:59.000Z

346

Instrumented SSH  

Science Conference Proceedings (OSTI)

NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

Campbell, Scott; Campbell, Scott

2009-05-27T23:59:59.000Z

347

Spallation Neutron Source The Spallation Neutron Source (SNS)  

NLE Websites -- All DOE Office Websites (Extended Search)

F/gim F/gim Spallation Neutron Source The Spallation Neutron Source (SNS) gives researchers more detailed informa- tion on the structure and dynamics of physical and biological materials than ever before possible. This accelerator- based facility provides the most intense pulsed neutron beams in the world. Scien- tists are able to count scattered neutrons, measure their energies and the angles at which they scatter, and map their final positions. SNS enables measurements of greater sensitivity, higher speed, higher resolution, and in more complex sample environments than have been possible at existing neutron facilities. Future Growth SNS was designed from the outset to accommodate a second target station, effectively doubling the capacity of the

348

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

349

Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume I  

Science Conference Proceedings (OSTI)

This volume covers neutron scattering inelastic instrumentation, x-ray scattering inelastic instrumentation, and magnetic excitations. (GHT)

Silver, R.N. (comp.)

1984-12-01T23:59:59.000Z

350

LANSCE | Lujan Center | Instruments | HIPPO  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure-Preferred Orientation | HIPPO Pressure-Preferred Orientation | HIPPO Materials in Extreme Environments and Geoscience HIPPO is the first third-generation neutron time-of-flight powder diffractometer constructed in the United States. It achieves very high neutron count rates by virtue of a short (9 m) initial flight path on a high-intensity water moderator and 1,360 3He detector tubes covering 4.8 m2 of detector area from 10° to 150° in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and the University of California with the goal of doing world-class science by making neutron powder diffractometry an accessible tool to the national user community. D-spacing ranges from 0.12-4.80 Å (1.31-52.4 Å-1) to 1.2-47.5 Å (0.13-5.3 Å-1) are available to support studies of crystal

351

Glossary Term - Neutron Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Term (Neutron) Glossary Main Index Next Term (Niobe) Niobe Neutron Emission After neutron emission, an atom contains one less neutron. Neutron emission is one...

352

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A Theory of neutron fluctuations in source-driven subcritical systems I. P&At*, Y. Yamane' Department of Reactor Ph>aics, Chalmers Unicrrsi[\\' oj Technolo~~~. S-41-7 96

Pázsit, Imre

353

FCD Instrument Team | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

The Four-Circle Diffractometer at HFIR The Four-Circle Diffractometer at HFIR HB-3A Four-Circle Diffractometer (HB-3A). The Four-Circle Diffractometer goniometer has a full χ circle with a 4.5-450 K closed-cycle helium refrigerator. The detector is 3He with a 7-anode array in a honeycomb pattern. Currently, only the center anode is used. The upper 2Θ limit is 155°. A multilayer-[110]-wafer silicon monochromator with the reflection from planes of the zone ensures sharp diffraction peaks in specified ranges of detector angles by control of the horizontal radius of curvature. Any plane from the zone can be set in Bragg position, but only the (331), (220) with (440), and (111) with (333) reflections are of practical interest. For the fixed monochromator angle of 48°, these reflections provide principal incident wavelengths of

354

AP Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Instrumentation Group's Instrumentation Bruker Avance NMR (400 MHz for 1H). Bruker Kappa Apex II diffractometer. Laser transient absorption facility. Laser excitation in UV and visible: Continuum Leopard SS-10-SV Nd/YAG, 60 ps pulse; Continuum Powerlite 7010 Nd/YAG, 6 ns pulse (266 nm, 355 nm, 532nm), Opotek Vibrant LD 355 II OPO, 6 ns pulse (410 - 2650 nm continuously). Detection in Uv-Vis-NIR at single wavelength with Xe lamp probe (260 - 800 nm, time resolution ca. 100 ps with biplanar tube; 400 - 1600 nm, time resolution 2-3 ns with diode detectors; 260 - 800 nm, time resolution 2-3 ns with PMT). Detection in MIR, spectral region with step-scan FTIR FT-IRS-66/V (4500 - 400 cm-1), time resolution ca. 35 ns, single wavelength with Quantum cascade lasers (2317-2197, 2235-2105, 2230-2020, 2072-1977, 1981-1873, 1903-1774, 1813-1692, 1670-1536, 1395-1306, 1258-1181 and 1135-1051 cm-1), time resolution ca. 5ns. Transient digitizers available: LeCroy HDO4034 350 MHz 12-bit; LeCroy 8620A 6 GHz; Tek DPO 4032 350 MHz; Tek DPO 4054B 500 MHz.

355

Instrumentation and diagnostics  

SciTech Connect

This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

Nakaishi, C.V.; Bedick, R.C.

1990-12-01T23:59:59.000Z

356

DIFFERENTIAL NEUTRON THERMALIZATION. Annual Summary Report, October 1, 1961 through September 30, 1962  

DOE Green Energy (OSTI)

Experimental and theoretical work on the interaction mechanisms by which neutrons exchange energy with H atoms involves treating neutron thermalization as neutron interactions with energy levels in the atoms. Cold moderators are presently being studied in order to optimize the source of cold neutrons. Cold neutrons are provided from an accelerator arrangement that directs electrons against a Fansteel target producing fast neutrons. Thermal neutrons, produced by moderation of fast neutrons, are passed through a chopper. Several moderators are evaluated, and neutron emission time measurements by crystal diffraction and beam chopper techniques point out emission time dependence on thickness, moderator, and temperature. The neutron beam chopper used presently is described, and results of neutron scattering by liquid para- and orthohydrogen are displayed and compared with theoretical predictions made with a perfect hydrogen gas model. Inelastic scattering of neutrons by liquid H is discussed, and theoretical and experimental results of inelastic scattering by polyethylene are also included. (D.C.W.)

Whittemore, W L

1962-11-28T23:59:59.000Z

357

NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.  

SciTech Connect

Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

SMITH,G.C.

2002-03-01T23:59:59.000Z

358

Dr. Georg Ehlers - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Georg Ehlers Georg Ehlers Lead Instrument Scientist: Cold Neutron Chopper Spectrometer (CNCS), SNS Education PhD in Experimental Condensed Matter Physics, the Hahn Meitner Institut, in Berlin, Germany Description of Research Dr. Ehlers joined the Spallation Neutron Source (SNS) in 2003 as the lead instrument scientist for beam line 5, the Cold Neutron Chopper Spectrometer (CNCS). CNCS is a high-resolution, direct geometry, cold neutron, inelastic multi-chopper spectrometer, designed to make use of neutrons with an energy of <50 meV. Before joining the SNS, Dr. Ehlers worked at the Institute Laue-Langevin (ILL), a leading European neutron research facility situated in Grenoble, France for six years. At the ILL, he was instrument-responsible for the spin-echo spectrometers IN11 and IN15, and established a strong research

359

Instrumentation @ Catalysis: Reactivity and Structure Group | Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Instrumentation The Catalysis Group at BNL is leading research initiatives into the development of new tools and techniques that focus on the characterization of heterogeneous catalytic reactions and catalysts using imaging, spectroscopy and scattering techniques and integrated combinations of them under reaction conditions to unravel the morphology, chemical and structural properties, of catalysts, respectively. These efforts revolve around the use of synchrotron radiation (NSLS), electrons (CFN) and quantum tunneling tools with particular thrusts into imaging, spectroscopy and scattering. Groups Instrumentation(BNL) Three UHV chambers with diverse instrumentation for surface characterization: LEED, UPS, XPS, AES, TPD, ISS, PM-AP-IRRAS, Reactivity Cell. All the systems include ancillary instrumentation such as sputtering guns and metal evaporators. The IRRAS system was retrofitted with an ambient pressure (AP) cell on top of the UHV system. The sample can be prepared and characterized in UHV and then transfer in vacuum to the AP cell.

