Powered by Deep Web Technologies
Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Neutron Powder Diffraction and Molecular Simulation Study of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K. Neutron Powder Diffraction and Molecular Simulation Study of the Structural Evolution of...

2

Structural studies of magnesium nitride fluorides by powder neutron diffraction  

SciTech Connect (OSTI)

Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

Brogan, Michael A. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hughes, Robert W. [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, Ronald I. [ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Gregory, Duncan H., E-mail: Duncan.Gregory@glasgow.ac.uk [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-01-15T23:59:59.000Z

3

High Pressure Neutron Powder Diffraction Study of Superhydrated Natrolite  

SciTech Connect (OSTI)

Neutron powder diffraction data were collected on a sample of natrolite and a 1:1 (v/v) mixture of perdeuterated methanol and water at a pressure of 1.87(11) GPa. The natrolite sample was superhydrated, with a water content double that observed at ambient pressure. All of the water deuterium atoms were located and the nature and extent of the hydrogen bonding elucidated for the first time. This has allowed the calculation of bond valence sums for the water oxygen atoms, and from this, it can be deduced that the key energetic factor leading to loss of the additional water molecule upon pressure release is the poor coordination to sodium cations within the pores.

Colligan,M.; Lee, Y.; Vogt, T.; Celestian, A.; Parise, J.; Marshall, W.; Hriljac, J.

2005-01-01T23:59:59.000Z

4

Incident spectrum determination for time-of-flight neutron powder diffraction data analysis.  

SciTech Connect (OSTI)

Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor.

Hodges, J. P.

1998-08-27T23:59:59.000Z

5

MnO spin-wave dispersion curves from neutron powder diffraction  

SciTech Connect (OSTI)

We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

Goodwin, Andrew L.; Dove, Martin T. [Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ (United Kingdom); Tucker, Matthew G. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Keen, David A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom)

2007-02-15T23:59:59.000Z

6

Neutron powder diffraction study of phase transitions in Sr{sub 2}SnO{sub 4}  

SciTech Connect (OSTI)

The phase transitions in Sr{sub 2}SnO{sub 4} at high temperature have been studied using high resolution time-of-flight powder neutron diffraction. The room temperature structure of Sr{sub 2}SnO{sub 4} is orthorhombic (Pccn), which can be derived from the tetragonal K{sub 2}NiF{sub 4} structure by tilting the SnO{sub 6} octahedra along the tetragonal [100]{sub T}- and [010]{sub T}-axes with non-equal tilts. At the temperature of about 423K, it transforms to another orthorhombic structure (Bmab) characterized by the SnO{sub 6} octahedral tilt around the [110]{sub T}-axis. At still higher temperatures ({approx}573K) the structure was found to be tetragonal K{sub 2}NiF{sub 4}-type (I4/mmm)

Fu, W.T. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: w.fu@chem.leidenuniv.nl; Visser, D. [NWO-Physics, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Knight, K.S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); IJdo, D.J.W. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

2004-11-01T23:59:59.000Z

7

Neutron detectors comprising boron powder  

SciTech Connect (OSTI)

High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

2013-05-21T23:59:59.000Z

8

LJournal of Alloys and Compounds 291 (1999) 94101 The simultaneous powder X-ray and neutron diffraction refinement of two  

E-Print Network [OSTI]

melting of metals in the The intermetallic ternary transition metal nitrides and presence of carbon]. These phases are of interest decomposition of transition metal tris­ethylenediamine to the solid state chemist diffraction refinement of two h-carbide type nitrides, Fe Mo N and Co Mo N, prepared by3 3 3 3 ammonolysis

zur Loye, Hans-Conrad

9

High-pressure neutron diffraction  

SciTech Connect (OSTI)

This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

Xu, Hongwu [Los Alamos National Laboratory

2011-01-10T23:59:59.000Z

10

A-site deficient perovskites in the SrO-ZrO{sub 2}-Nb{sub 2}O{sub 5} system: Composition dependent structures from neutron powder diffraction data  

SciTech Connect (OSTI)

A series of A-site deficient perovskite-type phases was synthesised and characterised in the SrO-ZrO{sub 2}-Nb{sub 2}O{sub 5} system. The composition range was established as Sr{sub 0.70+x}Zr{sub 0.40+2x}Nb{sub 0.60-2x}O{sub 3}, {approx}0.02{<=}x{<=}0.30, and the resulting structures refined using high resolution neutron powder diffraction data. While structures in this composition range are closely related to the cubic perovskite parent, the symmetry for all investigated compositions is lowered to tetragonal or orthorhombic. For x<0.15 the resulting space group is tetragonal I4/mcm, for x>0.15 it is orthorhombic Pnma and for x=0.15 two phases co-exist, in space groups I4/mcm and Pnma. - Graphical abstract: Structured diffuse intensity indicating additional short range order in the defect perovskite Sr{sub 0.72}Zr{sub 0.44}Nb{sub 0.56}O{sub 3}. Highlights: Black-Right-Pointing-Pointer A-site deficient perovskites synthesised in Sr{sub 0.70+x}Zr{sub 0.40+2x}Nb{sub 0.60-2x}O{sub 3}, {approx}0.02 {<=}x{<=}0.30. Black-Right-Pointing-Pointer Space groups established from X-ray, electron and neutron powder diffraction. Black-Right-Pointing-Pointer Structures refined and phase transition established from neutron diffraction data.

Schmid, Siegbert, E-mail: S.Schmid@chem.usyd.edu.au [School of Chemistry, University of Sydney, Sydney NSW 2006 (Australia); Withers, Ray L. [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia)

2012-07-15T23:59:59.000Z

11

X-ray and neutron powder diffraction studies of Ba(Nd{sub x}Y{sub 2-x})CuO{sub 5}  

SciTech Connect (OSTI)

Ba(R,R'){sub 2}CuO{sub 5} (R,R'=lanthanides and Y) plays an important role as a flux-pinning agent in enhancing the superconducting properties of the Ba{sub 2}(R,R')Cu{sub 3}O{sub 6+x} (R,R'=lanthanides and Y) coated conductors. Using X-ray diffraction and neutron diffraction, we found that the Ba(Nd{sub x}Y{sub 2-x})CuO{sub 5} solid solution adopts two structure types. In the Nd-rich region (1.8{<=}x{<=}2.0), the materials are of brown color (commonly referred to as the 'brown phase'), and the structure is tetragonal with space group I4/mbm (no. 127). In the Y-rich region (0.0{<=}x{<=}1.4), the materials are green (commonly referred to as the 'green phase') and the structure is orthorhombic with space group Pnma (no. 62). A two-phase region (1.4

Liu, G. [Ceramics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Huang, Q. [NIST Center for Neutron Research, Naperville, IL 60563 (United States); Kaduk, J.A. [INEOS Technologies, Naperville, IL 60563 (United States); Yang, Z. [Yunnan Normal University, Kunming 650092 (China); Lucas, C. [Chemistry and Biochemistry Department, University of Maryland, College Park, MD 20742 (United States); Wong-Ng, W. [Ceramics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)], E-mail: Winnie.wong-ng@nist.gov

2008-12-15T23:59:59.000Z

12

Quality experimental and calculated powder x-ray diffraction  

SciTech Connect (OSTI)

For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

1996-08-01T23:59:59.000Z

13

Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction  

SciTech Connect (OSTI)

The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

2010-01-01T23:59:59.000Z

14

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

15

The reflection of very cold neutrons from diamond powder nanoparticles  

E-Print Network [OSTI]

We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.

V. V. Nesvizhevsky; E. V. Lychagin; A. Yu. Muzychka; A. V. Strelkov; G. Pignol; K. V. Protasov

2008-05-17T23:59:59.000Z

16

Neutron powder diffraction and difference maximum entropy method analysis of protium- and deuterium-dissolved BaSn{sub 0.5}In{sub 0.5}O{sub 2.75+{alpha}}  

SciTech Connect (OSTI)

We propose a new method, a difference maximum entropy method (MEM) analysis of the neutron diffraction data, for revealing the detailed structure around hydrogen atoms in proton-conducting oxides. This MEM analysis uses the differences between the structure factors of protium- and deuterium-dissolved crystals. Simulations demonstrate that it not only provides the distribution of hydrogen atoms alone, but also improves the spatial resolution of MEM mapping around hydrogen atoms. Applied to actual diffraction data of protium- and deuterium-dissolved BaSn{sub 0.5}In{sub 0.5}O{sub 2.75+{alpha}} at 9 K, difference MEM analysis reveals that O-D bonds mostly tilt towards the second nearest oxygen atoms, and that the distributions of deuterium and oxygen atoms are probably insignificant in interstitial regions. - Graphical abstract: A novel method, difference maximum entropy method (MEM) analysis of the neutron diffraction data, is proposed for revealing the detailed structure around hydrogen atoms in proton-conducting oxides. This MEM analysis uses the differences between the structure factors of protium- and deuterium-dissolved crystals and improves the spatial resolution of the MEM mapping around the hydrogen atoms.

Nagasaki, Takanori, E-mail: nagasaki@esi.nagoya-u.ac.j [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Shiotani, Shinya [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Igawa, Naoki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan); Yoshino, Masahito; Iwasaki, Kouta [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Fukazawa, Hiroshi; Utsumi, Wataru [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

2009-10-15T23:59:59.000Z

17

Powder Diffraction with Proteins Jon Wright, Irene Margiolaki, Andy Fitch and Yves Watier  

E-Print Network [OSTI]

Powder Diffraction with Proteins Jon Wright, Irene Margiolaki, Andy Fitch and Yves Watier #12 C 3Wright, Protein Powders #12;Wright, Protein Powders 4 Structure representations #12;Wright method to "solve" phase problem · What do we see in electron density maps? 6Wright, Protein Powders #12

Magee, Joseph W.

18

Neutron detectors comprising ultra-thin layers of boron powder  

SciTech Connect (OSTI)

High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

Wang, Zhehul; Morris, Christopher

2013-07-23T23:59:59.000Z

19

Characterization of Li-ion Batteries using Neutron Diffraction...  

Broader source: Energy.gov (indexed) [DOE]

Li-ion batteries Using Neutron Diffraction and Infrared Imaging Techniques: Success Stories from the High Temperature Materials Laboratory (HTML) User Program DOE 2011 Vehicle...

20

RECENT CRYSTAL STRUCTURE DETERMINATIONS BY NEUTRON DIFFRACTION AT OAK RIDGE  

E-Print Network [OSTI]

469. RECENT CRYSTAL STRUCTURE DETERMINATIONS BY NEUTRON DIFFRACTION AT OAK RIDGE By GEORGE M. BROWN and HENRI A. LEVY, Chemistry Division Oak Ridge National Laboratory (1), Oak Ridge, Tennessee, U. S. A ont été relevées grace au diffractomètre à neutrons d'Oak Ridge position- nant automatiquement les

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Neutron Diffraction and Optics of a Noncentrosymmetric Crystal. New Feasibility of a Search for Neutron EDM  

E-Print Network [OSTI]

Recently strong electric fields (up to 10^9 V/cm) have been discovered, which affect the neutrons moving in noncentrosymmetric crystals. Such fields allow new polarization phenomena in neutron diffraction and optics and provide, for instance, a new feasibility of a search for the neutron electric dipole moment (EDM). A series of experiments was carried out in a few last years on study of the dynamical diffraction of polarized neutrons in thick (1-10 cm) quartz crystals, using the forward diffraction beam and Bragg angles close to 90^0. As well new neutron optics phenomena were investigated. The feasibility of experiment on a search for neutron EDM using Laue diffraction in crystals without a center of symmetry was tested at the reactors: WWR-M in Gatchina and HFR in Grenoble. It was shown that the sensitivity can reach (3 - 6)\\cdot 10^{-25}e cm per day for the available quartz crystal and cold neutron beam flux.

V. V. Fedorov; V. V. Voronin

2005-05-03T23:59:59.000Z

22

Thermal neutron diffraction determination of the magnetic structure of EuCu{sub 2}Ge{sub 2}  

SciTech Connect (OSTI)

The magnetic structure of EuCu{sub 2}Ge{sub 2} has been determined by flat-plate neutron powder diffraction. Two magnetic phases are present in the neutron diffraction pattern at 3.5?K. They have the same moment, within error, and a common transition temperature. Both {sup 151}Eu and {sup 153}Eu Mssbauer spectroscopy show that the two magnetic phases belong to the same crystallographic phase. Both phases can be modelled by planar helimagnetic structures: one with a propagation vector of [0.654(1), 0, 0], the other with a propagation vector of [0.410(1), 0.225(1), 0].

Rowan-Weetaluktuk, W. N.; Ryan, D. H., E-mail: dhryan@physics.mcgill.ca [Department of Physics, and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Lemoine, P. [Laboratoire CRISMAT, ENSICAEN, UMR 6508 CNRS, 6 Boulevard du Marchal Juin, 14050 Caen Cedex 4 (France); Cadogan, J. M. [School of Physical, Environmental and Mathematical Sciences, UNSW Canberra at the Australian Defence Force Academy, Canberra BC 2610 (Australia)

2014-05-07T23:59:59.000Z

23

Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings  

SciTech Connect (OSTI)

A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

2009-01-01T23:59:59.000Z

24

NEUTRON DIFFRACTION ANALYSIS OF CYTOCHROME b5 RECONSTITUTED IN DEUTERATED LIPID MULTILAYERS  

E-Print Network [OSTI]

NEUTRON DIFFRACTION ANALYSIS OF CYTOCHROME b5 RECONSTITUTED IN DEUTERATED LIPID MULTILAYERS E. P centrosymmetric pairs of asymmetric lipid-protein bilayers. Lamellar neutron diffraction data were collected. A neutron diffraction analysis ofcytochrome b5, incorporated into ordered lipid multilayers, promised

25

Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior  

E-Print Network [OSTI]

Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior performed simultaneous neutron diffraction and quasi-static loading experiments on a selection of rocks to experimentally isolate the response of these contact regions. Neutron diffraction measures strain in the lattice

26

Neutron Powder Diffraction and Molecular Simulation Study of the Structural  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u'..Evolution of

27

Neutron diffraction studies of nickel-containing perovskite oxide catalysts exposed to autothermal reforming environments.  

SciTech Connect (OSTI)

Six nickel-containing perovskite oxides (La{sub 1-x}Sr{sub x})M{sub 0.9}Ni{sub 0.1}O{sub 3{+-}{delta}}, where x = 0 or 0.2 and M = Cr, Fe, or Mn were used to catalyze the autothermal reforming of isooctane (C{sub 8}H{sub 18}) into a hydrogen-rich gas during short-term tests at 700 C. To determine the phase stability of the samples in the reducing environment of the reforming reactor, characterization studies of the as-prepared and tested perovskite samples were conducted using powder X-ray diffraction, powder neutron diffraction, transmission electron microscopy, and scanning electron microscopy. We determined that the reducing conditions of the microreactor caused metallic nickel to form in all six compositions. However, the extent of the nickel loss from the perovskite lattices varied: the chromium-containing compositions lost the least nickel, compared to the manganese- and iron-containing compositions, and the strontium-free compositions lost more nickel than their strontium-containing analogs. Five of the six perovskite compositions tested showed no breakdown of the perovskite lattice despite the loss of nickel from the B-sites, producing only the third example of a B-cation-deficient, 3d transition-metal-containing perovskite.

Mawdsley, J. R.; Vaughey, J. T.; Krause, T. R.; Chemical Sciences and Engineering Division

2009-10-27T23:59:59.000Z

28

High Throughput Software for Powder Diffraction and its Application to Heterogeneous Catalysis  

E-Print Network [OSTI]

In this thesis we investigate high throughput computational methods for processing large quantities of data collected from synchrotrons and their application to spectral analysis of powder diffraction data. We also present the main product of this PhD programme, specifically a software called 'EasyDD' developed by the author. This software was created to meet the increasing demand on data processing and analysis capabilities as required by modern detectors which produce huge quantities of data. Modern detectors coupled with the high intensity X-ray sources available at synchrotrons have led to the situation where datasets can be collected in ever shorter time scales and in ever larger numbers. Such large volumes of datasets pose a data processing bottleneck which augments with current and future instrument development. EasyDD has achieved its objectives and made significant contributions to scientific research. It can also be used as a model for more mature attempts in the future. EasyDD is currently in use by a number of researchers in a number of academic and research institutions to process high-energy diffraction data. These include data collected by different techniques such as Energy Dispersive Diffraction, Angle Dispersive Diffraction and Computer Aided Tomography. EasyDD has already been used in a number of published studies, and is currently in use by the High Energy X-Ray Imaging Technology project. The software was also used by the author to process and analyse datasets collected from synchrotron radiation facilities. In this regard, the thesis presents novel scientific research involving the use of EasyDD to handle large diffraction datasets in the study of alumina-supported metal oxide catalyst bodies. These data were collected using Tomographic Energy Dispersive Diffraction Imaging and Computer Aided Tomography techniques.

Taha Sochi

2010-12-20T23:59:59.000Z

29

Powder diffraction studies on proteins : An overview of data collection approaches.  

SciTech Connect (OSTI)

Following the seminal work of Von Dreele, high quality powder X-ray diffraction studies on proteins are being established as a valuable complementary technique to single-crystal measurements. Several studies using a variety of experiments approaches have been reported in the literature, including high-resolution studies employing parallel beam geometry and high intensity measurements using position sensitive detectors. The choice of the optimum instrumental configuration depends on a number of competing factors such as the amount of sample available, its radiation sensitivity, and the quality of the data required for data analysis, e.g. angular resolution, the extent of the data in d-spacing, or the number of patterns required to explore the protein's behaviour at different temperatures, or under different crystallisation conditions, etc. Here we discuss several advantages and disadvantages of different data collection methods followed for selected examples of small proteins.

Margiolaki, I.; Wright, J. P.; Fitch, A. N.; Fox, G. C.; Labrador, A.; Von Dreele, R. B.; Miura, K.; Gozzo, F.; Schiltz, M.; Besnard, C.; Camus, F.; Pattison, P.; Beckers, D.; Degen, T.; X-Ray Science Division; European Synchrotron Radiation Facility; Japan Synchrotron Radiation Research Inst.; Swiss Light Source; Ecole Polytechnique Federale de Lausanne; PANalytical

2007-01-01T23:59:59.000Z

30

In-situ observation of ErD2 formation during D2 loading via neutron diffraction.  

SciTech Connect (OSTI)

In an effort to better understand the structural changes occurring during hydrogen loading of erbium target materials, we have performed in situ D{sub 2} loading of erbium metal (powder) at temperature (450 C) with simultaneous neutron diffraction analysis. This experiment tracked the conversion of Er metal to the {alpha} erbium deuteride (solid-solution) phase and then into the {beta} (fluorite) phase. Complete conversion to ErD{sub 2.0} was accomplished at 10 Torr D{sub 2} pressure with deuterium fully occupying the tetrahedral sites in the fluorite lattice.

Browning, James Frederick (Oak Ridge National Laboratory, Oak Ridge, TN); Llobet, Anna (Los Alamos National Laboratory, Los Alamos, NM); Snow, Clark Sheldon; Rodriguez, Mark Andrew; Wixom, Ryan R.

2010-09-01T23:59:59.000Z

31

Neutron diffraction studies of water and aqueous solutions under pressure G. W. Neilson and S. Cummings  

E-Print Network [OSTI]

. Abstract 2014 A summary is given of data obtained from neutron diffraction experiments on heavy water pressures. In fact, the only neutron diffraction work we know of is that concemed with heavy water [5, 6]. (X-ray diffrac- tion experiments have, however, been carried out on water and heavy water

Boyer, Edmond

32

Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium stabilised amorphous calcium  

E-Print Network [OSTI]

Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium online xxxx Keywords: Amorphous calcium carbonate; EPSR modelling; Neutron diffraction; X-ray diffraction Amorphous calcium carbonate (ACC) plays a key role in biomineralisation processes in sea organisms. Neutron

Benning, Liane G.

33

In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction  

SciTech Connect (OSTI)

Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (?). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (? ? 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with ?- and ??{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (? ? 25% at 1 h) than in the active-BCSA one (? ? 10% at 1 h), with differences in the crystallization of ettringite (? ? 30% and ? ? 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: Belite calcium sulfoaluminate cements early hydration mechanism has been determined. Belite hydration strongly depends on availability of aluminum hydroxide. Orthorhombic yeelimite dissolved at a higher pace than cubic one. Yeelimite larger reaction degree yields stratlingite formation by belite reaction. Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

lvarez-Pinazo, G.; Cuesta, A.; Garca-Mat, M.; Santacruz, I.; Losilla, E.R. [Departamento de Qumica Inorgnica, Universidad de Mlaga, Campus Teatinos S/N., 29071 Mlaga (Spain)] [Departamento de Qumica Inorgnica, Universidad de Mlaga, Campus Teatinos S/N., 29071 Mlaga (Spain); Sanflix, S.G. [Unidad Tcnica de Investigacin de Materiales, AIDICO, Avda. Benjamn Franklin, 17 Paterna, Valencia (Spain)] [Unidad Tcnica de Investigacin de Materiales, AIDICO, Avda. Benjamn Franklin, 17 Paterna, Valencia (Spain); Fauth, F. [CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain)] [CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Aranda, M.A.G. [Departamento de Qumica Inorgnica, Universidad de Mlaga, Campus Teatinos S/N., 29071 Mlaga (Spain) [Departamento de Qumica Inorgnica, Universidad de Mlaga, Campus Teatinos S/N., 29071 Mlaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); De la Torre, A.G., E-mail: mgd@uma.es [Departamento de Qumica Inorgnica, Universidad de Mlaga, Campus Teatinos S/N., 29071 Mlaga (Spain)

2014-02-15T23:59:59.000Z

34

Single phase synthesis and room temperature neutron diffraction studies on multiferroic PbFe{sub 0.5}Nb{sub 0.5}O{sub 3}  

SciTech Connect (OSTI)

The lead-iron-niobate, (PbFe{sub 0.5}Nb{sub 0.5}O{sub 3} or PFN) was synthesized by low temperature sintering Single Step / Solid State Reaction Method. The 700 Degree-Sign C/2 hrs. calcined powder was sintered at 1050 Degree-Sign C/1 hr. The sintered pellets were characterized through X-Ray Diffraction and Neutron Diffraction at room temperature. It is found from the XRD pattern that the materials is in single phase with no traces of pyrochlore phase. It was also confirmed from the neutron diffraction pattern, the structure of PFN to be monoclinic, space group Cm. Structural studies has been carried out by refining the obtained neutron diffraction data by Rietveld refinement method using Fullprof program. The neutron diffraction pattern at 300 K (room temperature) was selected to refine the structure. The lattice parameters obtained are; a = 5.6709 A, b = 5.6732 A, c = 4.0136 A, and {alpha}= 90, {beta}= 89.881, {gamma}= 90. The P-E measurements showed hysteretic behavior with high remnant polarization.

Matteppanavar, Shidaling; Angadi, Basavaraj [Department of Physics, JB Campus, Bangalore University, Bangalore -560056 (India); Rayaprol, Sudhindra [UGC-DAE-CSR, Mumbai Centre, BARC, Mumbai - 400085 (India)

2013-02-05T23:59:59.000Z

35

Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data  

SciTech Connect (OSTI)

Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11?=?451, C33?=?302, C44?=?39, C66?=?82, C12?=?240, and C13?=?50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)

2014-08-07T23:59:59.000Z

36

The early development of neutron diffraction: Science in the wings of the Manhattan Project  

SciTech Connect (OSTI)

Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.

Mason, Thom [ORNL] [ORNL; Gawne, Timothy J [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Nestor, Margaret Boone {Bonnie} [ORNL; Carpenter, John M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

37

Neutron diffraction measurements of residual stresses in friction stir welding: a review  

SciTech Connect (OSTI)

Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

Woo, Wan Chuck [ORNL; Feng, Zhili [ORNL; Wang, Xun-Li [ORNL; David, Stan A [ORNL

2011-01-01T23:59:59.000Z

38

Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences  

SciTech Connect (OSTI)

The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

Koyanagi, Takaaki [ORNL; Shimoda, Kazuya [Kyoto University, Japan; Kondo, Sosuke [Kyoto University, Japan; Hinoki, Tatsuya [Kyoto University, Japan; Ozawa, Kazumi [ORNL; Katoh, Yutai [ORNL

2014-01-01T23:59:59.000Z

39

In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials  

SciTech Connect (OSTI)

The thrust of this project was to investigate the structures of important materials with potential application to hydrogen storage, in an effort to meet the DOE goals for 2010 and 2015, namely 9% (wt) and 15% (wt) respectively. Unfortunately, no material has been found, despite the efforts of many laboratories, including our own, that achieves these goals in a reversible complex hydride such as ammonia borane (NH{sub 4}BH{sub 4}), and other ammonia based compounds, or with light hydrides such as LiBH{sub 4}, due either to their irreversibility or to the high decomposition temperatures and residual simple hydrides such as LiH from the decomposition of the last named compound. Nevertheless, several important technical goals have been accomplished that could be valuable to other DOE programs and would be available for collaborative research. These include the development of a high quality glove box with controlled (low) oxygen and water content, which we continue to employ for the synthesis of potential new materials (unfunded research) and the development of a high quality neutron diffraction furnace with controlled gas environment for studies of hydrogen uptake and loss as well as for studies with other gasses. This furnace was initially constructed with an alumina (Al{sub 2}O{sub 3}) center tube to contain the sample and the flowing gas. The heaters are located in the vacuum space outside the tube and it was found that, for the low temperatures required for the study of hydrogen storage materials, the heat transfer was too poor to allow good control. At temperatures in excess of about 400C (and up to more than 1200C) the heat transfer and control are excellent. For the lower temperatures, however, the center tube was replaced by stainless steel and temperature control to 1C became possible. The paired heaters, above and below the neutron beam window allowed control of the temperature gradient to a similar precision. The high temperature capability of the furnace should make it a very valuable resource for the study of oxides being considered for application to solid oxide fuel cells (SOFCs), in that materials can be studied at potential operating temperatures in both reducing and oxidizing environments to determine their stoichiometry, and lattice parameters. Our research, which was predicated, in part, on the use of hydrogenous samples (as opposed to deuteration), demonstrated that such studies are feasible and can yield high quality, refinable data. The precision of the refined hydrogen positions appears to be more than adequate for theory calculations (molecular modeling-thermodynamics) and the uncertainty is certainly less than that achieved by attempting to extrapolate the hydrogen positions from refined deuterium positions. In fact the 2008 annual report from the Institute Laue Langevin (ILL), the world's premier neutron scattering laboratory, highlights: Another trend is the increasing interest in hydrogen. This defies the widespread assumption that neutron diffraction experiments need to be done at deuterated samples. In situ experiments on phase transitions involving hydrogen and in particular on the real time behaviour of hydrogen-storage systems increase in number and scope. Our work in this area predates the ILL efforts be several years. Unfortunately, the productivity of our program was significantly curtailed by the unavailability of the MURR powder diffractometer for almost all of the second years of the project. The diffractometer was disassembled to allow partial extraction of the beam tube and replacement of the graphite element that is penetrated by the beam tube. Re-commissioning of the instrument was substantially delayed by errors of the MURR engineering staff, which failed to properly reinstall the sapphire filter that conditions the beam prior to the neutron monochromator, and reduces the radiological background to acceptable levels.

