Powered by Deep Web Technologies
Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Use of high performance computing in neutronics analysis activities  

NLE Websites -- All DOE Office Websites (Extended Search)

high performance computing in neutronics analysis activities M.A. Smith Argonne National Laboratory 9700 South Cass Avenue, Argonne Illinois 60439, USA Abstract Reactor design is...

2

Neutron activation analysis applied to energy and environment  

SciTech Connect

Neutron activation analysis was applied to a number of problems concerned with energy production and the environment. Burning of fossil fuel, the search for new sources of uranium, possible presence of toxic elements in food and water, and the relationship of trace elements to cardiovascular disease are some of the problems in which neutron activation was used. (auth)

Lyon, W.S.

1975-01-01T23:59:59.000Z

3

Neutron formation temperature gauge and neutron activation analysis brine flow meter. Final report, October 1, 1976--March 31, 1978  

DOE Green Energy (OSTI)

Feasibility studies of nuclear techniques applicable to the determination of geothermal formation temperature and two-phase brine flow downhole have been performed. The formation temperature gauging technique involves injection of fast neutrons into the formation and analysis of the moderated slow neutron energy distribution by appropriately filtered neutron detectors. The scientific feasibility of the method has been demonstrated by analytical computational and experimental evaluation of the system response. A data analysis method has been developed to determine unambiguously the temperature, neutron absorption cross section and neutron moderating power of an arbitrary medium. The initial phase of a program to demonstrate the engineering feasibility of the technique has been performed. A sonde mockup was fabricated and measurements have been performed in a test stand designed to simulate a geothermal well. The results indicate that the formation temperature determined by this method is independent of differences between the temperature in the borehole fluid and the formation, borehole fluid density, and borehole fluid salinity. Estimates of performance specifications for a formation temperature sonde have been made on the basis of information obtained in this study and a conceptual design of a logging system has been developed. The technique for the determination of fluid flow in a well is based on neutron activation analysis of elements present in the brine. An analytical evaluation of the method has been performed. The results warrant further, experimental evaluation.

Vagelatos, N.; Steinman, D.K.; John, J.

1978-03-31T23:59:59.000Z

4

A laser-induced repetitive fast neutron source applied for gold activation analysis  

SciTech Connect

A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki [Quantum Optics Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of)

2012-12-15T23:59:59.000Z

5

Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis  

Science Conference Proceedings (OSTI)

Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 0.05 ppm, as well as trace levels of copper and tungsten.

Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.; Greenwood, Lawrence R.; Kephart, Jeremy; Kephart, Rosara F.

2013-01-01T23:59:59.000Z

6

Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering  

DOE Green Energy (OSTI)

The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

2002-11-01T23:59:59.000Z

7

Arsenic and antimony in laundry aids by instrumental neutron activation analysis  

SciTech Connect

>The measurement of trace amounts of arsenic and antimony in laundry aids by neutron activation analysis is described. The results for arsenic are compared with those obtained by other analytical techniques. The concentratlons ln the various laundry aids tested ranged from 5 to 51 ppM of arsenic and from 1 to 8 ppM of antimony. (auth)

Tanner, J.T.; Friedman, M.H.; Holloway, G.E.

1973-10-01T23:59:59.000Z

8

Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials  

SciTech Connect

Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity.

Firestone, Richard B; English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Leung, Ka-Ngo; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

2008-02-13T23:59:59.000Z

9

Neutron activation analysis for reference determination of the implantation dose of cobalt ions  

Science Conference Proceedings (OSTI)

The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

Garten, R.P.H. [Max-Planck-Institut fuer Metallforschung, Dortmund (Germany); Bubert, H. [Institut fuer Spektrochemie und angewandte Spektrokopie, Dortmund (Germany); Palmetshofer, L. [Johannes-Kepler-Universitaet, Linz (Australia)

1992-05-15T23:59:59.000Z

10

Arsenic activation neutron detector  

DOE Patents (OSTI)

A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

Jacobs, E.L.

1980-01-28T23:59:59.000Z

11

Second Research Coordination Meeting on Reference Database for Neutron Activation Analysis -- Summary Report  

SciTech Connect

The second meeting of the Co-ordinated Research Project on"Reference Database for Neutron Activation Analysis" was held at the IAEA, Vienna from 7-9 May, 2007. A summary of the presentations made by participants is given, along with reports on specifically assigned tasks and subsequent discussions. In order to meet the overall objectives of this CRP, the outputs have been reiterated and new task assignments made.

Firestone, Richard B.; Kellett, Mark A.

2008-03-19T23:59:59.000Z

12

In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd  

SciTech Connect

A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

Munive, Marco; Revilla, Angel [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Solis, Jose L. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Lima (Peru)

2007-10-26T23:59:59.000Z

13

An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles  

SciTech Connect

Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential limitations.

Evans, Louise G [Los Alamos National Laboratory; Goddard, Braden [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Peerani, Paolo [European Commission, EC-JRC-IPSC

2012-08-13T23:59:59.000Z

14

Determination of laser-evaporated uranium dioxide by neutron activation analysis  

SciTech Connect

Safety analyses of nuclear reactors require information about the loss of fuel which may occur at high temperatures. In this study, the surface of a uranium dioxide target was heated rapidly by a laser. The uranium surface was vaporized into a vacuum. The uranium bearing species condensed on a graphite disk placed in the pathway of the expanding uranium vapor. Scanning electron microscopy and X-ray analysis showed very little droplet ejection directly from the laser target surface. Neutron activation analysis was used to measure the amount of uranium deposited. The surface temperature was measured by a fast-response automatic optical pyrometer. The maximum surface temperature ranged from 2400 to 3700/sup 0/K. The Hertz-Langmuir formula, in conjunction with the measured surface temperature transient, was used to calculate the theoretical amount of uranium deposited. There was good agreement between theory and experiment above the melting point of 3120/sup 0/K. Below the melting point much more uranium was collected than was expected theoretically. This was attributed to oxidation of the surface. 29 refs., 16 figs., 7 tabs.

Allred, R.

1987-05-01T23:59:59.000Z

15

Consilience: Radiocarbon, Instrumental Neutron Activation Analysis, and Litigation in the Ancestral Caddo Region  

E-Print Network (OSTI)

Through the creation and analysis of databases for radiocarbon, instrumental neutron activation analysis (INAA), and law, macro-level trends are exposed that form the framework of a broader research program aimed at advancing ideas of craft specialization and archaeological theory in the ancestral Caddo region of Southwest Arkansas, Northwest Louisiana, Northeast Texas, and Southeast Oklahoma. The findings of this investigation illustrate the research potential that remains buried within the context of cultural resource management (CRM) reports and legal databases (Westlaw and LexisNexis) that is awaiting consumption within regional research designs aimed at exploring the nuances and trends that appear through synthetic research. While more canand shouldbe done to exploit these resources, this endeavor represents the first logical step toward a more general comprehension of Woodland and Caddo occupations in the region. As a testament to those projects that generated these data, the findings herein are representative of decades of work by numerous academic institutions, archaeological firms, undergraduate as well as graduate students, and avocational archaeologists alike; all of which have and continue to contribute to a more synthetic and dynamic understanding of the things, peoples, and cultures that lie underfoot.

Selden, Robert Zachary

2013-08-01T23:59:59.000Z

16

Neutron Activation Calculator  

Science Conference Proceedings (OSTI)

... and incoherent scattering cross sections). Source neutrons (Ang, meV or m/s), Density (g/cm 3 or lattice), Thickness (cm). ...

17

Instrumental neutron activation analysis (INAA) characterization of pre-contact basalt quarries on the American Samoan Island of Tutuila  

E-Print Network (OSTI)

This thesis presents a material-centered characterization of 120 geologic samples from four fine-grained basalt quarries on the Samoan Island of Tutuila. Previous unsuccessful attempts at definitive Tutuilan quarry differentiation have utilized x-ray fluorescence (XRF). In this study, clear differentiation of each analyzed quarry was achieved using instrumental neutron activation analysis (INAA). Biplots of canonical discriminant function scores for the INAA data illustrate clear separation based on the variation in chemical composition between each quarry. The samples analyzed not only define quarry separation, but also provide the "core group" for a preliminary baseline necessary for future artifact-centered provenance studies. Inclusion of these "core group" samples in the baseline was confirmed by stepwise discriminant analysis. These findings suggest the ability to determine quarry of origin on the island of Tutuila, which can elucidate the importance of individual Tutuilan quarries in the export and exchange of fine-grained basalts.

Johnson, Phillip Ray, II

2005-12-01T23:59:59.000Z

18

Nondestructive examination using neutron activated positron annihilation  

SciTech Connect

A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

19

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples  

DOE Green Energy (OSTI)

Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

2002-12-05T23:59:59.000Z

20

Neutron Data Analysis and Visualization Division - ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

develops software and hardware for the reduction and analysis of data taken on SNS and HFIR neutron scattering instruments. We work closely with the SNS and HFIR Data Acquisition...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Europium-152 depth profile of a stone bridge pillar exposed to the Hiroshima atomic bomb: /sup 152/Eu activities for analysis of the neutron spectrum  

Science Conference Proceedings (OSTI)

The /sup 152/Eu activity depth profile of a granite pillar of the Motoyasu bridge located 132 m from the Hiroshima atomic bomb hypocenter was assessed. The pillars each measured 82 cm in depth, 82 cm in width and 193 cm in height. One of the pillars was bored and 6.8-cm-diameter core samples were removed and cut into 2-cm-thick disks. Two gamma rays of /sup 152/Eu, 122 keV and 344 keV, in each disk were measured using a low background, gamma-ray spectrometer, and the activity distribution was determined as a function of depth in the granite. A concentration of stable Eu in the granite was determined by activation analysis. The specific radioactivity of /sup 152/Eu and /sup 154/Eu at the pillar surface was determined to have been 117 and 24 Bq per mg Eu, respectively, at the time of detonation. The value of /sup 152/Eu agrees within 20% of that calculated by Loewe. The depth profile of /sup 152/Eu in granite demonstrates a distinct difference from the estimates made only by thermal neutrons. Present data provide valuable information for the analysis of the neutron spectrum of the Hiroshima atomic bomb and its intensity.

Hasai, H.; Iwatani, K.; Shizuma, K.; Hoshi, M.; Yokoro, K.; Sawada, S.; Kosako, T.; Morishima, H.

1987-09-01T23:59:59.000Z

22

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

23

Data Analysis & Visualization Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

develops software and hardware for the reduction and analysis of data taken on SNS and HFIR neutron scattering instruments. We work closely with the SNS and HFIR Data Acquisition...

24

APPLICATIONS OF DELAYED NEUTRON ACTIVATION ...  

Science Conference Proceedings (OSTI)

... flux from the RT2 facility at the NBSR reactor. ... threat of illicit and clandestine nuclear activities has ... a significant concern for Homeland Security in the ...

25

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

26

Photon and neutron active interrogation of highly enriched uranium.  

SciTech Connect

The physics of photon and neutron active interrogation of highly enriched uranium (HEU) using the delayed neutron reinterrogation method is described in this paper. Two sets of active interrogation experiments were performed using a set of subcritical configurations of cocentric HEU metal hemishells. One set of measurements utilized a pulsed 14-MeV neutron generator as the active source. The second set of measurements utilized a linear accelerator-based bremsstrahlung photon source as an active interrogation source. The neutron responses were measured for both sets of experiments. The operational details and results for both measurement sets are described.

Myers, W. L. (William L.); Goulding, C. A. (Charles A.); Hollas, C. L. (Charles L.); Moss, C. E. (Calvin E.)

2004-01-01T23:59:59.000Z

27

Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation  

SciTech Connect

We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

Forman L.; Dioszegi, I.; Salwen, C.

2011-04-26T23:59:59.000Z

28

Analysis of lateritic material from Cerro Impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector  

Science Conference Proceedings (OSTI)

Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive. 10 refs., 2 figs., 4 tabs.

LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.

1986-01-01T23:59:59.000Z

29

The synchronous active neutron detection system for spent fuel assay  

SciTech Connect

The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

Pickrell, M.M.; Kendall, P.K.

1994-10-01T23:59:59.000Z

30

Neutrons and Granite: Transport and Activation  

DOE Green Energy (OSTI)

In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

Bedrossian, P J

2004-04-13T23:59:59.000Z

31

Design considerations for neutron activation and neutron source strength monitors for ITER  

SciTech Connect

The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

Barnes, C.W. [Los Alamos National Lab., NM (United States); Jassby, D.L.; LeMunyan, G.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Walker, C. [ITER Joint Central Team, Garching (Germany)

1997-12-31T23:59:59.000Z

32

General Approach To Materials Classification Using Neutron Analysis Techniques  

Science Conference Proceedings (OSTI)

The 'neutron in, gamma out' method of elemental analysis has been known and used in many applications as an elemental analysis tool. This method is non-intrusive, non-destructive, fast and precise. This set of advantages makes neutron analysis attractive for even wider variety of uses beyond simple elemental analysis. The question that is addressed within this study is under what conditions neutron analysis can be used to differentiate materials of interest from a group or class of materials in the face of knowing that what is truly of interest is the molecular content of any sample under interrogation. Purpose of the study was to develop a neutron-based scanner for rapid differentiation of classes of materials sealed in small bottles. Developed scanner employs D-T neutron generator as a neutron source and HPGe gamma detectors. Materials can be placed into classes by many different properties. However, neutron analysis method can be used only few of them, such as elemental content, stoichiometric ratios and density of the scanned material. Set of parameters obtainable through neutron analysis serves as a basis for a hyperspace, where each point corresponds to a certain scanned material. Sub-volumes of the hyperspace correspond to different classes of materials. One of the most important properties of the materials are stoichiometric ratios of the elements comprising the materials. Constructing an algorithm for converting the observed gamma ray counts into quantities of the elements in the scanned sample is a crucial part of the analysis. Gamma rays produced in both fast inelastic scatterings and neutron captures are considered. Presence of certain elements in materials, such as hydrogen and chlorine can significantly change neutron dynamics within the sample, and, in turn, characteristic gamma lines development. These effects have been studied and corresponding algorithms have been developed to account for them.

Solovyev, Vladimir G. [Saint Gobain Crystals and Detectors, 12345 Kinsman Rd, Newbury, OH 44124 (United States); Koltick, David S. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

2006-03-13T23:59:59.000Z

33

Data Analysis & Visualization | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

(3-D) neutron images have been taken of rare archaeological artifacts. Bronze and brass artifacts excavated at the ancient city of Petra, in present day Jordan, were recently...

34

Neutron Scattering Analysis of Magnetostructural Phase ...  

Science Conference Proceedings (OSTI)

Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National...

35

Neutron Data Analysis & Visualization | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities' users require significant advances in...

36

Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS This set of web pages provides reference information from the Magnetic Structure Analysis from Neutron Powder Diffraction Data Using GSAS workshop presented at the 2006 American Conference on Neutron Scattering held in St. Charles, IL, June 18-22, 2006. Workshop Schedule: 9:00-9:05 am: Introduction (B.H. Toby) 9:05-9:50 am: History, Color symmetry & Shubnikov space groups (B. Chakoumous) Lecture notes: History and Color symmetry & Shubnikov space groups 9:50-10:20 am: Magnetic extinctions classes & common magnetic structure types (R.B. Von Dreele) Lecture Notes Break 10:50-11:45 am: Overview of representational analysis & FullProf implementation (L.C. Chapon) Lecture Notes and Accompanying files

37

Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications  

SciTech Connect

Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

David L. Chichester; Edward H. Seabury

2008-08-01T23:59:59.000Z

38

Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

School on Neutron and X-ray Scattering Oak Ridge 10-24 August 2013 John M. Carpenter ANL, ORNLSNS 18 August 2013 2 Neutron Detection How does one detect a neutron? - It is...

39

Radiography apparatus using gamma rays emitted by water activated by fusion neutrons  

DOE Patents (OSTI)

Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

1996-11-05T23:59:59.000Z

40

Radiography apparatus using gamma rays emitted by water activated by fusion neutrons  

SciTech Connect

Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

Smith, Donald L. (Plainfield, IL); Ikeda, Yujiro (Ibaraki, JP); Uno, Yoshitomo (Ibaraki, JP)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radiography apparatus using gamma rays emitted by water activated by fusion neutrons  

DOE Patents (OSTI)

Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p) {sup 16}N reaction using 14-MeV neutrons produced at the neutron source via the {sup 3}H(d,n) {sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes.

Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

1995-12-31T23:59:59.000Z

42

MFE/ACT: a TRS-80 code for calculating neutron activation  

Science Conference Proceedings (OSTI)

The MFE/ACT code, written to run on the TRS-80, can be used to calculate the neutron activation of materials used in fission and fusion reactors. Input data include the specific isotopes to be calculated, the neutron fluxes, the neutron cross sections, and the nuclear decay half-lives.

Dorn, D.W.