360

NCNR NG3-SANS Instrument Schedule B. Hammouda Tel ...  

Science Conference Proceedings (OSTI)

... and 9P Butler Greenberg (U. SC9-14 Linear Chains Akron) Jul 21 1 J. Trewhella + S. 805 Neutron Scattering 10CB Kline Gallagher (LANL) SC9-01 ...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

O7: VITESS Software for Neutronic Monte-Carlo Simulations  

Science Conference Proceedings (OSTI)

It provides users the opportunity to optimize or design instruments on both reactor and spallation neutron sources. To optimize the applicability of VITESS...

362

Instrumentation for environmental monitoring. Volume 3. Radiation  

SciTech Connect

A comprehensive survey of instrunnentation for environmental monitoring is being carried out by the Lawrence Berkeley Laboratory under a grant from the Natioral Science Foundation. Instruments being investigated are those useful for measurements of Air Quality, Water Quality, Radiation, and Biomedical Parameters related to environmental research and monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to this work. The results of the survey are given as (a) descriptions of the physical and operating characteristics of available instruments, (b) critical comparisons among instrumentation methods, and (c) recommendations of promising methodology and development of new instrumentation. The survey material is compiled in 5 loose- leaf volumes which can be periodically updated. An update for volume 3 on radiation instrumentation is presented. New pages are included for insertion in the introductory material and also under the headings nuclear reactors, combination instruments, alpha particle instrumentation, beta particle instrumentation, x and gamma radiation monitoring instrumentation, gamma spectrometry, neutron monitoring instrumentation, personnel dosimetry, radionuclides (strontium -89 and -90, iodine -129 and -131, radium, uranium, plutonium, and instrument notes), and infrared. (WHK)

1973-10-01T23:59:59.000Z

363

Neutron Radiography  

Science Conference Proceedings (OSTI)

Table 8   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials and ready availability

364

Neutron Sources  

Science Conference Proceedings (OSTI)

Table 1   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials, and ready

365

Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2  

SciTech Connect

The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

NONE

1996-05-01T23:59:59.000Z

366

Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1  

Science Conference Proceedings (OSTI)

The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

Marzec, B. [ed.

1996-05-01T23:59:59.000Z

367

INSTRUMENTATION FOR ENVIRONMENTAL MONITORING  

E-Print Network (OSTI)

MO, June 4-7, 1979 INSTRUMENTATION FOR ENVIRONMENTALContract W-7405-ENG-48 INSTRUMENTATION FOR ENVIRONMENTAL0.003 mrem C^ Figure 5 INSTRUMENTATION: Too often analytical

McLaughlin, R.D.

2010-01-01T23:59:59.000Z

368

Dr. Yuri B. Melnichenko | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist: General-Purpose Small-Angle Neutron Scattering Spectrometer (CG-2GP-SANS), HFIR Senior Research Staff Education PhD in Polymer Physics, Institute for Macromolecular...

369

Videos & Tutorials - Science | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

and 2010 National School on Neutron & X-Ray Scattering. This annual school is hosted by ORNL and Argonne National Laboratory. Some of this material is protected by copyright....

370

Low energy neutron-proton interactions  

E-Print Network (OSTI)

There have been few measurements of cross sections for neutron-proton scattering and radiative capture below 1 MeV. Those measurements which do exist are at a small number of energies and are often inconsistent with ...

Daub, Brian (Brian Hollenberg)

2012-01-01T23:59:59.000Z

371

Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering  

SciTech Connect

Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

Proffen, Thomas E [Los Alamos National Laboratory; Kim, Yiung- Il [UCSB; Cadars, Sylvian [UCSB; Shayib, Ramzy [UCSB; Feigerle, Charles S [UNIV OF TENNESSEE; Chmelka, Bradley F [UCSB; Seshadri, Ram [UCSB

2008-01-01T23:59:59.000Z

372

Breast Tissue Imaging | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron scattering measures samples too hot to hold Neutron scattering measures samples too hot to hold Research Contact: Kenneth Kelton August 2013 Liquids and glasses can have unique optical, electronic, and structural applications but are poorly understood compared to crystalline materials, limiting the ability to take advantage of the characteristics of glasses in a range of applications. Containers can react with molten samples at high temperatures or can favor the growth of crystals over the formation of glasses. Using the chemical and isotopic sensitivity of neutron scattering to understand these disordered structures requires a new capability to hold samples in a neutron beam at high temperature without using a solid physical container. New sample environment equipment at Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) enables scientists to

373

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology & Medicine Archive Biology & Medicine Archive Research Highlights Biology & Medicine Archive Small-Angle Neutron Scattering Team Finds Structural Differences in Sindbis Virus Particles from Different Host Species (2010) Published Work: "The Structure of Sindbis Virus Produced from Vertebrate and Invertebrate Hosts as Determined by Small-Angle Neutron Scattering" Contact: Flora Meilleur Targeted Drug Delivery Systems Studies of the unique structure of synthetic molecules will help in the development of drugs that can target diseased areas of the body. This researched on dendrimers revealed how molecules function within solutions at different pH levels. (2008) Research in progress. Contact: Wei-Ren Chen "Intelligent" Polymers for Biomedical Technologies

374

ABAREX: A neutron spherical optical-statistical model code  

SciTech Connect

The spherical optical-statistical model is briefly reviewed and the capabilities of the neutron scattering code, ABAREX, are presented. Input files for ten examples, in which neutrons are scattered by various nuclei, are given and the output of each run is discussed in detail.

Lawson, R.D.

1992-06-01T23:59:59.000Z

375

POWDER: The Neutron Powder Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Powder Diffractometer Neutron Powder Diffractometer Neutron Powder Diffractometer. Neutron Powder Diffractometer. The HB-2A diffractometer is a workhorse instrument used to conduct crystal structural and magnetic structural studies of powdered and ceramic samples, particularly as a function of intensive conditions (T, P, H, etc.). Powder diffraction data collected on this instrument are ideally suited for the Rietveld method. A full range of ancillary sample environments can be used, including cryofurnaces (4-800 K), furnaces (to 1800 K), cryostats (to 0.3 K), and cryomagnets (to 7 T). The Powder Diffractometer has a Debye-Scherrer geometry. The detector bank has 44 3He tubes, each with 6' Soller collimators. A germanium wafer-stack monochromator is vertically focusing and provides one of three principal

376

Glossary Term - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutrino Previous Term (Neutrino) Glossary Main Index Next Term (Neutron Emission) Neutron Emission Neutron A Neutron Neutrons are uncharged particles found within atomic nuclei....