Yelon, William B.

2013-05-13T23:59:59.000Z

40

Neutron diffraction studies on the Heusler alloy Ni{sub 50}Mn{sub 37}Sb{sub 13}  

SciTech Connect (OSTI)

The evolution of martensitic to austenitic transformation in Ni{sub 50}Mn{sub 37}Sb{sub 13} has been studied usingtemperature dependent neutron diffraction, thermal property, and magnetization studies. Differential scanning calorimetric studies reveal a martensitic transformation T{sub M} around 291 K. The magnetization data yield a ferromagnetic ordering temperature of 329 K in the austenitic phase and 230 K in the martensitic phase. The analysis of the powder neutron diffraction data in the temperature range of 325-12 K indicates a structural transition from a high temperature cubic L2{sub 1} type structure to an orthorhombic structure. At 270 K, both cubic and orthorhombic phases coexist. Anisotropic unit cell changes are observed at the martensitic transformation: The unit cell expands by about 1.5% along the a axis, by about 2.5% along the c axis, and compresses by about 4.28% along the b axis. Both cubic and orthorhombic phases show commensurate collinear ferromagnetic ordering with a magnetic moment of {approx}3.67 {mu}{sub B}/Mn in Mn (2a and 2f) sites.

Rama Rao, N. V.; Chelvane, J. Arout; Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Morozkin, A. V. [Department of Chemistry, Moscow Lomonosov State University, Moscow 119992 (Russian Federation); Lamsal, J. [Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211 (United States); Yelon, W. B. [Materials Research Center and Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Nirmala, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Malik, S. K. [International Institute of Physics (IIP)-UFRN, Natal, 59072-970 (Brazil)

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Neutron diffraction study of the formation of ordered antiphase domains in cubic titanium carbide TiC{sub 0.60}  

SciTech Connect (OSTI)

A series of superstructural reflections (described within the sp. gr. Fd3m) are found to be split into three symmetric parts in the neutron powder diffraction pattern of titanium carbide TiC{sub 0.60} annealed at a temperature of 600 Degree-Sign C. No splitting of superstructural reflections is observed in the neutron diffraction pattern of TiC{sub 0.60} annealed at relatively high temperatures (780 Degree-Sign C). This phenomenon can be explained by that fact that the ordering of carbon atoms at relatively high temperatures (780 Degree-Sign C) is accompanied by the formation of randomly oriented rather large antiphase domains (APDs) (450 A). At relatively low temperatures (600 Degree-Sign C), stacking faults arise in the arrangement of partially ordered carbon atoms. In this case, relatively small ordered APDs (290 A) are formed, along with disordered ones.

Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S. [Academy of Sciences of Uzbekistan, Institute of Nuclear Physics (Uzbekistan)

2013-05-15T23:59:59.000Z

42

Diffraction anomalous fine structure analysis on (Bi,Pb){sub 2}PtO{sub 4} powders  

SciTech Connect (OSTI)

The Diffraction Anomalous Fine Structure (DAFS) method can provide site selective and chemical selective structural information. The possibilities of DAFS experimental and data analysis procedures are demonstrated for (Bi{sub 1.67},Pb{sub 0.33}) powder samples. Experiments have been performed at both L{sub III} and K Pt edges (11.56.564keV and 78keV), using several data collection set-ups (analyser crystals, 1D-detector, 2D-detector). Based on this example, a comparison between these experimental procedures and analysis is given and discussed.

Vacinova, J. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. de Cristallographie; Hodeau, J.L.; Bordet, P. [European Synchrotron Radiation Facility, 38 - Grenoble (France)] [and others

1995-12-31T23:59:59.000Z

43

in-situ chemistry mapping of hydrogen storage materials by neutron diffraction  

SciTech Connect (OSTI)

Neutron diffraction was used to nondestructively study the microstructures for two hydrogen storage media systems. In the first case, sodium alanate based hydrogen storage is a vehicle-scale candidate system developed by Sandia/GM. Neutron scattering was used to determine the distribution of phases in the storage media at different hydrogen loading levels, to help understand the absorption/desorption of hydrogen in large-scale systems. This study also included a 3D neutron tomographic study of the microstructure. In the second case, tin-doped lanthanum nickel alloys have been studied at JPL for space-based applications, for which the gradual degradation of the material due to segregation and disproportionation of phases is a known problem. A regenerative process developed to restore the storage properties of these alloys was studied, using in-situ neutron diffraction to relate the microstructure to the thermodynamic simulations.

Payzant, E Andrew [ORNL] [ORNL; Bowman Jr, Robert C [ORNL] [ORNL; Johnson, Terry A [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Jorgensen, Scott W [GM R& D and Planning, Warren, Michigan] [GM R& D and Planning, Warren, Michigan

2013-01-01T23:59:59.000Z

44

Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials  

SciTech Connect (OSTI)

: Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

Polsky, Yarom [ORNL] [ORNL; An, Ke [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Bingham, Philip R [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2014-01-01T23:59:59.000Z

45

Quantitative determination of mineral composition by powder x-ray diffraction  

DOE Patents [OSTI]

An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

Pawloski, G.A.

1984-08-10T23:59:59.000Z

46

Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique  

SciTech Connect (OSTI)

In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100?C could be observed.

Sabelstrm, N., E-mail: sabelstrom.n.aa@m.titech.ac.jp; Hayashi, M. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Watanabe, T. [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Nagata, K. [Department of Conservation Science, Tokyo University of the Arts, 12-8 Ueno Park, Taito-ku, Tokyo (Japan)

2014-10-28T23:59:59.000Z

47

Structure of a zeolite ZSM-5-Bithiophene complex as determined by high-resolution synchrotron X-ray powder diffraction  

SciTech Connect (OSTI)

The structure of a zeolite ZSM-5 complex with ca. 4 molecules/unit cell of bithiophene was determined by high-resolution synchrotron X-ray powder diffraction. In adopts monoclinic symmetry in space group P2{sub 1}/n ({alpha} unique) between room temperature and 25 K, with refined lattice parameters at 25 K of a = 20.0614(4), b = 19.8251(4), c = 13.3623(4) {Angstrom}, and a = 90.848(2){degrees}. Structural modeling and Rietveld refinements showed that there are two crystallographically unique bithiophene molecules, each with an occupancy factor of ca. 0.5. One bithiophene is localized at the center of the straight channels with one of the rings residing at the intersection with the sinusoidal channels. The other molecule lies in the sinusoidal channels and projects partially into the straight channels. The relationship between polythiophene chain length and the formation of conducting polythiophene molecular wires in the ZSM-5 framework is discussed. 32 refs., 4 figs., 3 tabs.

Eylem, C.; Hriljac, J.A. [Brookhaven National Laboratory, Upton, NY (United States)] [Brookhaven National Laboratory, Upton, NY (United States); Ramamurthy, V.; Corbin, D.R. [Du Pont Co., Wilmington, DE (United States)] [Du Pont Co., Wilmington, DE (United States); Parise, J.B. [State Univ. of New York, Stony Brook, NY (United States)] [State Univ. of New York, Stony Brook, NY (United States)

1996-04-01T23:59:59.000Z

48

Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction  

SciTech Connect (OSTI)

Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results show significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.

Woo, Wan Chuck [ORNL; Em, Vyacheslav [Korea Atomic Energy Research Institute; Hubbard, Camden R [ORNL; Lee, Ho-Jin [Korea Atomic Energy Research Institute; Park, Kwang Soo [Doosan Heavy Industries & Construction

2011-01-01T23:59:59.000Z

49

UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE DIFFRACTION OF NEUTRONS BY CRYSTALLINE POWDERS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof EnergyLeaseEnergyUNCLASSIFIED 2 1 2 :MDDC 869

50

In-situ time-of-flight neutron diffraction of ErD2 (beta phase) formation during D2 loading.  

SciTech Connect (OSTI)

In an effort to better understand the structural changes occurring during hydrogen loading of erbium target materials, we have performed D{sub 2} loading of erbium metal (powder) with simultaneous neutron diffraction analysis. This experiment tracked the conversion of Er metal to the {alpha} erbium deuteride (solid-solution) phase and then on to the {beta} (fluorite) phase. Complete conversion to ErD{sub 2.0} was accomplished at 10 Torr D{sub 2} pressure with deuterium fully occupying the tetrahedral sites in the fluorite lattice. Increased D{sub 2} pressure (up to 500 Torr at 450 C) revealed {approx}10 % deuterium occupation of the octahedral sites. Subsequent vacuum pumping of the sample at 450 C removed octahedral site occupancy while maintaining tetrahedral deuterium occupancy, thereby yielding stoichiometric ErD{sub 2.0} {beta} phase.

Browning, James Frederick (Oak Ridge National Laboratory, Oak Ridge, TN); Llobet, Anna (Los Alamos National Laboratory, Los Alamos, NM); Snow, Clark Sheldon; Rodriguez, Mark Andrew; Wixom, Ryan R.

2008-06-01T23:59:59.000Z

51

SSRL Powder Diffraction Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE AwardsNA-00197-1 Nov. 15,SSRLworkshop on

52

Neutron diffraction studies and magnetism in Ti doped SrFeO{sub 3??} systems  

SciTech Connect (OSTI)

The magnetic ground state of single phase tetragonal crystal structure with I4/mmm space group SrFe{sub 1?x}Ti{sub x}O{sub 3??} (x?=?0.2 and 0.3) is investigated from 2?K to 300?K. Strong irreversibility is observed in zero-field-cooled (ZFC) and field-cooled DC magnetization curves. Arrott plots show the absence of spontaneous magnetization (M{sub S}) down to 2?K, ruling out the possibility of long range ferromagnetic order. Neutron diffraction measurements carried out at H?=?0, 7?T (field cooled) at several temperatures above and below the T* (temperature at which M{sub ZFC}(T) is maximum) do not show any additional peaks and also no difference in intensity rules out, both the long range antiferromagnetic and ferromagnetic orders. Hence, the combined study of dc magnetization and neutron diffraction results reveals cluster spin glass behavior in SrFe{sub 1?x}Ti{sub x}O{sub 3??} (x?=?0.2 and 0.3)

Sendil Kumar, A.; Srinath, S., E-mail: srinath@uohyd.ac.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Babu, P. D. [UGC-DAE Consortium for Scientific Research, R-5 Shed, B.A.R.C, Mumbai 400 085 (India)

2014-03-14T23:59:59.000Z

53

Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud  

SciTech Connect (OSTI)

Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder.

Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R. [and others

1996-06-01T23:59:59.000Z

54

Application of neutron diffraction to measure residual strains in high temperature composites  

SciTech Connect (OSTI)

An experimental neutron diffraction technique was used to measure residual thermal strains developed in high temperature composites during postfabrication cooling. Silicon carbide fiber-reinforced titanium aluminide (over the temperature range 20--950{degree}C) and tungsten and saphikon fiber-reinforced nickel aluminide composites (at room temperature) were investigated. As a result of thermal expansion mismatch, compressive residual strains and stresses were generated in the silicon carbide fibers during cooldown. The axial residual strains were tensile in the matrix and were lower in nickel aluminide matrix as compared to those in titanium aluminide matrix. The average transverse residual strains in the matrix were compressive. Liquid-nitrogen dipping and thermal-cycling tend to reduce the fabrication-induced residual strains in silicon carbide fiber-reinforced titanium aluminide matrix composite. However, matrix cracking can occur as a result of these processes. 10 refs., 5 figs., 2 tabs.

Saigal, A. (Tufts Univ., Medford, MA (USA). Dept. of Mechanical Engineering); Kupperman, D.S. (Argonne National Lab., IL (USA))

1991-01-01T23:59:59.000Z

55

Neutron diffraction study of MnNiGa{sub 2}Structural and magnetic behaviour  

SciTech Connect (OSTI)

MnNiGa{sub 2} crystallizes in the L21 (Heusler) structure and has a ferromagnetic ordering temperature T{sub C}???192?K. Rietveld refinement of the neutron diffraction patterns indicates that the Ga atoms occupy the equivalent 8c position, while Mn and Ni share the 4a (0, 0, 0) and 4b (0.5, 0.5, 0.5) sites with a mixed occupancy of Mn and Ni atoms. It is found that that ?83% of Mn and ?17% Ni are located at the 4a site while ?83% of Ni and ?17% Mn occupy the 4b site. There is no evidence of a magneto-volume effect around T{sub C}. In agreement with this finding, our detailed critical exponent analyses of isothermal magnetization curves and the related Arrott plots confirm that the magnetic phase transition at T{sub C} is second order.

Wang, J. L., E-mail: jianli@uow.edu.au [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Bragg Institute, ANSTO, Lucas Heights, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT 2600 (Australia); Ma, L.; Wu, G. H. [Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Hofmann, M. [FRM-II, Technische Universitt Mnchen, 85747 Garching (Germany); Avdeev, M.; Kennedy, S. J. [Bragg Institute, ANSTO, Lucas Heights, NSW 2234 (Australia); Campbell, S. J. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT 2600 (Australia); Md Din, M. F.; Dou, S. X. [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Hoelzel, M. [FRM-II, Technische Universitt Mnchen, 85747 Garching (Germany); Fachbereich Materialwissenschaften, Technische Universitt Darmstadt, 64287 Darmstadt (Germany)

2014-05-07T23:59:59.000Z

56

Complex magnetic ordering in CeFe1.76 studied by neutron diffraction  

SciTech Connect (OSTI)

Neutron diffraction measurements on a single crystal of CeGe1.76 reveal a complex series of magnetic transitions at low temperature. At TN?7 K, there is a transition from a paramagnetic state at higher temperature to an incommensurate magnetic structure characterized by a magnetic propagation vector (0 0 ?) with ??14 and the magnetic moment along the a axis of the orthorhombic unit cell. Below TLI?5 K, the magnetic structure locks in to a commensurate structure with ?=14 and the magnetic moment remains along the a axis. Below T??4 K, we find additional half-integer and integer indexed magnetic Bragg peaks consistent with a second commensurately ordered antiferromagnetic state.

Jayasekara, Wageesha T [Ames Laboratory; Tian, W [Oak Ridge National Laboratory; Hodovanets, Halyna [Ames Laboratory; Canfield, Paul C [Ames Laboratory; Bud'ko, Serguei L [Ames Laboratory; Kreyssig, Andreas [Ames Laboratory; Goldman, Alan I [Ames Laboratory

2014-10-01T23:59:59.000Z

57

The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study  

SciTech Connect (OSTI)

We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 K to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.

Ye, Feng [ORNL; Chi, Songxue [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Qi, Tongfei [University of Kentucky; Cao, Gang [University of Kentucky

2013-01-01T23:59:59.000Z

58

A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel  

SciTech Connect (OSTI)

Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (??, bcc) and austenite (?, fcc) phase fractions and lattice parameters on heating to 1000 C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the ?? ? ? transformation which occurs upon heating to high temperature. The analysis of neutron diffraction data has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the KoistinenMarburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: Martensite is still present at very high temperature (> 930 C) upon heating. The end of austenitisation cannot be accurately monitored by dilatometry. The martensite and austenite volumes become similar at high temperature (> ? 850 C)

Christien, F., E-mail: frederic.christien@univ-nantes.fr [Institut des Matriaux Jean Rouxel (IMN), Universit de Nantes, CNRS, Rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Telling, M.T.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford (United Kingdom); Knight, K.S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Department of Earth Sciences, The Natural History Museum, Cromwell Road, London (United Kingdom)

2013-08-15T23:59:59.000Z

59

The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle  

SciTech Connect (OSTI)

This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

Hyer, D.K.; DiStravolo, M.A. (comps.)

1990-10-01T23:59:59.000Z

60

Single-crystal neutron diffraction studies on Ni-based metal-pnictide superconductor BaNi2As2  

SciTech Connect (OSTI)

We report the results of single-crystal neutron diffraction studies of the superconductor BaNi{sub 2}As{sub 2}. The experiments were performed on a tiny crystal of mass 0.8 mg at several temperatures between 20 and 200 K using the Single Crystal Diffractometer, SCD, at the Los Alamos Neutron Science Center. Above 130 K, BaNi{sub 2}As{sub 2} crystallizes in the tetragonal ThCr{sub 2}Si{sub 2} structure. Our neutron diffraction data corroborate a first-order structural transition around 130 K with a relatively large hysteresis of about 10K, in agreement with observations from bulk studies. The anisotropic thermal displacement coefficients are enhanced along c-axis approaching the transition, and a splitting is observed for in-plane type reflections below the transition, which is evidence for a change in crystal structure.

Kothapalli, Karunakar [Los Alamos National Laboratory; Ronning, F [Los Alamos National Laboratory; Bauer, E D [Los Alamos National Laboratory; Schultz, A J [Los Alamos National Laboratory; Nakotte, Heinz [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Structural phase transition and magnetism in hexagonal SrMnO{sub 3} by magnetization measurements and by electron, x-ray, and neutron diffraction studies  

SciTech Connect (OSTI)

The structural and magnetic properties of the hexagonal four-layer form of SrMnO{sub 3} have been investigated by combining magnetization measurements, electron diffraction, and high-resolution synchrotron x-ray and neutron powder diffraction. Below 350 K, there is subtle structural phase transition from hexagonal symmetry (space group P6{sub 3}/mmc) to orthorhombic symmetry (space group C222{sub 1}) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn{sub 2}O{sub 9} units composed of two face-sharing MnO{sub 6} octahedra and the associated displacement of Sr{sup 2+} cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector k=(0,0,0) sets in below 300 K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn{sub 2}O{sub 9} units.

Daoud-Aladine, A.; Chapon, L. C.; Knight, K. S. [ISIS facility, Rutherford Appleton Laboratory-CCLRC, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Martin, C. [Laboratoire CRISMAT-UMR, 6508 ENSI CAEN, 6, Marechal Juin, 14050 Caen (France); ISIS facility, Rutherford Appleton Laboratory-CCLRC, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Hervieu, M. [Laboratoire CRISMAT-UMR, 6508 ENSI CAEN, 6, Marechal Juin, 14050 Caen (France); Brunelli, M. [European Synchrotron Radiation Facility, BP220, F-38043 Grenoble Cedex (France); Radaelli, P. G. [ISIS facility, Rutherford Appleton Laboratory-CCLRC, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2007-03-01T23:59:59.000Z

62

A neutron diffraction study of the magnetic structure for the perovskite-type mixed oxides La(Mn, Cr)03 and (La, Sr)Fe03  

E-Print Network [OSTI]

to be equivalent, the structure factors must be based on the same cell size, or normalization is necessary. The usual practice in X-ray diffraction is to obtain ratios of in? tensities of many lines, while in neutron diffraction the absolute inte? grated... Amplitude Form Factor Dependence for 3d Shell . . 2^ 5* Ideal Cubic Perovskite (ABO^) Structure .................. 32 6. Plan View of Neutron Spectrometer....................... ^0 7. Spectral Distribution of X-Rays and Pile Neutrons........1+1 8...

Bents, Ulrich H.

2013-10-04T23:59:59.000Z

63

Refinement of the crystal structure of the high-temperature phase G0 in (NH4)2WO2F4 (powder, x-ray, and neutron scattering)  

SciTech Connect (OSTI)

The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and static orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.

Novak, D. M. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, Lev S [Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia; Kolesnikov, Alexander I [ORNL; Voronin, Vladimir [Institute of Metal Physics, Russia; Berger, I. F. [Institute of Metal Physics, Russia; Laptash, N. M. [Institute of Chemistry, Vladivostok, Russia; Vasil'ev, N. M. [Kirensky Institute of Physics, Krasnoyarsk, Russia; Flerov, I. N. [Kirensky Institute of Physics, Krasnoyarsk, Russia

2013-01-01T23:59:59.000Z

64

Effect of microstructure anisotropy on the deformation of MAX polycrystals studied by in-situ compression combined with neutron diffraction  

SciTech Connect (OSTI)

In situ compression tests combined with neutron diffraction were performed on Ti{sub 2}AlN MAX polycrystals with lamellar anisotropic microstructure: the diffraction peak evolution (position and profile) with applied stress reveals that lamellar grains parallel to compression axis remain elastic while lamellar grains perpendicular to compression plastify, both families being subjected to strong variations of heterogeneous strains (types II and III). We demonstrate that this behavior originates from the complex response of the very anisotropic lamellar microstructure and explains the observation of reversible hysteretic loops when cycling MAX polycrystals even in the elastic regime.

Guitton, A.; Joulain, A.; Thilly, L., E-mail: ludovic.thilly@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers-ENSMA, SP2MI, 86962 Futuroscope (France); Van Petegem, S.; Tromas, C.; Van Swygenhoven, H. [Materials Science and Simulations, NUM/ASQ, CH5232 Villigen PSI (Switzerland)

2014-06-16T23:59:59.000Z

65

Partial Spin Ordering and Complex Magnetic Structure in BaYFeO4: A Neutron Diffraction and High Temperature Susceptibility Study  

SciTech Connect (OSTI)

The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe3+ sites, that are alternately corner-shared [FeO5]7 square pyramids and [FeO6]9 octahedra, forming into [Fe4O18]24 rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of shortrange magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and hightemperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, 1/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, 0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe3+ are only of the order 3.0 B, smaller than the expected values near 4.5 B, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at 550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic structure.

Thompson, Corey [Florida State University, Tallahassee] [Florida State University, Tallahassee; Greedan, John [McMaster University] [McMaster University; Garlea, Vasile O [ORNL] [ORNL; Flacau, Roxana [National Research Council of Canada] [National Research Council of Canada; Tan, Malinda [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB); Derakhshan, Shahab [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB)

2014-01-01T23:59:59.000Z

66

Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could be collected the goal would be to determine the strain tensor's orientation and magnitude of strain along each principle axis direction.

Hubbard, Camden R [ORNL

2011-09-01T23:59:59.000Z

67

Neutron diffraction of hydrogenous materials: measuring incoherent and coherent intensities separately from liquid water - a 40-year-old puzzle solved  

E-Print Network [OSTI]

(short version) Accurate determination of the coherent static structure factor of disordered materials containing proton nuclei is prohibitively difficult by neutron diffraction, due to the large incoherent cross section of $^1$H. This notorious problem has set severe obstacles to the structure determination of hydrogenous materials up to now, via introducing large uncertainties into neutron diffraction data processing. Here we present the first accurate separate measurements, using polarized neutron diffraction, of the coherent and incoherent contributions to the total static structure factor of 5 mixtures of light and heavy water, over an unprecedentedly wide momentum transfer range. The structure factors of H$_2$O and D$_2$O mixtures derived in this work may signify the beginning of a new era in the structure determination of hydrogenous materials, using neutron diffraction.

Lszl Temleitner; Anne Stunault; Gabriel Cuello; Lszl Pusztai

2014-10-01T23:59:59.000Z

68

Maximum Entropy Method and Charge Flipping, a Powerful Combination to Visualize the True Nature of Structural Disorder from in situ X-ray Powder Diffraction Data  

SciTech Connect (OSTI)

In a systematic approach, the ability of the Maximum Entropy Method (MEM) to reconstruct the most probable electron density of highly disordered crystal structures from X-ray powder diffraction data was evaluated. As a case study, the ambient temperature crystal structures of disordered {alpha}-Rb{sub 2}[C{sub 2}O{sub 4}] and {alpha}-Rb{sub 2}[CO{sub 3}] and ordered {delta}-K{sub 2}[C{sub 2}O{sub 4}] were investigated in detail with the aim of revealing the 'true' nature of the apparent disorder. Different combinations of F (based on phased structure factors) and G constraints (based on structure-factor amplitudes) from different sources were applied in MEM calculations. In particular, a new combination of the MEM with the recently developed charge-flipping algorithm with histogram matching for powder diffraction data (pCF) was successfully introduced to avoid the inevitable bias of the phases of the structure-factor amplitudes by the Rietveld model. Completely ab initio electron-density distributions have been obtained with the MEM applied to a combination of structure-factor amplitudes from Le Bail fits with phases derived from pCF. All features of the crystal structures, in particular the disorder of the oxalate and carbonate anions, and the displacements of the cations, are clearly obtained. This approach bears the potential of a fast method of electron-density determination, even for highly disordered materials. All the MEM maps obtained in this work were compared with the MEM map derived from the best Rietveld refined model. In general, the phased observed structure factors obtained from Rietveld refinement (applying F and G constraints) were found to give the closest description of the experimental data and thus lead to the most accurate image of the actual disorder.