1982-10-01T23:59:59.000Z

43

Activation of cobalt by neutrons from the Hiroshima bomb  

Science Conference Proceedings (OSTI)

A study has been completed of cobalt activation in samples from two new locations in Hiroshima. The samples consisted of a piece of steel from a bridge located at a distance of about 1300 m from the hypocenter and pieces of both steel and concrete from a building located at approximately 700 m. The concrete was analyzed to obtain information needed to calculate the cobalt activation in the two steel samples. Close agreement was found between calculated and measured values for cobalt activation of the steel sample from the building at 700 m. It was found, however, that the measured values for the bridge sample at 1300 m were approximately twice the calculated values. Thus, the new results confirm the existence of a systematic error in the transport calculations for neutrons from the Hiroshima bomb. 52 refs., 32 figs., 16 tabs.

Kerr, G.D.; Dyer, F.F.; Emery, J.F.; Pace, J.V. III (Oak Ridge National Lab., TN (USA)); Brodzinski, R.L. (Pacific Northwest Lab., Richland, WA (USA)); Marcum, J. (R and D Associates, Marina del Rey, CA (USA))

1990-02-01T23:59:59.000Z

44

Protein Activity that Protects Our DNA - Research Highlights | ORNL Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutrons help shed light on critical protein activity that protects our DNA Neutrons help shed light on critical protein activity that protects our DNA "New study provides a framework for understanding how protein works and how it stimulates the DNA processing machines" Research Contact: Walter Chazin Illustration of the change in architecture of the essential eukaryotic ssDNA binding protein RPA as it engages progressively longer segments of ssDNA. Small-angle x-ray scattering data are displayed in the background for the DNA binding core of RPA in its DNA-free state (green) and when engaged on 10 (yellow), 20 (red, and 30 (blue) nucleotide ssDNA substrates. Overlaid molecular surfaces and ribbon representations of the three distinct architectural states of RPA are shown, one for the DNA-free protein and the two others for the initial and fully ssDNA-engaged modes, revealing the progressive compaction of the protein as it binds to the substrate. The RPA70 subunit is colored in blue, RPA32 in green, and RPA14 in red, with ssDNA displayed as a yellow ribbon.

45

Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU  

SciTech Connect

A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

2012-10-01T23:59:59.000Z

46

Active detection of shielded SNM with 60-keV neutrons  

Science Conference Proceedings (OSTI)

Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimental results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.

Hagmann, C; Dietrich, D; Hall, J; Kerr, P; Nakae, L; Newby, R; Rowland, M; Snyderman, N; Stoeffl, W

2008-07-08T23:59:59.000Z

47

Active Neutron Interrogation of Non-Radiological Materials with NMIS  

Science Conference Proceedings (OSTI)

The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

Walker, Mark E [ORNL; Mihalczo, John T [ORNL

2012-02-01T23:59:59.000Z

48

Imaging Technique for a Neutron Based Elemental Analysis Interrogation System  

E-Print Network (OSTI)

: · fundamental properties of the neutron, · neutrino physics, · physics of nuclear fission, · neutron neutrons because it "sees" the reactor core. It will be used for nuclear physics. Investigation of PREACTOR PIK WHAT ARE NEUTRONS NEEDED FOR If you want to see an object, you have to illuminate it

Koltick, David

49

Hiroshima and Nagasaki initial radiations: delayed neutron contributions and comparison of calculated and measured cobalt activations  

SciTech Connect

Calculated estimates of neutron doses received by atomic-bomb survivors at Hiroshima and Nagasaki have not included contributions from delayed neutrons emitted by fission products in the debris cloud, although the possibility of a significant contribution from this source has been suggested. In the present work, an established model accounting for gamma-ray kermas from these fission products is adapted to provide the desired neutron kerma estimates. Adaptations include use of explicit time dependence of neutron emitters, properly folded with the time-dependent phenomenology of the explosion itself, and detailed air-over-ground neutron transport with a source having an energy spectrum characteristic of these delayed neutrons. Results show that delayed neutrons are indeed negligible contributors to atomic-bomb survivor dosimetry, as well as to neutron activations at Hiroshima. About half the activation at Nagasaki, however, is due to the delayed component. Calculated activation of cobalt, a revision of previous estimates, is compared to measured values at Hiroshima and at Nagasaki. The causes of the substantial discrepancies are discussed and compared to previously reported discrepancies for sulfur activation. Additional investigation is recommended.

Loewe, W.E.

1985-03-01T23:59:59.000Z

50

The EAF-2007 Neutron, Deuteron, and Proton Activation Libraries  

Science Conference Proceedings (OSTI)

Neutron Data / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Measurements and Instrumentation

J-Ch. Sublet; R. A. Forrest; J. Kopecky

51

IMPROVED TECHNIQUE OF HYDROGEN CONTENT ANALYSIS BY SLOW NEUTRON SCATTERING  

SciTech Connect

A slow-neutron-transmission method fro dertermining the hydrogen content of fluorcarbons is described (G.Y.).

Rainwater, L.J.; Havens, W.W. Jr.

1945-02-28T23:59:59.000Z

52

Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering  

DOE R&D Accomplishments (OSTI)

A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

Rainwater, L. J.; Havens, W. W. Jr.

1945-02-28T23:59:59.000Z

53

Neutron scattering analysis with microscopic optical model potentials  

Science Conference Proceedings (OSTI)

A review of microscopic optical model potentials used in the analysis of neutron scattering and analyzing power data below 100 MeV (5 {le}E{sub n}{le}100 MeV) is presented. The quality of the fits to the data over a wide massd ({sup 6}Li-{sup 239}Pu) and energy range is discussed. It is shown that reasonably good agreement with the data is obtained with only three parameters, {lambda}{sub V}, {lambda}{sub W}, and {lambda}{sub SO}, which show a smooth mass and energy dependence. These parameters are normalizing constants to the real (V), and imaginary (W) central potentials and the real spin-orbit (V{sub SO}) potential. 14 refs., 7 figs.

Hansen, L.F.

1991-09-03T23:59:59.000Z

54

PROMETHEE: An Alpha Low Level Waste Assay System Using Passive and Active Neutron Measurement Methods  

Science Conference Proceedings (OSTI)

The development of a passive-active neutron assay system for alpha low level waste characterization at the French Atomic Energy Commission is discussed. Less than 50 Bq[{alpha}] (about 50 {mu}g Pu) per gram of crude waste must be measured in 118-l 'European' drums in order to reach the requirements for incinerating wastes. Detection limits of about 0.12 mg of effective {sup 239}Pu in total active neutron counting, and 0.08 mg of effective {sup 239}Pu coincident active neutron counting, may currently be detected (empty cavity, measurement time of 15 min, neutron generator emission of 1.6 x 10{sup 8} s{sup -1} [4{pi}]). The most limiting parameters in terms of performances are the matrix of the drum - its composition (H, Cl...), its density, and its heterogeneity degree - and the localization and self-shielding properties of the contaminant.

Passard, Christian [French Atomic Energy Commission, C.E.A. Cadarache (France); Mariani, Alain [French Atomic Energy Commission, C.E.A. Cadarache (France); Jallu, Fanny [French Atomic Energy Commission, C.E.A. Cadarache (France); Romeyer-Dherbey, Jacques [French Atomic Energy Commission, C.E.A. Cadarache (France); Recroix, Herve [French Atomic Energy Commission, C.E.A. Cadarache (France); Rodriguez, Michel [French Atomic Energy Commission, C.E.A. Cadarache (France); Loridon, Joel [French Atomic Energy Commission, C.E.A. Cadarache (France); Denis, Caroline [French Atomic Energy Commission, C.E.A. Cadarache (France); Toubon, Herve [COGEMA (France)

2002-12-15T23:59:59.000Z

55

Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material  

Science Conference Proceedings (OSTI)

Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

D. L. Chichester; E. H. Seabury

2008-10-01T23:59:59.000Z

56

Development of the prototype pneumatic transfer system for ITER neutron activation system  

SciTech Connect

The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

2012-10-15T23:59:59.000Z

57

Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign  

Science Conference Proceedings (OSTI)

Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

Blackston, Matthew A [ORNL; Hausladen, Paul [ORNL

2010-04-01T23:59:59.000Z

58

Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium  

Science Conference Proceedings (OSTI)

Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a samples mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5 by 5 EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.

J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani; G. Nebbia

2012-07-01T23:59:59.000Z

59

Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing  

Science Conference Proceedings (OSTI)

A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko [Hiroshima Univ., Higashi-Hiroshima (Japan); Oka, Takamitsu [Kure Women`s College, Hiroshima-ken (Japan)

1994-10-01T23:59:59.000Z

60

Derivation of empirical equations for neutronic performance in a thorium fusion breeder with various coolants using regression analysis  

Science Conference Proceedings (OSTI)

In this paper, regression analyses (RA) are presented for the neutronic calculation of ThO"2 mixed ^2^4^4CmO"2 fuel with different neutronic parameters for various coolants, natural lithium, Li"2"0Sn"8"0 and Flinabe, respectively. The tritium breeding ... Keywords: Correlation matrix, Neutronic analysis, Regression analysis

Adem Ac?r; Nilfer Pekin Alako

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Literature survey of chemical analysis by thermal neutron induced capture gamma ray spectrometry  

DOE Green Energy (OSTI)

A brief discussion of the principles and techniques of chemical analysis by neutron capture gamma radiation is presented, and the widely scattered literature is collected into a single table arranged by element measured.

Gladney, E.S.

1979-09-01T23:59:59.000Z

62

Comparison of SEM and Optical Analysis of DT Neutron Tracks in CR-39 Detectors  

Science Conference Proceedings (OSTI)

CR-39 detectors were exposed to DT neutrons generated by a Thermo Fisher model A290 neutron generator. Afterwards, the etched tracks were examined both optically and by SEM. The purpose of the analysis was to compare the two techniques and to determine whether additional information on track geometry could be obtained by SEM analysis. The use of these techniques to examine triple tracks, diagnostic of ?9.6 MeV neutrons, observed in CR-39 used in Pd/D codeposition experiments will also be discussed.

Mosier-Boss, P A; Carbonelle, P; Morey, M S; Tinsley, J R; Hurley, J P

2012-01-01T23:59:59.000Z

63

Analysis of unknown materials with prompt gamma-ray activation analysis (PGAA)  

Science Conference Proceedings (OSTI)

To assay the degradation of high explosives (HE) by a material-loss mechanism, prompt gamma activation analysis (PGAA), using a miniature neutron accelerator developed at Lawrence Berkeley National Laboratory (LBNL) is proposed. Whereas the PGAA signatures from carbon and nitrogen in the chemical matrices are relatively low, fast neutrons may be used due to the higher cross sections for interaction. By using the upgraded PGAA database developed by the Isotope Projects Group at LBNL in collaboration with new PGAA data obtained at the Institute of Isotope and Surface Chemistry in Budapest, Hungary, it should be possible to observe and potentially to quantify a macroscopic loss of mass in HE.

English, Gerald; Firestone, Richard

2002-09-17T23:59:59.000Z

64

Residual 152Eu and 60Co activities induced by neutrons from the Hiroshima atomic bomb  

SciTech Connect

Specific activities of 152Eu:Eu in stone samples exposed to the Hiroshima atomic bomb were determined for 70 samples up to a 1,500-m slant range from the epicenter. The specific activities of 60Co:Co were also determined for six samples near the Hiroshima hypocenter. First, the 152Eu data were investigated to find out the directional dependence of neutron activation. Directional anisotropy was not definite; however, there was an indication that the activation in the west-southwest was lower than in other directions. Second, measured 152Eu and 60Co radioactivity data were compared with activation calculations based on DS86 neutrons. It is clearly shown that the measured data are lower than the calculation near the hypocenter and vice versa at long distances beyond 1,000 m. The calculated-to-measured ratios of 152Eu are 1.6 at the hypocenter, 1.0 at approximately 900 m, and 0.05 at a 1,500-m slant range. Present results indicate that systematic errors exist in the DS86 neutrons concerning the source-term spectrum, neutron transport calculations in air, and/or activation measurements.

Shizuma, K.; Iwatani, K.; Hasai, H.; Hoshi, M.; Oka, T.; Morishima, H. (Hiroshima Univ. (Japan))

1993-09-01T23:59:59.000Z

65

Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel  

SciTech Connect

Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission-product resonance absorption analysis. Initial benchmark modeling has shown excellent agreement with previously published experimental data for measurements of individual SF pins where plutonium assays were experimentally demonstrated to have a precision of better than 3%.

David L. Chichester; James W. Sterbentz

2011-05-01T23:59:59.000Z

66

Database of prompt gamma rays from slow neutron capture forelemental analysis  

Science Conference Proceedings (OSTI)

The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.

Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

2004-12-31T23:59:59.000Z

67

Shielding and Activation Analyses in Support of the Spallation Neutron Source (SNS) ES{ampersand}H Requirements  

Science Conference Proceedings (OSTI)

Shielding and activation analyses play an important part in determining how to meet the Environmental, Safety and Health (ES{ampersand}H) requirements of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS). The shielding and activation analyses described in this paper were performed primarily using the CALOR code system coupled with MCNP for radiation transport, the ORIHET95 isotope generation and depletion code for activation analysis, and the DOORS multi-dimensional discrete ordinates transport code system for shielding analyses. Additionally, a portion of the shielding calculations were performed with the semi-empirical code - CASL. This paper gives an overview of relevant ES{ampersand}H policies and requirements, and provides detailed discussions of the shielding and activation analyses completed in support of those policies and requirements.

Odano, Naoteru; Johnson, Jeffrey O.; Harrington, R. M.; DeVore, Joe R.

1998-06-01T23:59:59.000Z

68

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

69

Secondary standards (non-activation) for neutron data measurements above 20 MeV  

DOE Green Energy (OSTI)

In addition to H(n,p) scattering and {sup 235,238}U(n,f) reactions, secondary standards for neutron flux determination may be useful for neutron energies above 20 MeV. For experiments where gamma rays are detected, reference gamma-ray production cross sections are relevant. For neutron-induced charged particle production, standard (n,p) and (n,alpha) cross sections would be helpful. Total cross section standards would serve to check the accuracy of these measurements. These secondary standards are desirable because they can be used with the same detector systems employed in measuring the quantities of interest. Uncertainties due to detector efficiency, geometrical effects, timing and length of flight paths can therefore be significantly reduced. Several secondary standards that do not depend on activation techniques are proposed. 14 refs.

Haight, R.C.

1991-01-01T23:59:59.000Z

70

The study of neutron activation yields in spallation reaction of 400 MeV/u carbon on a thick lead target  

E-Print Network (OSTI)

The spallation-neutron yield was studied experimentally by bombarding a thick lead target with 400 MeV/u carbon beam. The data were obtained with the activation analysis method using foils of Au, Mn, Al, Fe and In. The yields of produced isotopes were deduced by analyzing the measured {\\gamma} spectra of irradiated foils. According to the isotopes yields, the spatial and energy distributions of the neutron field were discussed. The experimental results were compared with Monte Carlo simulations performed by the GEANT4 + FLUKA code.

F. Ma; H. L. Ge; X. Y. Zhang; H. B. Zhang; Y. Q. Ju; L. Chen; L. Yang; F. Fu; Y. L. Zhang; J. Y. LI; T. J. Liang; B. Zhou; S. L. Wang; J. Y. Li; J. K. Xu; X. G. Leir; Z. Qin; L. Gu; G. M. Jin

2013-09-03T23:59:59.000Z

71

Bayesian Analysis of Inconsistent Measurements of Neutron Cross Sections  

SciTech Connect

The evaluation of neutron cross sections as a function of energy is fraught with inconsistent measurements. I describe a Bayesian approach to deal with the inconsistencies by probabilistically modeling the possibility of discrepant data and data sets with long-tailed likelihood functions. Systematic normalization uncertainties in each data set are included by considering the normalization to be a variable with specified uncertainty. By characterizing its uncertainty with a mixture of Cauchy and Gaussian distributions, data sets that disagree with the majority of others are given less weight in terms of normalization, but still provide useful information about the energy dependency of the cross sections. I demonstrate the approach with data sets of neutron fission cross sections for americium 243. Samples from the posterior obtained with the Markov Chain Monte Carlo technique are used to estimate the posterior mean and standard error.

Hanson, Kenneth M. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2005-11-23T23:59:59.000Z

72

Risk Analysis & Security Rule Compliance Activities  

Science Conference Proceedings (OSTI)

... Risk Analysis & Security Rule Compliance Activities Marissa Gordon- Nguyen, JD, MPH Health Information Privacy Specialist ...

2010-05-13T23:59:59.000Z

73

Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode  

SciTech Connect

The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the /sup 235/U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg.

Foley, J.E.

1980-10-01T23:59:59.000Z

74

Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system  

SciTech Connect

The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

Veilleux, J. M. (John M.)