377

Coated gallium arsenide neutron detectors : results of characterizationmeasurements.  

DOE Green Energy (OSTI)

Effective detection of special nuclear materials (SNM) is essential for reducing the threat associated with stolen or improvised nuclear devices. Passive radiation detection technologies are primarily based on gamma-ray detection and subsequent isotope identification or neutron detection (specific to neutron sources and SNM). One major effort supported by the Department of Homeland Security in the area of advanced passive detection is handheld or portable neutron detectors for search and localization tasks in emergency response and interdiction settings. A successful SNM search detector will not only be able to confirm the presence of fissionable materials but also establish the location of the source in as short of time as possible while trying to minimize false alarms due to varying background or naturally occurring radioactive materials (NORM). For instruments based on neutron detectors, this translates to detecting neutrons from spontaneous fission or alpha-n reactions and being able to determine the direction of the source (or localizing the source through subsequent measurements). Polyethylene-coated gallium arsenide detectors were studied because the detection scheme is based on measuring the signal in the gallium arsenide wafers from the electrical charge of the recoil protons produced from the scattering of neutrons from the hydrogen nucleus. The inherent reaction has a directional dependence because the neutron and hydrogen nucleus have equivalent masses. The assessment and measurement of polyethylene-coated gallium arsenide detector properties and characteristics was the first phase of a project being performed for the Department of Homeland Security and the results of these tests are reported in this report. The ultimate goal of the project was to develop a man-portable neutron detection system that has the ability to determine the direction of the source from the detector. The efficiency of GaAs detectors for different sizes of polyethylene layers and different angles between the detector and the neutron source were determined. Preliminary measurements with a neutron generator based on a deuterium-tritium reaction ({approx}14 MeV neutrons) were performed and the results are discussed. This report presents the results of these measurements in terms of efficiency and angular efficiency and compares them to Monte Carlo calculations to validate the calculation scheme in view of further applications. Based on the results of this study, the polyethylene-coated gallium arsenide detectors provide adequate angular resolution based on proton recoil detection from the neutron scattering reaction from hydrogen. However, the intrinsic efficiency for an individual detector is extremely low. Because of this low efficiency, large surface area detectors ( or a large total surface area from many small detectors) would be required to generate adequate statistics to perform directional detection in near-real time. Large surface areas could be created by stacking the detector wafers with only a negligible attenuation of source neutrons. However, the cost of creating such a large array of GaAs is cost-prohibitive at this time.

Klann, R. T.; Perret, G.; Sanders, J.

2006-09-29T23:59:59.000Z

378

About Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Basics Neutron Basics A neutron is one of the fundamental particles that make up matter. This uncharged particle exists in the nucleus of a typical atom, along with its positively charged counterpart, the proton. Protons and neutrons each have about the same mass, and both can exist as free particles away from the nucleus. In the universe, neutrons are abundant, making up more than half of all visible matter. Find Out What a Neutron Is Youtube icon Properties of Neutrons How Can Neutrons Be Used for Research? Image of glucose movement in plants Neutron imaging techniques have been able to determine the precise movement of glucose in plants. This knowledge can help scientists better understand how biomass can be efficiently converted into fuel. Neutrons have many properties that make them ideal for certain types of

379

Sensors, Instrumentation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors, Instrumentation Systems science-innovationassetsimagesicon-science.jpg Sensors, Instrumentation Systems National security depends on science and technology. The...

380

Neutron beam imaging at neutron spectrometers at Dhruva  

SciTech Connect

A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 10{sup 6}-10{sup 7} n/cm{sup 2}/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

Desai, Shraddha S.; Rao, Mala N. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

2012-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Light Scattering by Single Natural Ice Crystals  

Science Conference Proceedings (OSTI)

During the South Pole Ice Crystal Experiment, angular scattering intensities (ASIs) of single ice crystals formed in natural conditions were measured for the first time with the polar nephelometer instrument. The microphysical properties of the ...

Valery Shcherbakov; Jean-Franois Gayet; Brad Baker; Paul Lawson

2006-05-01T23:59:59.000Z

382

Moderator materials and neutronic performance  

SciTech Connect

The great variety of instruments proposed for LANSCE-II entails an equally varied set of requirements for the target stations moderators. Besides the obvious features such as intensity and pulse width of the neutron pulse, a number of more pragmatic questions have to be addressed such as fast neutron background and energy deposition in the moderators, especially at large proton beam powers such as the 1 MW proton beam power proposed for LANSCE-II.

Daemen, L.L.; Russell, G.J.; Pitcher, E.J.; Lujan, M. Jr.

1993-12-31T23:59:59.000Z

383

Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection  

Science Conference Proceedings (OSTI)

For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

Koehler, William E [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

384

SNS/BNL Diagnostics System Group, Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS/BNL Diagnostics System Group SNS/BNL Diagnostics System Group Homepage The Spallation Neutron Source project is a collaboration between six national laboratories of the United states to build a Mega Watt neutrons source driven by a proton accelerator. The complex is going to be build in Oak Ridge (Tennessee) and consists of a full energy (1 Gev) linac, an accumulator ring and a mercury target with several instruments for neutron scattering. Information on the project can be found at http://www.sns.gov. At Brookhaven National Laboratory we work mainly on the accumulator ring and transfer lines diagnostics (HEBT, Ring, RTBT). Some of the systems are SNS-wide ie: the Beam Loss Monitor system and Beam Current Monitor system. In addition our group provides parts of other systems to our partner laboratories. Our group is part or the Collider Accelerator Division that is also in charge of RHIC and the AGS complex. If you are looking for information on a particular topic you can contact the persons working on it.

385

ICANS-XIV. The fourteenth meeting of the international collaboration on advanced neutron sources.  

SciTech Connect

The meeting began with a reception on Sunday evening. Monday's plenary sessions included status reports on the four operating spallation neutron sources, IPNS, ISIS, KENS, and the Lujan Center; on the INR source under construction at Troitsk; on the IBR-2 pulsed reactor at Dubna; and on proposals for five new installations. We also heard reports on spin-off activities: the ASTE tests (liquid mercury target tests at the AGS accelerator at Brookhaven), the ACoM activities (developments aimed to provide cold moderators suitable for high-power pulsed sources), and the International Workshop on Cold Moderators for Pulsed Neutron Sources, held in September 1997 at Argonne. Jose Alonso and Bob Macek delivered enlightening invited talks overviewing linear accelerators and rings for spallation neutron sources. The rest of the meeting was devoted to targets and moderators and to instrumentation in a normal rotation of ICANS topics. There were altogether 84 oral reports and 23 poster presentations. On Tuesday and on Wednesday morning, we divided into separate series of sessions on Instrumentation and on Targets and Moderators. In the first, we had reports and discussions on instrumentation and techniques, on computer software, on instrument suites, and on new instruments and equipment. In the second series were sessions on liquid target systems, on solid target systems, on neutron production and target physics, on moderator physics and performance, and on target and moderator neutronics. The Tuesday evening meetings went on until 10:00, making for a 14-hour working day. That everyone willingly endured the long hours is a credit to the dedication of the attendees. On Wednesday afternoon, we boarded buses for the 1-hour trip to Argonne, where attendees toured IPNS and the Advanced Photon Source. Returning to Starved Rock, we enjoyed boat rides on the Illinois River and then a barbecue banquet dinner at the Lodge. All day Thursday and Friday morning, the attendees, in small working groups, discussed next-generation powder diffractometers, critical heat flux limitations on solid targets, monte carlo instrument simulation, prospects for high- and low-energy spectroscopy, small angle scattering and reflectometry, and the roles of solid and liquid targets in high-power pulsed spallation sources. Representatives of the laboratories participating in ICANS met Thursday evening to discuss the outcome of ICANS XIV and to decide whether, where, and when the next meeting would take place. They agreed to meet again in about 2 years in Japan. After the lunch break on Friday, the working group chairs presented the findings of their groups to the participants in a final plenary session, and the meeting adjourned with good feelings of accomplishment.