Samy, A.; Dinnebier, R; van Smaalen, S; Jansen, M

2010-01-01T23:59:59.000Z

69

The structure of molten CaSiO3: A neutron diffraction isotope substitution and aerodynamic levitation study.  

SciTech Connect (OSTI)

We have performed neutron diffraction isotopic substitution experiments on aerodynamically levitated droplets of CaSiO3, to directly extract intermediate and local structural information on the Ca environment. The results show a substantial broadening of the Ca-O peak in the pair distribution function of the melt compared to the glass, which comprises primarily of 6- and 7-fold coordinated Ca-polyhedra. The broadening can be explained by a re-distribution of Ca-O bond lengths, especially towards longer distances in the liquid. The first order neutron difference function provides a rigorous test of recent molecular dynamics simulations and supports the model of the presence of short chains or channels of edge shared Ca-octahedra in the liquid state. It is suggested that the polymerization of Ca-polyhedra is responsible for the fragile viscosity behavior of the melt and the glass forming ability in CaSiO3.

Skinner, Lawrie [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Santodonato, Louis J [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL; Neuefeind, Joerg C [ORNL; Lazareva, Lena [State University of New York, Stony Brook; Du, Jincheng [University of North Texas; Parise, John B [Stony Brook University (SUNY)

2012-01-01T23:59:59.000Z

70

Neutron diffraction studies of antiferromagnetism in manganous fluoride and some isomorphous compounds  

E-Print Network [OSTI]

FLUORIDE AND SOME ISOMORPHOUS COMPOUNDS Major Subject: Physics 1 2 11 16 16 18 27 29 31 38 38 54 58 63 67 75 77 TABLE OF CONTENTS CHAPTER I. INTRODUCTION . . . ......................... II. MAGNETIC PROPERTY CONSIDERATIONS............... Ill. RELATIONS FOE THE MAGNETIC SCATTERING OF NEUTRONS IV. APPARATUS AND PROCEDURE................... . A. The Neutron Spectrometer.............. B. The Low Temperature Cryostat.......... C. Lov Temperature Coolants. . . . . . . . . D. Sample...

Erickson, Richard Ames

1952-01-01T23:59:59.000Z

71

Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement  

SciTech Connect (OSTI)

Neutron diffraction with isotopic substitution has been used to investigate aqueous solutions of 2M NaOH in the liquid state. The data were modeled using empirical potential structure refinement which allows for the extraction of the ion-water and water-water correlations. The data show that the ion-water radial distribution functions are in accordance with those found by previous studies on NaOH solutions and follow a trend which is dependent on the concentration of the solute. In particular, the shape of the hydroxide hydration shell is found to be concentration independent, but the number of water molecules occupying this shell increases with dilution. Additionally, the water-water correlations show that there is still a measurable effect on water structure with the addition of ions at this concentration, as the second shell in the water oxygen radial distribution function is compressed relative to the first shell. The data are also used to discuss the recent claims that the published radial distribution functions of water are unreliable, showing that data taken at different neutron sources, with different diffraction geometry and systematic errors lead to the same structural information when analyzed via a realistic modeling regime.

McLain, Sylvia E.; Imberti, Silvia; Soper, Alan K.; Botti, Alberto; Bruni, Fabio; Ricci, Maria Antonietta [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OX11 0QX (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OX11 0QX, United Kingdom and CNR-ISC, Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino (Finland) (Italy); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OX11 0QX (United Kingdom); Dipartimento di Fisica E. Amaldi, Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy)

2006-09-01T23:59:59.000Z

72

Procedure for Computing Residual Stresses from Neutron Diffraction Data and its Application to Multi-Pass Dissimilar Weld  

SciTech Connect (OSTI)

Neutron diffraction is a powerful tool for non-destructive measurement of internal residual stresses of welded structures. The conventional approach for determination of residual stresses requires the knowledge of stress-free lattice spacing a priori. For multiple-pass dissimilar metal welds common to nuclear reactor pipeline systems, the stress-free lattice parameter is a complex function of position due to the chemistry inhomogeneity in the weld region and can be challenging to determine experimentally. This paper presents a new approach to calculate the residual stress field in dissimilar welds without the use of stress-free lattice parameter. The theoretical basis takes advantage of the fact that the normal component of welding residual stresses is typically small for thin plate or pipe welds. The applicability of the new approach is examined and justified in a multi-pass dissimilar metal weld consisting of a stainless steel plate and a nickel alloy filler metal. The level of uncertainties associated with this new approach is assessed. Neutron diffraction experiment is carried out to measure the lattice spacing at various locations in the dissimilar weld. A comb-shaped specimen, electro-discharge machined from a companion weld, is used to determine the stress-free lattice spacing. The calculated results from the new approach are consistent with those from the conventional approach. The new approach is found to be a practical method for determining the two in-plane residual stress components in thin plate or pipe dissimilar metal welds.

Zhang, Wei [ORNL; Feng, Zhili [ORNL; Crooker, Paul [Electric Power Research Institute (EPRI)

2011-01-01T23:59:59.000Z

73

Phase transition upon K{sup +} ion exchange into Na-low silica X: Combined NMR and synchrotron X-ray powder diffraction study  

SciTech Connect (OSTI)

The mechanism by which K{sup +} ions exchange into zeolite Na-low silica X (LSX) (Na{sub 96}Al{sub 96}Si{sub 96}O{sub 384}{center_dot}nH{sub 2}O) has ben determined by studying structures of the Na-LSX and K-LSX end members in the Na-K LSX solid solution series as well as samples exchanged at the 20%, 42% and 80% K{sup +} levels. A preliminary investigation using {sup 29}Si MAS NMR spectroscopy revealed a two-phase region in the solid solution near 80% K{sup +} exchange. Rietveld analysis of the powder diffraction data collected from hydrated samples showed that, up to 42% of K{sup +} exchange, K{sup +} ions were located preferentially at site I{prime}, just outside the double 6-ring (D6R) in the sodalite age, and at site II, above the single 6-ring (S6R) in the supercage. Introduction of K{sup +} ions into site I{prime} repositioned Na{sup +} ions into site I, at the center of the D6R. An abrupt change in the cubic lattice parameter from 25.0389(5) to 25.2086(5) {angstrom} marked the formation of a second phase at the 80% K{sup +}-exchange level as K{sup +} ions began to occupy site I. No coexistence of phases was observed for the fully K{sup +}-exchanged sample (a = 25.2486(2) {angstrom}), where sites I and II were fully occupied by K{sup +} ions.

Lee, Y.; Parise, J.B. [State Univ. of New York, Stony Brook, NY (United States)] [State Univ. of New York, Stony Brook, NY (United States); Carr, S.W. [ANSTO, Menai (Australia)] [ANSTO, Menai (Australia)

1998-09-01T23:59:59.000Z

74

Hidden Superlattice in Tl2(SC6H4S) and Tl2(SeC6H4Se) Solved from Powder X-ray Diffraction  

SciTech Connect (OSTI)

The crystal structures of the isostructural title compounds poly[({mu}-benzene-1,4-dithiolato)dithallium], Tl{sub 2}(SC{sub 6}H{sub 4}S), and poly[({mu}-benzene-1,4-diselenolato)dithallium], Tl{sub 2}(SeC{sub 6}H{sub 4}Se), were solved by simulated annealing from high-resolution synchrotron X-ray powder diffraction. Rietveld refinements of an initial structure with one formula unit per triclinic cell gave satisfactory agreement with the data, but led to a structure with impossibly close non-bonded contacts. A disordered model was proposed to alleviate this problem, but an alternative supercell structure leads to slightly improved agreement with the data. The isostructural superlattice structures were confirmed for both compounds through additional data collection, with substantially better counting statistics, which revealed the presence of very weak superlattice peaks not previously seen. Overall, each structure contains Tl-S or Tl-Se two-dimensional networks, connected by phenylene bridges. The sulfur (or selenium) coordination sphere around each thallium is a highly distorted square pyramid or a 'see-saw' shape, depending upon how many Tl-S or Tl-Se interactions are considered to be bonds. In addition, the two compounds contain pairs of Tl{sup I} ions that interact through a closed-shell 'thallophilic' interaction: in the sulfur compound there are two inequivalent pairs of Tl atoms with Tl-Tl distances of 3.49 and 3.58 {angstrom}, while in the selenium compound those Tl-Tl interactions are at 3.54 and 3.63 {angstrom}.

K Stone; D Turner; M Singh; T Vaid; P Stephens

2011-12-31T23:59:59.000Z

75

Powder Diffraction Crystallography Instructional Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ.Potential(GFA)

76

In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. II. Elastic properties  

SciTech Connect (OSTI)

Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO{sub 3} perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO{sub 3}, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO{sub 3} single crystal in different crystallographic directions were estimated.

Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kuebler, Jakob; Graule, Thomas [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-07-07T23:59:59.000Z

77

High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures  

SciTech Connect (OSTI)

Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO{sub 3} have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kamenev, Konstantin V., E-mail: k.kamenev@ed.ac.uk [School of Engineering and CSEC, University of Edinburgh, Edinburgh (United Kingdom); Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry [ISIS, Rutherford Appleton Laboratory, Harwell Oxford (United Kingdom)] [ISIS, Rutherford Appleton Laboratory, Harwell Oxford (United Kingdom); Azuma, Masaki [Materials and Structures Laboratory, Tokyo Institute of Technology, Tokyo (Japan)] [Materials and Structures Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Attfield, J. Paul [School of Chemistry and CSEC, University of Edinburgh, Edinburgh (United Kingdom)] [School of Chemistry and CSEC, University of Edinburgh, Edinburgh (United Kingdom)

2014-04-15T23:59:59.000Z

78

Single crystal neutron diffraction study of the magnetic structure of TmNi{sub 2}B{sub 2}C  

SciTech Connect (OSTI)

Neutron diffraction techniques have been used to study the magnetic structure of single crystals of the magnetic superconductor (T{sub c} {congruent} 11K) TmNi{sub 2}B{sub 2}C. We find that below approximately 1.5K the magnetic moments order in an incommensurate spin wave with propagation vector q{sub m} = q{sub m} (a* +b*) (or q{sub m} = q{sub m} (a* + b*)) with q{sub m} = 0.094 {+-} 0.001. The spin wave is transverse with the moments aligned along the c-axis, and the observation of relatively intense higher order harmonics shows that the modulation is not purely sinusoidal but considerably squared. This incommensurate magnetic structure, which coexists with superconductivity below T{sub N} {congruent} 1.5K, is quite different from those observed in the magnetic superconductors HoNi{sub 2}B{sub 2}C and ErNi{sub 2}B{sub 2}C. The origin of diffraction peaks observed in scans parallel to a* is briefly discussed.

Sternlieb, B.; Shapiro, S. [Brookhaven National Lab., Upton, NY (United States); Stassis, C.; Goldman, A.I.; Canfield, P. [Iowa State Univ., Ames, IA (United States)

1997-02-01T23:59:59.000Z

79

Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction  

E-Print Network [OSTI]

We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times $\\tau$, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics.

Maikel C. Rheinstdter; Tilo Seydel; Tim Salditt

2006-07-20T23:59:59.000Z

80

JOURNAL DE PHYSIQUE Collogue CI, supplement au n 4, Tome 38, Avril 1977, page Cl-79 POLARIZED NEUTRON DIFFRACTION IN FERRITES  

E-Print Network [OSTI]

NEUTRON DIFFRACTION IN FERRITES N. S. SATYA MURTHY Nuclear Physics Division, Bhabha Atomic Research Centre ferrite MnFeîCU. On termine par une brève mention des travaux effectués sur les poudres. Abstract at Trombay on natural Fe304 and synthetic MnFe2C>4 ferrite single crystals are presented in this talk after

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions  

SciTech Connect (OSTI)

Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2013-01-01T23:59:59.000Z

82

Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the Gates of Paradise  

SciTech Connect (OSTI)

Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.

Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica and Centre NAST Via della R. Scientifica 1, Rome (Italy); Porcinai, S.; Giusti, A. M. [Opificio delle Pietre Dure, Florence (Italy); Materna, T. [Institut Laue-Langevin 6, rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Paradowska, A. M. [ISIS Neutron Scattering Facility-Science and Technology Facility Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom)

2011-03-15T23:59:59.000Z

83

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art  

E-Print Network [OSTI]

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

Birmingham, University of

84

A Hybrid Reflective/Refractive/Diffractive Achromatic Fiber-Coupled Radiation Resistant Imaging System for Use in the Spallation Neutron Source (SNS)  

SciTech Connect (OSTI)

A fiber-coupled imaging system for monitoring the proton beam profile on the target of the Spallation Neutron Source was developed using reflective, refractive and diffractive optics to focus an image onto a fiber optic imaging bundle. The imaging system monitors the light output from a chromium-doped aluminum oxide (Al{sub 2}0{sub 3}:Cr) scintillator on the nose of the target. Metal optics are used to relay the image to the lenses that focus the image onto the fiber. The material choices for the lenses and fiber were limited to high-purity fused silica, due to the anticipated radiation dose of 10{sup 8} R. In the first generation system (which had no diffractive elements), radiation damage to the scintillator on the nose of the target significantly broadened the normally monochromatic (694 nm) spectrum. This created the need for an achromatic design in the second generation system. This was achieved through the addition of a diffractive optic for chromatic correction. An overview of the target imaging system and its performance, with particular emphasis on the design and testing of a hybrid refractive/diffractive high-purity fused silica imaging triplet, is presented.

Maxey, L Curt [ORNL; Ally, Tanya R [ORNL; Brunson, Aly [ORNL; Garcia, Frances [ORNL; Goetz, Kathleen C [ORNL; Hasse, Katelyn E [ORNL; McManamy, Thomas J [ORNL; Shea, Thomas J [ORNL; Simpson, Marc Livingstone [ORNL

2011-01-01T23:59:59.000Z

85

Neutron diffraction study of magnetic field induced behavior in the heavy Fermion Ce3Co4Sn13  

SciTech Connect (OSTI)

The specific heat of Ce3Co4Sn13 exhibits a crossover from heavy Fermion behavior with antiferromagnetic correlations at low field to single impurity Kondo behavior above 2 T. We have performed neutron diffraction measurements in magnetic fields up to 6 Tesla on single crystal samples. The (001) position shows a dramatic increase in intensity in field which appears to arise from static polarization of the 4f level and which at 0.14 K also exhibits an anomaly near 2T reflecting the crossover to single impurity behavior.

Christianson, Andrew D [ORNL; Goremychkin, E. A. [ISIS Facility, Rutherford Appleton Laboratory; Gardner, J. S. [Indiana University; Kang, H. J. [National Institute of Standards and Technology (NIST); Chung, J.-H. [National Institute of Standards and Technology (NIST); Manuel, P. [ISIS Facility, Rutherford Appleton Laboratory; Thompson, J. D. [Los Alamos National Laboratory (LANL); Sarrao, J. L. [Los Alamos National Laboratory (LANL); Lawrence, J. M. [University of California, Irvine

2008-01-01T23:59:59.000Z

86

Single crystal neutron diffraction study of lattice and magnetic structures of 5M modulated Ni2Mn1.14Ga0.86  

SciTech Connect (OSTI)

A comprehensive description of the crystal and magnetic structures of Ni-Mn-Ga magnetic shape memory alloys is important to understand the physical origins of their magnetoelastic properties. These structural details for an off-stoichiometric Ni2Mn1.14Ga0.86 alloy have been obtained from refinement of high-resolution single crystal neutron diffraction data following a (3+1)-dimensional superspace formalism. In particular, the structure adopts a P2/m( 0 )00 (3+1)-D superspace symmetry with the following fundamental lattice parameters: a=4.255(4) , b=5.613(4) , c=4.216(3) , a commensurate periodicity of 5M and a modulation wave vector of . The magnetic moments are aligned along the b-axis. The modulations for atomic site displacements, site occupancies and magnetic moments are elucidated from a (3+1)-D refinement of the neutron diffraction data. In addition to atomic displacements corresponding to shear waves along <110>, distortions of Ni-centric tetrahedra are also evident. Physical interpretations for the different structural distortions and their relationship with magnetic properties are discussed.

Pramanick, Abhijit [ORNL] [ORNL; Wang, Xiaoping [ORNL] [ORNL; An, Ke [ORNL] [ORNL; Stoica, Alexandru Dan [ORNL] [ORNL; Hoffmann, Christina [ORNL] [ORNL; Wang, Xun-Li [ORNL] [ORNL

2012-01-01T23:59:59.000Z

87

In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. I. Crystal structure analysis and texture development  

SciTech Connect (OSTI)

The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3{sup }c rhombohedral LaCoO{sub 3} during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO{sub 3} perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO{sub 3} at high compressive stresses, ranging from 76?GPa at the very beginning of the loading to 194?GPa at 900?MPa at the beginning of the unloading curve.

Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-07-07T23:59:59.000Z

88

Nature and distribution of iron sites in a sodium silicate glass investigated by neutron diffraction and EPSR simulation  

E-Print Network [OSTI]

1 Nature and distribution of iron sites in a sodium silicate glass investigated by neutron distributed in the silicate network and shares corner with silicate tetrahedra. The existence of a majority, such as the increase of the elastic modulus of sodium silicate glasses with increasing Fe-concentration. Our data

Boyer, Edmond

89

On the crystal energy and structure of A{sub 2}Ti{sub n}O{sub 2n+1} (A=Li, Na, K) titanates by DFT calculations and neutron diffraction  

SciTech Connect (OSTI)

First-principles quantum-mechanical calculations (CRYSTAL09 code, B3LYP functional) were performed on alkali titanates A{sub 2}Ti{sub n}O{sub 2n+1} with layered structure (n=3,4,6). Monoclinic structural types with unshifted (P2{sub 1}/m) and with shifted (C2/m) layers were considered. Crystal energies and full structural details were obtained for all Li, Na, and K phases. Neutron diffraction data were collected on powder samples of P2{sub 1}/m-Li{sub 2}Ti{sub 3}O{sub 7} (a=9.3146(3), b=3.7522(1), c=7.5447(3) , ?=97.611(4)) and C2/m-K{sub 2}Ti{sub 4}O{sub 9} (a=18.2578(8), b=3.79160(9), c=12.0242(4) , ?=106.459(4)) and their structures were Rietveld-refined. Computed energies show the P2{sub 1}/m arrangement as favoured over the C2/m one for n=3, and the opposite holds for n=6. In the n=4 case the P2{sub 1}/m configuration is predicted to be more stable for Li and Na, and the C2/m one for K titanates. Analysis of LiO and KO crystal-chemical environments from experiment and theory shows that the alkali atom bonding is stabilized/destabilized in the different phases consistently with the energy trend. - Graphical abstract: Display Omitted - Highlights: The P2{sub 1}/m structure-type is found to be more stable for A{sub 2}Ti{sub 3}O{sub 7} layer titanates. The C2/m structure-type is found to be more stable for A{sub 2}Ti{sub 6}O{sub 13} layer titanates. Tetratitanates are predicted to prefer the P2{sub 1}/m (Li and Na) or C2/m (K) structure. LiO and KO bond distances follow a trend consistent with computed phase energies.

Catti, Michele, E-mail: catti@mater.unimib.it [Dipartimento di Scienza dei Materiali, Universit di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Pinus, Ilya [Dipartimento di Scienza dei Materiali, Universit di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Scherillo, Antonella [ISIS Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom)

2013-09-15T23:59:59.000Z

90

Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C{sub 8}H{sub 4}O{sub 4})(H{sub 2}O){sub 2} and Mn{sub 2}(OH){sub 2}(C{sub 8}H{sub 4}O{sub 4})  

SciTech Connect (OSTI)

Mn(C{sub 8}H{sub 4}O{sub 4})(H{sub 2}O){sub 2} and Mn{sub 2}(OH){sub 2}(C{sub 8}H{sub 4}O{sub 4}) layered organic-inorganic compounds based on manganese(II) and terephthalate molecules (C{sub 8}H{sub 4}O{sub 4}{sup 2-}) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its {chi}T product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J Almost-Equal-To -7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Neel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: Black-Right-Pointing-Pointer Magnetic study of Mn(C{sub 8}H{sub 4}O{sub 4})(H{sub 2}O){sub 2} and Mn{sub 2}(OH){sub 2}(C{sub 8}H{sub 4}O{sub 4}). Black-Right-Pointing-Pointer Two compounds with common features (interlayer linker/distance, S=5/2 spin). Black-Right-Pointing-Pointer Magnetic measurements quantitatively analyzed to deduce exchange constants. Black-Right-Pointing-Pointer Magnetic structures determined from neutron powder diffraction experiments.

Sibille, Romain, E-mail: romain.sibille@ijl.nancy-universite.fr [Institut Jean Lamour, UMR 7198-Nancy Universite, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France); Mesbah, Adel; Mazet, Thomas; Malaman, Bernard [Institut Jean Lamour, UMR 7198-Nancy Universite, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France); Capelli, Silvia [Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Francois, Michel [Institut Jean Lamour, UMR 7198-Nancy Universite, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France)

2012-02-15T23:59:59.000Z

91

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction  

SciTech Connect (OSTI)

Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H H distance of 1.489(10) between the protic N-H?+ and hydridic Fe-H?-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

2014-05-19T23:59:59.000Z

92

First principles calculations, neutron, and x-ray diffraction investigation of Y{sub 3}Ni{sub 13}B{sub 2}, Y{sub 3}Co{sub 13}B{sub 2}, and Y{sub 3}Ni{sub 10}Co{sub 3}B{sub 2}  

SciTech Connect (OSTI)

Fully relativistic calculations within the local spin density approximation and the generalized gradient approximation were performed to determine the local spin and orbital magnetic moments, as well as the magnetocrystalline anisotropy energy of Y{sub 3}Ni{sub 13}B{sub 2}, Y{sub 3}Co{sub 13}B{sub 2}, and Y{sub 3}Ni{sub 10}Co{sub 3}B{sub 2} compounds. A weak in-plane magnetic anisotropy is determined for Y{sub 3}Ni{sub 13}B{sub 2}, under the assumption of a crystallographic-like magnetic unit cell and collinear magnetic moments. The calculations predict considerable c-axis anisotropy for Y{sub 3}Co{sub 13}B{sub 2} and Y{sub 3}Ni{sub 10}Co{sub 3}B{sub 2}, but smaller than that of YCo{sub 5}. The values of the magnetocrystalline anisotropy energy correlate well with both the magnitude of the orbital magnetic moment and the orbital magnetic moment anisotropy. The mixing between Co or Ni 3d states and B 2p states, observable at the bottom of the valence band of the 3d metal having a boron atom nearest neighbor, decreases the 3d spin and especially, the 3d orbital magnetic moments. Y{sub 3}Ni{sub 13}B{sub 2} and Y{sub 3}Ni{sub 10}Co{sub 3}B{sub 2} were also investigated by powder neutron diffraction experiments, at temperatures between 1.8 and 249?K. The Co and Ni site averaged magnetic moments calculated in the mixed compound are in fair agreement with the values obtained by the refinement of the magnetic contribution to the diffraction pattern.

Plugaru, N.; Valeanu, M. [National Institute of Materials Physics, Atomistilor Str. 105bis, Magurele-Bucharest 077125, P.O. Box MG-07, Ilfov (Romania); Plugaru, R., E-mail: rodica.plugaru@imt.ro [National Institute for R and D in Microtechnologies, Erou Iancu Nicolae Str. 126A, Bucharest 077190, P.O. Box 38-160 (Romania); Campo, J. [Material Science Institute of Aragon, University of Zaragoza, C.S.I.C., E-50009 Zaragoza (Spain)

2014-01-14T23:59:59.000Z

93

A neutron diffraction study and mode analysis of compounds of the system La{sub 1?x}Sr{sub x}FeO{sub 3?x}F{sub x} (x=1, 0.8, 0.5, 0.2) and an investigation of their magnetic properties  

SciTech Connect (OSTI)

We report here a detailed study of the system La{sub 1?x}Sr{sub x}FeO{sub 3?x}F{sub x}, by neutron powder diffraction- and magnetic-measurements. All the compounds are robust antiferromagnetics with ordering temperatures well above room temperature. Magnetic moments are shown to align parallel to the c-axis. FC-ZFC measurements indicate a small canting of the magnetic moments, resulting in a ferromagnetic component with a maximum for La{sub 0.5}Sr{sub 0.5}FeO{sub 2.5}F{sub 0.5}. We show that the system exhibits a composition-driven transition from a phase, for low fluorination levels (x?0.5), with Pnma symmetry and the usual system of octahedral tiltings, to a phase with space group Imma for higher fluorine contents, where a correlated distortion of the oxygen octahedra plays a significant role. The consistency of the structural models, with respect to the expected continuity of the amplitudes of the different distortion modes and the invariance of their internal form, was monitored through the symmetry mode decomposition of the structures. - Graphical abstract: The crystal and magnetic structure of La{sub 0.5}Sr{sub 0.5}FeO{sub 2.5}F{sub 0.5}. Display Omitted - Highlights: The compounds La{sub 1?x}Sr{sub x}FeO{sub 3?x}F{sub x} (x=1, 0.8, 0.5, 0.2) were studied by neutron diffraction. A mode analysis shows lower symmetry for Sr rich compounds than previously reported. SrFeO{sub 2}F crystallizes in the orthorhombic space group Imma. Magnetic moments resulting from canting depend on metric distortion. The magnetic structure was determined for La{sub 0.5}Sr{sub 0.5}FeO{sub 2.5}F{sub 0.5}.