2002-06-01T23:59:59.000Z

75

An example of neutronic penalizations in reactivity transient analysis using 3D coupled chain HEMERA  

Science Conference Proceedings (OSTI)

HEMERA (Highly Evolutionary Methods for Extensive Reactor Analyses), is a fully coupled 3D computational chain developed jointly by IRSN and CEA. It is composed of CRONOS2 (core neutronics, cross sections library from APOLLO2), FLICA4 (core thermal-hydraulics) and the system code CATHARE. Multi-level and multi-dimensional models are developed to account for neutronics, core thermal-hydraulics, fuel thermal analysis and system thermal-hydraulics, dedicated to best-estimate, conservative simulations and sensitivity analysis. In IRSN, the HEMERA chain is widely used to study several types of reactivity accidents and for sensitivity studies. Just as an example of the HEMERA possibilities, we present here two types of neutronic penalizations and their impact on a power transient due to a REA (Rod Ejection Accident): in the first one, we studied a bum-up distribution modification and in the second one, a delayed-neutron fraction modification. Both modifications are applied to the whole core or localized in a few assemblies. Results show that it is possible to use global or local changes but 1) in case of bum-up modification, the total core power can increase when assembly peak power decrease so, care has to be taken if the goal is to maximize a local power peak and 2) for delayed-neutron fraction, a local modification can have the same effect as the one on the whole core, provided that it is large enough. (authors)

Dubois, F.; Normand, B.; Sargeni, A. [Institut de Radioprotection et de Surete Nucleaire IRSN, Reactor Safety Div., BP 17, 92262 Fontenay-aux-Rose Cedex (France)

2012-07-01T23:59:59.000Z

76

Prompt gamma activation analysis facility at MITR-II  

SciTech Connect

A relatively simple and inexpensive prompt gamma neutron activation analysis facility has been constructed at the 5-MW MITR-II research reactor. The analytical beam is obtained by diffraction using a multilayer graphite monochromator placed in the white beam of one of the MITR-II beam tubes. Use of a diffracted beam, with its concomitant reduction in sample flux compared to the direct beam from the reactor moderator, was initially dictated by the need to construct rapidly and inexpensively an analytical facility that could analyze {sup 10}B at the level of a few micrograms per gram in biological samples. By relatively simple modifications to an existing two-axis neutron spectrometer, we were able to produce a useful intensity on the sample. Furthermore, the inherent advantage of reduced background when using a Bragg diffracted beam permitted the use of short sample-to-detector distances, which compensated for the loss in slow neutron intensity in the diffraction process. The resultant facility has exceeded our initial minimum requirements for {sup 10}B analysis. In fact, the current facility provides significantly higher full-energy peak count rates than those reported for direct thermal beam facilities at reactors with twice the power of MITR-II.

Harling, O.K. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

77

Review of Non-Neutron and Neutron Nuclear Data, 2004  

Science Conference Proceedings (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

Holden, Norman E. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

2005-05-24T23:59:59.000Z

78

REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.  

Science Conference Proceedings (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

HOLDEN, N.E.

2004-09-26T23:59:59.000Z

79

Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies  

SciTech Connect

Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary analysis indicates the mass of 239Pu may be determined with a precision on the order of 5%, without the need for operator-supplied fuel information or operational histories. This paper will present our work to date on this topic, indicate our preliminary findings for a conceptual assay approach, discuss resilience against spoofing, and outline our future plans for evaluating the NRTA technique for SFA plutonium determination.

D. L. Chichester; J. W. Sterbentz

2012-07-01T23:59:59.000Z

80

The Spallation Neutron Source (SNS) conceptual design shielding analysis  

SciTech Connect

The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

Johnson, J.O.; Odano, N.; Lillie, R.A.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

82

Xenon diffusion studies with prompt gamma activation analysis Carlos A. Rios Perez Justin D. Lowrey  

E-Print Network (OSTI)

rates of xenon and argon gases through a porous medium. The University of Texas at Austin maintains at thermal and sub-thermal neutron energies, prompt gamma activation analysis is a suitable technique is anticipated to be well suited for this purpose as the energy spectrum of every xenon isotope is unique

Deinert, Mark

83

Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method  

SciTech Connect

This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

1985-01-01T23:59:59.000Z

84

Neutronic analysis of pebble-bed cores with transuranics  

E-Print Network (OSTI)

At the brink of nuclear waste repository crises, viable alternatives for the long term radiotoxic wastes are seriously being considered worldwide. Minor actinides serve as one of these targeted wastes. Partitioning and transmutation in fission reactors is one possible incineration option and could potentially serve as a source of nuclear fuel required for sustainability of energy resources. The objective of this research was to evaluate the neutronic performance of the pebble-bed Very High Temperature Reactor (VHTR) configurations with various fuel loadings. The configuration adjustments and design sensitivity studies specifically targeted the achievability of spectral variations. The development of several realistic full-core 3D models and validation of all modeling techniques used was a major part of this research effort. In addition, investigating design sensitivities helped identify the parameters of primary interest. The full-core 3D models representing the prototype and large scale cores were created for use with SCALE 5.0 and SCALE 5.1 code systems. Initially the models required the external calculation of a Dancoff correction factor; however, the recent release of SCALE 5.1 encompassed inherent double heterogeneity modeling capabilities. The full core 3D models with multi-heterogeneity treatments are in agreement with available pebble-bed High Temperature Test Reactor data and were validated through benchmark studies. Analyses of configurations with various fuel loadings have indicated promising performance and safety characteristics. It was found that through small configuration adjustments, the pebble-bed design can be tweaked to produce desirable spectral shifts. The future operation of Generation IV nuclear energy systems would be greatly facilitated by the utilization of minor actinides as a fuel component. This would offer development of new fuel cycles, and support sustainability of a fuel source.

Pritchard, Megan Leigh

2007-12-01T23:59:59.000Z

85

Optimal design of measurement network for neutronic activity field reconstruction by data assimilation  

E-Print Network (OSTI)

Using data assimilation framework, to merge information from model and measurement, an optimal reconstruction of the neutronic activity field can be determined for a nuclear reactor core. In this paper, we focus on solving the inverse problem of determining an optimal repartition of the measuring instruments within the core, to get the best possible results from the data assimilation reconstruction procedure. The position optimisation is realised using Simulated Annealing algorithm, based on the Metropolis-Hastings one. Moreover, in order to address the optimisation computing challenge, algebraic improvements of data assimilation have been developed and are presented here.

Bertrand Bouriquet; Jean-Philippe Argaud; Romain Cugnart

2011-04-12T23:59:59.000Z

86

Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis  

Science Conference Proceedings (OSTI)

In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

Mitra,S.

2008-11-17T23:59:59.000Z

87

Neutron Scattering Facilities 1982  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUTRON SOURCES NEUTRON SOURCES Types of Sources U.S. Sources Available for Users Plans for the Future The Neutron Scattering Society of America (NSSA) SNS/ANL School on Neutron and x-Ray Scattering, June 2011 Jim Rhyne Lujan Neutron Scattering Center Los Alamos National Lab. What do we need to do neutron scattering? * Neutron Source - produces neutrons * Diffractometer or Spectrometer - Allows neutrons to interact with sample - Sorts out discrete wavelengths by monochromator (reactor) or by time of flight (pulse source) - Detectors pick up neutrons scattered from sample * Analysis methods to determine material properties * Brain power to interpret results Sources of neutrons for scattering * Nuclear Reactor - Neutrons produced from fission of 235 U - Fission spectrum neutrons

88

THERMAL HYDRAULIC ANALYSIS OF A LIQUID-METAL-COOLED NEUTRON SPALLATION TARGET  

Science Conference Proceedings (OSTI)

We have carried out numerical simulations of the thermal hydraulic behavior of a neutron spallation target where liquid metal lead-bismuth serves as both coolant and as a neutron spallation source. The target is one of three designs provided by the Institute of Physics and Power Engineering (IPPE) in Russia. This type of target is proposed for Accelerator-driven Transmutation of Waste (ATW) to eliminate plutonium from hazardous fission products. The thermal hydraulic behavior was simulated by use of a commercial CFD computer code called CFX. Maximum temperatures in the diaphragm window and in the liquid lead were determined. In addition the total pressure drop through the target was predicted. The results of the CFX analysis were close to those results predicted by IPPE in their preliminary analysis.

W. GREGORY; R. MARTIN; T. VALACHOVIC

2000-07-01T23:59:59.000Z

89

Dynamical Analysis of the Structure of Neutron Star Critical Collapses  

E-Print Network (OSTI)

Jin et al reported that axisymmetric simulations of NS-like objects with polytropic EOS undergo critical gravitational collapse. As the critical collapse observed via fine-tuning of the adiabatic index $\\Gamma$, they conjecture that critical phenomena may occur in realistic astrophysical scenarios. To clarify the implications this numerical observation has on realistic astrophysical scenarios, here, we perform dynamical analysis on the structure of the critical collapse observed in the former work. We report the time scales and oscillation frequencies exhibited by the critical solution and compare these results with values obtained from analytic perturbative mode analysis of equilibrium TOV configurations. We also establish the universality of the critical solution with respect to a 1-parameter family of initial data as well as the phase space manifold of the critical collapse.

M. -B. Wan; K. -J. Jin; W. -M. Suen

2008-07-10T23:59:59.000Z

90

Precise trace rare earth analysis by radiochemical neutron activation  

Science Conference Proceedings (OSTI)

A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppB level. Based on the selected ..gamma..-ray energies, normal Ge(Li) counting is favored for /sup 140/La, /sup 170/Tb, and /sup 169/Yb; LEPD is favored for low ..gamma..-ray energies of /sup 147/Nd, /sup 153/Sm, /sup 166/Ho, and /sup 169/Yb; and noncoincidence counting is favored for /sup 141/Ce, /sup 143/Ce, /sup 142/Pr, /sup 153/Sm, /sup 171/Er, and /sup 175/Yb. The detection of radionuclides /sup 152m/Eu, /sup 159/Gd, and /sup 177/Lu is equally sensitive by normal Ge(Li) and noncoincidence counting; /sup 152/Eu is equally sensitive by LEPD and normal Ge(Li); and /sup 153/Gd and /sup 170/Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards.

Laul, J.C.; Lepel, E.A.; Weimer, W.C.; Wogman, N.A.

1981-06-01T23:59:59.000Z

91

Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System  

E-Print Network (OSTI)

An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. T...

Bromberger, B; Brandis, M; Dangendorf, V; Goldberg, M B; Kaufmann, F; Mor, I; Nolte, R; Schmiedel, M; Tittelmeier, K; Vartsky, D; Wershofen, H

2012-01-01T23:59:59.000Z

92

DANDE: a linked code system for core neutronics/depletion analysis  

SciTech Connect

This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem.

LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

1985-06-01T23:59:59.000Z

93

Transportation activity analysis using smartphones  

E-Print Network (OSTI)

Transportation activity surveys investigate when, where and how people travel in urban areas to provide information necessary for urban transportation planning. In Singapore, the Land Transport Authority (LTA) carries out ...

Xiao, Yu

94

A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique  

Science Conference Proceedings (OSTI)

Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel assembly can be part of a complete transmission assay measurement with high precision. Analysis of rows with up to 12 pins may also be feasible but with diminished precision. Preliminary data analysis of an NRTA simulation has demonstrated the simplicity of the technique.

James W .Sterbentz; David L. Chichester

2011-07-01T23:59:59.000Z

95

Supercool Neutrons (Ultracold Neutrons)  

E-Print Network (OSTI)

in the USA. Why neutrons? Neutrons possess physical properties that make them valuable investigative tools Spallation Neutron Source (SNS) The world's most intense pulsed accelerator-based neutron source. High Flux Isotope Reactor (HFIR) The highest flux reactor-based neutron source for condensed matter research

Martin, Jeff

96

Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field  

SciTech Connect

Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

2011-10-01T23:59:59.000Z

97

Design, construction, and characterization of a facility for neutron capture gamma ray analysis of sulfur in coal using californium-252  

SciTech Connect

A study of neutron capture gamma ray analysis of sulfur in coal using californium-252 as a neutron source is reported. Both internal and external target geometries are investigated. The facility designed for and used in this study is described. The external target geometry is found to be inappropriate because of the low thermal neutron flux at the sample location, which must be outside the biological shielding. The internal target geometry is found to have a sufficient thermal neutron flux, but an excessive gamma ray background. A water filled plastic facility, rather than the paraffin filled steel one used in this study, is suggested as a means of increasing flexibility and decreasing the beackground in the internal target geometry.

Layfield, J.R.

1980-03-01T23:59:59.000Z

98

The relevance of particle flux monitors in accelerator-based activation analysis  

SciTech Connect

One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

Segebade, Chr.; Maimaitimin, M.; Sun Zaijing [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

2013-04-19T23:59:59.000Z

99

Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel  

Science Conference Proceedings (OSTI)

This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

J. W. Sterbentz; D. L. Chichester

2011-09-01T23:59:59.000Z

100

RIJKSUNIVERSITEIT GRONINGEN In-situ element analysis from gamma-ray and neutron spectra using a  

E-Print Network (OSTI)

experimentally. Figure 2.1: Schematic presentation of the neutron elastic scattering process (CANDU04). #12 process (CANDU04). Instead of re-emitting a neutron as in inelastic scattering, the compound nucleus may

Groningen, Rijksuniversiteit

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Neutronic Characterization of the Megapie Target  

E-Print Network (OSTI)

The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

2007-10-31T23:59:59.000Z

102

Baseline drift effect on the performance of neutron and gamma ray discrimination using frequency gradient analysis  

E-Print Network (OSTI)

Frequency gradient analysis (FGA) effectively discriminates neutrons and gamma rays by examining the frequency-domain features of the photomultiplier tube anode signal. This approach is insensitive to noise but is inevitably affected by the baseline drift, similar to other pulse shape discrimination methods. The baseline drift effect is attributed to the factors such as power line fluctuation, dark current, noise disturbances, hum, and pulse tail in front-end electronics. This effect needs to be elucidated and quantified before the baseline shift can be estimated and removed from the captured signal. Therefore, the effect of baseline shift on the discrimination performance of neutrons and gamma rays with organic scintillation detectors using FGA is investigated in this paper. The relationship between the baseline shift and discrimination parameters of FGA is derived and verified by an experimental system consisting of an americium-beryllium source, a BC501A liquid scintillator detector, and a 5 GSPS 8-bit oscilloscope. Both theoretical and experimental results show that the estimation of the baseline shift is necessary, and the removal of baseline drift from the pulse shapes can improve the discrimination performance of FGA.

Guofu Liu; Xiaoliang Luo; Jun Yang; Cunbao Lin; Qingqing Hu; Jinxian Peng

2013-05-08T23:59:59.000Z

103

ACDOS1: a computer code to calculate dose rates from neutron activation of neutral beamlines and other fusion-reactor components  

Science Conference Proceedings (OSTI)

A computer code has been written to calculate neutron induced activation of neutral-beam injector components and the corresponding dose rates as a function of geometry, component composition, and time after shutdown. The code, ACDOS1, was written in FORTRAN IV to calculate both activity and dose rates for up to 30 target nuclides and 50 neutron groups. Sufficient versatility has also been incorporated into the code to make it applicable to a variety of general activation problems due to neutrons of energy less than 20 MeV.

Keney, G.S.

1981-08-01T23:59:59.000Z

104

Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System  

E-Print Network (OSTI)

An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

B. Bromberger; D. Bar; M. Brandis; V. Dangendorf; M. B. Goldberg; F. Kaufmann; I. Mor; R. Nolte; M. Schmiedel; K. Tittelmeier; D. Vartsky; H. Wershofen

2012-01-04T23:59:59.000Z

105

Analysis of core-concrete interaction event with flooding for the Advanced Neutron Source reactor  

SciTech Connect

This paper discusses salient aspects of the methodology, assumptions, and modeling of various features related to estimation of source terms from an accident involving a molten core-concrete interaction event (with and without flooding) in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for this postulated severe accident. Several design features (such as rupture disks) are examined to study containment response during this severe accident. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms, which are then used for studying off-site radiological consequences and health effects for the support of the Conceptual Safety Analysis Report for ANS. The results are also to be used to examine the effectiveness of subpile room flooding during this type of severe accident.

Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.

1993-11-01T23:59:59.000Z

106

Analysis Activities at Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Operated by The University of Chicago Center for Transportation Research Argonne National Laboratory Argonne National Laboratory Marianne M. Mintz Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 ANL's Charter ANL's Charter ANL's Charter Systems analysis in Energy Systems (CTR), Decision and Information Sciences History of working in partnership with industry Analytical work has spanned the range of: Energy Supply - globally and by region Demand for transportation fuels - globally and region Assessment of vehicle technologies and fuels Economic analysis and interaction between energy prices and macro activity Life-cycle analyses of energy use and environmental impacts associated with

107

Organic metal neutron detector  

DOE Patents (OSTI)

A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

Butler, M.A.; Ginley, D.S.