Carpenter, J. M., ed.; Tobin, C. A., ed.

1999-02-10T23:59:59.000Z

386

Tape high power neutron producing target for NCT V. Kononova  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 539 (2005) 622­639 FUNSPIN polarized cold-neutron for fundamental particle physics experiments with slow neutrons. r 2004 Elsevier B.V. All rights reserved. PACS problems in, e.g. solid- state physics and medicine as well as in funda- mental physics. Cold-neutron beams

Taskaev, Sergey Yur'evich

387

Ultracold Neutron Production in a Pulsed Neutron Beam Line  

E-Print Network (OSTI)

We present the results of an Ultracold neutron (UCN) production experiment in a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal expected can be overwhelmed by the large background associated with the scattering of the primary cold neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-D$_2$ is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O$_2$. In addition to setting the overall detection efficiency in the...

Lavelle, C M; Manus, G; McChesney, P M; Salvat, D J; Shin, Y; Makela, M; Morris, C; Saunders, A; Couture, A; Young, A R; Liu, C -Y

2010-01-01T23:59:59.000Z

388

Ultracold Neutron Production in a Pulsed Neutron Beam Line  

E-Print Network (OSTI)

We present the results of an Ultracold neutron (UCN) production experiment in a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal expected can be overwhelmed by the large background associated with the scattering of the primary cold neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-D$_2$ is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O$_2$. In addition to setting the overall detection efficiency in the apparatus, UCN production data using solid D$_2$ suggest that the UCN upscattering cross-section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross-sections in the thermal and cold regimes.

C. M. Lavelle; W. Fox; G. Manus; P. M. McChesney; D. J. Salvat; Y. Shin; M. Makela; C. Morris; A. Saunders; A. Couture; A. R. Young; C. -Y. Liu

2010-04-15T23:59:59.000Z

389

Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR  

E-Print Network (OSTI)

by Neutron Diffraction and NMR Mihaela Mihailescu Olivierwas carried out by neutron diffraction, 2 H-NMR and 13C-MAS NMR. Scattering length distribution func- tions of

Mihailescu, Mihaela; Soubias, Olivier; Worcester, David; White, Stephen H.; Gawrisch, Klaus

2011-01-01T23:59:59.000Z

390

Neutron dosimetry  

DOE Patents (OSTI)

A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

Quinby, Thomas C. (Kingston, TN)

1976-07-27T23:59:59.000Z

391

Scattering Methods  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... As the newest dedicated powder diffraction instrument at the Advanced Photon Source (APS), beamline 11-BM uses single-crystal analyzers to...

392

LANSCE | Lujan Center | Instruments | PHAROS  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Resolution Chopper Spectrometer | Pharos High-Resolution Chopper Spectrometer | Pharos Local Structure, Magnetism, and Nanomaterials Pharos is designed for studies of fundamental excitations in condensed-matter systems. The instrument provides 2% to 4% incident energy resolution and uses a high-speed Fermi chopper to obtain monochromatic incident energies in the range from 10 meV to 2 eV. The sample is positioned 20 meters from a chilled-water moderator. The spectrometer consists of an evacuated, shielded flight path with 10 m2 of meter-long position-sensitive detectors located at a distance of 4 meters from the sample and covering scattering angles between -10° and 145°. Pharos can accommodate the full range of inelastic scattering experiments on liquid, polycrystalline, and single-crystal samples. This includes

393

Low activated incore instrument  

DOE Patents (OSTI)

Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

Ekeroth, Douglas E. (Delmont, PA)

1994-01-01T23:59:59.000Z

394

Low activated incore instrument  

DOE Patents (OSTI)

Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

Ekeroth, D.E.

1994-04-19T23:59:59.000Z

395

Polarized Neutron in Structural Biology Present and Future Outlook  

SciTech Connect

Hydrogen has a strong polarization-dependent neutron scattering cross section. This property has been exploited in the study of soft matters, especially biological macromolecules. When a polarized neutron beam is scattered off a polarized hydrogenous sample, the otherwise large hydrogen incoherent cross section is drastically reduced while the coherent signal is significantly increased. Past experiments have demonstrated the potentials and benefits of polarized neutron scattering from soft materials. The main technical challenge of polarized neutron scattering from biological matters lies at sample polarization. Dynamic nuclear polarization is a proven yet rather sophisticated technique. Its complexity is one of the main reasons for the technique's slow adoption. The future of polarized neutron scattering in biology may rest largely in neutron protein crystallography. Polarization of protein crystals is much easier to accomplish, since protein crystals are typically rather small (<<1 mm) and only require small and easy- to-operate polarization apparatuses. In addition, the high resolution nature of neutron protein crystallography means that we will be able to study individual atoms using the polarized neutron scattering technique.

Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Crabb, Don [University of Virginia

2013-01-01T23:59:59.000Z

396

ARM - Instrument - sonicwind  

NLE Websites -- All DOE Office Websites (Extended Search)

you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : ultrasonic wind sensor (SONICWIND) Instrument Categories Surface Meteorology Output Datastreams...

397

ARM - Campaign Instrument - ecmwf  

NLE Websites -- All DOE Office Websites (Extended Search)

1-888-ARM-DATA. Send Campaign Instrument : European Centre for Medium Range Weather Forecasts Model Data (ECMWF) Instrument Categories Derived Quantities and Models Campaigns...

398

ARM - Instrument - ecmwf  

NLE Websites -- All DOE Office Websites (Extended Search)

call us at 1-888-ARM-DATA. Send Instrument : European Centre for Medium Range Weather Forecasts Model Data (ECMWF) Instrument Categories Derived Quantities and Models General...

399

ARM - Instrument - 50rwp  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstruments50rwp Documentation 50RWP : Handbook 50RWP : Instrument Mentor Monthly Summary (IMMS) reports 50RWP : Data Quality Assessment (DQA) reports ARM Data Discovery Browse...

400

ARM - Campaign Instrument - pcasp  

NLE Websites -- All DOE Office Websites (Extended Search)

you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Passive Cavity Aerosol Spectrometer (PCASP) Instrument Categories Aerosols, Airborne...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Campaign Instrument - semsamp  

NLE Websites -- All DOE Office Websites (Extended Search)

Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Scanning Electron Microscope Sampler (SEMSAMP) Instrument Categories Aerosols Campaigns...