Clemens, Oliver, E-mail: oliver.clemens@kit.edu [School of Chemistry, The University of Birmingham, Birmingham B15 2TT (United Kingdom); Berry, Frank J.; Wright, Adrian J. [School of Chemistry, The University of Birmingham, Birmingham B15 2TT (United Kingdom); Knight, Kevin S. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX (United Kingdom); Perez-Mato, J.M.; Igartua, J.M. [Departamentos de Fsica de la Materia Condensada y Fsica Aplicada II, Facultad de Ciencia y Tecnologa, Universidad del Pas Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao (Spain); Slater, Peter R. [School of Chemistry, The University of Birmingham, Birmingham B15 2TT (United Kingdom)

2013-10-15T23:59:59.000Z

94

Powder dispersion system  

DOE Patents [OSTI]

A powder dispersion method and apparatus comprising an air eductor and a powder dispensing syringe inserted into a suction connection of the air eductor.

Gorenz, Heather M. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

95

Neutron diffraction study of the crystal structure and structural phase transition of La{sub 0.7}Ca{sub 0.3-x}Sr{sub x}CrO{sub 3} (0<=x<=0.3)  

SciTech Connect (OSTI)

The crystal structure of the La{sub 0.7}Ca{sub 0.3-x}Sr{sub x}CrO{sub 3} series, including the compositional and temperature dependence of the structural parameters, has been studied by variable temperature neutron diffraction measurements. The extent of the distortions from the ideal cubic perovskite structure has been evaluated quantitatively using the average bond lengths and the mean volumes of the [CrO{sub 6}] octahedron and [(La/Ca/Sr)O{sub 12}] polyhedron, and has been shown to decrease with increase of Sr content or temperature. At the structural phase transition from the orthorhombic (Pnma) structure to the rhombohedral (R3-barc) one, the volume of the [CrO{sub 6}] octahedron decreases whereas that of the [(La/Ca/Sr)O{sub 12}] polyhedron shows little difference, resulting in an overall decrease in the level of distortion. The change in the degree of distortion at the phase transition decreases with increase of Sr content, in agreement with the smaller variation of the enthalpy and volume for the specimens with higher Sr content. - Graphical abstract: Temperature dependence of parameter, PHI, representing the extent of distortion from the ideal cubic perovskite structure, for La{sub 0.7}Ca{sub 0.3}CrO{sub 3} (diamonds) and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}CrO{sub 3} (circles) calculated from neutron diffraction patterns.

Omoto, Kazuki [Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Norberg, Stefan T. [Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Hull, Steve [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Aoto, Akimitsu [Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Hashimoto, Takuya, E-mail: takuya@chs.nihon-u.ac.j [Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan)

2010-02-15T23:59:59.000Z

96

In-situ mechanical testing during X-ray diffraction  

SciTech Connect (OSTI)

Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

Van Swygenhoven, Helena, E-mail: helena.vanswygenhoven@psi.ch; Van Petegem, Steven

2013-04-15T23:59:59.000Z

97

aluminum powder part: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

98

aluminum germanium powders: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

99

Phase stability study of Bi{sub 0.15}Sr{sub 0.85-x}Ae{sub x}CoO{sub 3-{delta}} (x = 0 and Ae = Ba{sub 0.28}; Ca{sub 0.17}) perovskites by in-situ neutron diffraction  

SciTech Connect (OSTI)

The oxygen deficient perovskites, Bi{sub 0.15}Sr{sub 0.85-x}Ae{sub x}CoO{sub 3-{delta}}, x = 0 and Ae{sub x} = Ba{sub 0.28}, Ca{sub 0.17}, were studied with in-situ neutron powder diffraction and combined TGA/DSC in order to investigate their behaviour at elevated temperatures in oxidising conditions. The phase stability of the I4/mmm supercell structure adopted by Bi{sub 0.15}Sr{sub 0.85}CoO{sub 3-{delta}} is shown to be dependent on temperature and the oxygen content of the phase, with three structural events, at T {approx} 250, 590 and 880 {sup o}C, detected. The first transition occurs as the perovskite supercell vanishes due to oxygen absorption; the second transition is also associated with oxidation and involves the decomposition of the perovskite phase via an exothermic process to yield a dominant hexagonal phase. Finally, at T {approx} 900 {sup o}C the perovskite phase re-forms. For the Ba and Ca containing materials the decomposition to the hexagonal phase occurs at T {approx} 600 {sup o}C and {approx} 650 {sup o}C respectively. The presence of Ca at the A-site is found to stabilise the I4/mmm supercell structure in the range RT - 650 {sup o}C. The antiferromagnetic to paramagnetic transitions occur at T{sub N} {approx} 250 {sup o}C, T{sub N} {approx} 175 {sup o}C and T{sub N} {approx} 145 {sup o}C for the samples with Ae{sub x} = Ba{sub 0.28}, x = 0 and Ae{sub x} = Ca{sub 0.17}, respectively.

Eriksson, A.K.; Eriksson, S.G. [Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)] [Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Chapon, L.C. [STFC, Rutherford Appleton Lab, ISIS Facility, Didcot OX11 0 QX, Oxon (United Kingdom)] [STFC, Rutherford Appleton Lab, ISIS Facility, Didcot OX11 0 QX, Oxon (United Kingdom); Knee, C.S., E-mail: knee@chem.gu.se [Department of Chemistry, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

2010-12-15T23:59:59.000Z

100

Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na2IrO3  

SciTech Connect (OSTI)

We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice $\\rm Na_2IrO_3$. The system orders magnetically below $18.1(2)$~K with Ir$^{4+}$ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of $\\rm 0.22(1)~\\mu_B$/Ir site. Such a configuration sharply contrasts the N{\\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the $\\rm IrO_6$ octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5$d$-electron based honeycomb lattice.

Ye, Feng [ORNL; Chi, Songxue [ORNL; Cao, Huibo [ORNL; Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Custelcean, Radu [ORNL; Qi, Tongfei [University of Kentucky; Korneta, O. B. [University of Kentucky, Lexington; Cao, Gang [University of Kentucky

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Precision powder feeder  

DOE Patents [OSTI]

A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

2001-07-10T23:59:59.000Z

102

Aluminum powder metallurgy processing  

SciTech Connect (OSTI)

The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

Flumerfelt, J.F.

1999-02-12T23:59:59.000Z

103

Amorphous powders of Al-Hf prepared by mechanical alloying  

SciTech Connect (OSTI)

We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

1988-01-01T23:59:59.000Z

104

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University  

E-Print Network [OSTI]

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University Doc. No: SOPPOWGAD data collection on the Bruker GADDS Powder X-ray Diffractometer. POLICY: Data must be collected AND PRECAUTIONS 1. Powder X-ray diffraction is a method by which investigators can identify the materials

Meagher, Mary

105

Multiple feed powder splitter  

DOE Patents [OSTI]

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

106

Multiple feed powder splitter  

DOE Patents [OSTI]

A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

107

Preparation and structural study from neutron diffraction data of Pr{sub 5}Mo{sub 3}O{sub 16}  

SciTech Connect (OSTI)

The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr{sub 6}O{sub 11} and MoO{sub 2} in air. In the literature, an oxide with a composition Pr{sub 2}MoO{sub 6} has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm{sub 4}Mo{sub 3}O{sub 16} (space group Pn-3n, Z=8), with a=11.0897(1) A. The structure contains MoO{sub 4} tetrahedral units, with Mo-O distances of 1.788(2) A, fully long-range ordered with PrO{sub 8} polyhedra; in fact it can be considered as a superstructure of fluorite (M{sub 8}O{sub 16}), containing 32 MO{sub 2} fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (a{sub f}=5.5 A) as a{approx}2a{sub f}. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr{sup 3+}-Pr{sup 4+} oxidation state. The similarity of the XRD pattern with that published for Ce{sub 2}MoO{sub 6} suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce{sub 5}Mo{sub 3}O{sub 16}. -- Graphical Abstract: Formerly formulated as Pr{sub 2}MoO{sub 6}, the title compound is a cubic superstructure of fluorite (a=11.0897(1) A, space group Pn-3n) due to the long-range ordering of PrO{sub 8} scalenohedra and MoO{sub 4} tetrahedral units, showing noticeable shifts of the oxygen positions in order to provide a tetrahedral coordination for Mo ions. A mixed valence Mo{sup 5+}-Mo{sup 6+} is identified, which could account for the excellent catalytic properties of this material. Display Omitted

Martinez-Lope, M.J. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain. (Spain); Alonso, J.A., E-mail: ja.alonso@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain. (Spain); Sheptyakov, D.; Pomjakushin, V. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

2010-12-15T23:59:59.000Z

108

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2003-08-05T23:59:59.000Z

109

X-ray Powder Diffraction (XPD) Scientific scope  

E-Print Network [OSTI]

elaborate/complex setups: large pressure cells, non-routine reaction chambers, combined spectrometry, gas Pressure cells Scintillation counters Si strip detector 120 2 range 0

110

X-RAY POWDER DIFFRACTION IDENTIFICATION OF ILLITIC MATERIALS  

E-Print Network [OSTI]

expandability. The new technique broadens the computer simulation method eveloped by R. C. Reynolds and J. Hower

unknown authors

111

A high temperature diffraction-resistance study of chalcopyrite, CuFeS{sub 2}  

SciTech Connect (OSTI)

The electrical, magnetic and structural properties of synthetic chalcopyrite, CuFeS{sub 2}, have been studied up to 873 K using DC resistance measurements performed in-situ during neutron powder diffraction experiments. Under ambient conditions the material adopts the accepted structural model for CuFeS{sub 2} in the space group I4-bar 2d, with the magnetic moment of the Fe{sup 3+} cations aligned along [001]. The electrical resistivity is around 0.3 {Omega} cm under ambient conditions, consistent with semiconductor character, and decreases slightly with increase in temperature until a more abrupt fall occurs in the region 750-800 K. This abrupt change in resistivity is accompanied by a structural transition to a cubic zinc blende structured phase (space group F4-bar 3m) in which Cu{sup +} and Fe{sup 3+} cations are disordered over the same tetrahedral crystallographic sites and by a simultaneous loss of long-range magnetic order. The implications of these results are discussed in the context of previous studies of the chalcopyrite system. - Graphical abstract: Structural, magnetic and electrical properties of CuFeS{sub 2} to 873 K have been investigated using DC resistance measurements, performed in-situ during the collection of powder neutron diffraction data. Highlights: > Structural, magnetic and electronic properties are probed simultaneously. > A fall in resistivity at high temperatures is associated with cation disorder. > The order-disorder transition is accompanied by the loss of magnetic order. > The structural and magnetic phase transition is preceded by a 2-phase region. > Sulphur loss at high temperatures causes the phase transitions to be irreversible.

Engin, T.E. [Department of Chemistry, Perkin Building, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Powell, A.V., E-mail: a.v.powell@hw.ac.uk [Department of Chemistry, Perkin Building, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Hull, S. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom)

2011-08-15T23:59:59.000Z

112

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2003-08-19T23:59:59.000Z

113

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2005-05-10T23:59:59.000Z

114

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2003-08-26T23:59:59.000Z

115

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2003-07-29T23:59:59.000Z

116

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2004-09-28T23:59:59.000Z

117

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2005-01-25T23:59:59.000Z

118

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

2005-06-07T23:59:59.000Z

119

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2004-09-14T23:59:59.000Z

120

Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Matter ResearchPSI Summer School on Condensed Matter Research  

E-Print Network [OSTI]

Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons

Boothroyd, Andrew

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

122

Iowa Powder Atomization Technologies  

SciTech Connect (OSTI)

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2012-01-01T23:59:59.000Z

123

Iowa Powder Atomization Technologies  

ScienceCinema (OSTI)

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2013-03-01T23:59:59.000Z

124

Synthesis of high purity sinterable silicon carbide powder  

SciTech Connect (OSTI)

High purity, submicron silicon carbide powders were produced via gas phase synthesis using a hydrogen/argon plasma. Two test facilities were constructed, a bench-scale unit and a larger pilot scale reactor. Three candidate silicon sources were evaluated:silicon tetrachloride (SiCl{sub 4}). dimethyldichlorosilane (CH{sub 3}){sub 2}(SiCl{sub 2}) and methyltrichlorosilane (CH{sub 3}SiCl{sub 3}). Product powders were evaluated on the basis of pressureless sinterability, surface area, agglomeration, particle size distribution, phase distribution and chemistry. Three commercial powders, Starck A10, Starck B10, and Carborundum submicron alpha silicon carbide, were also evaluated for comparison to the product powders. Powders were reproducibly synthesized at a rate of one pound per hour for standard run times of five hours. Product powders exhibited chemical and physical properties equal to or exceeding the commercial powders evaluated. In limited attempts to pressureless sinter the product powders, densities of 91% of theoretical were obtained with as-produced powder. Post-processing permitted densities in excess of 97% of theoretical. X-ray diffraction of the product indicates that the product powders are primarily beta poly-types, with traces of alpha present. Increased production rates to a target level of seven pounds per hour were not possible due to current transients produced by the pilot scale power supply. Extensive unsuccessful efforts to reduce or eliminate the transients are described. Low recovered product yields resulted from a failure of a product collection filter that was not discovered until the completion of the project.

Boecker, W.D.; Mehosky, B.L.; Rogers, R.S.C.; Storm, R.S.; Venkateswaran, V. (Carborundum Co., Niagara Falls, NY (USA). Structural Ceramics Div.)

1989-11-01T23:59:59.000Z

125

2011 U.S. National School on Neutron and X-ray Scattering  

SciTech Connect (OSTI)

The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

2012-01-01T23:59:59.000Z

126

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A  

E-Print Network [OSTI]

Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially, this was the first designed specifically for neutron scattering and the first to include resistive suitable for neutron scattering, diffraction and spectroscopy experiments with the neutron beam passing

Weston, Ken

127

1. Diffraction and the X-Ray Powder Diffractometer . . . . . . . . 1 1.1 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.4.1 Electron Guns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2

128

Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,

129

Morphology and composition of Ni-Co electrodeposited powders  

SciTech Connect (OSTI)

The morphology, phase and chemical composition of Ni-Co alloy powders electrodeposited from an ammonium sulfate-boric acid containing electrolyte with different ratio of Ni/Co ions were investigated. The ratios of Ni/Co ions were 1/1, 1/2 and 1/3. The morphology, chemical composition and phase composition of the electrodeposited alloy powders were investigated using AES, SEM, EDS and XRD analysis. Composition of the electrolyte, i.e. the ratio of Ni/Co concentrations was found to influence both, the alloy phase composition and the morphology of Ni-Co alloy powders. At the highest ratio of Ni/Co = 1/1 concentrations typical 2D fern-like dendritic particles were obtained. With a decrease of Ni/Co ions ratio among 2D fern-like dendrites, 3D dendrites and different agglomerates were obtained. X-ray diffraction studies showed that the alloy powders mainly consisted of the face-centered cubic {alpha}-nickel phase and hexagonal close-packed {epsilon}-cobalt phase and minor proportions of face-centered cubic {alpha}-cobalt phase. The occurrence of the latter phase was observed only in the alloy powder with the higher cobalt concentration in electrolyte. The electrodeposition of Ni-Co powders occurred in an anomalous manner. - Highlights: Black-Right-Pointing-Pointer Ni-Co alloys powders were successfully electrodeposited. Black-Right-Pointing-Pointer Composition of the electrolyte (Ni/Co ions ratio) was found to influence on morphology of powders. Black-Right-Pointing-Pointer The electrodeposition of Ni-Co powders occurred in an anomalous manner.

Maksimovic, V.M., E-mail: vesnam@vinca.rs [Institute of Nuclear Sciences, 'Vinca', University of Belgrade, 11001 Belgrade, P. O. Box 522 (Serbia); Lacnjevac, U.C. [Institute for Multidisciplinary research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia); Stoiljkovic, M.M. [Institute of Nuclear Sciences, 'Vinca', University of Belgrade, 11001 Belgrade, P. O. Box 522 (Serbia); Pavlovic, M.G. [Institute of Electrochemistry, ICTM, University of Belgrade, 11000 Belgrade, Njegoseva 12 (Serbia); Jovic, V.D. [Institute for Multidisciplinary research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia)

2011-12-15T23:59:59.000Z

130

Spectroscopy and Diffraction | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Techniques Electron spectroscopy Electron backscatter diffraction Atom probe tomography Ionmolecular beam spectroscopy 57Fe-Mssbauer spectroscopy Optical spectroscopy...

131

Preparation of superconductor precursor powders  

DOE Patents [OSTI]

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO)

1998-01-01T23:59:59.000Z

132

Silicon nitride/silicon carbide composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

1996-06-11T23:59:59.000Z

133

Radiological Powder XRD | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115,PerformanceUsingFIB/SEM (Quanta)Powder

134

Powder XRD | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are you Your CartPowder

135

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University  

E-Print Network [OSTI]

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University Doc. No: SOPPOWD8 Standard Operating Procedure Title: X-ray Powder Diffraction: D8 Advanced Rev No: Issue date: 1.001 12/29/2008 Page: 1 of 3 SOP: SOPPOWD8 Last date revised: December 23 2009 Date approved: December 29 2009 X-ray

Meagher, Mary

136

Three-dimensional boron particle loaded thermal neutron detector  

DOE Patents [OSTI]

Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

2014-09-09T23:59:59.000Z

137

A simple procedure to prepare spherical {alpha}-alumina powders  

SciTech Connect (OSTI)

Spherical {alpha}-alumina powders were prepared by the controlled hydrolysis of aluminum isopropoxide in a hydrolysis system consisting of octanol and acetonitrile. Diverse solvents to dissolve reactant formed diverse hydrolysis systems and affected particle shape of {alpha}-alumina powders. The precursors crystallized to {gamma}-alumina at 1000 deg. C and converted to {alpha}-alumina at 1150 deg. C without intermediate phases. The particle morphology of precursor was retained after it crystallized to {alpha}-alumina. The heating rate influenced the particle shape and the state of agglomeration during calcination process. The thermal properties of the precursors were characterized by thermal gravimetric and differential thermal analysis. X-ray diffraction technique was used to confirm the conversion of crystalline phase of alumina powders from amorphous to {alpha}-phase. Transmission electron microscopy was used to investigate the morphologies and size of the precursors and products.

Liu Hongyu [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Gan Zhihong; Lin Yuan [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)

2009-04-02T23:59:59.000Z

138

Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment  

SciTech Connect (OSTI)

Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites followed by ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ?-Cu{sub 3}Sn dendrites were followed by peritectic reaction (?-Cu{sub 3}Sn + liquid ? ?-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of ?-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ?-Cu{sub 6}Sn{sub 5} phase. - Highlights: The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. Water-atomized CuSn powders contained mixed CuSn phases. Solidification and heat treatment of water-atomized CuSn powders are explained.

Tongsri, Ruangdaj, E-mail: ruangdt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Yotkaew, Thanyaporn, E-mail: thanyy@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Krataitong, Rungtip, E-mail: rungtipk@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Wila, Pongsak, E-mail: pongsakw@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Sir-on, Autcharaporn, E-mail: autchars@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Muthitamongkol, Pennapa, E-mail: pennapm@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Tosangthum, Nattaya, E-mail: nattayt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand)

2013-12-15T23:59:59.000Z

139

Diffraction Results from CDF  

SciTech Connect (OSTI)

We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

Goulianos, Konstantin

2012-04-01T23:59:59.000Z

140

X-Ray Diffraction on NIF  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Preparation of superconductor precursor powders  

DOE Patents [OSTI]

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

Bhattacharya, R.

1998-08-04T23:59:59.000Z

142

Preparation of superconductor precursor powders  

DOE Patents [OSTI]

A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

1995-01-01T23:59:59.000Z

143

Conversion method of powder inelastic scattering data for one-dimensional systems  

SciTech Connect (OSTI)

Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

Tomiyasu, Dr. Keisuke [Tohoku University, Japan; Fujita, Prof. Masaki [Tohoku University, Japan; Kolesnikov, Alexander I [ORNL; Bewley, Robert I. [ISIS Facility, Rutherford Appleton Laboratory; Bull, Dr. Martyn J. [ISIS Facility, Rutherford Appleton Laboratory; Bennington, Dr. Stephen M. [ISIS Facility, Rutherford Appleton Laboratory

2009-01-01T23:59:59.000Z

144

Neutronic reactor  

DOE Patents [OSTI]

A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

1983-01-01T23:59:59.000Z

145

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents [OSTI]

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

1996-01-02T23:59:59.000Z

146

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents [OSTI]

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

147

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents [OSTI]

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1994-01-01T23:59:59.000Z

148

Silica powders for powder evacuated thermal insulating panel and method  

DOE Patents [OSTI]

A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

1995-01-01T23:59:59.000Z

149

Method for molding ceramic powders  

DOE Patents [OSTI]

A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

Janney, M.A.

1990-01-16T23:59:59.000Z

150

Method for molding ceramic powders  

DOE Patents [OSTI]

A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

Janney, Mark A. (Knoxville, TN)

1990-01-01T23:59:59.000Z

151

Rotary powder feed through apparatus  

DOE Patents [OSTI]

A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

152

Powder collection apparatus/method  

DOE Patents [OSTI]

Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

1994-01-11T23:59:59.000Z

153

Characterization of prealloyed copper powders treated in high energy ball mill  

SciTech Connect (OSTI)

The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts.

Rajkovic, Viseslava [Institute of Nuclear Sciences 'Vinca', P.O. Box 522, 11001 Belgrade (Serbia and Montenegro)]. E-mail: visnja@vin.bg.ac.yu; Bozic, Dusan [Institute of Nuclear Sciences 'Vinca', P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); Jovanovic, Milan T. [Institute of Nuclear Sciences 'Vinca', P.O. Box 522, 11001 Belgrade (Serbia and Montenegro)

2006-08-15T23:59:59.000Z

154

E-Print Network 3.0 - accelerator-based epithermal neutron Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

opened up by the intense epithermal spectrum enables higher... DIFFRACTION ON THE SNS W.S. Howells Neutron Division, Rutherford Appleton Laboratory, Chilton, Didcot... ). Ainsi...

155

Diffraction at collider energies  

SciTech Connect (OSTI)

Lessons with ``soft`` hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy.

Frankfurt, L.L.

1992-12-31T23:59:59.000Z

156

Diffraction at collider energies  

SciTech Connect (OSTI)

Lessons with soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy.

Frankfurt, L.L.

1992-01-01T23:59:59.000Z

157

Polymer quenched prealloyed metal powder  

DOE Patents [OSTI]

A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

2001-01-01T23:59:59.000Z

158

Intradermal needle-free powdered drug injection  

E-Print Network [OSTI]

This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

Liu, John (John Hsiao-Yung)

2012-01-01T23:59:59.000Z

159

Neutron skins and neutron stars  

SciTech Connect (OSTI)

The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

2013-11-07T23:59:59.000Z

160

Optimizing Synthesis of Na2Ti2SiO7 - 2H2O (Na-CST) and Ion Exchange Pathways for Cs0.4H1.6Ti2SiO7 - H2O (Cs-CST) Determined from in situ Synchrotron X-ray Powder Diffraction  

SciTech Connect (OSTI)

Observation of wide angle diffraction data collected in situ during previous synthesis of Na-CST (Na{sub 2}Ti{sub 2}SiO{sub 7}-2H{sub 2}O) showed initial crystallization of a precursor phase (SNT) at 30 C followed by conversion to CST after 1 h at 220 C. In situ studies of Cs{sup +} ion exchange into the H{sup +} form of CST showed a site-by-site ion exchange pathway accompanied by a simultaneous structural transition from P4{sub 2}/mbc (cell parameters a = 11.0690(6) Angstroms, c = 11.8842(6) Angstroms) to P4{sub 2}/mcm (cell parameters a = 7.847(2) Angstroms, c = 11.9100(6) Angstroms). After approximately 18% Cs{sup +} exchange into site designated Cs2 in space group P4{sub 2}/mcm, a site designated Cs1 in space group P4{sub 2}/mcm began to fill at the center of the 8MR windows until a maximum of approximately 22% exchange was achieved for Cs1. Bond valence sums of site Cs1 to framework O{sup 2-} are 1.00 v.u., while bond valence sums of site Cs2 to framework O{sup 2-} are 0.712 v.u. suggesting Cs1 to have a more stable bonding environment.

Celestian,A.; Medvedev, D.; Tripathi, A.; Parise, J.; Clearfield, A.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Neutron guide  

DOE Patents [OSTI]

A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

Greene, Geoffrey L. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

162

MESOSCALE SIMULATIONS OF POWDER COMPACTION  

SciTech Connect (OSTI)

Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

2009-12-28T23:59:59.000Z

163

Protein crystallography with spallation neutrons  

SciTech Connect (OSTI)

proteins and oriented molecular complexes. With spallation neutrons and their time dependent wavelength structure, one can select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved diffraction data. This optimizes data quality with best peak to background ratios and provides spatial and energy resolution to eliminate peak overlaps. Such a Protein Crystallography Station (PCS) has been built and tested at Los Alamos Neutron Science Center. A partially coupled moderator is used to increase flux and data are collected by a Cylindrical He3 detector covering 120' with 200mm height. The PCS is described along with examples of data collected from a number of proteins.

Langan, P. (Paul); Schoenborn, Benno P.

2003-01-01T23:59:59.000Z

164

Aberration-corrected and energy-filtered precession electron diffraction  

E-Print Network [OSTI]

structure using elastic-only intensities. 1. Introduction Although x-ray and neutron diffraction methods remain the techniques of choice to determine unknown crystal structures, there are a variety of materials, e.g. multi-phase systems, interfacial phases... Hovmller, to whom this special issue is dedicated, has been at the forefront of this method [5-10]. However, if the sample is relatively thick and composed of strongly scattering species, then the phases derived from images may not be directly...