1984-11-21T23:59:59.000Z

108

Neutronic analysis of the 1D and 1E banks reflux detection system  

Science Conference Proceedings (OSTI)

Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

Blanchard, A.

1999-12-21T23:59:59.000Z

109

Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs  

SciTech Connect

This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

Hikaru Hiruta; Gilles Youinou

2012-09-01T23:59:59.000Z

110

Data acquisition and analysis of the UNCOSS underwater explosive neutron sensor  

Science Conference Proceedings (OSTI)

The purpose of the FP7 UNCOSS project (Underwater Coastal Sea Surveyor, http://www.uncoss-project.org) is to develop a neutron-based underwater explosive sensor to detect unexploded ordnance lying on the sea bottom. The Associated Particle Technique is used to focus the inspection on a suspicious object located by optical and electromagnetic sensors and to determine if there is an explosive charge inside. This paper presents the data acquisition electronics and data analysis software which have been developed for this project. The electronics digitize and process the signal in real-time based on a field programmable gate array structure to perform precise time-of-flight and gamma-ray energy measurements. UNCOSS software offers the basic tools to analyze the time-of-flight and energy spectra of the interrogated object. It allows to unfold the gamma-ray spectrum into pure elemental count proportions, mainly C, N, O, Fe, Al, Si, and Ca. The C, N, and O count fractions are converted into chemical proportions by taking into account the gamma-ray production cross sections, as well as neutron and photon attenuation in the different shields between the ROV (Remotely Operated Vehicle) and the explosive, such as the explosive iron shell, seawater, and ROV envelop. These chemical ratios are plotted in a two-dimensional (2D) barycentric representation to position the measured point with respect to common explosives. The systematic uncertainty due to the above attenuation effects and counting statistical fluctuations are combined with a Monte Carlo method to provide a 3D uncertainty area in a barycentric plot, which allows to determine the most probable detected materials in view to make a decision about the presence of explosive. (authors)

Carasco, C.; Eleon, C.; Perot, B. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Boudergui, K.; Kondrasovs, V.; Corre, G.; Normand, S.; Sannie, G.; Woo, R.; Bourbotte, J. M. [CEA, LIST, Saclay, F-91191 Gif-sur-Yvette (France)

2011-07-01T23:59:59.000Z

111

Effect of high-energy neutron flux on fiber optics in an active diagnostic on TFTR  

Science Conference Proceedings (OSTI)

A bundle of 1-mm-diam fused silica optical fibers on an existing TFTR diagnostic has been exposed to 11 high-power DT discharges. Each shot subjected the fibers to a peak fast (14.7 MeV) neutron flux of [approx]2[times]10[sup 12] n/cm[sup 2]/s and a [gamma]-dose rate of 500 rad(Si)/s for 0.75--1.0 s. The total fast-neutron fluence for these shots was [approx]5[times]10[sup 12] n/cm[sup 2]. A 15-m-long section of the bundle ran along the tokamak's toroidal field coils and the remaining 15 m ran radially away from the reactor. Fiber luminescence at 660 nm was [approx]10[sup 10] photons/s/sr/cm[sup 2]/A for the above flux ([approx]5%--10% of the bremsstrahlung emission), and varied linearly with DT neutron rate. Luminescence at 530 nm was 50% stronger, consistent with a Cerenkov radiation spectrum. Sensitivity to 3.5 MeV DD neutrons was [approx]1/3 to 1/2 of that for DT neutrons. Fiber transmission decreased with the time integral of the neutron source rate and was reduced by 4% for the above flux. The fiber recovered rapidly: within 10 s, the transmission loss was only 2.5%. Shortly thereafter, the rate of recovery slowed to [approx]0.05% per minute, but was sufficient to restore 75% of the transmission loss within two to four discharges. Recovery continued at [approx]0.1% per hour and slowed overnight to [approx]0.1% per day. Within the relative error of [lt]0.2%, full transmission was recovered after five days.

Paul, S.F.; Goldstein, J.L.; Durst, R.D.; Fonck, R.J. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1995-02-01T23:59:59.000Z

112

NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY  

Science Conference Proceedings (OSTI)

The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new requirement for which the Savannah River National Laboratory (SRNL) Research Operations Department (ROD) MC&A group was unprepared. The criteria for exemption from verification were: (1) isotope content below 50 grams; (2) intrinsically tamper indicating or TID sealed items which contain a Category IV quantity of material; (3) assembled components; and (4) laboratory samples. Therefore all (SRNL) Material Balance Area (MBA) items with greater than 50 grams total Pu or greater than 50 grams HEU were subject to a verification measurement. The pass/fail criteria of reference 7 stated 'The facility will report measured values, book values, and statistical control limits for the selected items to DOE SR...', and 'The site/facility operator must develop, document, and maintain measurement methods for all nuclear material on inventory'. These new requirements exceeded SRNL's experience with prior semi-annual inventory expectations, but allowed the AD nuclear field measurement group to demonstrate its excellent adaptability and superior flexibility to respond to unpredicted expectations from the DOE customer. The requirements yielded five SRNL items subject to Pu verification and two SRNL items subject to HEU verification. These items are listed and described in Table 1.

Dewberry, R.; Ayers, J.; Tietze, F.; Klapper, K.

2010-02-05T23:59:59.000Z

113

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

Science Conference Proceedings (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

114

Comparison of SEM and Optical Analysis of DT Neutron Tracks in CR-39 Detectors  

SciTech Connect

A solid state nuclear track detector, CR-39, was exposed to DT neutrons. After etching, the resultant tracks were analyzed using both an optical microscope and a scanning electron microscope (SEM). In this communication, both methods of analyzing DT neutron tracks are discussed.

P.A. Mosier-Boss, L.P.G. Forsley, P. Carbonnelle, M.S. Morey, J.R. Tinsley, J. P. Hurley, F.E. Gordon

2012-01-01T23:59:59.000Z

115

Neutron tubes - Energy Innovation Portal  

A neutron generating target is positioned so that the ion beam is ... Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen ...

116

Phase analysis of metallic plutonium-containing fuel alloys using neutron diffraction  

Science Conference Proceedings (OSTI)

Pulsed neutron powder diffraction studies at IPNS have expanded our understanding of the phases present in Integral Fast Reactor (IFR) metal fuel alloys at temperatures in the range of reactor operating conditions. We report results from the binary alloy (U-10 wt % Zr) and ternary alloys (U-8% Pu-10% Zr) and (U-19% Pu-10% Zr). Determining the role and the location of Zr and Pu in these alloys is considered of fundamental importance for maximizing engineering efficiency. Rietveld profile analysis was utilized to study the phase diagrams. Data were collected at temperatures ranging from 25--650{degree}C. Although the expected U/Pu/Zr phases ({alpha}-U, {beta}-U, {gamma}-U, {delta}-U/Zr/Pu, {zeta}-U/Pu) were observed in appropriate temperature ranges, there were some unexpected results. Relative amounts of all phases at each temperature were calculated from Rietveld scale factors and inferences were made as to the location of zirconium and plutonium, i.e. amounts in each phase, from site occupancies and absorption characteristics of the phases present. Finally, we were able to identify ZrO and ZrO{sub 1-x} inclusion phases in the U-Zr alloy present in very small (0.5--1.0%) amounts. 15 refs., 9 figs., 2 tabs.

Mueller, M.H.; Richardson, J.W. Jr.; Strain, R.V.; Hofman, G.L.

1990-01-01T23:59:59.000Z

117

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

118

What Can You Do With Neutrons?  

NLE Websites -- All DOE Office Websites (Extended Search)

the globe, including the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Today the number of active neutron users in...

119

Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry  

E-Print Network (OSTI)

1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

120

Beginning-of-life neutronic analysis of a 3000-MW(t) HTGR  

SciTech Connect

The results of a study of safety-related neutronic characteristics for the beginning-of-life core of a 3000-MW(t) High-Temperature Gas-Cooled Reactor are presented. Emphasis was placed on the temperature-dependent reactivity effects of fuel, moderator, control poisons, and fission products. Other neutronic characteristics studied were gross and local power distributions, neutron kinetics parameters, control rod and other material worths and worth distributions, and the reactivity worth of a selected hypothetical perturbation in the core configuration. The study was performed for the most part using discrete-ordinates transport theory codes and neutron cross sections that were interpolated from a four-parameter nine-group library supplied by the HTGR vendor. A few comparison calculations were also performed using nine-group data generated with an independent cross-section processing code system. Results from the study generally agree well with results reported by the HTGR vendor. (auth)

Vigil, J.C.

1975-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Beam characterization at the Neutron Radiography Reactor  

Science Conference Proceedings (OSTI)

The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

2013-12-01T23:59:59.000Z

122

Status report on the analysis of inelastic neutron scattering from carbon, iron, yttrium and lead at 96 MeV  

E-Print Network (OSTI)

This work is part of an effort to provide more experimental data for the (n,n'x) reaction. The experiments were carried out at The Svedberg Laboratory in Uppsala, Sweden, at the quasi-mono-energetic neutron beam of 96 MeV, before the facility was upgraded in 2004. Using an extended data analysis of data primarily intended for measuring elastic neutron scattering only, it was found to be possible to extract information on the inelastic scattering from several nuclei. In the preliminary data analysis, an iterative forward-folding technique was applied, in which a physically reasonable trial spectrum was folded with the response function of the detector system and the output was compared to the experimental data. As a result, double-differential cross sections and angular distributions of inelastic neutron scattering from 12-C, 56-Fe, 89-Y and 208-Pb could be obtained. In this paper, a status update on the efforts to improve the description of the detector response function is given.

C. Gustavsson; C. Hellesen; S. Pomp; A. hrn; J. Blomgren; U. Tippawan

2013-03-27T23:59:59.000Z

123

Glossary Term - Neutron Emission  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Term (Neutron) Glossary Main Index Next Term (Niobe) Niobe Neutron Emission After neutron emission, an atom contains one less neutron. Neutron emission is one...

124

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In partial response to a Department of Energy (DOE) request to evaluate the state of measurements of special nuclear material, Lawrence Livermore National Laboratory (LLNL) evaluated and classified all highly enriched uranium (HEU) oxide items in its inventory. Because of a lack of traceable HEU standards, no items were deemed to fit the category of well measured. A subsequent DOE-HQ sponsored survey by New Brunswick Laboratory resulted in their preparation of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide-U{sub 3}O{sub 8} Standard for Neutron Counting Measurements], a unit of which was delivered to LLNL in October of 1999. This paper describes the approach to calibration of the LLNL passive-active neutron drum (PAN) shuffler for measurement of poorly measured/unmeasured HEU oxide inventory. Included are discussions of (1) the calibration effort, including the development of the mass calibration curve; (2) the results from an axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber, and (3) an error model for the total (systematic + random) uncertainty in the predicted mass that includes the uncertainties in calibration and sample position.

Mount, M.; Glosup, J.; Cochran, C.; Dearborn, D.; Endres, E.

2000-06-16T23:59:59.000Z

125

Neutron Scattering Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for archival purposes but no new content will be added. We encourage everyone interested in neutron scattering to take full advantage of this exciting new resource for our community. Neutronsources.org Data Formats NeXus: Neutron and X-ray Data Format Crystallographic Binary Format (CBF/imgCIF) Hierarchical Data Format (HDF) Data Analysis and Visualization Data Analysis for Neutron Scattering Experiments (DANSE): distributed data analysis project Large Array Manipulation Program (LAMP): IDL-based data analysis and visualization

126

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

subset of the collected samples from Bondar-Clegg and Company Ltd. in Vancouver, B.C., Canada. The analytical techniques employed included instrumental neutron activation analysis...

127

Theory and Analysis of the Feynman-Alpha Method for Deterministically and Randomly Pulsed Neutron Sources  

E-Print Network (OSTI)

contract FIKW-CT-2000-00063. REFERENCES 1. R. UHRIG, Random Noise Techniques in Nuclear Reactor Systems. Conf. New Frontiers of Nuclear Technology: Reactor Phys- ics (PHYSOR 2002), Seoul, Korea, October 7 Determination in Accelerator Driven Nuclear Reactors by Statistics from Neutron Detectors ~Feynman-Alpha Method

Pázsit, Imre

128

Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis  

Science Conference Proceedings (OSTI)

The observation of canonical spin-glass behavior in the pyrochlore oxide Y{sub 2}Mo{sub 2}O{sub 7} has been a subject of considerable interest as the original structural studies were interpreted in terms of a well-ordered crystallographic model. It is widely held that the stabilization of the spin-glass state requires some level of positional disorder along with frustration. Recent reports from local probe measurements, extended x-ray-absorption fine structure (EXAFS) and {sup 89}Y NMR, have been interpreted in terms of disorder involving the Mo-Mo distances (EXAFS) and multiple Y sites (NMR). This work reports results from temperature-dependent (15--300 K) neutron diffraction (ND) and neutron pair distribution function studies which can provide from the same data set information on both the average and local structures. The principal findings are that: (1) there is no crystallographic phase transition over the temperature region studied within the resolution of the ND data; (2) the diffraction data are well fitted using a fully ordered model but with large and anisotropic displacement parameters for three of the four atomic sites; (3) the pairwise real-space correlation function G(r) shows clear evidence that the principal source of disorder is associated with the Y-O1 atom pairs rather than the Mo-Mo pairs, in disagreement with the interpretation of the EXAFS results; (4) fits to the G(r) improve significantly when anisotropic displacements for all sites are included; (5) inclusion of a split-site position parameter for O1 improves, slightly, both the G(r) fits and the Rietveld fits to the ND data; and (6) for all models the fits become worse as the temperature decreases and as the fitting range decreases. These results are qualitatively consistent with the {sup 89}Y NMR observations and perhaps recent muon-spin-relaxation studies. The issue of static versus dynamic disorder is not resolved, definitively. An estimate of the distribution of exchange constants due to the disorder is made using spin-dimer analysis and compared with the Saunders-Chalker model for the generation of spin-glass behavior from 'weak' disorder on geometrically frustrated lattices.

Proffen, Thomas Ernst [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory; Greedan, John [MCMASTER UNIV; Gout, Delphine [ORNL; Lozano - Gorrin, A D [MCMASTER UNIV; Derahkshan, Shahab [MCMASTER UNIV; Bozin, E [COLUMBIA UNIV; Billinge, S J L [COLUMBIA UNIV

2009-01-01T23:59:59.000Z

129

Neutron fluence and energy reproducibility of a 2-dollar TRIGA reactor Pulse  

Science Conference Proceedings (OSTI)

Washington State Universitys 1 MW TRIGA reactor has a long history of utilization for neutron activation analysis (NAA). TRIGA reactors have the ability to pulse, reach supercritical (k>1) for short bursts of time. At this high power and fast time the energy spectrum and neutron fluence are largely uncharacterized. The pulse neutron energy spectrum and fluence were determined by the activation of Cu, Au, Co, Fe, and Ti. These analyses were completed with and without Cd shielding to determine reproducibility between pulses. The applications and implications of the neutron energy and fluence reproducibility to the use of pulsed NAA will be discussed.

Payne, Rosara F.; Drader, Jessica A.; Friese, Judah I.; Greenwood, Lawrence R.; Hines, Corey C.; Metz, Lori A.; Kephart, Jeremy D.; King, Matthew D.; Pierson, Bruce D.; Smith, Jeremy D.; Wall, Donald E.

2009-10-01T23:59:59.000Z

130

NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA  

SciTech Connect

Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

T. R. Twomey; A. J. Caffrey; D. L. Chichester

2007-02-01T23:59:59.000Z

131

Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.  

SciTech Connect

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

2008-10-31T23:59:59.000Z

132

Neutron Radiography  

Science Conference Proceedings (OSTI)

Table 8   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials and ready availability

133

Neutron Sources  

Science Conference Proceedings (OSTI)

Table 1   Characteristics of neutron radiography at various neutron-energy ranges...Good discrimination between materials, and ready

134

Neutron sources and applications  

Science Conference Proceedings (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

135

Application of three-dimensional transport code to the analysis of the neutron streaming experiment  

Science Conference Proceedings (OSTI)

This paper summarized the calculational results of neutron streaming through a Clinch River Breeder Reactor (CRBR) Prototype coolant pipe chaseway. Particular emphasis is placed on results at bends in the chaseway. Calculations were performed with three three-dimensional codes: the discrete ordinates radiation transport code TORT and Monte Carlo radiation transport code MORSE, which were developed by Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, which was developed in Japan. The purpose of the calculations is not only to compare the calculational results with the experimental results, but also to compare the results of TORT and MORSE with those of ENSEMBLE. In the TORT calculations, two types of difference methods, weighted-difference method was applied in ENSEMBLE calculation. Both TORT and ENSEMBLE produced nearly the same calculational results, but differed in the number of iterations required for converging each neutron group. Also, the two types of difference methods in the TORT calculations showed no appreciable variance in the number of iterations required. However, a noticeable disparity in the computer times and some variation in the calculational results did occur. The comparisons of the calculational results with the experimental results, showed for the epithermal neutron flux generally good agreement in the first and second legs and at the first bend where the two-dimensional modeling might be difficult. Results were fair to poor along the centerline of the first leg near the opening to the second leg because of discrete ordinates ray effects. Additionally, the agreement was good throughout the first and second legs for the thermal neutron region. Calculations with MORSE were made. These calculational results and comparisons are described also. 8 refs., 4 figs.