402

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesAMF Deployment, Black Forest, GermanyInstruments Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of...

403

Chapter 199 NEUTRON SCATTERING STUDIES OF ...  

Science Conference Proceedings (OSTI)

... 4) materials. The basic crystal structure is tetragonal I4/mmm (T phase) in which the Cu Page 5. LANTHANIDE MAGNETIC ...

2005-03-07T23:59:59.000Z

404

NEUTRON SCATTERING STUDIES OF THE STRUCTURE ...  

Science Conference Proceedings (OSTI)

... Fast pyrolysis is one process that can be used to convert woody biomass into fuels and chemicals, however the liquid product created is an ...

405

Recent Neutron Scattering Results from Geometrically ...  

Science Conference Proceedings (OSTI)

... of Physics, The University of Texas at Austin, Austin, Texas 78712. ... Recently, the quantized energy states under magnetic fields (Landau levels) and ...

406

Neutron Scattering Investigation of the Structure and ...  

Science Conference Proceedings (OSTI)

... floor, their detrimental formation in gas and oil pipelines, possible existence ... Last modified 07-March-2005 by website owner: NCNR (attn: Yun Liu).

407

Radiation Detection Instruments  

Science Conference Proceedings (OSTI)

Directory of Accredited Laboratories. Radiation Detection Instruments. In 2005, the Department of Homeland Security requested ...

2013-09-06T23:59:59.000Z

408

Weak Interaction Neutron Production Rates in Fully Ionized Plasmas  

E-Print Network (OSTI)

Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.

A. Widom; J. Swain; Y. N. Srivastava

2013-05-19T23:59:59.000Z

409

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilityInstruments FacilityInstruments AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director AAF Baseline Instruments The following instruments represent available capabilities. The needs of each field campaign will be assessed and additional instruments may be added upon request. For a list of past campaign instruments and their data, see the Airborne Observations instruments. Examples of cabin configurations for the G-1 from past and upcoming campaigns are also available. Payload Example from 2010 Payload Example from 2010

410

Long-Range Neutron Detection  

Science Conference Proceedings (OSTI)

A neutron detector designed for detecting neutron sources at distances of 50 to 100 m has been constructed and tested. This detector has a large surface area (1 m{sup 2}) to enhance detection efficiency, and it contains a collimator and shielding to achieve direction sensitivity and reduce background. An unusual feature of the detector is that it contains no added moderator, such as polyethylene, to moderate fast neutrons before they reach the {sup 3}He detector. As a result, the detector is sensitive mainly to thermal neutrons. The moderator-free design reduces the weight of the detector, making it more portable, and it also aids in achieving directional sensitivity and background reduction. Test results show that moderated fission-neutron sources of strength about 3 x 10{sup 5} n/s can be detected at a distance out to 70 m in a counting time of 1000 s. The best angular resolution of the detector is obtained at distances of 30 m or less. As the separation .distance between the source and detector increases, the contribution of scattered neutrons to the measured signal increases with a resultant decrease in the ability to detect the direction to a distant source. Applications for which the long-range detector appears to be suitable include detecting remote neutron sources (including sources in moving vehicles) and monitoring neutron storage vaults for the intrusion of humans and the effects they make on the detected neutron signal. Also, the detector can be used to measure waste for the presence of transuranic material in the presence of high gamma-ray background. A test with a neutron source (3 x 10{sup 5} n/s) in a vehicle showed that the detector could readily measure an increase in count rate at a distance of 10 m for vehicle speeds up to 35 mph (the highest speed tested). These results. indicate that the source should be detectable at this distance at speeds up to 55 mph.

AJ Peurrung; DC Stromswold; RR Hansen; PL Reeder; DS Barnett

1999-11-24T23:59:59.000Z

411

Anomalous and resonance small angle scattering  

SciTech Connect

Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs.

Epperson, J.E.; Thiyagarajan, P.

1987-11-01T23:59:59.000Z

412

Anomalous and resonance small angle scattering: Revision  

SciTech Connect

Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same for the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small angle neutron scatterings are discussed. 54 refs., 8 figs., 1 tab.

Epperson, J.E.; Thiyagarajan, P.

1987-11-01T23:59:59.000Z

413

Neutron Sources  

Science Conference Proceedings (OSTI)

... for Neutron Reaction Rate Measurements, JA Grundl, V. Spiegel, CM Eisenhauer, HT Heaton II, DM Gilliam (NBS), and J. Bigelow (ORNL), Nucl. ...

2013-07-27T23:59:59.000Z

414

A system for fast neutron radiography  

SciTech Connect

A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10{sup 10} neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10{sup 7} to 3.8x10{sup 8} n/cm{sup 2} depending on the type of screen and film.

Klann, R.T.

1996-05-01T23:59:59.000Z

415

Instrument Schedule for dcs  

Science Conference Proceedings (OSTI)

... Copley & Cook, NCNR, -, -. Thu Jul 11 2002, 5, 3113, Elastic scattering from Si-Ge, Robertson, ORNL, (ambient), Copley. Tue ...

416

Magnetism Highlights| Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

417

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductivity Superconductivity Research Highlights Superconductivity Archive New Neutron Studies Support Magnetism's Role in Superconductors Recent neutron scattering experiments give strong evidence that if superconductivity is related to a material's magnetic properties, the same mechanisms are behind both copper-based, high-temperature superconductors and the newly discovered iron-based superconductors. The research was performed at SNS and HFIR and the ISIS Facility at Rutherford Appleton Laboratory in England. (2010) Published Work: "Evolution of spin excitations into the superconducting state in FeTe1-xSex" Contact: Mark Lumsden Advances in Unconventional Iron-Based Superconductors The discovery of more diverse superconducting materials will lead to more

418

Multiwavelength Scanning Radiometer for Airborne Measurements of Scattered Radiation within Clouds  

Science Conference Proceedings (OSTI)

A multi-wavelength scanning radiometer has been developed for measuring the angular distribution of scattered radiation deep within a cloud layer. The purpose of the instrument is to provide measurements from which the single scattering albedo of ...

Michael D. King; Maxwell G. Strange; Peter Leone; Lamdin R. Blaine

1986-09-01T23:59:59.000Z

419

Neutron Sciences at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Find out how neutron scattering can benefit your research. Call for Proposals Proposals for beam time at HFIR and SNS will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON) Wednesday, February 26, 2014. Comprehensive phonon "map" offers direction for engineering new thermoelectric devices. Comprehensive phonon "map" offers direction for engineering new thermoelectric devices. High-pressure studies of rare earth material could lead to lighter, cheaper magnets High-pressure studies of rare earth material could lead to lighter, cheaper magnets Unfrozen mystery: H2O reveals a new secret Unfrozen mystery: H2O reveals a new secret Neutron scattering workshop promotes high-pressure research Neutron scattering workshop promotes high-pressure research.

420

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Neutron source  

DOE Patents (OSTI)

A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

Cason, J.L. Jr.; Shaw, C.B.

1975-10-21T23:59:59.000Z

422

Charged-particle tracking for neutron-deuteron breakup  

E-Print Network (OSTI)

Particle tracking software has been developed to measure the energy of protons scattered in the breakup process d(n, np)n. The nd breakup experiment is performed at the Weapons Neutron Research facilities at Los Alamos ...