Eggeman, Alexander S; Barnard, Jonathan S; Midgley, Paul A

2012-12-10T23:59:59.000Z

165

Neutron detector  

DOE Patents [OSTI]

A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

2011-04-05T23:59:59.000Z

166

Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu  

SciTech Connect (OSTI)

Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Williams, Scott H. [Ames Laboratory; Brown, Donald W. [Los Alamos National Laboratory; Clausen, Bjorn [Los Alamos National Laboratory; Russell, Alan [Ames Laboratory; Gschneidner Jr., Karl A. [Ames Laboratory

2014-03-01T23:59:59.000Z

167

NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER  

E-Print Network [OSTI]

NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER E. P. GOGOL to lipid vesicles using neutron small-angle scattering methods. To increase scat- tering contrast between of a highly deuterated phospholipid. Small-angle neutron diffraction patterns were collected in a series of H

168

Process for the synthesis of iron powder  

DOE Patents [OSTI]

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

Welbon, W.W.

1983-11-08T23:59:59.000Z

169

Process for the synthesis of iron powder  

DOE Patents [OSTI]

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Not Available

1982-03-06T23:59:59.000Z

170

Cryogenic Neutron Protein Crystallography: routine methods and potential benefits  

SciTech Connect (OSTI)

The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

Weiss, Kevin L [ORNL; Tomanicek, Stephen J [ORNL; NG, Joseph D [ORNL

2014-01-01T23:59:59.000Z

171

Neutron tubes  

DOE Patents [OSTI]

A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

2008-03-11T23:59:59.000Z

172

LANSCE | Lujan Center | Highlights | In situ neutron diffraction study of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &Jeff Yarbroughdevelopment,Call for LujanCO

173

Thermal plasma chemical synthesis of powders  

SciTech Connect (OSTI)

Thermal plasma processing has been increasingly used to synthesize submicron powders of high-purity ceramics and metals. The high temperatures generated with the plasma provide a vapor phase reaction zone for elements with high boiling points and refractory materials. An overview is presented on the general plasma technology used in synthesis and on the properties of plasma powders.

Vogt, G.J.; Newkirk, L.R.

1985-01-01T23:59:59.000Z

174

Densification of nanosized alumina powders by hot isostatic pressing (HIP)  

SciTech Connect (OSTI)

The densification of nanosized alumina powders to compacts of nearly theoretical density by Hot Isostatic Pressing was the aim of this work. Three types of powders produced by the so called exploding wire technique in the mesh size between 20 to 80 nm were used. Because of the big internal friction during dry pressing the densities achieved were only in the range of about 30% TD. Therefore it was necessary to use a second post densification step by cold isostatic pressing (CIP). With pressures as high as 750 MPa the authors received a density of 58% TD. The pellets were sealed in capsules of stainless steel which were densified at different temperatures between 900 C and 1,350 C with pressures between 120 and 300 MPa. The resulting compacts were examined by scanning electron microscopy. The resulting phases were determined by X-ray diffraction. Grain size measurement at the as fabricated compacts was a decisive criterion for the success of the experiments.

Weimar, P.; Knitter, R.; Szabo, D.V. [Forschungszentrum, Karlsruhe (Germany); Krauss, W.

1996-12-31T23:59:59.000Z

175

Wet powder seal for gas containment  

DOE Patents [OSTI]

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, Louis G. (Sayville, NY)

1982-01-01T23:59:59.000Z

176

Imprinted spiral structures as neutron polarizers.  

SciTech Connect (OSTI)

Neutron diffraction from magnetic spiral structures is governed by strong selection rules for the polarization of the outgoing beam. When the sample is entirely of one chirality--for instance a right handed spiral--the neutrons diffracted by some Bragg reflections are fully polarized. While the scattering theory has been formulated long ago, attempts to controllably modify the population of left handed and right handed spiral domains in natural magnetic structures (which for instance occur in some rare earth metals) have been largely unsuccessful. In contrast, we have been able to imprint helical magnetic structures in La/Fe multilayers (each layer approximately 30 {angstrom} thick) simply by rotating the growing sample in a weak external field (30e). A first estimate is given of the efficiency of these multilayers as polarizers of neutron beams.

Lohstroh, W.

1998-10-07T23:59:59.000Z

177

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

178

Diffractive bremsstrahlung in hadronic collisions  

E-Print Network [OSTI]

Production of heavy photons (Drell-Yan), gauge bosons, Higgs bosons, heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered as a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high-energy hadronic collisions.

Pasechnik, Roman; Potashnikova, Irina

2015-01-01T23:59:59.000Z

179

Neutron Tomography and Space  

E-Print Network [OSTI]

Kevin Shields, Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

Egbert, Hal; Walker, Ronald; Flocchini, R.

2007-01-01T23:59:59.000Z

180

Neutron range spectrometer  

DOE Patents [OSTI]

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LIQUID PHASE SINTERING OF IRON WITH COPPER BASE ALLOY POWDERS  

E-Print Network [OSTI]

Symposium on Powder Metallurgy - The Iron and Steel Inst.a Liquid Phase", Powder Metallurgy, 17 (33), 227 (1974). H.Other made by powder metallurgy techniques. ses to produce

Chen, M.-H.

2010-01-01T23:59:59.000Z

182

Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2  

SciTech Connect (OSTI)

The magnetic structure of BaFe{sub 2}As{sub 2} was determined from polycrystalline neutron diffraction measurements soon after the ThCr{sub 2}Si{sub 2}-type FeAs-based superconductors were discovered. Both the moment direction and the in-plane antiferromagnetic wavevector are along the longer a-axis of the orthorhombic unit cell. There is only one combined magnetostructural transition at {approx}140 K. However, a later single-crystal neutron diffraction work reported contradicting results. Here, we show neutron diffraction results from a single-crystal sample, grown by a self-flux method, that support the original polycrystalline work.

Bao, Wei [Los Alamos National Laboratory; Qiu, Y [NIST; Kofu, M [UNIV OF VA; Lee, S - H [UNIV OF VA; Chang, S [NIST; Wu, T [HEFEI NAT. LAB.; Wu, G [HEFEI NAT. LAB; Chen, X H [HEFEI NAT. LAB

2008-01-01T23:59:59.000Z

183

Neutron scattering residual stress measurements on gray cast iron brake discs  

SciTech Connect (OSTI)

Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

Spooner, S.; Payzant, E.A.; Hubbard, C.R. [and others

1996-11-01T23:59:59.000Z

184

Electrically-programmable diffraction grating  

DOE Patents [OSTI]

An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

1998-05-26T23:59:59.000Z

185

Detonation Diffraction into a Confined Volume  

E-Print Network [OSTI]

little attention. Experimental work needs to be conducted on detonation diffraction into a confined volume to better understand how the interaction of the diffracted shock wave with a confining wall impacts the detonation diffraction process. Therefore, a...

Polley, Nolan Lee

2012-02-14T23:59:59.000Z

186

Electrochemical Studies of Packed Iron Powder Electrodes: Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Packed Iron Powder Electrodes: Effects of Common Constituents of Natural Waters on Corrosion Electrochemical Studies of Packed Iron Powder Electrodes: Effects of Common...

187

Boron-copper neutron absorbing material and method of preparation  

DOE Patents [OSTI]

A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry (Palos Hts., IL)

1991-01-01T23:59:59.000Z

188

Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka* and John F. Nagle  

E-Print Network [OSTI]

Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka from small-angle neutron scattering of unilamellar vesicles. DOI: 10.1103/PhysRevE.69.051903 PACS discrete diffraction peaks that occur for multilamellar arrays, the scattering of x rays or neutrons from

Nagle, John F.

189

Neutron Repulsion  

E-Print Network [OSTI]

Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

Oliver K. Manuel

2011-02-08T23:59:59.000Z

190

X-Ray Diffraction Study of Elemental Erbium to 65 GPa  

SciTech Connect (OSTI)

We have investigated phase transitions in elemental erbium in a diamond anvil cell up to 65 GPa using x-ray powder diffraction methods. We present preliminary evidence of a series of phase transitions that appear to follow the expected hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc sequence. In particular, we believe that we have evidence for the predicted dhcp {yields} distorted fcc transition between 43 GPa and 65 GPa.

Pravica, M.G.; Lipinska-Kalita, K.; Quine, Z.; Romano, E.; Nicol, M.F. (UNLV)

2006-02-02T23:59:59.000Z

191

Continuous blending of dry pharmaceutical powders  

E-Print Network [OSTI]

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

192

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN)

2001-01-01T23:59:59.000Z

193

Synthesis and processing of monosized oxide powders  

DOE Patents [OSTI]

Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

Barringer, Eric A. (Waltham, MA); Fegley, Jr., M. Bruce (Waban, MA); Bowen, H. Kent (Belmont, MA)

1985-01-01T23:59:59.000Z

194

Tantalum powder consolidation, modeling and properties  

SciTech Connect (OSTI)

A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP`ing. HIP`ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP`ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP`ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions.

Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

1996-10-01T23:59:59.000Z

195

Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route  

SciTech Connect (OSTI)

Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. Magnetic properties of the ultrafine Ni powders with different shapes were measured. Compared with bulk Ni material, coercivity of hexagonal sheet Ni increases by 25%. The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.

Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili; Li, Chengxuan; Peng, Shuge

2013-10-15T23:59:59.000Z

196

Neutron scattering study on cathode LiMn{sub 2}O{sub 4} and solid electrolyte 5(Li{sub 2}O)(P{sub 2}O{sub 5})  

SciTech Connect (OSTI)

Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO{sub 2}, LiMn{sub 2}O{sub 4} and LiFePO{sub 4}, and solid electrolyte Li{sub 3}PO{sub 4}. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn{sub 2}O{sub 4} and 5(Li{sub 2}O)(P{sub 2}O{sub 5}), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

Kartini, E., E-mail: kartini@batan.go.id; Putra, Teguh P., E-mail: kartini@batan.go.id; Jahya, A. K., E-mail: kartini@batan.go.id; Insani, A., E-mail: kartini@batan.go.id [Technology Center for Nuclear Industry Materials, National Nuclear Energy Agency, Serpong 15314 (Indonesia); Adams, S. [Department of Materials Science and Engineering, National University of Singapore, Singapore-117576 (Singapore)

2014-09-30T23:59:59.000Z

197

Methods for absorbing neutrons  

DOE Patents [OSTI]

A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

2012-07-24T23:59:59.000Z

198

Fabrication of ultrafine tungsten-based alloy powders by novel soda reduction process  

SciTech Connect (OSTI)

A novel reduction method has been developed to fabricate ultrafine tungsten heavy alloy powders, with ammonium metatungstate (AMT), iron(II) chloride tetrahydrate (FeCl{sub 2}.4H{sub 2}O), nickel(II) chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O) as source materials and sodium tungstate dihydrate (Na{sub 2}WO{sub 4}.2H{sub 2}O) as a reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition (wt.%). The obtained powders were characterized by X-ray diffraction, XPS, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

Lee, Dong-Won [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of)] [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of); Turaev, Farkhod, E-mail: farkhod_2002@yahoo.com [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of)] [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of); Kim, Ju-Hyeong [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of)] [Powder Technology Research Group, Korea Institute of Materials Science (KIMS), Changwon, Kyungnam, 641-010 (Korea, Republic of); Yang, Mingchuan [W-base Heavy Alloy Research Group, Institute of Metal Research (IMR), 72 Wenhua-road, Shenyang, 110016 (China)] [W-base Heavy Alloy Research Group, Institute of Metal Research (IMR), 72 Wenhua-road, Shenyang, 110016 (China)

2010-03-15T23:59:59.000Z

199

NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS  

E-Print Network [OSTI]

NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

200

Slip casting nano-particle powders for making transparent ceramics  

DOE Patents [OSTI]

A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

Kuntz, Joshua D. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Landingham, Richard Lee (Livermore, CA); Hollingsworth, Joel P. (Oakland, CA)

2011-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

202

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

Wood, J.L.

1992-12-01T23:59:59.000Z

203

Die-target for dynamic powder consolidation  

DOE Patents [OSTI]

A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

Flinn, J.E.; Korth, G.E.

1985-06-27T23:59:59.000Z

204

Preparation and X-Ray diffraction studies of curium hydrides  

SciTech Connect (OSTI)

Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/ (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.

Gibson, J.K.; Maire, R.G.

1985-10-01T23:59:59.000Z

205

Biaxially textured articles formed by powder metallurgy  

DOE Patents [OSTI]

A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

2003-10-21T23:59:59.000Z

206

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1995-01-01T23:59:59.000Z

207

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

Salyer, I.O.

1995-12-26T23:59:59.000Z

208

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

Salyer, I.O.

1994-12-06T23:59:59.000Z

209

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

210

Effect of the concentration of inhomogeneities on the multiple small-angle neutron scattering  

SciTech Connect (OSTI)

The interference effects manifested during multiple small-angle neutron scattering (MSANS) on a chaotically arranged close-packed ensemble of scatterers have been studied. MSANS measurements have been performed for mixtures of Al and Ti-Zr alloy powders. It is shown that the results can be satisfactorily described based on a theory that takes into account spatial correlations in the arrangement of powder grains.

Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V., E-mail: lvov@itep.ru; Tyulyusov, A. N. [Institute for Theoretical and Experimental Physics (Russian Federation)] [Institute for Theoretical and Experimental Physics (Russian Federation)

2013-03-15T23:59:59.000Z

211

Det&rmlrvatton af AuetenH vs. a-ferrlt Hi Steel by Neutron  

E-Print Network [OSTI]

Det&rmlrvatton af AuetenH© vs. a-ferrlté Hi Steel by Neutron and X-ray Oif fraction Bltv Nitl-FERRITE IN STEEL BY NEUTRON AND X-RAY DIFFRACTION J. Als-Nielsen and K. Clausen Physics Department Abstract-ferrite) phases in steel samples are reported. In addition to determine the relative content of phases

212

The DuPont powder challenge: The crystal structure of [C{sub 5}NH{sub 6}][Al{sub 3}F{sub 10}] -- A cautionary tale  

SciTech Connect (OSTI)

A compound previously reported as HAlF{sub 4} has been shown to be [pyridinium][Al{sub 3}F{sub 10}]. The structure of this phase was solved and refined using a combination of synchrotron X-ray and neutron powder diffraction techniques in association with a number of other analytical techniques. The structure consists of [Al{sub 3}F{sub 10}]{sub n}{sup {minus}} sheets containing both corner-sharing (common) and edge-sharing (unusual) AlF{sub 6} octahedra. The sheets are separated by pyridinium cations oriented perpendicular to the sheets. The final crystallographic data are as follows: monoclinic, space group C2/m, a = 8.2706(3), b = 6.1998(3), c = 10,525(1) {angstrom}, {beta} = 103.38(1){degree}, V = 525.0(1) {angstrom}{sup 3}, and Z = 2. This compound appears to be another example of a layered clay-like aluminum fluoride.

Harlow, R.L.; Herron, N.; Li, Z.; Vogt, T.; Solovyov, L.; Kirik, S.

1999-09-01T23:59:59.000Z

213

A Model Graphene Diffraction Pattern Frank Rioux  

E-Print Network [OSTI]

A Model Graphene Diffraction Pattern Frank Rioux The purpose of this tutorial is to model graphene d Pj k px j py k 2 i 1 A Graphene Model Diffraction Pattern #12;

Rioux, Frank

214

Fabrication of extremely smooth blazed diffraction gratings  

E-Print Network [OSTI]

High efficiency diffraction gratings are important in a variety of applications, such as optical telecommunications, lithography, and spectroscopy. Special interest has been placed on blazed diffraction gratings for their ...

Chang, Chih-Hao, 1980-

2004-01-01T23:59:59.000Z

215

Publications | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications SHARE Publications The Neutron Science publications system contains peer-reviewed publications based on research conducted at ORNL's Neutron Science facilities or...

216

SHARP Neutronics Expanded  

Broader source: Energy.gov [DOE]

The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

217

AN INVESTIGATION OF A THERMOPLASTIC-POWDER METALLURGY PROCESS FOR THE FABRICATION OF POROUS NIOBIUM RODS  

E-Print Network [OSTI]

Compositions, Powder Metallurgy, Vol. 8, No. 16, 1965. W.THERMOPLASTIC- POWDER METALLURGY PROCESS FOR THE FABRICATIONTHERMOPLASTIC- POWDER METALLURGY PROCESS FOR THE FABRICATION

Nordin, Dennis R.

2011-01-01T23:59:59.000Z

218

Development and Testing of a BI-2212 Textured Powder Conductor  

E-Print Network [OSTI]

for Praxair powder in a 500 cP epoxy. .................................................................................................................. 23 Fig. 8: Texture vs. time for various epoxy and powder combinations. All data from an 8.9 T applied...

Damborsky, Kyle

2014-03-10T23:59:59.000Z

219

LANSCE | Lujan Center | Instruments | Neutron Radiography  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensity Powder DiffractometerNeutron

220

SIS a new SFF method based on powder  

E-Print Network [OSTI]

. This approach, used by SLS and 3D printing, is able to create thin and uniformly dense powder layers. Other

Asiabanpour, Bahram - Department of Engineering and Technology, Texas State University

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fiber optic diffraction grating maker  

DOE Patents [OSTI]

A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

Deason, V.A.; Ward, M.B.

1991-05-21T23:59:59.000Z

222

Fiber optic diffraction grating maker  

DOE Patents [OSTI]

A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

Deason, Vance A. (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

223

Modelling the mechanical behaviour of pharmaceutical powders during compaction  

E-Print Network [OSTI]

are made of dry powder through a powder compaction process. In the pharmaceutical industry, billionsModelling the mechanical behaviour of pharmaceutical powders during compaction C.-Y. Wua,T, O.M. Ruddyb , A.C. Benthamb , B.C. Hancockc , S.M. Besta , J.A. Elliotta a Pfizer Institute for Pharmaceutical

Elliott, James

224

Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby  

E-Print Network [OSTI]

- propagating high-temperature synthesis (SHS) for sintering of ceramic composites [14]. The magnetic (H, the microwave energy is supplied locally to the powder. It creates a confined hotspot, and initiates a self-propagating the powder prior to its ignition is simulated theoretically, taking into account the powder's temperature

Jerby, Eli

225

Enhancement of green luminescence of ZnO powders by annealing with carbon black  

SciTech Connect (OSTI)

This paper reports the characterization of nanocrystalline ZnO powders synthesized by a precipitation method and annealed with carbon black. The X-ray diffraction (XRD) and Fourier Transformed Infrared (FT-IR) results revealed that the synthesized ZnO powder has the wurtzite structure with absorbed CO{sub 3}{sup -} species on the surface of the ZnO particles. Singly ionized oxygen vacancy (V{sub O}{sup +}) and CO{sub 3}{sup -} species were also perceived from electron paramagnetic resonance (EPR) analysis. The intensity of the EPR signals of CO{sub 3}{sup -} species increased as the amount of carbon increased whereas that of V{sub O}{sup +} did not vary significantly. A green emission at 528 nm for the powders annealed with carbon was observed and a good correlation between the intensity of green emission and the intensity of EPR signals of CO{sub 3}{sup -} was obtained Experimental results suggest that the formation of the free carriers has significant effect on the intensity of the green emission. The mechanism responsible for the green emission enhancement based on the relevance of the observations is discussed.

Hu Yi [Department of Materials Engineering, Tatung University, Taipei, Taiwan (China)], E-mail: huyi@ttu.edu.tw; Chen, H.-J. [Department of Materials Engineering, Tatung University, Taipei, Taiwan (China)

2008-08-04T23:59:59.000Z

226

Energy Density Functional for Nuclei and Neutron Stars  

SciTech Connect (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

227

Solid state neutron detector and method for use  

DOE Patents [OSTI]

Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

Doty, F. Patrick (Livermore, CA); Zwieback, Ilya (New Milford, NJ); Ruderman, Warren (Demarest, NJ)

2002-01-01T23:59:59.000Z

228

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

Salyer, I.O.

1994-02-01T23:59:59.000Z

229

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, I.O.

1993-05-18T23:59:59.000Z

230

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

Salyer, I.O.

1992-04-21T23:59:59.000Z

231

Fabricating solid carbon porous electrodes from powders  

DOE Patents [OSTI]

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

232

Fabricating solid carbon porous electrodes from powders  

DOE Patents [OSTI]

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

233

EPR Investigation of Irradiated Curry Powder  

SciTech Connect (OSTI)

Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

Duliu, O. G.; Ali, S. I. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Georgescu, R. [National Institute for Physics and Nuclear Engineering-Horia Hulubei, P.O. Box MG-6, 077125 Bucharest (Romania)

2007-04-23T23:59:59.000Z

234

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1992-01-01T23:59:59.000Z

235

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

236

Dry powder mixes comprising phase change materials  

SciTech Connect (OSTI)

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

237

Dry powder mixes comprising phase change materials  

DOE Patents [OSTI]

Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

Salyer, Ival O. (Dayton, OH)

1993-01-01T23:59:59.000Z

238

Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition  

SciTech Connect (OSTI)

Rietveld powder X-ray diffraction analysis of the rutile films of titanium oxide prepared by pulsed laser deposition was carried out. The crystallite size increased with increase of substrate temperature, while the strain showed a reverse trend. The films synthesized at temperature {>=}573 K showed that the crystal structure was almost close to that of bulk rutile structure. The influence of the substrate temperature on the lattice parameters and oxygen coordinates were also studied in the present work.

Murugesan, S. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)] [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Kuppusami, P., E-mail: pk@igcar.gov.in [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Mohandas, E. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)] [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

2010-01-15T23:59:59.000Z

239

Powder River Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River Energy Corporation Place: Sundance,

240

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Neutron-Mirror-Neutron Oscillations in a Trap  

E-Print Network [OSTI]

We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

B. Kerbikov; O. Lychkovskiy

2008-04-03T23:59:59.000Z

242

Characterization of Ni/Al multilayer on Si substrate by diffraction and reflectometry techniques  

SciTech Connect (OSTI)

An ion beam deposited multilayer film of nominal thickness [Ni(200 Angst )/Al(100 Angst )]x5 on Si substrate has been characterized by X-Ray Diffraction(XRD), X-Ray Reflectivity (XRR) and Polarized neutron reflectivity(PNR). The present paper attempts to identify presence of any intermetallic compounds at the interfaces of the as-deposited sample. Structural parameters obtained from XRR and PNR are close to design values.

Swain, Mitali; Basu, Saibal; Bhattacharya, Debarati; Gupta, Mukul [Solid State Physics Division Bhabha Atomic Research Center, Mumbai 400085 (India); UGC-DAE-Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

2012-06-05T23:59:59.000Z

243

Imaging with Scattered Neutrons  

E-Print Network [OSTI]

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

244

Preliminary study of neutron absorption by concrete with boron carbide addition  

SciTech Connect (OSTI)

Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Hamid, Roszilah [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

2014-02-12T23:59:59.000Z

245

An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer  

SciTech Connect (OSTI)

An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li{sub 4}Ti{sub 5}O{sub 12} anode and LiMn{sub 2}O{sub 4} cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na{sub 0.84}Fe{sub 0.56}Mn{sub 0.44}O{sub 2})

Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Aarhus (Denmark)

2014-10-15T23:59:59.000Z

246

Diffractive J/Psi Production  

SciTech Connect (OSTI)

This work presents measurements of two diffractive production ratio for heavy flavour physics with the use of a reconstructed J/{psi} {yields} {mu}{sup +}{mu}{sup -} sample in p{bar p} collisions at {radical}s = 1.96 TeV using the D0 detector at Fermilab Tevatron. These events were selected using the Luminosity Monitor detectors, the calorimeter system and the muon system in a pseudo-rapidity region with range 2.7 {le} |{eta}| {le} 4.4. The measured ratio were estimated to be N{sub diff}{sup J/{psi}}/N{sub total}{sup J/{psi}} = (1.74 {+-} 0.16(stat) {+-} 0.13(syst))% e N{sub diff}{sup b}/N{sub total}{sup b} = (0.79 {+-} 0.11(stat) {+-} 0.23(syst))%.

Assis Jesus, Ana Carolina; /Rio de Janeiro Federal U.; ,

2007-07-01T23:59:59.000Z

247

Silicon nitride/silicon carbide composite densified materials prepared using composite powders  

DOE Patents [OSTI]

Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

1997-07-01T23:59:59.000Z

248

Recent Results in Diffractive ep Scattering at HERA  

E-Print Network [OSTI]

Recent Results in Diffractive ep Scattering at HERA Introduction to diffraction in ep Exclusive Diffraction in ep Scattering Matthew Beckingham 2 Diffraction Lepton-hadron (-p) or hadron-hadron (p to interpret in (p)QCD? #12;Lake Louise 06 Diffraction in ep Scattering Matthew Beckingham 3 Diffraction

249

Diffraction gratings used as identifying markers  

DOE Patents [OSTI]

A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

Deason, V.A.; Ward, M.B.

1991-03-26T23:59:59.000Z

250

Neutron range spectrometer  

DOE Patents [OSTI]

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

Manglos, Stephen H. (East Syracuse, NY)

1989-06-06T23:59:59.000Z

251

Mechanochemical synthesis of tungsten carbide nano particles by using WO{sub 3}/Zn/C powder mixture  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Nano particles of WC are synthesized by mechanochemical process. ? Zn was used to reduce WO{sub 3}. ? By removing ZnO from the milling products with an acid leaching, WC will be the final products. ? XRD results showed that the reduction reactions were completed after 36 h. ? TEM and SEM images showed that the morphology of produced powder is nearly spherical like. -- Abstract: In this research we introduce a new, facile, and economical system for fabrication of tungsten carbide (WC) nano particle powder. In this system WO{sub 3}, Zn, and C have been ball-milled for several hours, which led to the synthesis of tungsten carbide nano particles. The synthesized WC can successfully be separated from the ball-milled product by subjecting the product powder to diluted HCl for removing ZnO and obtaining WC. X-ray diffraction (XRD) analysis indicates that the reduction of WO{sub 3} will be completed gradually by increasing milling time up to 36 h. Scanning electron microscope (SEM), and transmission electron microscope (TEM) images show that after 36 h of milling the particle size of the fabricated powder is nano metric (about 20 nm). Results have shown that this system can surmount some main problems occurred in previous similar WC synthesizing systems. For example carbothermic reduction reactions, which lead to the synthesis of W{sub 2}C instead of WC, would not be activated because in this system reactions take place gradually.