Chatani, K.; Slater, C.O.

1990-01-01T23:59:59.000Z

136

NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR  

DOE Patents (OSTI)

The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

Young, G.J.

1959-06-30T23:59:59.000Z

137

Analysis Activities at National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis Task Leader Charter * NREL's mission: NREL develops renewable energy and energy efficiency technologies and practices, advances related science and engineering, and transfers knowledge and innovations to address the nation's energy and environmental goals. * The NREL Hydrogen Analysis Group provides leadership in hydrogen production, delivery, transition, and market analysis, to increase the efficiency of hydrogen research and implementation. * The NREL Hydrogen Analysis Group has received the majority of its funding from the DOE Hydrogen Program (now HFCIT), with some funding coming from PBA and OFCVT

138

Neutronics calculation, dosimetry analysis and gas measurements of the first SINQ target irradiation experiment, STIP-I  

SciTech Connect

To precisely determine the damage, helium and hydrogen production in the specimens irradiated in SINQ Target-3, calculations with MCNPX code, dosimetry analysis and helium/hydrogen measurements have been performed. The MCNPX calculations agree well the former calculations with the LAHET code. The preliminary analysis of dosimetry foils demonstrates that the unfolded proton and neutron spectra at limited positions are close to calculated values. In general the measured He concentrations are consistent with the calculated values. Some discrepancy between the measured and the calculated is believed due to the actual proton beam geometry is different from that used for the calculation. The hydrogen concentration measured in samples irradiated at<~100C is close to the calculated. The differences between the measured and calculated values for samples irradiated at higher temperatures can be attributed largely to the effects of hydrogen diffusion. The results indicate that at>~250C, only small amount of hydrogen remains in the samples.

Dai, Yong (Paul Scherrer Institute); Foucher, Y (Paul Scherrer Institute, Switzerland); James, M R. (Los Alamos National Laboratory); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB))

2003-05-15T23:59:59.000Z

139

Operational Experience with an Imaging Passive/Active Neutron System (IPAN{sup TM}) in a Mature Production Application to Perform WIPP Certified Non-destructive Assays  

SciTech Connect

BIL Solutions Inc. have deployed and operated an Imaging Passive/Active Neutron System (IPANTM) System at the Savannah River Site (SRS) in South Carolina for the purpose of performing non-destructive assays on contact handled transuranic (CH-TRU) waste in 55-gallon containers. During the four-plus years of operation (May 2001 through August 2005), a vast amount of experience has been gained, with approximately 8950 waste containers assayed. This experience has provided the knowledge base for the evolution of improvements in the assay technique and instrument maintenance and troubleshooting. Additionally, operational experience provides for very reliable characterization of the robustness and applicability of this assay technique for a wide variety of waste streams and provides for assessment of the achievable production output capabilities over a long period of time in a production environment. The assay technique combines passive/active neutron data with gamma energy analysis (GEA) data and acceptable knowledge (AK) data to provide Waste Isolation Pilot Plant (WIPP) compliant quantification of the required nuclides within the waste. These data are incorporated through system software, which automate the data analysis process. However, due to the complex nature of NDA and the potential for a wide variety of interferences, each analysis is reviewed by an Expert Analyst (EA). The software allows the EA to interact with the data analysis process to provide regulatory compliant and defensible results. This technique has evolved with time as a vast array of waste and isotopic compositions have been encountered During 1555 days from the beginning of production operations, the system maintenance log indicates 63 days of downtime due to hardware problems. This translates to an operational availability of 96%. Given the extensive length of time represented by this availability data, 96% availability would represent a very reliable estimate for future applications. Additionally, evolving improvements in troubleshooting techniques and stocking of spare parts could improve the availability. The 8950 production assays performed at SRS falls far short of predicted system throughput, even with allowance for performance of non-production assays such as Quality Assurance (QA) / Quality Control (QC) and WIPP Performance Demonstration Program (PDP) assays. It should be noted that production was significantly altered by site constraints and interruptions in availability of containers. The overall assessment of the instrumentation in conjunction with the assay technique is that this method has a wide range of applicability over a wide range of waste streams. The capability of the EA to interactively interact in the data analysis provides for successful analysis of a wide variety of exception conditions and/or isotopic compositions. The instrument has demonstrated reliable and regulatory compliant operation over a long period of production operations. This assay technique should be suitable for future applications for most TRU or low-level (LLW) waste streams, including remote handled (RH) waste. (authors)

Simpson, A.P.; West, J.M.; Carlton, T.; Peterson, T. [BIL Solutions Inc, 4001 Office Ct Drive no 800, Santa Fe, NM 87507 (United States); Harvill, J. [Washington TRU Solutions LLC (United States)

2006-07-01T23:59:59.000Z

140

Glossary Term - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutrino Previous Term (Neutrino) Glossary Main Index Next Term (Neutron Emission) Neutron Emission Neutron A Neutron Neutrons are uncharged particles found within atomic nuclei....

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

About Neutrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Basics Neutron Basics A neutron is one of the fundamental particles that make up matter. This uncharged particle exists in the nucleus of a typical atom, along with its positively charged counterpart, the proton. Protons and neutrons each have about the same mass, and both can exist as free particles away from the nucleus. In the universe, neutrons are abundant, making up more than half of all visible matter. Find Out What a Neutron Is Youtube icon Properties of Neutrons How Can Neutrons Be Used for Research? Image of glucose movement in plants Neutron imaging techniques have been able to determine the precise movement of glucose in plants. This knowledge can help scientists better understand how biomass can be efficiently converted into fuel. Neutrons have many properties that make them ideal for certain types of

142

Analysis Activities at Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory's Hydrogen Analysis Capabilities Marylynn Placet Manager, Energy Policy and Planning Group m.placet@pnl.gov (202) 646-5249 DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. U.S. Department of Energy Pacific Northwest National Laboratory 2 Charter PNNL Energy Science and Technology Directorate's Energy Mission: Secure, clean, and affordable energy systems in a carbon constrained world. PNNL Analysis Objectives/Principles: * Development of state-of-the-art analysis tools for critical policy issues (e.g., climate change, electricity grid issues) * Use of tools appropriate to the need * Objectivity; analysis based on best available,

143

Neutron Diffraction @ TOPAZ  

NLE Websites -- All DOE Office Websites (Extended Search)

Topaz Guide Bender Topaz Guide Bender Neutron Diffraction @ TOPAZ Workshop on Single Crystal Neutron Diffraction picture 2 September 29 - October 1, 2011 * Spallation Neutron Source * Oak Ridge National Laboratory * Oak Ridge TN, USA TOPAZ 2011 Home Contacts Agenda and Important Deadlines Registration and Payment filler Workshop summary and purpose A workshop on single crystal neutron diffraction will be held at the Spallation Neutron Source at the Oak Ridge National Laboratory (ORNL). It will present invited and contributed talks to showcase cutting edge science and examples where neutron diffraction can make significant contributions; and provide training in neutron structure analysis and sample screening for the preparation of instrument beam-time proposals. TOPAZ is a high resolution wavelength-resolved Laue diffractometer with a versatile sample environment. Commissioning user experiments have demonstrated successfully the instrument capability for structural study of a vitamin B12 derivative, ion distribution in Li-ion battery materials, order and disorder in shape memory intermetallics, magnetic phase transition in multiferroic single crystal and functional thin films. The workshop is directed towards experienced neutron diffraction users and new users alike and encourages members to highlight their research and interest in structure analysis and investigation. The workshop will give opportunity to bring your own single crystal and screen sample quality and scattering power on TOPAZ @ room temperature, to evaluate data collection time and quality for an anticipated experiment. Finally, an opportunity to compose a proposal for neutron beam time (http://neutrons.ornl.gov/users/proposals.shtml) with staff will be provided in the framework of the workshop. The workshop format is well suited for researchers to contribute by showcasing their research and bring their research group or graduate student, who would like to test a single crystal sample. User access training for the ORNL neutron scattering facility will be included. It will be valid for future experiments.

144

Neutron Science Research Areas | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Neutron Data Analysis and Visualization Research Highlights Facilities and Capabilities...

145

High sensitivity assay of cement encapsulated spent nuclear fuel sludge using the Imaging Passive Active Neutron (IPAN) system  

SciTech Connect

A new technique has been developed for high sensitivity assay of grouted spent nuclear fuel (SNF) sludge waste in 208 liter drums. The method uses the Imaging Passive Active Neutron (IPAN{sup TM}) system to provide regulatory acceptable measurements. At the Waste Receiving and Processing (WRAP) Facility in Hanford, two IPAN{sup TM} systems have been successfully calibrated and validated for assay of SNF grouted sludge drums (encapsulated with a cement mixture). The systems have been demonstrated to be capable of performing low level waste (LLW) / transuranic (TRU) waste sorting even in the presence of high gamma radiation fields emitted by the fission and activation products associated with SNF. The active and passive modes of the IPAN{sup TM} provide a wide dynamic range of assay: from below the TRU/LLW sorting threshold (100 nCi/g or 3700 Bq/g) up to several hundred grams of Weapons Grade Pu Equivalent. A new calibration technique was developed that uses a radial weighted average method to define the imaging response matrix. This method provides the required sensitivity to the height distribution of special nuclear material within the 208 liter drum, and makes use of the uniform radial distribution that will occur for a distribution of a large population of small particles in a homogeneous matrix. Extensive validation and testing with specially designed surrogate grouted sludge drums and radioactive standards have resulted in regulatory acceptance of this technique, permitting ultimate disposal of the SNF sludge drums at the Waste Isolation Pilot Plant. (authors)

Simpson, A.P. [BIL Solutions Inc, Santa Fe, NM (United States); Abdurrahman, N.M. [Fluor Hanford, Richland, WA (United States)

2007-07-01T23:59:59.000Z

146

Application of the three-dimensional transport code to analysis of the neutron streaming experiment  

Science Conference Proceedings (OSTI)

The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan.

Chatani, K.; Slater, C.O. (Oak Ridge National Lab., TN (United States))

1990-01-01T23:59:59.000Z

147

High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification  

Science Conference Proceedings (OSTI)

Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

David L. Chichester; James T. Johnson; Edward H. Seabury

2012-07-01T23:59:59.000Z

148

Analysis Activities at Lawrence Livermore National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory / Energy Security and Technology Program Jeffrey Stewart Group Leader: Applied Statistics and Economics DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * LLNL's mission is to provide research in the areas of national and homeland security and other important areas to DOE such as Energy,Climate and Water * To conduct systems and economic modeling and analysis to determine the technical and economic characteristics of individual technologies within systems to achieve policy objectives * DOE NETL, NE,Policy,HEU; Japanese Govt, CEC, Internal 3 History * LLNL has had a systems analysis group for over 25 years supporting national security, defense, energy and environment programs

149

Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment  

DOE Green Energy (OSTI)

This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure.

Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.N.; Simpson, D.B. [Oak Ridge National Lab., TN (United States); Sawruk, W. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1994-07-01T23:59:59.000Z

150

Genetic algorithms applied to reconstructing coded imaging of neutrons and analysis of residual watermark  

Science Conference Proceedings (OSTI)

Monte-Carlo simulation of neutron coded imaging based on encoding aperture for Z-pinch of large field-of-view with 5 mm radius has been investigated, and then the coded image has been obtained. Reconstruction method of source image based on genetic algorithms (GA) has been established. 'Residual watermark,' which emerges unavoidably in reconstructed image, while the peak normalization is employed in GA fitness calculation because of its statistical fluctuation amplification, has been discovered and studied. Residual watermark is primarily related to the shape and other parameters of the encoding aperture cross section. The properties and essential causes of the residual watermark were analyzed, while the identification on equivalent radius of aperture was provided. By using the equivalent radius, the reconstruction can also be accomplished without knowing the point spread function (PSF) of actual aperture. The reconstruction result is close to that by using PSF of the actual aperture.

Zhang Tiankui; Hu Huasi; Jia Qinggang; Zhang Fengna; Liu Zhihua; Hu Guang; Guo Wei [School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Chen Da [School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Li Zhenghong [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, 621900 Sichuan (China); Wu Yuelei [School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Nuclear and Radiation Safety Centre, State Environmental Protection Administration (SEPA), Beijing 100082 (China)

2012-11-15T23:59:59.000Z

151

Fuel plate stability experiments and analysis for the Advanced Neutron Source  

Science Conference Proceedings (OSTI)

The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted.

Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

1993-05-01T23:59:59.000Z

152

Small angle neutron scattering analysis of novel carbons for lithium secondary batteries.  

DOE Green Energy (OSTI)

Small angle neutron scattering analyses of carbonaceous materials used as anodes in lithium ion cells have been performed. The carbons have been synthesized using pillared clays (PILCs) as inorganic templates. Pillared clays are layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props. The calcined PILC was loaded with five different organic precursors and heated at 700 C under nitrogen. When the inorganic pillars were removed by acid treatment, carbon sheets are produced with holes. The fitting of the data in the high q region suggested that the carbon sheets have voids with radii ranging from 4 to 8 {angstrom}. Similar radii were obtained for the PILC and PILC/organic precursor, which suggests that the carbon was well distributed in the clay prior to pyrolysis.

Sandi, G.; Thiyagarajan, P.; Winans, R.; Carrado, K.

1998-01-14T23:59:59.000Z

153

Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation  

Science Conference Proceedings (OSTI)

Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

Goldman, Ira N.; Adelfang, Pablo [Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)], E-mail: I.Goldman@iaea.org, E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan [Division of Physical and Chemical Sciences, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)], E-mail: N.Ramamoorthy@iaea.org

2008-07-15T23:59:59.000Z

154

Highlights from Research Conducted at Bio-SANS | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights from Research Conducted at Bio-SANS Neutrons help shed light on critical protein activity that protects our DNA New detector array improves neutron count capability at...

155

Industrial Applications at Small Angle Neutron Scattering and ...  

Science Conference Proceedings (OSTI)

... at Small Angle Neutron Scattering and Neutron Diffraction of HANARO Reactor .... Structure/Microstructure Analysis of Faulted and Modular Materials from...

156

Neutron Science and Supercomputing Come Together at Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science and Supercomputing Come Together at Oak Ridge National Lab (HPCWire) June 24, 2013 Next-generation neutron scattering requires next-generation data analysis...

157

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

158

Assessment of the Surface Source Approach in 3-D Fusion Neutronics Analysis  

Science Conference Proceedings (OSTI)

Nuclear Analysis & Experiments / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

T. D. Bohm; B. Smith; M. E. Sawan; P. P. H. Wilson

159

Post irradiation experiment analysis using the APOLLO2 deterministic tool. Validation of JEFF-3.1.1 thermal and epithermal actinides neutron induced cross sections through MELUSINE experiments  

Science Conference Proceedings (OSTI)

Two different experiments performed in the 8 MWth MELUSINE experimental power pool reactor aimed at analyzing 1 GWd/t spent fuel pellets doped with several actinides. The goal was to measure the averaged neutron induced capture cross section in two very different neutron spectra (a PWR-like and an under-moderated one). This paper summarizes the combined deterministic APOLLO2-stochastic TRIPOLI4 analysis using the JEFF-3.1.1 European nuclear data library. A very good agreement is observed for most of neutron induced capture cross section of actinides and a clear underestimation for the {sup 241}Am(n,{gamma}) as an accurate validation of its associated isomeric ratio are emphasized. Finally, a possible huge resonant fluctuation (factor of 2.7 regarding to the 1=0 resonance total orbital momenta) is suggested for isomeric ratio. (authors)

Bernard, D.; Fabbris, O. [CEA, DEN, SPRC, Laboratoire d'Etudes de Physique, F-13108 Saint Paul Lez Durance (France)

2012-07-01T23:59:59.000Z

160

J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Neutron Transport Analysis for In-vessel Diagnostics in ITER  

E-Print Network (OSTI)

Nuclear transport analysis using the MCNP code and heat analysis using a general purpose Finite Element Method code ANSYS 11, respectively, have been carried out for in-vessel components of the microfission chamber (MFC) and the poloidal polarimeter. The nuclear heating rates of the MI cable and the exhaust pipe of the MFC are highest in the gap between two adjacent blanket modules and decrease at greater distances from the gap. Heat analysis using the nuclear heating rate calculation indicates that the maximum temperature of the exhaust pipe can be lowered by changing the distance between two cooling clamps. The nuclear heating rates of the first mirrors of the poloidal polarimeter in the upper port plug are high (> 1 W/cc), and the radiation shield could reduce this rate only by a factor of 2 ~ 4. This heating likely is caused by the effect of streaming neutrons due to an overlap of the beam lines. However, it has been found that the nuclear heating rate can be reduced by reducing the diameter of the beam transmission line.