Boddy, Kimberly K

2007-01-01T23:59:59.000Z

423

Instrument Schedule for dcs  

Science Conference Proceedings (OSTI)

... Sun Jul 16 2006, 5, 6595, Inelastic neutron experiments on THF + H2 clathrate, Tait* and Trouw, LANL, ILL cryostat + pressure vessel, Brown. ...

424

Instrument Schedule for dcs  

Science Conference Proceedings (OSTI)

... [1] US Department of Energy. ... Fri 07/31/2009 10:00, 4, 13644, Hydrogen diffusion measurements in piezoelectric materials with Quasi-elastic Neutron ...

425

ARM - Recovery Act Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

ActRecovery Act Instruments ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the permanent and mobile ARM sites. In addition, several instruments will be purchased for use throughout the facility and deployed as needed. These are considered "facility spares" and are included in the table below. View All | Hide All ARM Aerial Facility Instrument Title Instrument Mentor Measurement Group Measurements

426

ARM - Campaign Instrument - twrmr  

NLE Websites -- All DOE Office Websites (Extended Search)

from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tower Water-Vapor Mixing Ratio (TWRMR) Instrument Categories Atmospheric Profiling Campaigns...

427

ARM - Campaign Instrument - towerflux  

NLE Websites -- All DOE Office Websites (Extended Search)

from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Tower Flux Measurements (TOWERFLUX) Instrument Categories Radiometric, Surface Meteorology...

428

ARM - Campaign Instrument - nawx  

NLE Websites -- All DOE Office Websites (Extended Search)

from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NRC Airborne W and X Band Radar (NAWX) Instrument Categories Cloud Properties, Airborne...

429

ARM - Campaign Instrument - cmh  

NLE Websites -- All DOE Office Websites (Extended Search)

from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Chilled Mirror Hygrometer (CMH) Instrument Categories Surface Meteorology Campaigns 1995...

430

Comparison between Standard and Modified Forward Scattering Spectrometer Probes during the Small Cumulus Microphysics Study  

Science Conference Proceedings (OSTI)

Microphysical measurements performed during the Small Cumulus Microphysics Study (SCMS) experiment are analyzed in order to examine the instrumental limitations of forward scattering spectrometer probes (FSSPs). Complementary information ...

Frdric Burnet; Jean-Louis Brenguier

2002-10-01T23:59:59.000Z

431

Scattering Functions of Yolk-Shell Particles  

SciTech Connect

The single-particle small-angle scattering properties of the yolk-shell particle, a new type of core-shell particle with a mobile core within the hosting shell, are systematically investigated. The Debye spatial autocorrelation function, pair distance distribution function and intraparticle structure factor (form factor) are calculated and compared to the corresponding scattering functions of reference systems of hard sphere and concentric core-shell particles with identical sizes. Based on our theoretical calculations, we find that the broken centrosymmetry, originating from the mobility of the trapped yolk, results in an imaginary scattering amplitude. As a result, it contributes an additional destructive interference term which smears certain features present in the scattering functions of the reference systems. Based on our theoretical models, we present the prospect of jointly using small angle neutron and x-ray scattering techniques to quantitatively determine the structural characteristics of yolk-shell particles.

Li, Xin [ORNL] [ORNL; Liu, Kao-Hsiang [National Taiwan University] [National Taiwan University; Wu, Bin [ORNL] [ORNL; Sanchez-Diaz, Luis E [ORNL] [ORNL; Smith, Gregory Scott [ORNL] [ORNL; Chen, Wei-Ren [ORNL] [ORNL

2013-01-01T23:59:59.000Z

432

ARM - Instrument - disdrometer  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsdisdrometer Documentation DISDROMETER : Handbook DISDROMETER : Instrument Mentor Monthly Summary (IMMS) reports DISDROMETER : Data Quality Assessment (DQA) reports...

433

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Proton Hopping in Ice Fast Proton Hopping in Ice Fast Proton Hopping in Ice (Ih) Confirmed by Quasi-Elastic Neutron Scattering "With these results, we have an experimental proof of fast proton hopping in ice," researcher says Research Contact: Alexander Kolesnikov June 2011, Written by Agatha Bardoel Protons (positive hydrogen ions) in an ice lattice have been "seen" to fast hop from one water molecule to another, using quasi-elastic neutron scattering at the SNS Backscattering Spectrometer, BASIS. This fundamental phenomenon that occurs at very low temperatures has important consequences for future investigations of proton conductivity in solids. The research could open the door to a new understanding of how electrolytes work in a system. Proton hopping in ice occurs when "extra" protons diffuse through

434

Alternatives to 3He for Neutron Detection for Homeland Security  

Science Conference Proceedings (OSTI)

Neutron detection is an essential aspect of interdiction of radiological threats for national security purposes, since plutonium, a material used for nuclear weapons, is a significant source of fission neutrons. Radiation portal monitoring systems, of which there are thousands deployed for homeland security and non-proliferation purposes, currently use 3He gas-filled proportional counters for detecting neutrons. Because of the high usage of 3He for neutron scattering science and national security, the supply has dwindled, and can no longer meet the demand. Consequently, a replacement technology for neutron detection is required in the very near future.

Kouzes, Richard T.; Conlin, Kenneth E.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.

2010-08-11T23:59:59.000Z

435

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

436

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

437

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic-Scale Behavior of "Cobalt Blue" Atomic-Scale Behavior of "Cobalt Blue" Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" Research Contact: Gregory MacDougall ORNL News Release, September 2011, Media Contact: Bill Cabage Cobalt aluminate Just as cobalt blue's lustrous hue attracts artists and decorators, the antiferromagnetic properties of the responsible compound-cobalt aluminate-are attracting neutron scientists at DOE's Oak Ridge National Laboratory. Studies of magnetic interactions deep within the material's atomic structure may provide clues toward the development of energy-efficient technologies. (Light sconce image courtesy of B. Jefferson Bolender. Click image for high res version.) Neutron scattering studies of "cobalt blue," a compound prized by artists

438

Directional neutron detectors for use with 14 MeV neutrons :fiber scintillation methods for directional neutron detection.  

Science Conference Proceedings (OSTI)

Current Joint Test Assembly (JTA) neutron monitors rely on knock-on proton type detectors that are susceptible to X-rays and low energy gamma rays. We investigated two novel plastic scintillating fiber directional neutron detector prototypes. One prototype used a fiber selected such that the fiber width was less than 2.1mm which is the range of a proton in plastic. The difference in the distribution of recoil proton energy deposited in the fiber was used to determine the incident neutron direction. The second prototype measured both the recoil proton energy and direction. The neutron direction was determined from the kinematics of single neutron-proton scatters. This report describes the development and performance of these detectors.

Sunnarborg, Duane A.; Peel, Justin D.; Mascarenhas, Nicholas; Mengesha, Wondwosen

2005-10-01T23:59:59.000Z

439

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

440

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Neutron Source (ANS) Project progress report  

SciTech Connect

This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

442

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

443

NEUTRON SOURCES  

DOE Patents (OSTI)

A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

Richmond, J.L.; Wells, C.E.