Hoseinpur, Arman, E-mail: arman.hoseinpur@stu-mail.um.ac.ir [Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Islamic Republic of Iran (Iran, Islamic Republic of)] [Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Islamic Republic of Iran (Iran, Islamic Republic of); Vahdati Khaki, Jalil; Marashi, Maryam Sadat [Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Islamic Republic of Iran (Iran, Islamic Republic of)] [Department of Materials and Metallurgical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Islamic Republic of Iran (Iran, Islamic Republic of)

2013-02-15T23:59:59.000Z

252

Layered semiconductor neutron detectors  

DOE Patents [OSTI]

Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

Mao, Samuel S; Perry, Dale L

2013-12-10T23:59:59.000Z

253

Neutron streak camera  

DOE Patents [OSTI]

Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

Wang, C.L.

1981-05-14T23:59:59.000Z

254

Large Bore Powder Gun Qualification (U)  

SciTech Connect (OSTI)

A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

255

Laser production of articles from powders  

DOE Patents [OSTI]

Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

1998-11-17T23:59:59.000Z

256

Laser production of articles from powders  

DOE Patents [OSTI]

Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

Lewis, Gary K. (Los Alamos, NM); Milewski, John O. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM); Nemec, Ronald B. (White Rock, NM); Barbe, Michael R. (White Rock, NM)

1998-01-01T23:59:59.000Z

257

Powder Dropper | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ.Potential(GFA)Powder Dropper

258

Large aperture diffractive space telescope  

DOE Patents [OSTI]

A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

Hyde, Roderick A. (Livermore, CA)

2001-01-01T23:59:59.000Z

259

Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel  

DOE Patents [OSTI]

A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

Park, Jong-Hee (Clarendon Hills, IL)

2011-11-29T23:59:59.000Z

260

Ultrasonic imaging with limited-diffraction beams  

E-Print Network [OSTI]

Limited-diffraction beams are a class of waves that may be localized in space and time. Theoretically, these beams are propagation invariant and can propagate to an infinite distance without spreading. In practice, when these beams are produced with wave sources of a finite aperture and energy, they have a very large depth of field, meaning that they can keep a small beam width over a large distance. Because of this property, limited-diffraction beams may have applications in various areas such as medical imaging and tissue characterization. In this paper, fundamentals of limited-diffraction beams are reviewed and the studies of these beams are put into a unified theoretical framework. Theory of limited-diffraction beams is further developed. New limited-diffraction solutions to Klein-Gordon Equation and Schrodinger Equation, as well as limited-diffraction solutions to these equations in confined spaces are obtained. The relationship between the transformation that converts any solutions to an (-1)-dimensional wave equation to limited-diffraction solutions of an -dimensional equation and the Lorentz transformation is clarified and extended. The transformation is also applied to the Klein-Gordon Equation. In addition, applications of limited-diffraction beams are summarized.

Jian-yu Lu

2006-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NanoComposite Stainless Steel Powder Technologies  

SciTech Connect (OSTI)

Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

2012-07-25T23:59:59.000Z

262

Neutron dose equivalent meter  

DOE Patents [OSTI]

A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

1996-01-01T23:59:59.000Z

263

Ultrafast neutron detector  

DOE Patents [OSTI]

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

264

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

265

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, Jr., Herbert A. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

266

Synthesis of nanophase W and WC powders from ammonium metatungstate  

SciTech Connect (OSTI)

Nanophase {alpha}-W powder has been synthesized by reductive decomposition of ammonium metatungstate (AMT) at low temperatures (< 600 C). The formation of {beta}-W, which is the usual product of low temperature reduction of tungsten oxides, is avoided. Thus, it has been possible to lower the carburization temperature of W to WC to about 575 C. Nanophase WC powder (< 10 nm grain size) is produced by the low temperature carburization of nanophase {alpha}-W powder.

Gao, L.; Kear, B.H. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States). Dept. of Ceramic Engineering

1996-06-01T23:59:59.000Z

267

Neutron computed tomography  

E-Print Network [OSTI]

to make the Donner Algorithms run. TABLE OF CONTEliiTS CHAPTF. . R I NEI. TRON RADIOGRAPHY . I. 1 Background . I. 2 Theory . l. 3 Neutron Beam Characterization I. 4 Image Detectors . COMPI'TED TOMOGRAPHY . Il I Background . II. 2 Notation II. 3... data which is generated by rays traveling (and being attenuated) in straight lines. However in neutron radiography, what is measured is, to most extents, the levels of neutrons which are not attenuated. Neutrons are particles. They scatter...

Russell, Clifford Marlow

2012-06-07T23:59:59.000Z

268

Controlled powder morphology experiments in megabar 304 stainless steel compaction  

SciTech Connect (OSTI)

Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

Staudhammer, K.P.; Johnson, K.A.

1985-01-01T23:59:59.000Z

269

Iowa Powder Atomization Technologies, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

complex parts very efficiently. Metal powders are mixed with a low melting plastic and injected into reusable molds, the plastic is then removed and the remaining...

270

Forming gas treatment of lithium ion battery anode graphite powders  

DOE Patents [OSTI]

The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

2014-09-16T23:59:59.000Z

271

Joining of parts via magnetic heating of metal aluminum powders  

DOE Patents [OSTI]

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Baker, Ian

2013-05-21T23:59:59.000Z

272

Process for synthesizing compounds from elemental powders and product  

DOE Patents [OSTI]

A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

Rabin, Barry H. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

273

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

274

Advanced neutron absorber materials  

DOE Patents [OSTI]

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

275

Semiconductor neutron detector  

DOE Patents [OSTI]

A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

2011-03-08T23:59:59.000Z

276

High energy neutron dosimeter  

DOE Patents [OSTI]

A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

Rai, K.S.F.

1994-01-11T23:59:59.000Z

277

High energy neutron dosimeter  

DOE Patents [OSTI]

A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

Sun, Rai Ko S.F. (Albany, CA)

1994-01-01T23:59:59.000Z

278

Effects of grinding on properties of Mg-PSZ ceramics prepared by the surface enrichment of zirconia powders  

SciTech Connect (OSTI)

Commercial grade zirconia powders of mean particle size of 3.21 microns were super-ground in wet condition in alcoholic medium in a Planetary Ball-Mill for 12-hours using a zirconia pot as well as balls, in order to avoid contaminations from the grinding media. Sedigraph analysis data show the mean particle sizes within the range of 0.4 to 0.2 micron. The super-ground zirconia powders were then treated with appropriate acid and alkali solutions in order to enrich the surfaces of zirconia powders. The chemical analysis reports depict the enrichment phenomena of the processed zirconia powders. Magnesium oxide of different mole percentages (3 to 9%) have been incorporated to the above super-ground and enriched zirconia powder and green specimens were prepared by pressing with a suitable pressure of 200 MPa to yield the green compaction density of 3.06 gm/cm{sup 3}. The compacted green specimens were sintered without pressure at 1,480 C in air followed by normal cooling. X-ray diffraction patterns of the above sintered and cooled specimens have confirmed the formation of Mg-PSZ ceramics with 40% tetragonal phase. The sintered PSZ-products have shown very good surface properties but at the cost of transverse rupture strength. The effects of grinding were observed on the above Mg-PSZ ceramics which exhibit very little change in the tetragonal phase even after 30-minutes of grinding with a 60-mesh diamond wheel at a normal pressure of 4 kg/cm{sup 2}.

Deb, S.; Das, S.R. [Central Glass and Ceramics Research Inst., Calcutta (India). Ceramic Processing Section

1995-10-01T23:59:59.000Z

279

Process for preparing titanium nitride powder  

DOE Patents [OSTI]

A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

Bamberger, C.E.

1988-06-17T23:59:59.000Z

280

Gaseous Decomposition Products of Safety Powders  

E-Print Network [OSTI]

19.6 Volume o f a i r added 70.8 T o t a l vo lume 90 .4 Volume a f t e r e x p l o s i o n 74.4 C o n t r a c t i o n 16.0 R e s i d u e a f t e r a b s o r p t i o n o f c a r b o n d i o x i d e 68.8 74.4 6 8 . 8 = 5 .6 . Oxygen p r e s e... DECOMPOSITION PRODUCTS OF SAFETY POWDERS. THESIS SUBMITTED FOR THE DEGREE OF BACHELOR OF SCIENCE I I THE DEPARTMENT OF CHEMICAL BHGUEBRING AT THE UNIVERSITY OF KANSAS. BY C.E.CUBBISOH 1912. RD01D7 MaDSfl COHTEHTS. * * * * Pago * P r e f a c e 6...

Cubbison, C.E.

1912-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New diffractive results from the Tevatron  

SciTech Connect (OSTI)

Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

Gallinaro, Michele; /Rockefeller U.

2005-05-01T23:59:59.000Z

282

Visualizations of the Exclusive Central Diffraction  

E-Print Network [OSTI]

The case of the low invariant mass exclusive central diffractive production is considered in the general theoretical framework. It is shown that diffractive patterns (differential cross-sections on variables like transfer momenta squared, the azimuthal angle between final hadrons and their combinations) can serve as a unique tool to explore the picture of the $pp$ interaction and falsify theoretical models. Basic kinematical and dynamical properties of the process are considered in detail. As an example, visualizations of diffractive patterns in the model with three pomerons for processes $p+p\\to p+R+p$ and $p+p\\to p+\\pi^{+}\\pi^{-}+p$ are presented.

R. A. Ryutin

2014-09-19T23:59:59.000Z

283

The Neutron Lifetime  

E-Print Network [OSTI]

The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

F. E. Wietfeldt

2014-11-13T23:59:59.000Z

284

Energy density functional for nuclei and neutron stars  

E-Print Network [OSTI]

We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of $^{208}$Pb and the neutron star radius. We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands.

J. Erler; C. J. Horowitz; W. Nazarewicz; M. Rafalski; P. -G. Reinhard

2012-11-27T23:59:59.000Z

285

Neutron Scattering Tutorials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 A. J. Schultz Single-Crystal Diffraction PDF Video V. S. Urban Small-Angle Scattering PDF Video NOTE: the windows media plugin may be required to view these videos with Firefox....

286

Sinterable powders from laser driven reactions : final report  

E-Print Network [OSTI]

Extremely fine, uniform ceramic powders have been synthesized from Sil4 NH3 and C2H4 gas phase reactants that are heated by absorbing optical energy emitted from a C02 laser. Resulting Si, Si3N4 and SiC powders have been ...

Haggerty, John Scarseth

1981-01-01T23:59:59.000Z

287

Phenomenology of single and double diffraction dissociation  

E-Print Network [OSTI]

Predictions of the gap-probability renormalization model for single and double diffraction dissociation cross sections in proton-proton collisions at the LHC are presented and compared with recent CMS measurements.

Konstantin Goulianos

2013-10-21T23:59:59.000Z

288

Nuclear diffractive structure functions at high energies  

E-Print Network [OSTI]

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

289

X-ray powder diffraction characterization of the elusive tetraphosphine Si,,CH2PPh2...4 silane  

E-Print Network [OSTI]

, and high-resolution FAB mass spectrometry. II. EXPERIMENTAL Ph2PCH2Li TMEDA 1.76 g, 5.44 mmol was dis scintillation counter, and pulse-height amplifier discrimina- tion. CuK radiation =1.5418 was used. The X

Bluemel, Janet

290

Multi-scale current activated tip-based sintering of powder-based materials  

E-Print Network [OSTI]

Japan Society for powder Metallurgy 9 B. Srinivasaro, K. Oh-PM sintering method. Powder Metallurgy 45(4):322-328 47 Z.A.Japan Society of Powder Metallurgy 57(10): 654-659 106 M.

El Desouky, Ahmed Mohamed

2012-01-01T23:59:59.000Z

291

Homogeneous Precipitation of Nickel Hydroxide Powders  

SciTech Connect (OSTI)

Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni{sup 2+} precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni{sup 2+} form strong complexes with ammonia presents a challenge in the full recovery of the Ni{sup 2+}. On the other hand, presence of Al{sup 3+} facilitates the complete precipitation of Ni{sup 2+} in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator{trademark}, Version 1.01) lets the user change the order of kinetic components of a reaction which was set to stoichiometric constant with which the species appear in the reaction in KINSIM by default. For instance, in the case of LDH precipitation, the new program allows to change the order of species in the reactions associated with Al{sup 3+} and let the Ni{sup 2+} reactions take over. This could be carried on iteratively until a good fit between the experimental data and the predictions were observed. However for such studies availability of accurate equilibrium constants (especially for the solubility products for the solid phase) is a prerequisite.

Bora Mavis

2003-12-12T23:59:59.000Z

292

Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel  

SciTech Connect (OSTI)

Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. The consolidation of ultra-fine powders (dia. ? 5?m) resulted in a significant reduction in dispersoid size and spacing, consistent with initial scanning electron microscopy studies on as-atomized cross-sectioned particles that suggested that these powders solidified above the threshold velocity to effectively solute trap Y within the ?-(Fe,Cr) matrix. Interestingly, when the solidification velocity as a function of particle size was extracted from the aforementioned theoretical particle cooling curves, it could be offered as supporting evidence for these microstructure observations. Thermal-mechanical treatments also were used to create and evaluate the stability of a dislocation substructure within these alloys, using microhardness and TEM analysis of the alloy sub-grain and grain structure. Moreover, elevated temperature tensile tests up to 800C were used to assess the initial mechanical strength of the ODS microstructure.

Rieken, Joel

2011-12-13T23:59:59.000Z

293

Neutron sources and applications  

SciTech Connect (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

294

Neutron Science Forum | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environment for discussion, innovation, and dissemination of information within the neutron scattering community as well as engaging closely related disciplines through...

295

Neutron wave packet tomography  

E-Print Network [OSTI]

A tomographic technique is introduced in order to determine the quantum state of the center of mass motion of neutrons. An experiment is proposed and numerically analyzed.

G. Badurek; P. Facchi; Y. Hasegawa; Z. Hradil; S. Pascazio; H. Rauch; J. Rehacek; T. Yoneda

2005-03-29T23:59:59.000Z

296

Lujan Neutron Scattering Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

297

amorphous ball-milled powders: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, and thermal properties of Nafion powders prepared by high-energy ball milling of pellets is given. Nafion powders prepared in this manner exhibit thermal behavior similar...

298

E-Print Network 3.0 - aluminum powder mixtures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4210: Manufacturing Processes and Engineering Summary: .S. Colton GIT 2009 17 12;Compacting Pressures for Various Metal Powders P Metal Pressure (MPa) Aluminum... Metal Powder...

299

Extruded plastic scintillator including inorganic powders  

DOE Patents [OSTI]

A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

2006-06-27T23:59:59.000Z

300

HFIR History - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its...

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Neutron Stars and Fractal Dimensionality  

E-Print Network [OSTI]

We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

Burra G. Sidharth

2008-05-06T23:59:59.000Z

302

Diffractive Higgs boson photoproduction in $?p$ process  

E-Print Network [OSTI]

We explore an alternative process for the diffractive Higgs boson production in peripheral pp collisions arising from Double Pomeron Exchange in photon-proton interaction. We introduce the impact factor formalism in order to enable the gluon ladder exchange in the photon-proton subprocess, and to permit the central Higgs production. The event rate for the diffractive Higgs production in central rapidity is estimated to be about 0.6 pb at Tevatron and LHC energies. This result is higher than predictions from other approaches for diffractive Higgs production, showing that the alternative production process leads to an enhanced signal for the detection of the Higgs boson at hadron colliders. Our results are compared to those obtained from a similar approach proposed by the Durham group. In this way we may examine the future developments in its application to pp and AA collisions.

M. B. Gay Ducati; G. G. Silveira

2008-12-05T23:59:59.000Z

303

Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. es011yakovleva2010o.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

304

Apparatus for making environmentally stable reactive alloy powders  

DOE Patents [OSTI]

Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

1996-12-31T23:59:59.000Z

305

Environmentally stable reactive alloy powders and method of making same  

DOE Patents [OSTI]

Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

1998-09-22T23:59:59.000Z

306

Process for synthesizing compounds from elemental powders and product  

DOE Patents [OSTI]

A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

Rabin, B.H.; Wright, R.N.

1993-12-14T23:59:59.000Z

307

alloyed powders kermetnye: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

308

alloy powder fabricated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

309

alloy powders produced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

310

alloy powders obtained: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

311

alloyed powders hyperfine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

312

alloy powder prepared: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

313

Compact neutron generator  

DOE Patents [OSTI]

A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

Leung, Ka-Ngo; Lou, Tak Pui

2005-03-22T23:59:59.000Z

314

Neutron capture therapies  

DOE Patents [OSTI]

In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

1999-01-01T23:59:59.000Z

315

Instrument and method for focusing X-rays, gamma rays and neutrons  

DOE Patents [OSTI]

A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

Smither, Robert K. (Hinsdale, IL)

1984-01-01T23:59:59.000Z

316

Instrument and method for focusing x rays, gamma rays, and neutrons  

DOE Patents [OSTI]

A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

Smither, R.K.

1982-03-25T23:59:59.000Z

317

Consolidation of aluminum 6061 powder by equal channel angular extrusion  

E-Print Network [OSTI]

, the powder is placed in a deformable mold ? often rubber, glass, or stainless steel. The container is evacuated and welded shut and then placed inside the HIP unit. A high- pressure gas or liquid surrounds the powder mold and applies pressure equally on all... oxide films and provide new surface area for welding. Next, the particles are resistance heated and pressure is applied for about 15 minutes. Applied temperatures are lower than HIP temperatures, and PAS uses much shorter consolidation times ? minutes...

Pearson, John Montgomery

1997-01-01T23:59:59.000Z

318

Powder segregation during the filling of a simple die  

E-Print Network [OSTI]

. During vibratory die f il ling, f iltration of f ines through the moving powder mass is still a major cause of segregation. The vibration tends to flatten out the inner mound of fines, thereby decreasing radial segregation and increasing vertical... SEGREGATION DURING DIE FILLING 23 l. Introduction 23 2. Experimental 2. 1. Materials 2. 2. Equipment and Procedure 23 23 24 3. Results 4. Discussion 5. Conclusions 24 24 31 III. SOME EFFECTS OF VIBRATION UPON POWDER SEGREGATION DURING DIE...

Lawrence, Larry Raymond

1968-01-01T23:59:59.000Z

319

Pocked surface neutron detector  

DOE Patents [OSTI]

The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

2003-04-08T23:59:59.000Z

320

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pulsed neutron detector  

DOE Patents [OSTI]

A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

1989-03-21T23:59:59.000Z

322

Solid phases of spatially nanoconfined oxygen: A neutron scattering study  

SciTech Connect (OSTI)

We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic ?-, orthorhombic ?- and monoclinic ?-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic ?-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

Kojda, Danny [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany) [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Freie Universitt Berlin, 14195 Berlin (Germany); Wallacher, Dirk; Hofmann, Tommy, E-mail: tommy.hofmann@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany)] [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Baudoin, Simon; Hansen, Thomas [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)] [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Huber, Patrick [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)] [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)

2014-01-14T23:59:59.000Z

323

Titanium Metal Powder Production by the Plasma Quench Process  

SciTech Connect (OSTI)

The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

R. A. Cordes; A. Donaldson

2000-09-01T23:59:59.000Z

324

An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route  

SciTech Connect (OSTI)

Highlights: ? Synthesis of nanosized CeO{sub 2} was carried out using mechanochemical reactions plus sequential calcinations procedure. ? The effect of milling time and calcinations procedure on crystallite size and surface area of the as-synthesized powders was investigated. ? The extended milling times were exposed to result in the smaller crystallite size, and hence higher surface area for the as-synthesized powder. ? Higher calcinations temperatures, on the other hand, led to the as-synthesized powder with a larger crystallite size and therefore, lower surface area. ? Activation energy for nanocrystallite growth was calculated during the calcinations procedure and the aforementioned crystallite growth was found to be conducted in the light of interfacial reactions. -- Abstract: The synthesis of nano-sized CeO{sub 2} powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, BrunnerEmmettTeller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 C. According to the results, milling time and calcination temperatures induce paramountal effects on crystallite size and surface area of as-synthesized powders. In addition, the average activation energy for the growth of nanocrystals during calcination was determined to be about 12.53 kJ/mol, suggesting the influence of interfacial reactions on the crystallite growth during the calcination procedure.

Aminzare, M., E-mail: masoudaminzare@yahoo.com [Materials Engineering Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Amoozegar, Z. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)] [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of); Sadrnezhaad, S.K. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)] [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

2012-11-15T23:59:59.000Z

325

DIFFRACTION STUDIES OF ICE Alexe BOSAK  

E-Print Network [OSTI]

Ic 28o halo observed at least 7 times since 1629 octahedral particles of ice Ic! #12;Cooling downDIFFRACTION STUDIES OF ICE Alexeï BOSAK European Synchrotron Radiation Facility #12;Ice as the mild threat ice Ih the only ice in the crust #12;Ice as the absolute weapon Ice IX : melting point 45.8°C

Titov, Anatoly

326

Near-field diffractive elements Daniel Marks  

E-Print Network [OSTI]

by a near-field diffractive element (NDE) that scatters the high-spatial-frequency components of the field susceptibility r , and the NDE is described by the susceptibilty r . The field obeys the equation 2 U r +k0 2 U r to first order in both the NDE and the sample susceptibilities. It is assumed that the background terms

Bhargava, Rohit

327

In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q  

E-Print Network [OSTI]

In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q Y Biodegradation Cytotoxicity Powder metallurgy a b s t r a c t Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge

Zheng, Yufeng

328

Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13,  

E-Print Network [OSTI]

Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13, 2007 Albert Steyerl Department 940 878.5±0.8 885.7±0.8 new result neutronlifetime(),s year world average Neutron lifetime data #12 world average Neutron lifetime data A. Serebrov et al. 2005Storage of ultra-cold neutrons878.5 ±±±± 0

Steyerl, Albert

329

Hyperons in neutron stars  

E-Print Network [OSTI]

Using the Dirac-Brueckner-Hartree-Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of $2.08\\,M_{\\odot}$, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

Katayama, Tetsuya

2015-01-01T23:59:59.000Z

330

Research aim : Measurement of internal stresses accurately using neutron diffraction using ENGIN-X, neutron diffractometer at ISIS Facility, UK  

E-Print Network [OSTI]

life Area of interest : Internal Stresses in DMW's Proposed design : Design with a corrosion, the nuclear power plant constructor Material used: Dissimilar Metal Welds(DMW's) for piping system = Excellent

Bandara, Arosha

331

Switchable radioactive neutron source device  

DOE Patents [OSTI]

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

332

X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction  

E-Print Network [OSTI]

X-ray Diffraction (XRD) · 1.0 What is X-ray Diffraction · 2.0 Basics of Crystallography · 3.0 Production of X-rays · 4.0 Applications of XRD · 5.0 Instrumental Sources of Error · 6.0 Conclusions #12 why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence (theta

Moeck, Peter

333

Hydrothermal synthesis and characteristics of anions-doped calcium molybdate red powder phosphors  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Four anion-doped CaMoO{sub 4}:Eu{sup 3+} red phosphors were prepared by hydrothermal approach. Some samples exhibit nearly spherical morphology and well-distributed fine particles. The red luminescence can be obviously enhanced after certain amount of anion doping. The improved phosphor system is a potential candidate for white LED applications. - Abstract: Applying hydrothermal and subsequent heat-treatment process, CaMoO{sub 4}:Eu{sup 3+} was doped with four anions (SiO{sub 3}{sup 2?}, PO{sub 4}{sup 3?}, SO{sub 4}{sup 2?} and ClO{sub 3}{sup ?}) to prepare fine red powder phosphors. The introduction of small amount of anions into the host had little influence on the structure, which was confirmed by X-ray diffraction patterns. The anion-doped phosphor samples (except SiO{sub 3}{sup 2?}) exhibited nearly spherical morphology, and the particle sizes were in the range of 0.30.4 ?m for SO{sub 4}{sup 2?}-doped samples, and 0.81.2 ?m for PO{sub 4}{sup 3?} and ClO{sub 3}{sup ?}-doped samples. Excited with 395 nm near-UV light, all samples showed typical Eu{sup 3+} red emission at 615 nm, and PO{sub 4}{sup 3?}, SO{sub 4}{sup 2?} and ClO{sub 3}{sup ?}-doped samples enhanced the red luminescence as compared with the individual CaMoO{sub 4}:Eu{sup 3+} sample. In particular, relative emission intensity for optimum ClO{sub 3}{sup ?}-doped phosphors reached more than 6-fold that of the commercial red phosphor, which is highly desirable for the powder phosphors used in the solid-state lighting industry.

Shi, Shikao, E-mail: ssk02@mails.tsinghua.edu.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Yan; Liu, Qing [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhou, Ji [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

2013-10-15T23:59:59.000Z

334

Strangeness in Neutron Stars  

E-Print Network [OSTI]

It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.