Masao Ishikawa; Takashi Kondoh; Takeo Nishitani; Yasunori Kawano; Yoshinori Kusama

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis Activities at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Oak Ridge National Laboratory David L. Greene Engineering Science and Technology Division Paul N. Leiby Environmental Sciences Division Juan Ferrada Nuclear Science and Technology Division DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Charter * The Engineering Science and Technology Division, National Transportation Research Center conducts engineering and analytical R&D for DOE, other federal sponsors and the private sector. * The Environmental Sciences Division conducts interdisciplinary research, develops technology, and performs analyses to understand and assess responses to global and regional change, environmental stress, and resource use.

162

Neutron dosimetry  

DOE Patents (OSTI)

A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

Quinby, Thomas C. (Kingston, TN)

1976-07-27T23:59:59.000Z

163

Severe Degradation of BWR Fuel Failures: Coolant Activity Analysis  

Science Conference Proceedings (OSTI)

Analysis of coolant activities offers considerable insight into the phenomena leading to the degradation of failed BWR fuel. This report provides operational guidelines to help utilities manage failed fuel and mitigate the impact of degradation.

1993-12-01T23:59:59.000Z

164

Passive versus active mitigation cost analysis  

DOE Green Energy (OSTI)

The scope of this task is to assess the impact of mitigation alternatives for Tanks 241-SY-101 and 241-SY-103 on the Project W-236A Multi-Function Waste Tank Facility. This assessment and other related tasks are part of an Action Plan Path Forward prepared by the Tank Waste Remediation System (TWRS) Life Extension and Transition Program. Task 3.7 of the Action Plan for Project W-236A MWTF analyzed the comparative cost/risk of two hydrogen gas mitigation alternatives (active versus passive) to recommend the most appropriate course of action to resolve the hydrogen gas safety issue. The qualitative success of active mitigation has been demonstrated through Tank 241-SY-101 testing. Passive mitigation has not been demonstrated but will be validated by laboratory test work performed under Task 3.1 of the Action Plan. It is assumed for this assessment that the uncertainties associated with the performance of either alternative is comparable. Determining alternative specific performance measures beyond those noted are not in the scope of this effort.

Parazin, R.J.; Galbraith, J.D.

1995-04-01T23:59:59.000Z

165

The Impact of Simplifications on 3-D Neutronics Analysis of Blanket Modules in ITER  

Science Conference Proceedings (OSTI)

Nuclear Systems: Analysis and Experiments / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

T. D. Bohm; M. E. Sawan; P. P. H. Wilson

166

Neutronic Analysis of a Thorium-Uranium Fueled Water Cooled Fusion-Fission Hybrid Blanket  

Science Conference Proceedings (OSTI)

Nuclear Systems: Analysis and Experiments / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

S. C. Xiao; Z. Zhou; Jing Zhao; Y. Yang

167

SINGLE CRYSTAL NEUTRON DIFFRACTION.  

SciTech Connect

Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

KOETZLE,T.F.

2001-03-13T23:59:59.000Z

168

Activity analysis based on low sample rate smart meters  

Science Conference Proceedings (OSTI)

Activity analysis disaggregates utility consumption from smart meters into specific usage that associates with human activities. It can not only help residents better manage their consumption for sustainable lifestyle, but also allow utility managers ... Keywords: classification, disaggregation, gaussian mixture model, hidden markov model, low sample rate, smart meter

Feng Chen; Jing Dai; Bingsheng Wang; Sambit Sahu; Milind Naphade; Chang-Tien Lu

2011-08-01T23:59:59.000Z

169

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

2008-10-24T23:59:59.000Z

170

Activated Corrosion Product Analysis. Analytical Approach.  

SciTech Connect

The presence of activated corrosion products (ACPs) in a water cooling system is a key factor in the licensing of ITER and affects nuclear classification, which governs design and operation. The objective of this study is to develop a method to accurately estimate radionuclide concentrations during ITER operation in support of nuclear classification. A brief overview of the PACTITER numerical code, which is currently used for ACP estimation, is presented. An alternative analytical approach for calculation of ACPs, which can also be used for validation of existing numerical codes, including PACTITER, has been proposed. A continuity equation describing the kinetics of accumulation of radioactive isotopes in a water cooling system in the form of a closed ring has been formulated, taking into account the following processes: production of radioactive elements and their decay, filtration, and ACP accumulation in filter system. Additional work is needed to more accurately assess the ACP inventory in the cooling water system, including more accurate simulation of the Tokamak cooling water system (TCWS) operating cycle and consideration of material corrosion, release, and deposition rates.

Golubov, Stanislav I [ORNL; Busby, Jeremy T [ORNL; Stoller, Roger E [ORNL

2010-01-01T23:59:59.000Z

171

Kids' Corner at Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Center at Fermi National Accelerator Laboratory for use of the atomic mystery model. SNS Activity Book Check out the SNS Activity Book, with information about neutrons and why...

172

ATR LEU Monothlic and Dispersed with 10B Loading Minimization Design Neutronics Performance Analysis  

SciTech Connect

The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The present work investigates the optimized LEU Monolithic and Dispersed fuel with 10B loading minimization design and evaluates the subsequent neutronics operating effects of these optimized fuel designs. The MCNP ATR 1/8th core model was used to optimize the 235U and minimize the 10B loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The fuel depletion methodology MCWO was used to calculate K eff versus effective full power days (EFPD) in this paper. The MCWO-calculated results for the optimized LEU Monolithic and Dispersed fuel cases demonstrated adequate excess reactivity such that the K-eff versus EFPD plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU Monolithic (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and 235U enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness. The proposed LEU fuel meat varies from 0.203 mm (8.0 mil) to 0.254 mm (10.0 mil) at the inner four fuel plates (1-4) and outer four fuel plates (16-19). In addition, an optimized LEU dispersed (U7Mo) case with all the fuel meat thickness of 0.635 mm (25 mil) was also proposed. Then, for both Monolithic and dispersed cases, a burnable absorber 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and the higher to average ratio of the inner/outer heat flux more effectively. The final minimized 10B loading for LEU case studies will have 0.635 g in the LEU fuel meat at the inner 2 fuel plates (1-2) and outer 2 fuel plates (18-19), which can achieve peak to average ratios similar to those for the ATR reference HEU case study. The investigation of this paper shows the optimized LEU Monolithic (U-10Mo) and Dispersed (U7Mo) cases can all meet the LEU conversion objectives.

G. S. Chang

2001-10-01T23:59:59.000Z

173

Effect of high-energy neutron flux on fiber optics in an active diagnostic on TFTR (abstract)[sup a  

SciTech Connect

A bundle of 1-mm-diam fused silica optical fibers on an existing TFTR diagnostic has been exposed to 11 high-power DT discharges. Each shot subjected the fibers to a peak fast (14.7 MeV) neutron flux of [approx]2[times]10[sup 12] n/cm[sup 2]/s and a [gamma]-dose rate of 500 rad(Si)/s for 0.75--1.0 s. The total fast-neutron fluence for these shots was [approx]5[times]10[sup 12] n/cm[sup 2]. A 15-m-long section of the bundle ran along the tokamak's toroidal field coils and the remaining 15 m ran radially away from the reactor. Fiber luminescence at 660 nm was [approx]10[sup 10] photons/s/sr/cm[sup 2]/A for the above flux ([approx]5%--10% of the bremsstrahlung emission), and varied linearly with DT neutron rate. Luminescence at 530 nm was 50% stronger, consistent with a Cerenkov radiation spectrum. Sensitivity to 3.5 MeV DD neutrons was [approx]1/3 to 1/2 of that for DT neutrons. Fiber transmission decreased with the time integral of the neutron source rate and was reduced by 4% for the above flux. The fiber recovered rapidly: within 10 s, the transmission loss was only 2.5%. Shortly thereafter, the rate of recovery slowed to [approx]0.05% per minute, but was sufficient to restore 75% of the transmission loss within two to four discharges. Recovery continued at [approx]0.1% per hour and slowed overnight to [approx]0.1% per day. Within the relative error of [lt]0.2%, full transmission was recovered after five days.

Paul, S.F.; Goldstein, J.L.; Durst, R.D.; Fonck, R.J. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1995-01-01T23:59:59.000Z

174

Versatile neutron NDA  

SciTech Connect

Non-destructive analysis (NDA) of bulk samples is a major tool in international safeguards and domestic MC&A. Yet, enhancements are needed to reduce inspection time, financial cost, and radiation exposure-while improving reliability and accuracy-particularly for mixtures of fissile and fertile isotopes. Perhaps the greatest remaining direction for NDA improvement is the development of a single controllable neutron source that would add versatility and capability. One of the primary prospects is a switchable radioactive neutron source (SRNS) that has been under advanced-concept development at Argonne with DOE funding. The SRNS would be in a sealed capsule that can be remotely switched on and off, or pulsed at a controllable rate. Li({alpha}, n) or Be({alpha}, n) reactions could give a choice of sub-threshold or hard-spectrum neutrons at yields ranging from 10{sup 4}/s to more than 10{sup 8}s. The SRNS would provide improved capabilities for (1) simultaneous or alternating interrogation with fast and slow neutrons, (2) detection of the first few seconds of delayed neutrons, (3) measurements in the presence of high neutron and/or gamma background, and (4) inspection of heterogeneous materials. When the neutrons are switched off, the source would be portable with vastly reduced shielding. Proof-of-concept with a single switchable plate has been established under laboratory conditions.

DeVolpi, A.

1995-07-01T23:59:59.000Z

175

Beam Characterization at the Neutron Radiography Facility  

SciTech Connect

The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beams effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beams effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the models energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

Sarah Morgan; Jeffrey King

2013-01-01T23:59:59.000Z

176

Neutronics Modeling of the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

Chandler, David [ORNL; Primm, Trent [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2011-01-01T23:59:59.000Z

177

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Education banner Education banner Sunil Sinha A Chat with Sunil Sinha, Distinguished Professor of Physics at the University of California-San Diego and speaker at the recent CNMS-SNS Research Forum more... The purpose of the Spallation Neutron Source and the High Flux Isotope Reactor is to facilitate neutron scattering as an integral tool for scientific research and technological development across many scientific and engineering domains within the scientific, academic,and industrial communities. Coupled with this role is a recognized need to inspire, educate, and facilitate the next generation of users and hence foster enhanced use of the unique neutron scattering facilities at ORNL. This is the central theme of the education activities within the Neutron Sciences Directorate (NScD).

178

ORNL Neutron Sciences Instruments  

NLE Websites -- All DOE Office Websites (Extended Search)

Instruments banner Instruments banner ORNL Neutron Sciences Instruments SNS and HFIR provide researchers with two complementary world-class suites of neutron scattering instruments and beam lines. All the instruments are supported by a variety of sample environments and data analysis and visualization capabilities. Before submitting a proposal for a specific instrument, please contact the appropriate instrument scientist to make sure your research is feasible for that instrument. Instruments Currently Available to Users SNS Beam Line Instrument Name HFIR Beam Line Instrument Name 1B NOMAD Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS Backscattering Spectrometer CG-1D IMAGING Neutron Imaging Prototype Facility 3 SNAP Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS

179

Hazard Analysis for the High Power Accelerator Production of Tritium (APT) Experiments at the Los Alamos Neutron Scattering Center (LANSCE).  

SciTech Connect

The Accelerator Production of Tritium (APT) Target/Blanket and Materials Engineering Demonstration and Development (ED and D) Project has undertaken a major program of high-power materials irradiation at the Los Alamos Neutron Science Center (LANSCE) Accelerator. Five experiments have been installed in the Target A-6 area, immediately before the Isotope Production facility and the LANSCE bearnstop, where they will take a 1.0-mAmp-proton beam for up to 10 months. This operation is classed as a Nuclear Category (cat)-3 activity, since enough radionuclides buildup in the path of tie beam to exceed cat-3 threshold quantities. In the process of analyzing this buildup, it was realized that a loss of coolant accident (LOCA) could result in oxidation and subsequent vaporization of certain tungsten elements contained in our experiments. If this process occurs in the presence of steam, breakup of the water molecule would also provide a potentially explosive source of hydrogen, causing maximum release of radioactive aerosols to the surrounding environment. This process can occur in a matter of seconds. Such a release would result in potentially unacceptable dose to the public at the LANSCE site boundary, 800 meters from the A-6 area.

Waters, L.S.

1999-06-08T23:59:59.000Z

180

Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiatives Plutonium Assay Challenge  

SciTech Connect

This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

J. W. Sterbentz; D. L. Chichester

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors  

SciTech Connect

This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the codes versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research projects primary objective is to advance the state of the art for reactor analysis.

Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

2013-11-29T23:59:59.000Z

182

Neutron Sources  

Science Conference Proceedings (OSTI)

... for Neutron Reaction Rate Measurements, JA Grundl, V. Spiegel, CM Eisenhauer, HT Heaton II, DM Gilliam (NBS), and J. Bigelow (ORNL), Nucl. ...

2013-07-27T23:59:59.000Z

183

Analysis of fusion-fission dynamics by pre-scission neutron emission in $^{58}$Ni+$^{208}$Pb  

E-Print Network (OSTI)

We analyzed the experimental data of the pre-scission neutron multiplicity in connection with fission fragments in the reaction $^{58}$Ni+$^{208}$Pb at the incident energy corresponding to the excitation energy of compound nucleus $E^{*}$=185.9 MeV, which was performed by D\\'{e}MoN group. The relation between the pre-scission neutron multiplicity and each reaction process having different reaction time is investigated. In order to study the fusion-fission process accompanied by neutron emission, the fluctuation-dissipation model combined with a statistical model is employed. It is found that the fusion-fission process and the quasi-fission process are clearly distinguished in correlation with the pre-scission neutron multiplicity.

Y. Aritomo; M. Ohta; T. Materna; F. Hanappe; O. Dorvaux; L. Stuttge

2005-02-07T23:59:59.000Z

184

Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis  

Science Conference Proceedings (OSTI)

In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

Oliveira, Laura C.; Zamboni, Cibele B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP) Av. Professor Lineu Prestes 2242 05508-000 Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

185

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

186

Polarized neutrons in RHIC  

Science Conference Proceedings (OSTI)

There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. This paper discusses techniques for accelerating polarized {sup 3}He nuclei and deuterons.

Courant, E.D.

1998-04-20T23:59:59.000Z

187

Neutron source  

DOE Patents (OSTI)

A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

Cason, J.L. Jr.; Shaw, C.B.

1975-10-21T23:59:59.000Z

188

A Detailed Analysis and Monte Carlo Simulation of the Neutron Lifetime Experiment S. Arzumanov et al., Phys. Lett. B 483 (2000) 15  

E-Print Network (OSTI)

We performed a detailed analysis and the Monte Carlo simulation of the neutron lifetime experiment [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15] because of the strong disagreement by 5.6 standard deviations between the results of this experiment and our experiment [A. Serebrov et al., Phys. Lett. B 605 (2005) 72]. We found a few effects which were not taken into account in the experiment [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15]. The possible correction is -5.5 s with uncertainty of 2.4 s which comes from initial data knowledge. We assume that after taking into account this correction the result of work [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15] for neutron lifetime 885.4 +/- 0.9stat +/- 0.4syst s could be corrected to 879.9 +/- 0.9stat +/- 2.4syst s.

Fomin, A K

2010-01-01T23:59:59.000Z

189

Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments  

Science Conference Proceedings (OSTI)

Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

2009-07-01T23:59:59.000Z

190

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

191

Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor  

SciTech Connect

The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented.

Wilson, G.E.

1992-01-01T23:59:59.000Z

192

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

193

Filter-Analyzer Neutron Spectrometer (FANS)  

Science Conference Proceedings (OSTI)

... Soc., Div. Fuel Chem ... H. Kabbour, and CC Ahn, "Hydrogen Adsorption in MOF-74 Studied by Inelastic Neutron Scattering", in Life Cycle Analysis for ...

194

Filter-Analyzer Neutron Spectrometer (FANS)  

Science Conference Proceedings (OSTI)

... J. Hwang, "Probing the Unusual Proton and Anion Mobility of LiBH ... Analysis of the Inelastic Neutron Scattering Spectra of Electron Donor-Acceptor ...

195

Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within {+-}1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the {+-}2% to {+-}10% range, or {+-}20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the {sup 252}Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms.

Mount, M; O' Connell, W; Cochran, C; Rinard, P

2003-06-13T23:59:59.000Z

196

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

197

NEUTRON SOURCES  

DOE Patents (OSTI)

A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

Richmond, J.L.; Wells, C.E.