1963-01-15T23:59:59.000Z

444

The EAF-2007 Neutron, Deuteron, and Proton Activation Libraries  

Science Conference Proceedings (OSTI)

Neutron Data / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation

J-Ch. Sublet; R. A. Forrest; J. Kopecky

445

MaNDi: the Macromolecular Neutron Diffractometer at SNS | ORNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Macromolecular Neutron Diffractometer at SNS MaNDi detector Detector array for the MaNDi instrument before installation. Detector cutaway Cutaway view of detector array for the...

446

TABULATED DIFFERENTIAL NEUTRON CROSS SECTIONS. PART III, VOLUME 1, 0-15 MEV  

DOE Green Energy (OSTI)

Tables are presented of experimental differential neutron cross sections for the elastic scattering of neutrons by nuclei in the energy range of 0 to 15 Mev. Nuclear reactions induced by neutrons are also included, particularly those that are significant for reactor-type calculations. The tables include nuclei from H to Pu. (D.L.C.)

Howerton, R.J.

1961-01-01T23:59:59.000Z

447

The New Munich Neutron Source FRM II: Overview and Uses for Biological Studies  

E-Print Network (OSTI)

Neutron Physics at NIST M. Arif 8th UCN Workshop St. Petersburg ­ Moscow, Russia June 11-21, 2011 #12;NCNR Guide Hall 20 MW Reactor #12;Neutron Physics at the NCNR Beam Flux n cm-2 s-1 Peak Wavelength Facility Low Scatter Neutron Dosimeter Calibration Facility #12;December 31, 2012 Physics Physics Physics

Doster, Wolfgang

448

A New Low-Energy Neutron Spectrometer Based on Position-Sensitive Proportional Counter for Accelerator-Based Neutron Source  

Science Conference Proceedings (OSTI)

Neutron Measurements / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation

I. Murata; H. Miyamaru; I. Kato; S. Yoshida; Y. Mori

449

Superconductivity Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductivity Superconductivity SHARE Superconductivity Highlights 1-6 of 6 Results Doug Scalapino discusses "common thread" linking unconventional superconducting materials December 01, 2012 - Douglas Scalapino was the inaugural speaker for a new joint lecture series sponsored by the Spallation Neutron Source and the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory. New VULCAN tests of Japanese cable for US ITER's central magnet system February 01, 2012 - Neutron testing of the Japanese-made superconducting cable for the central solenoid (CS) magnetic system for US ITER begins next Tuesday, says Ke An, lead instrument scientist for the VULCAN Engineering Materials Diffractometer at the Spallation Neutron Source. ARCS maps collaborative magnetic spin behavior in iron telluride

450

Design and estimated performance of a new neutron guide system for the NCNR expansion project  

SciTech Connect

An integral part of the National Institute of Standards and Technology Center for Neutron Research (NCNR) expansion project is the addition of five cold neutron guide tubes serving multiple experimental stations in an expanded guide hall. The guides have curved-straight arrangements in the horizontal plane, employing horizontally or vertically defocusing and focusing sections in some cases to improve transmission efficiency or for beam reshaping. The horizontally curved sections eliminate direct lines of sight between the source and the experimental stations, and the outer (concave) surfaces generally have higher critical angles than the inner (convex) surfaces. These features result in well-filtered cold neutron beams with no intensity losses at shorter wavelengths with respect to curved guides having the higher critical angle coatings on both surfaces. For all guides the critical angle of the outer coating of the curved section is selected to achieve a desirable characteristic wavelength, consistent with the instrument requirements. On guides where the scattering-plane beam divergence must be strictly limited, the inner radial coatings of the curved sections and the side coatings and lengths of the final straight sections are chosen to produce the desired beam divergence while the outer radial coating is selected so as to obtain a spatial-angular uniformity of the transmitted beam that is not achievable using a curved guide alone. The long-wavelength transmission of such guides tends to exceed that of equivalent straight guides using crystal filters.

Cook, J. C. [NIST Center for Neutron Research, 100 Bureau Drive, Stop 6103, Gaithersburg, Maryland 20899-6103 (United States)

2009-02-15T23:59:59.000Z

451

Neutron diagnostics for mirror hybrids  

SciTech Connect

Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni [Department of Engineering Sciences, Uppsala University, Box 256, SE-751 21 Uppsala (Sweden); Universita degli Studi di Milano - Bicocca, Dip. di Fisica 'G. Occhialini', Piazza della Scienza 3, 20126, Milan (Italy)

2012-06-19T23:59:59.000Z

452

Workshop on NEUtron WAVElength Dependent Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUtron WAVElength Dependent Imaging NEUtron WAVElength Dependent Imaging (NEUWAVE-4) Workshop October 2 - 5, 2011 Spallation Neutron Source * Oak Ridge National Laboratory * Gatlinburg, TN, USA About the Workshop Workshop Agenda Contact Information Important Dates NEUWAVE-4 Program Registration Lodging Social Events Tourist Information Organizing Committee Program Committee Workshop Flyer filler About the Workshop The Oak Ridge National Laboratory's Neutron Sciences Directorate and Energy & Environmental Sciences Directorate are pleased to host the 4th Workshop on NEUtron WAVElength Dependent Imaging (NEUWAVE-4). This meeting discusses the latest development in energy selective imaging techniques, applications and existing and future instrumentation. This meeting follows the successful meeting held in Garching, Germany (April 2008,) Abingdon, UK (June 2009,) and Hokkaido University (June 2010.)

453

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

PacificInstruments PacificInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Tropical Western Pacific [ Installed at 3 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Installed at 2 facilities ] CSAPR C-Band ARM Precipitation Radar Cloud Properties Browse Data [ Installed at 3 facilities ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Installed at 3 facilities ]

454

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Central FacilityInstruments Central FacilityInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

455

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

AlaskaInstruments AlaskaInstruments NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts Instruments : North Slope Alaska [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AMC Ameriflux Measurement Component Radiometric, Surface/Subsurface Properties Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Data [ Single installation ] CCN Cloud Condensation Nuclei Particle Counter Aerosols Browse Data [ Single installation ] CLAP Continuous Light Absorption Photometer Aerosols Browse Data [ Single installation ] CPC Condensation Particle Counter Aerosols Browse Data

456

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Darwin SiteInstruments Darwin SiteInstruments TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Darwin, Australia [ Single installation ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] CSPHOT Cimel Sunphotometer Aerosols, Radiometric Browse Data [ Single installation ] DISDROMETER Impact Disdrometer Surface Meteorology Browse Plots Browse Data [ Single installation ] DL Doppler Lidar Cloud Properties Browse Data [ Single installation ] GNDRAD Ground Radiometers on Stand for Upwelling Radiation Radiometric Browse Plots

457

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

PlainsInstruments PlainsInstruments SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Instruments : Southern Great Plains [ Single installation ] ACSM Aerosol Chemical Speciation Monitor Aerosols Browse Data [ Installed at 5 facilities ] AERI Atmospheric Emitted Radiance Interferometer Radiometric Browse Plots Browse Data [ Single installation ] AOS Aerosol Observing System Aerosols Browse Plots Browse Data [ Single installation ] BRS Broadband Radiometer Station Radiometric Browse Plots Browse Data [ Single installation ] BSRN Baseline Solar Radiation Network

458

HFBS Instrument Homepage  

Science Conference Proceedings (OSTI)

... The NCNR backscattering spectrometer is one of the highest intensity instruments of its kind. It enables very high energy resolution studies of the ...