Fridolin Weber; Alexander Ho; Rodrigo P. Negreiros; Philip Rosenfield

2006-04-20T23:59:59.000Z

335

Shifting scintillator neutron detector  

DOE Patents [OSTI]

Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

2014-03-04T23:59:59.000Z

336

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo

2005-06-14T23:59:59.000Z

337

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo (Hercules, CA)

2008-04-22T23:59:59.000Z

338

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo (Hercules, CA)

2009-12-29T23:59:59.000Z

339

Microstructural Development in Al-Si Powder During Rapid Solidification  

SciTech Connect (OSTI)

Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

Amber Lynn Genau

2004-12-19T23:59:59.000Z

340

Method for producing microcomposite powders using a soap solution  

DOE Patents [OSTI]

A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

Maginnis, Michael A. (Coker, AL); Robinson, David A. (Mobile, AL)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Phase-shifting point diffraction interferometer  

DOE Patents [OSTI]

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

Medecki, Hector (Berkeley, CA)

1998-01-01T23:59:59.000Z

342

Diffractive and exclusive measurements at CDF  

SciTech Connect (OSTI)

Experimental results from the CDF experiment at the Tevatron in p{bar p} collisions at {radical}s = 1.96 TeV are presented on the diffractive structure function at different values of the exchanged momentum transfer squared in the range 0 < Q{sup 2} < 10,000 GeV{sup 2}, on the four-momentum transfer |t| distribution in the region 0 < |t| < 1 GeV{sup 2} for both soft and hard diffractive events up to Q{sup 2} {approx} 4,500 GeV{sup 2}, and on the first experimental evidence of exclusive production in both dijet and diphoton events. A novel technique to align the Roman Pot detectors is also presented.

Gallinaro, Michele; /Rockefeller U.

2006-06-01T23:59:59.000Z

343

Phase-shifting point diffraction interferometer  

DOE Patents [OSTI]

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

Medecki, H.

1998-11-10T23:59:59.000Z

344

QCD and hard diffraction at the LHC  

SciTech Connect (OSTI)

As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

Albrow, Michael G.; /Fermilab

2005-09-01T23:59:59.000Z

345

MAGNETIC NEUTRON SCATTERING  

SciTech Connect (OSTI)

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

346

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

347

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Byers, Charles H. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

348

Method and apparatus for the production of metal oxide powder  

DOE Patents [OSTI]

The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

Harris, M.T.; Scott, T.C.; Byers, C.H.

1992-06-16T23:59:59.000Z

349

Aerosol flow reactor production of superconducting ceramic powder  

SciTech Connect (OSTI)

Potential applications and basic studies of superconducting ceramics require the reproducible production of chemically homogeneous, ultrapure powders with controlled particle size distributions. Previous work has mainly examined the use of liquid and solid phase methods for superconducting powder production. In this work, it is shown that carbon-free, submicron powders based on the Y-Ba-Cu-O, La-Sr-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O systems can be produced in a gaseous flow system by reacting aerosol particles containing the nitrate salts of the appropriate metals in flowing oxygen at temperatures of 900 - 1100C. It is also demonstrated that composite Cu/YBa/sub 2/Cu/sub 3/O/sub 7/ wires can be fabricated by thermophoretic deposition of the particles onto the inner surface of a Cu tube hby sintering/annealing.

Kodas, T. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Nuclear Engineering); Engler, E.; Lee, V.; Parkin, L.S. (Research Div., Almaden Research Center, San Jose, CA (US))

1988-01-01T23:59:59.000Z

350

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

351

Method for forming biaxially textured articles by powder metallurgy  

DOE Patents [OSTI]

A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN)

2002-01-01T23:59:59.000Z

352

Process for preparing fine grain titanium carbide powder  

DOE Patents [OSTI]

A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

Janey, Mark A. (Concord, TN)

1986-01-01T23:59:59.000Z

353

Nano powders, components and coatings by plasma technique  

DOE Patents [OSTI]

Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

McKechnie, Timothy N. (Brownsboro, AL); Antony, Leo V. M. (Huntsville, AL); O'Dell, Scott (Arab, AL); Power, Chris (Guntersville, AL); Tabor, Terry (Huntsville, AL)

2009-11-10T23:59:59.000Z

354

Phase-shifting point diffraction interferometer grating designs  

DOE Patents [OSTI]

In a phase-shifting point diffraction interferometer, by sending the zeroth-order diffraction to the reference pinhole of the mask and the first-order diffraction to the test beam window of the mask, the test and reference beam intensities can be balanced and the fringe contrast improved. Additionally, using a duty cycle of the diffraction grating other than 50%, the fringe contrast can also be improved.

Naulleau, Patrick (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA); Tejnil, Edita (San Carlos, CA)

2001-01-01T23:59:59.000Z

355

Method of collecting and processing electron diffraction data  

DOE Patents [OSTI]

A method of using electron diffraction to obtain PDFs from crystalline, nanocrystalline, and amorphous inorganic, organic, and organometallic compound.

Billinge, Simon; Farrow, Christopher; Gorelik, Tatiana E; Kanatzidis, Mercouri; Schmidt, Martin U

2014-12-30T23:59:59.000Z

356

Charm production in diffractive DIS and PHP at ZEUS  

E-Print Network [OSTI]

The ZEUS experiment has measured charm production in diffractive DIS and in photoproduction. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with QCD factorisation in diffractive DIS and direct photoproduction.

Isabell-Alissandra Melzer-Pellmann; for the ZEUS collaboration

2007-08-03T23:59:59.000Z

357

Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions  

SciTech Connect (OSTI)

An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

2013-11-15T23:59:59.000Z

358

Electron-neutron scattering and transport properties of neutron stars  

E-Print Network [OSTI]

We show that electrons can couple to the neutron excitations in neutron stars and find that this can limit their contribution to the transport properties of dense matter, especially the shear viscosity. The coupling between electrons and neutrons is induced by protons in the core, and by ions in the crust. We calculate the effective electron-neutron interaction for the kinematics of relevance to the scattering of degenerate electrons at high density. We use this interaction to calculate the electron thermal conductivity, electrical conductivity, and shear viscosity in the neutron star inner crust, and in the core where we consider both normal and superfluid phases of neutron-rich matter. In some cases, particularly when protons are superconducting and neutrons are in their normal phase, we find that electron-neutron scattering can be more important than the other scattering mechanisms considered previously.

Bertoni, Bridget; Rrapaj, Ermal

2014-01-01T23:59:59.000Z

359

Novel neutron focusing mirrors for compact neutron sources  

E-Print Network [OSTI]

We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

Gubarev, M.V.

360

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

SciTech Connect (OSTI)

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the probability of UCN losses from the trap was only 1% of that for neutron {beta} decay. The neutron lifetime obtained, 878.5{+-}0.7{sub stat}{+-}0.3{sub sys} s, is the most accurate experimental measurement to date.

Serebrov, A. P.; Varlamov, V. E.; Kharitonov, A. G.; Fomin, A. K.; Krasnoschekova, I. A.; Lasakov, M. S.; Taldaev, R. R.; Vassiljev, A. V.; Zherebtsov, O. M. [Petersburg Nuclear Physics Institute, Russian Academy of Sciences, RU-188300 Gatchina, Leningrad District (Russian Federation); Pokotilovski, Yu. N. [Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow Region (Russian Federation); Geltenbort, P. [Institut Max von Laue Paul Langevin, Boite Postal 156, F-38042 Grenoble Cedex 9 (France)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

E-Print Network [OSTI]

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

2007-02-06T23:59:59.000Z

362

Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process  

SciTech Connect (OSTI)

This invention relates to an improved process of preparing Bi-Sr-Ca-Cu-O (BSCCO) powders, and more particularly, to a process for preparing BSCCO powders that utilize freeze-drying. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution; grinding the flakes to form a powder; freeze-drying the frozen powder; heating the powder to form dry green precursor powders; denitrating the powders; and heating the powders to form phase-clean Bi-2223 powders.

Balachandran, U.; Krishnaraj, P.; Eror, N.G.; Lelovic, M.

1994-12-31T23:59:59.000Z

363

Strangeness in Neutron Stars  

E-Print Network [OSTI]

It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which numerous novel particles processes are likely to compete with each other. These processes range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, iron. In the latter event, neutron stars would be largely composed of pure quark matter, eventually enveloped in a thin nuclear crust. No matter which physical processes are actually realized inside neutron stars, each one leads to fingerprints, some more pronounced than others though, in the observable stellar quantities. This feature combined with the unprecedented progress in observational astronomy, which allows us to see vistas with remarkable clarity that previously were only imagined, renders neutron stars to nearly ideal probes for a wide range of physical studies, including the role of strangeness in dense matter.

Fridolin Weber

2000-08-23T23:59:59.000Z

364

Portable Neutron Sensors for Emergency Response Operations  

SciTech Connect (OSTI)

This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

Mukhopadhyay, S., Maurer, R., Detweiler, R.

2012-06-22T23:59:59.000Z

365

Cold drawn steel wires--processing, residual stresses and ductility Part II: Synchrotron and neutron diffraction  

E-Print Network [OSTI]

Cold drawn steel wires--processing, residual stresses and ductility Part II: Synchrotron Received in final form 29 September 2005 ABSTRACT Cold drawing of steel wires leads to an increase proposed that cold drawing would induce a phase transformation of the steel, possibly a martensitic

366

Characterization of Li-ion Batteries using Neutron Diffraction and Infrared  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterization and ValorizationImaging

367

Texture analysis of silicon with an heterogeneous morphology used for the photovoltaic conversion by neutron diffraction  

E-Print Network [OSTI]

603 Texture analysis of silicon with an heterogeneous morphology used for the photovoltaic.10F - 61.14F 1. Introduction. In order to lower the production cost of solar cells, the Research perpendicularly to growth axis, which led to photovoltaic efficiency q ~ 11 % under AM1 conditions, starting

Paris-Sud XI, Université de

368

Neutron beam characterization at the Neutron Radiography Reactor (NRAD)  

SciTech Connect (OSTI)

The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

1990-01-01T23:59:59.000Z

369

Optical-diffraction method for determining crystal orientation  

DOE Patents [OSTI]

Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

Sopori, B.L.

1982-05-07T23:59:59.000Z

370

A technique for the observation of rapid solidification and annealing of powders in a transmission electron microscope  

SciTech Connect (OSTI)

In the recent past, there has been considerable interest in the general area of rapid solidification processing (RSP). It is highly desirable to be able to make observations of not only the as-solidified microstructure of RSP materials, but also to determine its response to thermal excursions. This paper describes a new technique for in-situ studies of such processes where the electron beam in a TEM is used not only for imaging, diffraction and analytical purposes, but also as a local heating source. Thus, when making observations on submicron powders, produced by electrohydrodynamic atomization (EHD), it is possible to anneal and even melt particulate by focusing the electron beam in a controlled manner. The molten droplets can then be rapidly solidified by occluding the beam from the area of interest. A wide range of cooling rates may be achieved, the maximum being at least as rapid as that estimated for the EHD process, about 10/sup 5/ K/s (dependent on powder size). Two examples of the use of this technique are given. The first involves the melting, rapid solidification and subsequent heat treatment of an AL-4.5wt.%Cu alloy. The second is an example of how this technique may be used in studies of the crystallization of metallic glasses, in this case a Cu-45at.%Zr alloy.

Kaufman, M.J.; Fraser, H.L.

1983-01-01T23:59:59.000Z

371

Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders  

SciTech Connect (OSTI)

This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

Asit Biswas Andrew J. Sherman

2006-09-25T23:59:59.000Z

372

Explosively driven low-density foams and powders  

SciTech Connect (OSTI)

Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

Viecelli, James A. (Orinda, CA); Wood, Lowell L. (Simi Valley, CA); Ishikawa, Muriel Y. (Livermore, CA); Nuckolls, John H. (Danville, CA); Pagoria, Phillip F. (Livermore, CA)

2010-05-04T23:59:59.000Z

373

Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam  

SciTech Connect (OSTI)

Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

1999-04-01T23:59:59.000Z

374

Reconciliation of generalized refraction with diffraction theory  

E-Print Network [OSTI]

When an electromagnetic wave is obliquely incident on the interface between two homogeneous media with different refractive indices, the requirement of phase continuity across the interface generally leads to a shift in the trajectory of the wave. When a linearly position dependent phase shift is imposed at the interface, the resulting refraction may be described using a generalized version of Snell's law. In this Letter, we establish a formal equivalence between generalized refraction and blazed diffraction gratings, further discussing the relative merits of the two approaches.

Larouche, Stphane

2012-01-01T23:59:59.000Z

375

Lessons from LHC elastic and diffractive data  

E-Print Network [OSTI]

In the light of LHC data, we discuss the global description of all high energy elastic and diffractive data, using a one-pomeron model, but including multi-pomeron interactions. The LHC data indicate the need of a $k_t(s)$ behaviour, where $k_t$ is the gluon transverse momentum along the partonic ladder structure which describes the pomeron. We also discuss tensions in the data, as well as the $t$ dependence of the slope of $d\\sigma_{el}/dt$ in the small $t$ domain.

A. D. Martin; V. A. Khoze; M. G. Ryskin

2014-10-13T23:59:59.000Z

376

Elastic and diffractive scattering at D0  

SciTech Connect (OSTI)

The first search for diffractively produced Z bosons in the muon decay channel is presented, using a data set collected by the D0 detector at the Fermilab Tevatron at {radical}s = 1.96 TeV between April and September 2003, corresponding to an integrated luminosity of approximately 110 pb{sup -1}. The first dN/d|t| distribution for proton-antiproton elastic scattering at this c.o.m. energy is also presented, using data collected by the D0 Forward Proton Detector between January and May 2002. The measured slope is reproduced by theoretical predictions.

Edwards, Tamsin; /Manchester U.

2004-04-01T23:59:59.000Z

377

Zemax simulations of diffraction and transition radiation  

E-Print Network [OSTI]

Diffraction Radiation (DR) and Transition Radiation (TR) are produced when a relativistic charged particle moves in the vicinity of a medium or through a medium respectively. The target atoms are polarised by the electric field of the charged particle, which then oscillate thus emitting radiation with a very broad spectrum. The spatialspectral properties of DR/TR are sensitive to various electron beam parameters. Several projects aim to measure the transverse (vertical) beam size using DR or TR. This paper reports on how numerical simulations using Zemax can be used to study such a system.

Aumeyr, T; Bobb, L M; Bolzon, B; Lefevre, T; Mazzoni, S; Billing, M G

2013-01-01T23:59:59.000Z

378

Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques  

SciTech Connect (OSTI)

In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in [Department of Mechanical Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi-642003 (India); Chandrasekar, P.; Chandramohan, P. [School of Engineering, Professional Group of Institutions, Coimbatore-641662 (India)] [School of Engineering, Professional Group of Institutions, Coimbatore-641662 (India); Mohanraj, M. [Department of Mechanical Engineering, Info Institute of Engineering, Coimbatore-641107 (India)] [Department of Mechanical Engineering, Info Institute of Engineering, Coimbatore-641107 (India)

2012-11-15T23:59:59.000Z

379

Spherical neutron generator  

DOE Patents [OSTI]

A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

Leung, Ka-Ngo

2006-11-21T23:59:59.000Z

380

Personnel electronic neutron dosimeter  

DOE Patents [OSTI]

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

1984-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Personnel electronic neutron dosimeter  

DOE Patents [OSTI]

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, R.B.; Tyree, W.H.

1982-03-03T23:59:59.000Z

382

Neutron Scattering Tutorials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamNDiscoveryNeutron

383

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

2013-11-12T23:59:59.000Z

384

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

385

Fast neutron dosimetry  

SciTech Connect (OSTI)

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01T23:59:59.000Z

386

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

SciTech Connect (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

387

AN INVESTIGATION OF HYDROSTATIC EXTRUSION AND OTHER DEFORMATION MODES FOR THE FABRICATION OF MULTI-FILAMENTARY NIOBIUM-TIN SUPERCONDUCTORS BY A POWDER METALLURGY APPROACH  

E-Print Network [OSTI]

SUPERCONDUCTORS BY A POWDER METALLURGY ApPROACH By GLEN EARLTin Superconductors by a Powder Metallurgy Approach TABLE OFSUPERCONDUCTORS BY A POWDER METALLURGY APPROACH Glen Earl

MacLeod, G.E.

2010-01-01T23:59:59.000Z

388

NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY  

SciTech Connect (OSTI)

NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

HOLDEN,N.E.

1999-09-10T23:59:59.000Z

389

Fabrication of NiTi shape memory alloy from elemental powders by hot isostatic pressing  

E-Print Network [OSTI]

The research involved in this thesis was conducted to develop a procedure for producing cylindrical specimens of NiTi shape memory alloy for mechanical testing from elemental powders by hot isostatic pressing. Powders were mixed to ratios of 50...

McNeese, Matthew Doyle

1997-01-01T23:59:59.000Z

390

E-Print Network 3.0 - acid whey powder Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r a c t This paper describes controlled synthesis of Fe3O4 powder via... carbothermal reduction method using pure Fe2O3 powder and glucose mixture as starting materials. Pure Fe3O4...

391

Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle  

SciTech Connect (OSTI)

Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

Huang, Xian-Rong, E-mail: xiahuang@aps.anl.gov; Gog, Thomas; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Siddons, D. P. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-11-03T23:59:59.000Z

392

STUDIES OF DESIGN PARAMETERS IN THE FABRICATION OF Nb-Al-Ge SUPERCONDUCTORS BY THE POWDER METALLURGY INFILTRATION METHOD  

E-Print Network [OSTI]

TicltcJ by a Powder Metallurgy Approach, (D. Eng. Thesis)SUPERCONDUCTORS BY THE POWDER METALLURGY INFILTRATION METHODBY TrIE POWDER METALLURGY INFILTRATION METHOD Jose J. Granda

Granda, J.J.

2010-01-01T23:59:59.000Z

393

Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials  

DOE Patents [OSTI]

A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

1999-06-01T23:59:59.000Z

394

Precipitation in cold-rolled AlScZr and AlMnScZr alloys prepared by powder metallurgy  

SciTech Connect (OSTI)

The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ? 1.0 ?m at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 C. The Sc,Zr-containing particle precipitation is slightly facilitated by cold rolling. The Mn-containing particle precipitation is highly enhanced by cold rolling. Cold rolling has no effect on activation energy of the Al{sub 3}Sc and Al{sub 6}Mn precipitation. The texture development is affected by high solid solution strengthening by Mn.

Vlach, M., E-mail: martin.vlach@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Gemma, R. [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, 23955-6900 Thuwal (Saudi Arabia); Ocenasek, V. [SVM a.s., Podnikatelsk 565, CZ-190 11 Prague (Czech Republic); Malek, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, CZ-120 00 Prague (Czech Republic); Tanprayoon, D.; Neubert, V. [Institut fr Materialprfung und Werkstofftechnik, Freiberger Strasse 1, D-38678 Clausthal-Zellerfeld (Germany)

2013-12-15T23:59:59.000Z

395

Neutron Absorbing Alloys  

DOE Patents [OSTI]

The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

2004-05-04T23:59:59.000Z

396

Solid state neutron detector array  

DOE Patents [OSTI]

A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

1999-08-17T23:59:59.000Z

397

Solid state neutron detector array  

DOE Patents [OSTI]

A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

1999-01-01T23:59:59.000Z

398

Dose-equivalent neutron dosimeter  

DOE Patents [OSTI]

A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

1981-01-07T23:59:59.000Z

399

"Ceramics and high-temperature composites, silicides" Oxidation of Stainless Steel Powder  

E-Print Network [OSTI]

: Powder, stainless steel, oxidation INTRODUCTION Ceramic matrix composites dispersed with metal particles"Ceramics and high-temperature composites, silicides" CHTC9 Oxidation of Stainless Steel Powder. To understand the corrosion behavior of a model 304L(p)-ZrO2(s) composite, a 304L stainless steel powder has

Paris-Sud XI, Université de

400

Neutron and X-Ray Studies of Advanced Materials V: CENTENNIAL  

SciTech Connect (OSTI)

In 2012 the diffraction community will celebrate 100 years since the prediction of X-ray diffraction by M. Laue, and following his suggestion the first beautiful diffraction experiment by W. Friedrich and P. Knipping. The significance of techniques based on the analysis of the diffraction of X-rays, neutrons, electrons and Mossbauer photons discovered later, has continued to increase in the past 100 years. The aim of this symposium is to provide a forum for discussion of using state-of-the-art neutron and X-ray scattering techniques for probing advanced materials. These techniques have been widely used to characterize materials structures across all length scales, from atomic to nano, meso, and macroscopic scales. With the development of sample environments, in-situ experiments, e.g., at temperatures and applied mechanical load, are becoming routine. The development of ultra-brilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultra-sensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation and strain. X-ray microdiffraction is non-destructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Advances in neutron sources and instrumentation also bring new opportunities in neutron scattering research. In addition to characterizing the structures, neutrons are also a great tool for elucidating the dynamics of materials. Because neutrons are highly penetrating, neutrons have been used to map stress in engineering systems. Neutrons have also played a vital role in our understanding of the magnetism and magnetic properties. Specialized instruments have been built to gain physical insights of the fundamental mechanisms governing phase transformation and mechanical behaviors of materials. The application of those techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future that will contribute to the development of materials technology and industrial innovation.

Spanos, George

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Diffraction in Time of Polymer Particles  

E-Print Network [OSTI]

We study the quantum dynamics of a suddenly released beam of particles using a background independent (polymer) quantization scheme. We show that, in the first order of approximation, the low-energy polymer distribution converges to the standard quantum-mechanical result in a clear fashion, but also arises an additional small polymer correction term. We find that the high-energy polymer behaviour becomes predominant at short distances and short times. Numerical results are also presented. We find that particles whose wave functions satisfy the polymer wave equation do not exhibit the diffraction in time phenomena. The implementation of a lower bound to the possible resolution of times into the time-energy Heisenberg uncertainty relation is briefly discussed.

A. Martn-Ruiz

2014-06-13T23:59:59.000Z

402

2010 Diffraction Methods in Structural Biology  

SciTech Connect (OSTI)

Advances in basic methodologies have played a major role in the dramatic progress in macromolecular crystallography over the past decade, both in terms of overall productivity and in the increasing complexity of the systems being successfully tackled. The 2010 Gordon Research Conference on Diffraction Methods in Structural Biology will, as in the past, focus on the most recent developments in methodology, covering all aspects of the process from crystallization to model building and refinement, complemented by examples of structural highlights and complementary methods. Extensive discussion will be encouraged and it is hoped that all attendees will participate by giving oral or poster presentations, the latter using the excellent poster display area available at Bates College. The relatively small size and informal atmosphere of the meeting provides an excellent opportunity for all participants, especially younger scientists, to meet and exchange ideas with leading methods developers.

Dr. Ana Gonzalez

2011-03-10T23:59:59.000Z

403

Very Large Aperture Diffractive Space Telescope  

SciTech Connect (OSTI)

A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

Hyde, Roderick Allen

1998-04-20T23:59:59.000Z

404

Nuclear dynamical diffraction using synchrotron radiation  

SciTech Connect (OSTI)

The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of {sup 57}Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2{plus_minus}0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1{1/2} natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

Brown, D.E.

1993-05-01T23:59:59.000Z

405

Search for neutron - mirror neutron oscillations in a laboratory experiment with ultracold neutrons  

E-Print Network [OSTI]

Mirror matter is considered as a candidate for dark matter. In connection with this an experimental search for neutron - mirror neutron (nn') transitions has been carried out using storage of ultracold neutrons in a trap with different magnetic fields. As a result, a new limit for the neutron - mirror neutron oscillation time has been obtained, tau_osc >= 448 s (90% C.L.), assuming that there is no mirror magnetic field larger than 100 nT. Besides a first attempt to obtain some restriction for mirror magnetic field has been done.

A. P. Serebrov; E. B. Aleksandrov; N. A. Dovator; S. P. Dmitriev; A. K. Fomin; P. Geltenbort; A. G. Kharitonov; I. A. Krasnoschekova; M. S. Lasakov; A. N. Murashkin; G. E. Shmelev; V. E. Varlamov; A. V. Vassiljev; O. M. Zherebtsov; O. Zimmer

2008-09-29T23:59:59.000Z

406

Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory  

SciTech Connect (OSTI)

The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

Ibraeva, E. T., E-mail: ibr@inp.kz [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Zhusupov, M. A. [Al-Farabi Kazakh National University (Kazakhstan); Imambekov, O. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan)

2012-11-15T23:59:59.000Z

407

Report on Characterization and Processing of MDD Powder  

SciTech Connect (OSTI)

Uranium oxide powers most civilian nuclear reactors worldwide. A large infrastructure based on a well-established technology is in place to support this strategic component of the energy industry. Because uranium oxide fuels are used so ubiquitously, it is expected that ceramic fuel pellets will continue to be used. A better understanding of the properties of the starting materials, the processing methods used to fabricate fuel pellets and how the properties of pellets change in service, are important aspects being studied via experiments, models and simulations. A close integration of these approaches is essential if we are to find new ways to optimize both the fuel composition and structure for the purpose of improving performance, e.g., designed microstructures, reducing process losses, e.g. by net shape sintering, and enabling reprocessing of used fuel; e.g., incorporation of transuranics. Ceramic oxide fuel pellets are typically cold pressed and sintered from a powder feedstock. Consequently, a complete understanding of pellet fabrication requires a thorough knowledge of the process from powder synthesis through quality control and acceptance. In this study, uranium oxide powder synthesized by Modified Direct Denitration (MDD) is evaluated. Use of powders synthesized by novel, simplified approaches such as MDD are both a challenge and an opportunity. The MDD synthesis process offers an opportunity to simplify the fabrication process potentially reducing process losses. MDD also provides a simple path to incorporate transuranics from used fuel reprocessing with minimal handling. The challenge is to demonstrate and ultimately prove the reliability and reproducibility of simplified processing with the performance of fuel pellets experiencing in-pile service. This report summarizes a processing study of uranium oxide pellets made from MDD uranium oxide.