1963-01-15T23:59:59.000Z

198

Neutron range spectrometer  

DOE Patents (OSTI)

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

199

ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Neutron Science Future: Integrating Neutron Scattering Across the Laboratory Greg Smith, HFIR Center for Neutron Scattering Upgrade Status and Scientific Opportunities...

200

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SHARP Neutronics Expanded | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHARP Neutronics Expanded SHARP Neutronics Expanded SHARP Neutronics Expanded January 29, 2013 - 1:28pm Addthis Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR SHARP neutronics Module Development The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis. The existing high-fidelity solver package was extended to be independent of reactor technology and demonstrated with 2-D MOC and Sn method simulations of LWR core configurations. Efforts to support verification and validation of the DeCART code, used as one reference solution method by the SHARP code

202

Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements.

Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

1999-11-14T23:59:59.000Z

203

Neutron Log | Open Energy Information  

Open Energy Info (EERE)

Neutron Log Neutron Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Neutron Log Details Activities (4) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: if used in conjunction with other logs, this technique can provide information on the rock type and the porosity Stratigraphic/Structural: Corelation of rock units Hydrological: Estimate of formation porosity Thermal: Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of hydrogen can be used to identify zones of higher porosity.

204

PINO - a tool for simulating neutron spectra resulting from the 7Li(p,n) reaction  

E-Print Network (OSTI)

The 7Li(p,n) reaction in combination with a 3.7 MV Van de Graaff accelerator was routinely used at FZK to perform activation as well as time-of-flight measurements with neutrons in the keV-region. Planned new setups with much higher proton currents like SARAF and FRANZ and the availability of liquid-lithium target technology will trigger a renaissance of this method. A detailed understanding of the neutron spectrum is not only important during the planning phase of an experiment, but also during for the analysis of activation experiments. Therefore, the Monte-Carlo based program PINO (Protons In Neutrons Out) was developed, which allows the simulation of neutron spectra considering the geometry of the setup and the proton-energy distribution.

R. Reifarth; M. Heil; F. Kppeler; R. Plag

2013-10-06T23:59:59.000Z

205

Neutron Repulsion  

E-Print Network (OSTI)

Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

Oliver K. Manuel

2011-02-08T23:59:59.000Z

206

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

207

Neutron Physics Group  

Science Conference Proceedings (OSTI)

... spectrum and fluencies is essential for several ... Neutron Interferometer and Optics Facility performed a ... other neutron scattering facilities depends on ...

2011-10-24T23:59:59.000Z

208

Cold Neutron and Ultracold Neutron Sources  

Science Conference Proceedings (OSTI)

... Moderators Solid Methane CH 4 CD 4 ... In a cold neutron flux with a continuous spectrum, more neutrons could ... Magneto-vibrational Scatt. + ...

2009-07-13T23:59:59.000Z

209

Chapter 13 - NEUTRON AREA DETECTORS 1. NEUTRON ...  

Science Conference Proceedings (OSTI)

... The neutron peak corresponds to both reaction products being entirely absorbed in the ... 6. A fission chamber is a very low efficiency neutron detector ...

2009-11-29T23:59:59.000Z

210

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

211

Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis  

Science Conference Proceedings (OSTI)

Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.

Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Rother, Gernot [ORNL; Allard Jr, Lawrence Frederick [ORNL; Jackson, Andrew [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Littrell, Ken [ORNL

2013-01-01T23:59:59.000Z

212

POLARIZED NEUTRONS IN RHIC  

SciTech Connect

There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

COURANT,E.D.

1998-04-27T23:59:59.000Z

213

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

214

Activation Measurements for Thermal Neutrons, U.S. Measurements of 36Cl in Mineral Samples from Hiroshima and Nagasaki; and Measurement of 63 Ni in Copper Samples From Hiroshima by Accelerator Mass Spectrometry  

SciTech Connect

The present paper presents the {sup 36}Cl measurement effort in the US. A large number of {sup 36}Cl measurements have been made in both granite and concrete samples obtained from various locations and distances in Hiroshima and Nagasaki. These measurements employed accelerator mass spectrometry (AMS) to quantify the number of atoms of {sup 36}Cl per atom of total Cl in the sample. Results from these measurements are presented here and discussed in the context of the DS02 dosimetry reevaluation effort for Hiroshima and Nagasaki atomic-bomb survivors. The production of {sup 36}Cl by bomb neutrons in mineral samples from Hiroshima and Nagasaki was primarily via the reaction {sup 35}Cl(n,{gamma}){sup 36}Cl. This reaction has a substantial thermal neutron cross-section (43.6 b at 0.025 eV) and the product has a long half-life (301,000 y). hence, it is well suited for neutron-activation detection in Hiroshima and Nagasaki using AMS more than 50 years after the bombings. A less important reaction for bomb neutrons, {sup 39}K(n,{alpha}){sup 36}Cl, typically produces less than 10% of the {sup 36}Cl in mineral samples such as granite and concrete, which contain {approx} 2% potassium. In 1988, only a year after the publication of the DS86 final report (Roesch 1987), it was demonstrated experimentally that {sup 36}Cl measured using AMS should be able to detect the thermal neutron fluences at the large distances most relevant to the A-bomb survivor dosimetry. Subsequent measurements in mineral samples from both Hiroshima and Nagasaki validated the experimental findings. The potential utility of {sup 36}Cl as a thermal neutron detector in Hiroshima was first presented by Haberstock et al. who employed the Munich AMS facility to measure {sup 36}Cl/Cl ratios in a gravestone from near the hypocenter. That work subsequently resulted in an expanded {sup 36}Cl effort in Germany that paralleled the US work. More recently, there have also been {sup 36}Cl measurements made by a Japanese group. The impetus for the extensive {sup 36}Cl and other neutron activation measurements was the recognized need to validate the neutron component of the dose in Hiroshima. Although this was suggested at the time of the DS86 Final Report, where it was stated that the calculated neutron doses for survivors could possibly be wrong, the paucity of neutron validation measurements available at that time prevented adequate resolution of this matter. It was not until additional measurements and data evaluations were made that it became clear that more work was required to better understand the discrepancies observed for thermal neutrons in Hiroshima. This resulted in a large number of additional neutron activation measurements in Hiroshima and Nagasaki by scientists in the US, Japan, and Germany. The results presented here for {sup 36}Cl, together with measurements made by other scientists and for other isotopes, now provide a much improved measurement basis for the validation of neutrons in Hiroshima.

Tore Straume; Alfredo A. Marchetti; Stephen D. Egbert; James A. Roberts; Ping Men; Shoichiro Fujita; Kiyoshi Shizuma; Masaharu Hoshi; G. Rugel; W. Ruhm; G. Korschinek; J. E. McAninch; K. L. Carroll; T. Faestermann; K. Knie; R. E. Martinelli; A. Wallner; C. Wallner

2005-01-14T23:59:59.000Z

215

Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide  

SciTech Connect

In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 [Uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g {sup 235}U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 41st Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U{sub 3}O{sub 8} to (1) extend the low range of the reported mass calibration curve to 10 g {sup 235}U, (2) evaluate the effect of U{sub 3}O{sub 8} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U{sub 3}O{sub 8} enriched to 20.1 wt% {sup 235}U and 52.5 wt% {sup 235}U.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-17T23:59:59.000Z

216

Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide  

SciTech Connect

As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO{sub 2} calibration algorithms to yield the mass of {sup 235}U present via differences between the expected count rate for the PuO{sub 2} and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 [uranium (93% Enriched) Oxide - U{sub 3}O{sub 8} Standard for Neutron Counting Measurements] and CRM 146 [Uranium Isotopic Standard for Gamma Spectrometry Measurements] and a selected set of LLNL PuO{sub 2}-bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO{sub 2} calibration algorithm that includes the effect of PuO{sub 2} density (2.4 g/cm{sup 3} to 4.8 g/cm{sup 3}) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of {sup 235}U present in an unknown of mixed U-Pu oxide.

Mount, M; O' Connell, W; Cochran, C; Rinard, P; Dearborn, D; Endres, E

2002-05-23T23:59:59.000Z

217

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

218

Choppers - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Choppers Neutron Choppers The primary mission of the Neutron Chopper Team is to provide functional, reliable, safe, and operationally proven neutron chopper systems as required by the SNS instrument beam lines. Type of Choppers Activities Facilities Equipment TOP2 T0 chopper installed and operating in a CTF lower level chopper test bay. (Click for a larger picture) Chopper technician Bill Jordan recording chopper balance data. Types of Choppers Neutron choppers are rotating mechanical devices designed to block the neutron beam for some fraction of each revolution of the chopper. Our goal is to have at least three different functional classes of neutron choppers available for user experiments. Most, if not all, of these will be designed in standard forms that are interchangeable among the instruments. Most

219

Methods for absorbing neutrons  

DOE Patents (OSTI)

A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

2012-07-24T23:59:59.000Z

220

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

Wood, J.L.

1992-12-01T23:59:59.000Z

222

Active cooling for downhole instrumentation: Preliminary analysis and system selection  

DOE Green Energy (OSTI)

A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

Bennett, G.A.

1988-03-01T23:59:59.000Z

223

Testing the quasi-absolute method in photon activation analysis  

SciTech Connect

In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

Sun, Z. J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Wells, D. [Physics Department, South Dakota School of Mines and Technology, 501 E. Saint Joseph St. Rapid City, SD 57701 (United States); Starovoitova, V.; Segebade, C. [Idaho Accelerator Center, Idaho State University, 921 S. 8th Ave. Pocatello, ID 83209 (United States)

2013-04-19T23:59:59.000Z

224

Application of 3-dimensional radiation transport codes to the analysis of the CRBR prototypic coolant pipe chaseway neutron streaming experiment  

Science Conference Proceedings (OSTI)

This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.

Chatani, K. (Power Reactor and Nuclear Development Corp., Experimental Reactor Div., Ibaraki (Japan))

1992-08-01T23:59:59.000Z

225

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

226

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

227

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

228

Carbon Dioxide Information Analysis Center: FY 1992 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

1993-03-01T23:59:59.000Z

229

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

230

Safety control circuit for a neutronic reactor  

DOE Patents (OSTI)

A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

Ellsworth, Howard C. (Richland, WA)

2004-04-27T23:59:59.000Z

231

Report on INL Activities for Uncertainty Reduction Analysis of FY11  

SciTech Connect

This report presents the status of activities performed at INL under the ARC Work Package on 'Uncertainty Reduction Analyses' that has a main goal the reduction of uncertainties associated with nuclear data on neutronic integral parameters of interest for the design of advanced fast reactors under consideration by the ARC program. First, an analysis of experiments was carried out. For both JOYO (the first Japanese fast reactor) and ZPPR-9 (a large size zero power plutonium fueled experiment performed at ANL-W in Idaho) the performance of ENDF/B-VII.0 is quite satisfying except for the sodium void configurations of ZPPR-9, but for which one has to take into account the approximation of the modeling. In fact, when one uses a more detailed model (calculations performed at ANL in a companion WP) more reasonable results are obtained. A large effort was devoted to the analysis of the irradiation experiments, PROFIL-1 and -2 and TRAPU, performed at the French fast reactor PHENIX. For these experiments a pre-release of the ENDF/B-VII.1 cross section files was also used, in order to provide validation feedback to the CSWEG nuclear data evaluation community. In the PROFIL experiments improvements can be observed for the ENDF/B-VII.1 capture data in 238Pu, 241Am, 244Cm, 97Mo, 151Sm, 153Eu, and for 240Pu(n,2n). On the other hand, 240,242Pu, 95Mo, 133Cs and 145Nd capture C/E results are worse. For the major actinides 235U and especially 239Pu capture C/E's are underestimated. For fission products, 105,106Pd, 143,144Nd and 147,149Sm are significantly underestimated, while 101Ru and 151Sm are overestimated. Other C/E deviations from unity are within the combined experimental and calculated statistical uncertainty. From the TRAPU analysis, the major improvement is in the predicted 243Cm build-up, presumably due to an improved 242Cm capture evaluation. The COSMO experiment was also analyzed in order to provide useful feedback on fission cross sections. It was found out that ENDF/B-VII.1 238,240Pu fission cross sections have improved with respect to VII.0 files while 242Pu's fission cross section has not.

G. Plamiotti; H. Hiruta; M. Salvatores

2011-09-01T23:59:59.000Z

232

Contact ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Organization Charts Neutron Sciences Directorate Associate Laboratory Director for Neutron Sciences, Kelly Beierschmitt Biology and Soft Matter Division Director, Paul...

233

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

234

NEUTRON SOURCE  

DOE Patents (OSTI)

A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

1959-01-13T23:59:59.000Z

235

Spallation Neutron Source | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source SNS site, Spring 2012 The 80-acre SNS site is located on the east end of the ORNL campus and is about a three-minute drive from her sister neutron...

236

Science | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Neutron Science Neutron Scattering Science Neutrons are one of the fundamental particles that make up matter and have properties that make them ideal for certain types of research. In the universe, neutrons are abundant, making up more than half of all visible matter. Neutron scattering provides information about the positions, motions, and magnetic properties of solids. When a beam of neutrons is aimed at a sample, many neutrons will pass through the material. But some will interact directly with atomic nuclei and "bounce" away at an angle, like colliding balls in a game of pool. This behavior is called neutron diffraction, or neutron scattering. Using detectors, scientists can count scattered neutrons, measure their energies and the angles at which they scatter, and map their final position

237

Covariant analysis of Newtonian multi-fluid models for neutron stars: II Stress - energy tensors and virial theorems  

E-Print Network (OSTI)

The 4-dimensionally covariant approach to multiconstituent Newtonian fluid dynamics presented in the preceding article of this series is developed by construction of the relevant 4-dimensional stress energy tensor whose conservation in the non-dissipative variational case is shown to be interpretable as a Noether identity of the Milne spacetime structure. The formalism is illustrated by the application to homogeneously expanding cosmological models, for which appropriately generalised local Bernouilli constants are constructed. Another application is to the Iordanski type generalisation of the Joukowski formula for the Magnus force on a vortex. Finally, at a global level, a new (formally simpler but more generally applicable) version of the ``virial theorem'' is obtained for multiconsituent -- neutron or other -- fluid star models as a special case within an extensive category of formulae whereby the time evolution of variously weighted mass moment integrals is determined by corresponding space integrals of stress tensor components, with the implication that all such stress integrals must vanish for any stationary equilibrium configuration.

Brandon Carter; Nicolas Chamel

2003-12-16T23:59:59.000Z

238

ORNL neutron facilities deliver neutrons  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) resumed full power operations on May 16, 2007. There were three experiment cycles of 23 to 25 days in FY2007 and another six are proposed for FY2008 beginning in November 2007. During FY 2007, the High Flux Isotope Reactor delivered 1178 operating hours to users. Commissioning of two SANS instruments is under way and these instruments will join the user program in 2008. The Neutron Scattering Science Advisory Committee endorsed language encouraging development of the science case for two instruments proposed for HFIR.

Ekkebus, Allen E [ORNL

2008-01-01T23:59:59.000Z

239

Graph of words embedding for molecular structure-activity relationship analysis  

Science Conference Proceedings (OSTI)

Structure-Activity relationship analysis aims at discovering chemical activity of molecular compounds based on their structure. In this article we make use of a particular graph representation of molecules and propose a new graph embedding procedure ...

Jaume Gibert; Ernest Valveny; Horst Bunke

2010-11-01T23:59:59.000Z

240

A Tracer Study with Oxygen-18 in Photosynthesis by Activation Analysis  

E-Print Network (OSTI)

r e e n algae. t e r m photosynthesis products containing 0WITH OXYGEN - I8 IN PHOTOSYNTHESIS BY ACTIVATION ANALYSISWITH OXYGEN-18 IN PHOTOSYNTHESIS BY ACTIVATION ANALYSIS I n

Fogelstrom-Fineman, Ingrid; Holm-Hansen, Osmund; Tolbert, Bert M.; Calvin, Melvin

1957-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Empirical Tracking and Analysis of the Dynamics in Activity Scheduling and Schedule Execution  

E-Print Network (OSTI)

R. G. (2004) Real-time Tracking of Activity Scheduling/GIS) viii ABSTRACT Empirical Tracking and Analysis of theSanta Barbara Empirical Tracking and Analysis of the

Zhou, Jianyu Jack

2006-01-01T23:59:59.000Z

242

Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory  

SciTech Connect

A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

Kim, S.H.; Taleyarkhan, R.P.

1994-01-01T23:59:59.000Z

243

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

244

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

245

The Versatile Neutron Imaging Instrument at SNS | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Versatile Neutron Imaging Instrument at SNS VENUS: Neutron imaging to advance energy efficiency VENUS: Neutron imaging to advance energy efficiency. As its name indicates,...

246

Imaging with Scattered Neutrons  

E-Print Network (OSTI)

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

247

Doing Neutron Scattering Science with the Multi-Axis Crystal ...  

Science Conference Proceedings (OSTI)

... at the NIST Center for Neutron Research began commissioning operation on ... and Internal Stress Analysis after High Temperature Corrosion in Power Plants.