2011-08-23T23:59:59.000Z

459

ARM - Instrument - blc  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsblc Documentation BLC : Handbook BLC : Instrument Mentor Monthly Summary (IMMS) reports BLC : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

460

ARM - Instrument - gvrp  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsgvrp Documentation GVRP : Handbook GVRP : Instrument Mentor Monthly Summary (IMMS) reports GVRP : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

Note: This page contains sample records for the topic "neutron scattering instrumentation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Instrument - tdma  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentstdma Documentation TDMA : Handbook TDMA : Instrument Mentor Monthly Summary (IMMS) reports TDMA : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

462

ARM - Instrument - csphot  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentscsphot Documentation CSPHOT : Handbook CSPHOT : Instrument Mentor Monthly Summary (IMMS) reports CSPHOT : Data Quality Assessment (DQA) reports ARM Data Discovery...

463

ARM - Instrument - co  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsco Documentation CO : Handbook CO : Instrument Mentor Monthly Summary (IMMS) reports CO : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

464

ARM - Instrument - asti  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsasti Documentation ASTI : Handbook ASTI : Instrument Mentor Monthly Summary (IMMS) reports ASTI : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

465

ARM - Instrument - surthref  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentssurthref Documentation SURTHREF : Handbook SURTHREF : Instrument Mentor Monthly Summary (IMMS) reports SURTHREF : Data Quality Assessment (DQA) reports ARM Data...

466

ARM - Instrument - swats  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsswats Documentation SWATS : Handbook SWATS : Algorithms (PDF) SWATS : Instrument Mentor Monthly Summary (IMMS) reports SWATS : Data Quality Assessment (DQA) reports...

467

ARM - Instrument - smet  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentssmet Documentation SMET : Handbook SMET : Instrument Mentor Monthly Summary (IMMS) reports SMET : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

468

ARM - Instrument - kazr  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentskazr Documentation KAZR : Handbook KAZR : Instrument Mentor Monthly Summary (IMMS) reports KAZR : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

469

ARM - Instrument - wsi  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentswsi Documentation WSI : Handbook WSI : Instrument Mentor Monthly Summary (IMMS) reports WSI : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

470

ARM - Instrument - ebbr  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsebbr Documentation EBBR : Handbook EBBR : Instrument Mentor Monthly Summary (IMMS) reports EBBR : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data...

471

ARM - Instrument - xsapr  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsxsapr Documentation XSAPR : Handbook XSAPR : Instrument Mentor Monthly Summary (IMMS) reports XSAPR : Data Quality Assessment (DQA) reports ARM Data Discovery Browse...

472

ARM - Instrument - twr  

NLE Websites -- All DOE Office Websites (Extended Search)

are listed in section 7, Instrument Details, although only the TemperatureRelative HumidityVapor Pressure (TRHVP) measurements made on the SGP CF tower are described in...

473

Instrumentation of Gait Analysis.  

E-Print Network (OSTI)

?? This masters thesis project Instrumentation of Gait Analysis was carried out at and funded by Integrum AB, Gothenburg, Sweden. Force analysis is critical during (more)

Ma, Weizen

2010-01-01T23:59:59.000Z

474

ARM - Site Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Manacapuru, Brazil Instruments Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Home Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment...

475

Instrument performance evaluation  

Science Conference Proceedings (OSTI)

Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

Swinth, K.L.

1993-03-01T23:59:59.000Z

476

Eddy Current Instruments  

Science Conference Proceedings (OSTI)

Table 2   Types and capabilities of commercially available eddy current instruments...measurement of four variables, analog

477

Directional Detection of Fast Neutrons Using a Time Projection Chamber  

Science Conference Proceedings (OSTI)

Spontaneous fission in Special Nuclear Material (SNM) such as plutonium and highly enriched uranium (HEU) results in the emission of neutrons with energies in the MeV range (hereafter 'fast neutrons'). These fast neutrons are largely unaffected by the few centimeters of intervening high-Z material that would suffice for attenuating most emitted gamma rays, while tens of centimeters of hydrogenous materials are required to achieve substantial attenuation of neutron fluxes from SNM. Neutron detectors are therefore an important complement to gamma-ray detectors in SNM search and monitoring applications. The rate at which SNM emits fast neutrons varies from about 2 per kilogram per second for typical HEU to some 60,000 per kilogram per second for metallic weapons grade plutonium. These rates can be compared with typical sea-level (cosmogenic) neutron backgrounds of roughly 5 per second per square meter per steradian in the relevant energy range [1]. The fact that the backgrounds are largely isotropic makes directional neutron detection especially attractive for SNM detection. The ability to detect, localize, and ultimately identify fast neutron sources at standoff will ultimately be limited by this background rate. Fast neutrons are particularly well suited to standoff detection and localization of SNM or other fast neutrons sources. Fast neutrons have attenuation lengths of about 60 meters in air, and retain considerable information about their source direction even after one or two scatters. Knowledge of the incoming direction of a fast neutron, from SNM or otherwise, has the potential to significantly improve signal to background in a variety of applications, since the background arriving from any one direction is a small fraction of the total background. Imaging or directional information therefore allows for source detection at a larger standoff distance or with shorter dwell times compared to nondirectional detectors, provided high detection efficiency can be maintained. Directional detection of neutrons has been previously considered for applications such as controlled fusion neutron imaging [2], nuclear fuel safety research [3], imaging of solar neutrons and SNM [4], and in nuclear science [5]. The use of scintillating crystals and fibers has been proposed for directional neutron detection [6]. Recently, a neutron scatter camera has been designed, constructed, and tested for imaging of fast neutrons, characteristic for SNM material fission [7]. The neutron scatter camera relies on the measurement of the proton recoil angle and proton energy by time of flight between two segmented solid-state detectors. A single-measurement result from the neutron scatter camera is a ring containing the possible incident neutron direction. Here we describe the development and commissioning of a directional neutron detection system based on a time projection chamber (TPC) detector. The TPC, which has been widely used in particle and nuclear physics research for several decades, provides a convenient means of measuring the full 3D trajectory, specific ionization (i.e particle type) and energy of charged particles. For this application, we observe recoil protons produced by fast neutron scatters on protons in hydrogen or methane gas. Gas pressures of a few ATM provide reasonable neutron interaction/scattering rates.

Bowden, N; Heffner, M; Carosi, G; Carter, D; Foxe, M; Jovanovic, I

2009-06-03T23:59:59.000Z

478

Instrument Schedule for dcs  

Science Conference Proceedings (OSTI)

... John Copley. Mon 02/04/2008 10:00, 6, 9181, A quasielastic neutron study on Li diffusion in Li ion battery LiMn2O4, ... [3] Japan Atomic Energy Agency ...

479

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

480

Neutron Repulsion  

E-Print Network (OSTI)

Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

Oliver K. Manuel

2011-02-08T23:59:59.000Z