Luther, Erik Paul [Los Alamos National Laboratory

2012-08-21T23:59:59.000Z

408

Low temperature fabrication from nano-size ceramic powders  

SciTech Connect (OSTI)

The objective of the compaction process is to produce a dense green-state compact from a nanosize powder that subsequently can be sintered at high temperatures to form a dense ceramic piece. High density in the green-state after pressing is of primary importance for achieving high densities after sintering. Investigation of the compaction behavior of ceramic powders, therefore, is an important part of characterization of raw ceramic powders and evaluation of their compaction behavior, analysis of interaction between particles, and the study of microstructure of green body (unsintered) during pressure-forming processes. The compaction of nanosize ceramic particles into high density green bodies is very difficult. For the nanosize materials used in this study (amorphous Si{sub 3}N{sub 4} and {gamma} Al{sub 2}O{sub 3}), there is no evidence by TEM of partial sintering after synthesis. Nevertheless, strong aggregation forces, such as the van der Waals surface forces of attraction, exist and result in moderate precursor particle agglomeration. More importantly, these attractive surface forces, which increase in magnitude with decreasing particle size, inhibit interparticle sliding necessary for particle rearrangement to denser bodies during subsequent compaction. Attempts to produce high density green body compacts of nanosize particles, therefore, generally have been focused on overcoming these surface forces of attraction by using either dispersive fluids or high pressures with or without lubricating liquids. In the present work, the use of high pressure has been employed as a means of compacting nanosize powders to relatively high green densities.

Gonzalez, E.J.; Piermarini, G.J.; Hockey, B. [and others

1995-06-01T23:59:59.000Z

409

Powder River Energy Corporation Smart Grid Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowder River

410

Powder River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River Energy Corporation Place:

411

Ghost Diffraction: Causal Explanation via Correlated Trajectory Calculations  

E-Print Network [OSTI]

We use trajectory calculations to successfully explain two-photon "ghost" diffraction, a phenomenon previously explained via quantum mechanical entanglement. The diffraction patterns are accumulated one photon pair at a time. The calculations are based on initial correlation of the trajectories in the crystal source and a trajectory-wave ordering interaction with a variant generator inherent in its structure. Details are presented in comparison with ordinary diffraction calculated with the same trajectory model.

Bill Dalton

2001-02-22T23:59:59.000Z

412

Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams  

SciTech Connect (OSTI)

An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

Hastings, J.B.; /SLAC; Rudakov, F.M.; /Brown U.; Dowell, D.H.; Schmerge, J.F.; /SLAC; Cardoza, J.D.; /Brown U.; Castro, J.M.; Gierman, S.M.; Loos, H.; /SLAC; Weber, P.M.; /Brown U.

2006-10-24T23:59:59.000Z

413

Numerical solution of an inverse diffraction grating problem from ...  

E-Print Network [OSTI]

Feb 5, 2013 ... The diffraction of time- harmonic electromagnetic waves by some periodic material ... patterns [710]. Uniqueness results and stability estimates.

2013-02-02T23:59:59.000Z

414

Chapter 2 Diffractive Optics 2.1 Introduction  

E-Print Network [OSTI]

Diffractive optics is an emerging technology with many applications. Some of the important applications include the design and fabrication of optical elements...

2010-09-14T23:59:59.000Z

415

Porous material neutron detector  

DOE Patents [OSTI]

A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

2012-04-10T23:59:59.000Z

416

Neutron Scattering Stiudies  

SciTech Connect (OSTI)

This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

Kegel, Gunter H.R.; Egan, James J

2007-04-18T23:59:59.000Z

417

Neutron electric polarizability  

E-Print Network [OSTI]

We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

Andrei Alexandru; Frank X. Lee

2009-11-13T23:59:59.000Z

418

Fast neutron imaging device and method  

DOE Patents [OSTI]

A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

2014-02-11T23:59:59.000Z

419

Proton recoil scintillator neutron rem meter  

DOE Patents [OSTI]

A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

2003-01-01T23:59:59.000Z

420

Spallation Neutron Sources Around the World  

E-Print Network [OSTI]

Spallation Neutron Sources Around the World Bernie Riemer Thanks to others for the many shamelessly Laboratory #12;2 Managed by UT-Battelle for the U.S. Department of Energy Spallation Neutron Source Facilities Spallation Neutron Source Facilities Serve Neutron Science Programs · Neutron beams to suites

McDonald, Kirk

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Di-neutron correlation in light neutron-rich nuclei  

E-Print Network [OSTI]

Using a three-body model with density-dependent contact interaction, we discuss the root mean square distance between the two valence neutrons in $^{11}$Li nuclues as a function of the center of mass of the neutrons relative to the core nucleus $^9$Li. We show that the mean distance takes a pronounced minimum around the surface of the nucleus, indicating a strong surface di-neutron correlation. We demonstrate that the pairing correlation plays an essential role in this behavior. We also discuss the di-neutron structure in the $^8$He nucleus.

K. Hagino; H. Sagawa; P. Schuck

2008-12-03T23:59:59.000Z

422

REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.  

SciTech Connect (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

HOLDEN, N.E.

2004-09-26T23:59:59.000Z

423

Review of Non-Neutron and Neutron Nuclear Data, 2004  

SciTech Connect (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

Holden, Norman E. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

2005-05-24T23:59:59.000Z

424

Fabrication of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite powders using high energy milling and their sinterability  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}/Al nanocomposite powders were prepared via high energy ball milling. After 20 h milling, the size of Al{sub 2}O{sub 3}-20 vol.% Al nanocomposite particles was in the range of 23-29 nm. A uniform distribution of nanosized Al reinforcement throughout the Al{sub 2}O{sub 3} matrix, coating the particles was successfully obtained. Black-Right-Pointing-Pointer There was no any sign of phase changes during the milling. A competition between the cold welding mechanism and the fracturing mechanism were found during milling and finally the above two mechanisms reached an equilibrium. Black-Right-Pointing-Pointer The highest value of relative density was obtained for the sintered bodies at 1500 Degree-Sign C. Black-Right-Pointing-Pointer The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina. -- Abstract: In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al{sub 2}O{sub 3}-20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods. A uniform distribution of the Al reinforcement in the Al{sub 2}O{sub 3} matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical alloying of a ductile-brittle component system. A competition between the cold welding mechanism and the fracturing mechanism were found during powder milling and finally the above two mechanisms reached an equilibrium. The maximum relative density was obtained at 1500 Degree-Sign C. The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina.

Zawrah, M.F., E-mail: mzawrah@hotmail.com [National Research Center, Ceramics Department (Egypt); Abdel-kader, H.; Elbaly, N.E. [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)] [Mechanical Engineering Department, Faculty of Engineering, Helwan University (Egypt)

2012-03-15T23:59:59.000Z

425

Hubble Sees a Neutron Star Alone in Space Nearest Known Neutron Star  

E-Print Network [OSTI]

Hubble Sees a Neutron Star Alone in Space Nearest Known Neutron Star #12;Birth of a Neutron Star In the core, nuclei are smashed into protons & neutrons; the protons combine with electrons to make neutrons & neutrinos. The birth temperature of a neutron star is ~5?1011 K, but neutrino emission cools it to `only

Barnes, Joshua Edward

426

Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering  

SciTech Connect (OSTI)

We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-09-08T23:59:59.000Z

427

Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering  

SciTech Connect (OSTI)

We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

2014-01-01T23:59:59.000Z

428

Diffractive element in extreme-UV lithography condenser  

DOE Patents [OSTI]

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

2000-01-01T23:59:59.000Z

429

Diffractive element in extreme-UV lithography condenser  

DOE Patents [OSTI]

Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

2001-01-01T23:59:59.000Z

430

X-ray Diffraction Laboratory Department of Chemistry  

E-Print Network [OSTI]

X-ray Diffraction Laboratory Department of Chemistry Texas A & M University College Station, Texas Phone : 979-845-9125 www.chem.tamu.edu/xray xray@tamu.edu X-rayDiffractionLaboratory DepartmentofChemistry 3255TAMU CollegeStation,TX77843-3255 Mission The purpose of our laboratory is to provide X-ray

Meagher, Mary

431

X-ray Diffraction Practicals 1 Graphics Programs  

E-Print Network [OSTI]

X-ray Diffraction Practicals 1 Graphics Programs that will read SHELX or CIF files J. Reibenspies, N. Bhuvanesh ver 1.0.0 #12;X-ray Diffraction Practicals 2 Free software. Gretep : Reads SHELX files shelx files or output thermal ellipsoid plots. http://www.umass.edu/microbio/rasmol/ #12;X-ray

Meagher, Mary

432

Prospects for Diffractive and Forward Physics at the LHC  

E-Print Network [OSTI]

The CMS and TOTEM experiments intend to carry out a joint diffractive/forward physics program with an unprecedented rapidity coverage. The present document outlines some aspects of such a physics program, which spans from the investigation of the low-x structure of the proton to the diffractive production of a SM or MSSM Higgs boson.

Albrow, M; Arneodo, M; Avati, V; Bartalini, P; Berardi, V; Bottigli, U; Bozzo, M; Brucken, E; Burtovoy, V; Buzzo, A; Calicchio, M; Capurro, F; Catanesi, M G; Catastini, P; Ciocci, M A; Croft, R; Datsko, K; Deile, M; De Favereau De Jeneret, J; De Jesus Damiao, D; Robutti, E; de Roeck, A; D'Enterria, D G; De Wolf, E A; Eggert, K; Engel, R; Erhan, S; Ferro, F; Garca-Fuertes, W; Geist, W; Grothe, M; Guillaud, J P; Heino, J; Hees, A; Hilden, T; Kalliopuska, J; Kaspar, J; Katsas, P; Kim, V; Klyukhin, V; Kundrt, V; Kurvinen, K; Kuznetsov, A; Lami, S; Lamsa, J; Latino, G; Lauhakanga, R; Lippmaa, E; Lippmaa, J; Liu, Y; Loginov, A; Lokajcek, M; Lo Vetere, M; Lucas Rodriguez, F; Macri, M; Mki, T; Meucci, M; Minutoli, S; Mnich, J; Moussienko, I; Murray, M; Niewiadomski, H; Noschis, E; Notarnicola, G; Ochesanu, S; sterberg, K; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Ottela, M; Ovyn, S; Palazzi, P; Panagiotou, A D; Paoletti, R; Popov, V; Petrov, V; Pierzchala, T; Piotrzkowski, K; Radermacher, E; Radicioni, E; Rella, G; Reucroft, S; Ropelewski, Leszek; Rouby, X; Ruggiero, G; Rummel, A; Ruspa, M; Ryutin, R; Saarikko, H; Sanguinetti, G; Santoro, A F S; Santroni, A; Sarkisyan-Grinbaum, E; Sarycheva, L; Schilling, F P; Schlein, P E; Scribano Memoria, A; Sette, G; Snoeys, W; Snow, G R; Sobol, A; Solano, A; Spinella, F; Squillacioti, P; Swain, J; Sznajder, A; Tasevsky, M; Taylor, C C; Torp, F; Trummal, A; Turini, N; Van Der Donckt, M; Van Mechelen, P; Van Remortel, N; Vilela-Pereira, A; Whitmore, J; Zaborov, D

2006-01-01T23:59:59.000Z

433

Portable neutron spectrometer and dosimeter  

DOE Patents [OSTI]

The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

434

CHRPR Neutron Board Replacement Manual  

SciTech Connect (OSTI)

This document will walk through the steps to exchange the neutron channel boards with gamma channel boards in the CHRPR box.

Erikson, Rebecca L.; Myjak, Mitchell J.

2013-03-31T23:59:59.000Z

435

Neutron structural characterization, inversion degree and transport properties of NiMn{sub 2}O{sub 4} spinel prepared by the hydroxide route  

SciTech Connect (OSTI)

Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, ? = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ? A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ? NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ? Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ? Thermal analysis, transport measurements complement characterization of this oxide. ? A structureproperties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup }m, Z = 8, with a = 8.3940(2) ? at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, ? = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at the octahedral sites provides the charge carriers that, by a hopping mechanism between Mn{sup 3+}/Mn{sup 4+} adjacent sites, leads to a significant conductivity, up to 0.85 S cm{sup ?1} at 800 C in air.

Sagua, A.; Lescano, Gabriela M. [Departamento de Qumica, Laboratorio de Fisicoqumica Inorgnica, Universidad Nacional del Sur, INQUISUR, 8000 Baha Blanca (Argentina)] [Departamento de Qumica, Laboratorio de Fisicoqumica Inorgnica, Universidad Nacional del Sur, INQUISUR, 8000 Baha Blanca (Argentina); Alonso, J.A., E-mail: jaalonso@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Martnez-Coronado, R. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain)] [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Fernndez-Daz, M.T. [Institut Laue Langevin, BP 156X, Grenoble F-38042 (France)] [Institut Laue Langevin, BP 156X, Grenoble F-38042 (France); Morn, E. [Departamento de Qumica Inorgnica, Facultad de Ciencias Qumicas, Universidad Complutense, 28040 Madrid (Spain)] [Departamento de Qumica Inorgnica, Facultad de Ciencias Qumicas, Universidad Complutense, 28040 Madrid (Spain)

2012-06-15T23:59:59.000Z

436

Neutron-deuteron breakup and quasielastic scattering  

E-Print Network [OSTI]

Quasielastic scattering and deuteron breakup in the 200 MeV region is studied by impinging a pulsed neutron beam on a deuterium target at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center. The ...

Ohlson, Alice Elisabeth

2009-01-01T23:59:59.000Z

437

Neutron Generators for Spent Fuel Assay  

E-Print Network [OSTI]

of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

438

NEUTRON EMISSION IN RELATIVISTIC NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Figure Captions Figure l. Neutron-to-proton ratio at 30 labapparent anomalies in the neutron-to-proton fragment ratio.3 proton data. Figure 2. Neutron-to-proton ratio R 1 , Solid

Stevenson, J.D.

2013-01-01T23:59:59.000Z

439

NEUTRON PRODUCTION BY NEUTRAL BEAM SOURCES  

E-Print Network [OSTI]

HORSE CodeA Hultigroup Neutron and Gamma-Say Honte CarloR. Smith, "A Tantalus Fast Neutron Integrator," UCRL-17051.FiS- 9 Neutron dose during 3 months of typical TSUI

Berkner, K.H.

2010-01-01T23:59:59.000Z

440

PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES  

E-Print Network [OSTI]

and Chupp, E. L. "Cosmic Ray Neutron Energy Spectrum." Phys.Study of Cosmic-Ray Neutrons." National Aero nautics andStudy of Cosmic-Ray Neutrons: Mid-Latitude Flights." Health

McCaslin, J.B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons  

E-Print Network [OSTI]

The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing scintillation light that is detected using photomultiplier tubes. Statistical limitations of the previous apparatus will be alleviated by significant increases in field strength and trap volume resulting in twenty times more trapped neutrons.

C. M. O'Shaughnessy; R. Golub; K. W. Schelhammer; C. M. Swank; P. -N. Seo; P. R. Huffman; S. N. Dzhosyuk; C. E. H. Mattoni; L. Yang; J. M. Doyle; K. J. Coakley; A. K. Thompson; H. P. Mumm; S. K. Lamoreaux; G. Yang

2009-03-31T23:59:59.000Z

442

Slow neutron leakage spectra from spallation neutron sources  

SciTech Connect (OSTI)

An efficient technique is described for Monte Carlo simulation of neutron beam spectra from target-moderator-reflector assemblies typical of pulsed spallation neutron sources. The technique involves the scoring of the transport-theoretical probability that a neutron will emerge from the moderator surface in the direction of interest, at each collision. An angle-biasing probability is also introduced which further enhances efficiency in simple problems. These modifications were introduced into the VIM low energy neutron transport code, representing the spatial and energy distributions of the source neutrons approximately as those of evaporation neutrons generated through the spallation process by protons of various energies. The intensity of slow neutrons leaking from various reflected moderators was studied for various neutron source arrangements. These include computations relating to early measurements on a mockup-assembly, a brief survey of moderator materials and sizes, and a survey of the effects of varying source and moderator configurations with a practical, liquid metal cooled uranium source Wing and slab, i.e., tangential and radial moderator arrangements, and Be vs CH/sub 2/ reflectors are compared. Results are also presented for several complicated geometries which more closely represent realistic arrangements for a practical source, and for a subcritical fission multiplier such as might be driven by an electron linac. An adaptation of the code was developed to enable time dependent calculations, and investigated the effects of the reflector, decoupling and void liner materials on the pulse shape.

Das, S.G.; Carpenter, J.M.; Prael, R.E.

1980-02-01T23:59:59.000Z

443

Measuring the Neutron's Mean Square Charge Radius Using Neutron Interferometry  

E-Print Network [OSTI]

The neutron is electrically neutral, but its substructure consists of charged quarks so it may have an internal charge distribution. In fact it is known to have a negative mean square charge radius (MSCR), the second moment of the radial charge density. In other words the neutron has a positive core and negative skin. In the first Born approximation the neutron MSCR can be simply related to the neutron-electron scattering length b_ne. In the past this important quantity has been extracted from the energy dependence of the total transmission cross-section of neutrons on high-Z targets, a very difficult and complicated process. A few years ago S.A. Werner proposed a novel approach to measuring b_ne from the neutron's dynamical phase shift in a perfect crystal close to the Bragg condition. We are conducting an experiment based on this method at the NIST neutron interferometer which may lead to a five-fold improvement in precision of b_ne and hence the neutron MSCR.

F. E. Wietfeldt; M. Huber; T. C. Black; H. Kaiser; M. Arif; D. L. Jacobson; S. A. Werner

2005-09-14T23:59:59.000Z

444

New neutron physics using spallation sources  

SciTech Connect (OSTI)

The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs.

Bowman, C.D.

1988-01-01T23:59:59.000Z

445

Bulk synthesis of nanoporous palladium and platinum powders  

DOE Patents [OSTI]

Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

2014-04-15T23:59:59.000Z

446

Powder River Energy Corporation (Montana) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowder River Energy

447

QER - Comment of Powder River Energy Corporation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of Energy20 1 196Powder

448

Bulk synthesis of nanoporous palladium and platinum powders  

DOE Patents [OSTI]

Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

Robinson, David B. (Fremont, CA); Fares, Stephen J. (Pleasanton, CA); Tran, Kim L. (Livermore, CA); Langham, Mary E. (Pleasanton, CA)

2012-04-17T23:59:59.000Z

449

Neutron structure effects in the deuteron and one neutron halos  

E-Print Network [OSTI]

Although the neutron (n) does not carry a total electric charge, its charge and magnetization distributions represented in momentum space by the electromagnetic form factors, $F_1^{(n)} (q^2)$ and $F_2^{(n)} (q^2)$, lead to an electromagnetic potential of the neutron. Using this fact, we calculate the electromagnetic corrections to the binding energy, $B_d$, of the deuteron and a one neutron halo nucleus (11Be), by evaluating the neutron-proton and the neutron-charged core (10Be) potential, respectively. The correction to $B_d$ (~9 keV) is comparable to that arising due to the inclusion of the $\\Delta$-isobar component in the deuteron wave function. In the case of the more loosely bound halo nucleus, 11Be, the correction is close to about 2 keV.

M. Nowakowski; N. G. Kelkar; T. Mart

2005-11-28T23:59:59.000Z

450

Final Report: Algorithms for Diffractive Microscopy  

SciTech Connect (OSTI)

The phenomenal coherence and brightness of x-ray free-electron laser light sources, such as the LCLS at SLAC, have the potential of revolutionizing the investigation of structure and dynamics in the nano-domain. However, this potential will go unrealized without a similar revolution in the way the data are analyzed. While it is true that the ambitious design parameters of the LCLS have been achieved, the prospects of realizing the most publicized goal of this instrument the imaging of individual bio-particles remains daunting. Even with 10{sup 12} photons per x-ray pulse, the feebleness of the scattering process represents a fundamental limit that no amount of engineering ingenuity can overcome. Large bio-molecules will scatter on the order of only 10{sup 3} photons per pulse into a detector with 106 pixels; the diffraction images will be virtually indistinguishable from noise. Averaging such noisy signals over many pulses is not possible because the particle orientation cannot be controlled. Each noisy laser snapshot is thus confounded by the unknown viewpoint of the particle. Given the heavy DOE investment in LCLS and the profound technical challenges facing single-particle imaging, the final two years of this project have concentrated on this effort. We are happy to report that we succeeded in developing an extremely efficient algorithm that can reconstruct the shapes of particles at even the extremes of noise expected in future LCLS experiments with single bio-particles. Since this is the most important outcome of this project, the major part of this report documents this accomplishment. The theoretical techniques that were developed for the single-particle imaging project have proved useful in other imaging problems that are described at the end of the report.

Elser, Veit

2010-10-08T23:59:59.000Z

451

HFIR Experiment Facilities | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scattering Neutron Scattering Facilities at HFIR The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be...

452

Neutron Imaging of Advanced Engine Technologies  

Broader source: Energy.gov (indexed) [DOE]

the development process * Spallation Neutron Source (SNS) - Most intense pulsed neutron beams in the world; energy selective - Multi-laboratory effort funded by DOE Office of...

453

Probing thermonuclear burning on accreting neutron stars.  

E-Print Network [OSTI]

??Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars (more)

Keek, L.

2008-01-01T23:59:59.000Z

454

The Neutron EDM Experiment  

E-Print Network [OSTI]

The neutron EDM experiment has played an important part over many decades in shaping and constraining numerous models of CP violation. This review article discusses some of the techniques used to calculate EDMs under various theoretical scenarios, and highlights some of the implications of EDM limits upon such models. A pedagogical introduction is given to the experimental techniques employed in the recently completed ILL experiment, including a brief discussion of the dominant systematic uncertainties. A new and much more sensitive version of the experiment, which is currently under development, is also outlined.

P. G. Harris

2007-09-19T23:59:59.000Z

455

Physics of Neutron Star Crusts  

E-Print Network [OSTI]

The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

N. Chamel; P. Haensel

2008-12-20T23:59:59.000Z

456

Cation disorder in high dose neutron irradiated spinel  

SciTech Connect (OSTI)

The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences (>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)), were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately}20% while increasing by {approximately}8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this result is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least squares refinements also indicated that in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-06-01T23:59:59.000Z

457

Cation disorder in high-dose, neutron-irradiated spinel  

SciTech Connect (OSTI)

The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n} > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately} 20% while increasing by {approximately} 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-08-01T23:59:59.000Z

458

Diffraction studies of order?disorder at high pressures and temperatures  

SciTech Connect (OSTI)

Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO{sub 3}){sub 2}) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe{sub 2}O{sub 4}, which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO{sub 4} undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO{sub 4}-type structure.

Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson (SBU); (ESRF)

2008-06-18T23:59:59.000Z

459

Helium/solid powder O-ring leakage correlation experiments  

SciTech Connect (OSTI)

We have developed a method to test powder leakage that has passed O-ring seals. To validate this method we have spiked a test fixture with 98 ng of U and recovered 130 +- 25 ng of U. We did not detect U at a detection limit of 26 ng in a fixture which was treated as a blank. This method has been applied to the leakage of UO/sub 2/ powder passing the type of EPDM O-ring seals used in a SNM shipping cask belonging to PNC. Considering the three experimental tests in which no or very small quantities of U were detected as effective blank test, it appears that the level of external contamination is negligible. Therefore, we believe that the U quantities greater than 26 ng (6 tests) passed the primary O-ring seal. From this limited quantity of data, we observe no apparent correlation between the amount of U measured and either helium leak rate or equivalent tube diameter. The data for the 130/sup 0/C tests indicate the possibility of a U/time relationship; however, more data are needed for verification.

Leisher, W.B.; Weissman, S.H.; Tallant, D.R.; Kubo, M.

1983-01-01T23:59:59.000Z

460

Diffractive optics for compact flat panel displays. Final report  

SciTech Connect (OSTI)

Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

Sweeney, D.; DeLong, K.

1997-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "neutron powder diffraction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Production and Characterization of Atomized U-Mo Powder by the Rotating Electrode Process  

SciTech Connect (OSTI)

In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel.

C.R. Clark; B.R. Muntifering; J.F. Jue

2007-09-01T23:59:59.000Z

462

Fast neutron environments.  

SciTech Connect (OSTI)

The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

2011-10-01T23:59:59.000Z

463

Optical loss due to diffraction by concentrator Fresnel lenses  

SciTech Connect (OSTI)

Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

Hornung, Thorsten, E-mail: thorsten.hornung@ise.fraunhofer.de; Nitz, Peter, E-mail: thorsten.hornung@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

2014-09-26T23:59:59.000Z

464

Design and demonstration of broadband thin planar diffractive acoustic lenses  

SciTech Connect (OSTI)

We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.

Wang, Wenqi; Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A., E-mail: cummer@ee.duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

2014-09-08T23:59:59.000Z

465

Measuring the Neutron Lifetime Using Magnetically Trapped Neutrons  

E-Print Network [OSTI]

The neutron beta-decay lifetime plays an important role both in understanding weak interactions within the framework of the Standard Model and in theoretical predictions of the primordial abundance of 4He in Big Bang Nucleosynthesis. In previous work, we successfully demonstrated the trapping of ultracold neutrons (UCN) in a conservative potential magnetic trap. A major upgrade of the apparatus is nearing completion at the National Institute of Standards and Technology Center for Neutron Research (NCNR). In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. A fraction of the neutrons is downscattered in the helium to energies <200 neV, and those in the appropriate spin state become trapped. The inverse process is suppressed by the low phonon density of helium at temperatures less than 200 mK, allowing the neutron to travel undisturbed. When the neutron decays the energetic electron ionizes the helium, producing sci...

O'Shaughnessy, C M; Schelhammer, K W; Swank, C M; Seo, P -N; Huffman, P R; Dzhosyuk, S N; Mattoni, C E H; Yang