248

Selected Aspects of Neutron Decay  

E-Print Network (OSTI)

Precision measurements of neutron decay offer complementary access to particle physics at small distance scales or high energies. In particular they allow tests of the V-A structure of the weak interaction. Among many experimental activities which are ongoing around the world we present two new experiments which are planned or studied for the near future. While the neutron lifetime still bears significant experimental uncertainties and thus has to be studied with greatest precision the two-body decay ($n\\to H\\bar\

Stephan Paul

2005-04-18T23:59:59.000Z

249

Magnetism Highlights| Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

250

Spectroscopical Analysis of Mechano-chemically Activated Surfaces  

E-Print Network (OSTI)

Mechano-chemical activation is fundamentally different than chemical activation in that energy is added to alter the state of bond energy instead of exciting electrons to produce a chemical reaction. Mechano-chemical activation has demonstrated to alter the chemical reaction and rates. There remains no development of a model to quantify the changes in reactions due to mechano-chemical activation. This research aims in expanding our understanding of the influence of mechanochemical activation methods. The dynamics and kinetics of mechano-chemically activated surfaces will be studied using x-ray spectroscopy methods. Mechano-chemical interactions can be quantified through the study of electron energies. X-ray spectroscopy is a useful method of analyzing and quantifying electron energy states. X-ray absorbance is used to study the valence state electron shells of iron undergone activation through sliding friction of naturally produced wax. In-situ x-ray photoemission spectroscopy is employed to instantaneously characterize single crystal tantalum samples of each principal crystallographic orientation during oxidation. Sliding friction of the naturally produced wax resulted in a reduction in the binding energy of the iron 2p electrons by approximately one electron-volt. This reduction in binding energy is attributed to ferrocene which is an organo-metallic alloy, Fe(C5H5)2. Mechanical strain of the crystal lattices of tantalum resulted in altered activation energies. Activation energy increased with the application of lattice strain. At increasing strain, oxide properties become more dependent on the lattice strain than the crystal orientation and temperature. A model system is developed incorporating mechanical strain into the prediction of activation energy and rates.

Cooper, Rodrigo

2011-08-01T23:59:59.000Z

251

Directorate Organization | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL Neutron Sciences Directorate The Neutron Sciences Directorate (NScD) manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's...

252

THERMAL HYDRAULICS KEYWORDS: neutron activation,  

E-Print Network (OSTI)

, where the energy generated is determined from measurements of heat balance. The lat- ter includes by standard methods of radiation transport, in particular with Monte Carlo methods. The fluid dynamic part are equivalent regarding their ability to account for the ef- fect of fluid dynamics on the detector time

Pázsit, Imre

253

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

254

HFIR History - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › History Home › Facilities › HFIR › History History of HFIR HFIR was constructed in the mid-1960s to fulfill a need for the production of transuranic isotopes (i.e., "heavy" elements such as plutonium and curium). Since then its mission has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its 40-year history. During a shutdown of more than a year, the facility was refurbished and a number of new instruments were installed, as well as a cold neutron source. The reactor was restarted in mid-May; it attained its full power of 85 MW within a couple of days, and experiments resumed within a week. Improvements and upgrades to HFIR include an overhaul of the

255

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic-Scale Behavior of "Cobalt Blue" Atomic-Scale Behavior of "Cobalt Blue" Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" Research Contact: Gregory MacDougall ORNL News Release, September 2011, Media Contact: Bill Cabage Cobalt aluminate Just as cobalt blue's lustrous hue attracts artists and decorators, the antiferromagnetic properties of the responsible compound-cobalt aluminate-are attracting neutron scientists at DOE's Oak Ridge National Laboratory. Studies of magnetic interactions deep within the material's atomic structure may provide clues toward the development of energy-efficient technologies. (Light sconce image courtesy of B. Jefferson Bolender. Click image for high res version.) Neutron scattering studies of "cobalt blue," a compound prized by artists

256

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

257

News & Events | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

News › 2005 News News › 2005 News Neutron Science In the News - 2005 December November October September August July June May April March February January John Sullivan, Associate Under Secretary, took a tour of the Spallation Neutron Source (SNS), October 4, 2005 John Sullivan, Associate Under Secretary, took a tour of the Spallation Neutron Source (SNS), October 4, 2005. Because some media sources archive past articles and require a subscription for access, some of the links below might not be active. If a citation listed here is no longer available, please contact the newspaper or your library directly. December Spallation Neutron Source Amazing Science Facts Newswise 12/22 The New Year is bringing the science community a grand present: The Spallation Neutron Source at Oak Ridge National Laboratory. On schedule for

258

Neutron streak camera  

DOE Patents (OSTI)

Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

Wang, C.L.

1981-05-14T23:59:59.000Z

259

Layered semiconductor neutron detectors  

SciTech Connect

Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

Mao, Samuel S; Perry, Dale L

2013-12-10T23:59:59.000Z

260

MATERIALS FOR SPALLATION NEUTRON SOURCES: IV: Neutronics  

Science Conference Proceedings (OSTI)

The Department of Energy has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis Activities at Idaho National Engineering & Environmental Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering and Environmental Laboratory Engineering and Environmental Laboratory Systems Analysis Finis Southworth, PhD Department Manager Systems & Decision Science DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Idaho National Engineering and Environmental Laboratory Charter Systems & Decision Science Mission: Develop and apply science-based systems, systems engineering, and decision science capabilities that result in successful projects and effective, defensible decisions Systems & Decision Science Funding: 0 2 4 6 8 10 12 $M National & Homeland Security Systems Integration and Analysis Other (YMP, Cleanup, etc.) Energy Current S&DS Funding = $18M FY04 FY03 Idaho National Engineering and Environmental Laboratory

262

Analysis of the burping behavior of the cold solid methane moderator at IPNS (Intense Pulsed Neutron Source)  

SciTech Connect

Examination of the cold solid methane moderator at IPNS (Model II) revealed that a circumferential weld failed due to high internal pressure, such as would be caused by thermal expansion of solid methane or the release of Hydrogen gas upon spontaneous heating. This weld is the main object of current attention for a design of a replacement. The present paper deals with the processes which lead to the burping behavior and outlines the analysis of some of the consequences. The purpose is to determine conditions under which the system can operate at the lowest possible temperature, avoiding the problems experienced to data.

Carpenter, J.M.; Walter, U.

1986-01-01T23:59:59.000Z

263

Instruments | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

NScD Careers NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Instruments SHARE Instruments at SNS and HFIR SNS Instrument Name HFIR Instrument Name 1B NOMAD - Nanoscale-Ordered Materials Diffractometer CG-1 Development Beam Line 2 BASIS - Backscattering Spectrometer CG-1D IMAGING - Neutron Imaging Prototype Facility 3 SNAP - Spallation Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS - Biological Small-Angle Neutron Scattering Instrument 4B LR - Liquids Reflectometer CG-4C CTAX - Cold Neutron Triple-Axis Spectrometer 5 CNCS - Cold Neutron Chopper Spectrometer HB-1 PTAX - Polarized Triple-Axis Spectrometer

264

Ultrafast neutron detector  

DOE Patents (OSTI)

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

265

Pulsed-neutron monochromator  

DOE Patents (OSTI)

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

266

Procurement - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

for the acquisition of goods and services for neutron scattering operations at SNS and HFIR. If you're interested in conducting business with the Neutron Sciences Directorate or...

267

Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor. The pulsed neutron source at SNS and the continuous neutron source at HFIR complement each other well and, along with their state-of-the-art instruments, provide...

268

Rocky Flats Neutron Detector Testing at Valduc, France  

Science Conference Proceedings (OSTI)

Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

Kim, S S; Dulik, G M

2011-01-03T23:59:59.000Z

269

Advanced neutron absorber materials  

DOE Patents (OSTI)

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

270

Physics @ Oxford SCATTERING NEUTRONS  

E-Print Network (OSTI)

1 Neutron Scattering Society of America (NSSA) Purpose and New Initiatives www.neutronscattering.org SNS/ANL School on Neutron and X-Ray Scattering June 2011 Visit us now on Facebook #12;2 What is the NSSA? NSSA is an organization of scientists and engineers with a common interest in using neutron

Herz, Laura M.

271

Systems simulation and economic analysis for active solar cooling  

DOE Green Energy (OSTI)

A consistent methodology has been developed by which general solar cooling market capture goals have been translated into specific cost and performance goals for solar cooling systems and subsystems. Preliminary results indicate that realistic cost/performance goals can be established for active solar cooling systems and that, with aggressive development, these goals can be reached by the year 2000. As the technology develops, tax incentives will be required to bridge the gap between the actual costs and the cost goals, so that the scenario of an ever increasing share of market penetration can be maintained over the 1986 to 2000 time period.

Warren, M.; Wahlig, M.

1981-07-01T23:59:59.000Z

272

Transmittal of Immobilized Low Activity Waste (ILAW) Disposal Preliminary RAM Analysis Report (formerly PLG-1412)  

Science Conference Proceedings (OSTI)

This report presents the results of the preliminary reliability, availability, and maintainability analysis of operations at the ILAW Disposal Facility, Project W-520, to be performed during Phase I activities in support of the WTP

CALMUS, R.B.

2002-12-04T23:59:59.000Z

273

Management Assessment Quality Assurance Guidance in support of EM environmental sampling and analysis activities  

SciTech Connect

This document is one of several guidance documents developed by DOE EM pertaining to environmental restoration and waste management sampling and analysis activities. This guidance contains performance objectives and representative assessment criteria that can be used to conduct management assessments.

1994-05-01T23:59:59.000Z

274

Systems Studies Department FY 78 activity report. Volume 2. Systems analysis. [Sandia Laboratories, Livermore  

DOE Green Energy (OSTI)

The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures. (RWR)

Gold, T.S.

1979-02-01T23:59:59.000Z

275

NEUTRONIC REACTOR  

DOE Patents (OSTI)

BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

1959-10-27T23:59:59.000Z

276

Advanced Neutron Source (ANS) Project progress report  

SciTech Connect

This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

277

High energy neutron dosimeter  

DOE Patents (OSTI)

A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

Rai, K.S.F.

1994-01-11T23:59:59.000Z

278

High energy neutron dosimeter  

DOE Patents (OSTI)

A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

Sun, Rai Ko S.F. (Albany, CA)

1994-01-01T23:59:59.000Z

279

Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments  

Science Conference Proceedings (OSTI)

Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L. [Neutron Sciences Directorate, Oak Ridge National Laboratory (United States)

2011-07-01T23:59:59.000Z

280

Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator  

E-Print Network (OSTI)

Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

282

Reflected Neutron Effects in Multiplicity Measurements of Bare HEU Assemblies  

SciTech Connect

In a passive multiplicity characterization of highly enriched uranium (HEU) assemblies, fission chains are initiated by the characteristically fast neutrons from spontaneous fission of {sup 238}U and {sup 235}U as well as cosmic-ray spallation neutrons. Active interrogation of HEU uses other physical mechanisms for starting chains by inducing fission from high-energy neutrons, high-energy gamma-rays, delayed neutrons, or thermal neutrons. In all cases a contribution to the initiation of fission chains is the reflection of neutrons that initially escape the assembly and re-enter it after undergoing some scattering. The reflected neutron flux is geometry dependent and a combination of fast and thermal energies. The reflected thermal neutron contribution occurs hundreds of microseconds after the beginning of the fission chain and can be distinguished from the cosmic-ray spallation neutrons unrelated to fission chains, resulting in an HEU detection signature with high signal-to-noise. However, the reflected thermal neutron flux can be eliminated with an efficient thermal neutron absorber to investigate reflected neutron effects. In this paper, active and passive multiplicity measurements with HEU oxide assemblies of up to 16 kg of fuel pins and HEU metal assemblies of up to five 18 kg storage castings are reported. Each case demonstrates the differences in HEU signature when a borated thermal neutron absorber is present and shows the various detectable signatures with 3He proportional counters, the standard detector for differential die-way and neutron multiplicity measurements, and liquid scintillators, a detector capable of operating on the timescale of fission chains.

McConchie, Seth M [ORNL; Hausladen, Paul [ORNL; Mihalczo, John T [ORNL

2010-01-01T23:59:59.000Z

283

Imaging and Neutrons - IAN 2006 - Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS Home Saturday, January 11, 2014 SNS Home Saturday, January 11, 2014 Go IAN 2006 Imaging and Neutrons 2006 October 23-25, 2006 Iran Thomas Auditorium Central Laboratory and Office Building Spallation Neutron Source Oak Ridge National Laboratory, Oak Ridge, TN Who Should Attend Synopsis Goals and Expected Outcomes Application Areas Techniques International Advisory Committee Local Organizing Committee Agenda with Presentations NEW Confirmed Speakers Frequently Asked Questions - FAQ Satellite Workshop - Progress in Electron Volt Neutron Spectroscopy eV Worshop Agenda presentations NEW Lodging, Transportation, Bus Schedule Location Directions and Map Registration CLOSED Abstracts, Posters, Contributed Talks Scholarships Sponsors Vendors May Attend Relevant Reports Important Dates Weather Attractions

284

Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011  

Science Conference Proceedings (OSTI)

A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

Hagen, E. C.

2011-07-02T23:59:59.000Z

285

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

286

Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer  

Science Conference Proceedings (OSTI)

Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc. [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Longhino, Juan [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Perona, Marina [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Calzetta, Osvaldo; Blaumann, Herman [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Rebagliati, Raul Jimenez [Department of Chemistry (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Cabrini, Romulo [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Kahl, Steven [Department of Pharmaceutical Chemistry, University of California, San Francisco, CA (United States); Juvenal, Guillermo Juan [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Pisarev, Mario Alberto [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina)], E-mail: pisarev@cnea.gov.ar

2007-11-15T23:59:59.000Z

287

Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator  

E-Print Network (OSTI)

Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutron source. In the results, the designed and fabricated stilbene neutron diagnostic system performed well in discriminating neutrons from gamma-rays under the high magnetic field conditions during KSTAR operation. Fast neutrons of 2.45 MeV were effectively measured and evaluated during the 2011 KSTAR campaign.

Seung Kyu Lee; Byoung-Hwi Kang; Gi-Dong Kim; Yong-Kyun Kim

2011-12-27T23:59:59.000Z

288

Nondestructive analysis of oil shales with PGNAA technique  

DOE Green Energy (OSTI)

The feasibility of nondestructive analysis of oil shales using the prompt gamma neutron activation analysis (PGNAA) technique was studied. The PGNAA technique, developed originally for continuous analysis of coal on the belt, was applied to the analysis of eight oil-shale samples, containing between 9 and 60 gallons of oil per ton and 0.8% to 3.4% hydrogen. The PGNAA technique was modified using four neutron moderation conditions: non-moderated neutrons; non-moderated and partially moderated neutrons reflected from a water box behind the source; neutrons moderated in a water box behind and in front of the source; and neutrons strongly moderated in a polyethylene block placed in front of the source and with reflected neutrons from a water box behind the source. The studied oil shales were measured in their aluminum or wooden (masonite) boxes. The obtained Ge-Li spectra were processed by LSI-11/23 computer, using the modified programs previously developed by SAI for continuous coal analysis. The results of such processing (the peak areas for several gamma lines) were corrected and plotted against the weight percent of each analyzed element (from the chemical analysis). Response curves developed for H, C, N, S, Na, Mg, Al, Si, Ti, Ca, Fe and K show generally good linear proportions of peak area to the weight percent of the element. For hydrogen determination, NMD conditions had to be used where the response curve was not linear, but followed a curve whose slope rose with hydrogen concentration. This effect is caused by improving neutron self-moderation in sample boxes of rich oil shales, as compared to poor self-moderation of neutrons in very lean oil shales. The moisture in oil shales was measured by microwave absorption technique in small masonite boxes. This method was calibrated four times using oil-shale samples mixed gradually with larger and larger amounts of water.

Maly, J.; Bozorgmanesh, H.

1984-02-01T23:59:59.000Z

289

Neutron beta-decay, Standard Model and cosmology  

E-Print Network (OSTI)

The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. The neutron lifetime recently obtained, 878.5 +/- 0.7stat +/- 0.3sys s, is the most accurate one to date. The new result for the neutron lifetime differs from the world average value by 6.5 standard deviations. The impact of the new result on testing of Standard Model and on data analysis for the primordial nucleosynthesis model is scrutinized.

A. P. Serebrov

2006-11-22T23:59:59.000Z

290

International workshop on cold neutron sources  

Science Conference Proceedings (OSTI)

The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States)) [comps.; Los Alamos National Lab., NM (United States)

1991-08-01T23:59:59.000Z

291

Neutron Science In the News - 2014 | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science In the News - 2014 Neutron Science In the News - 2014 Because some media sources archive past articles and require a subscription for access, some of the links below might not be active. If a citation listed here is no longer available, please contact the newspaper or your library directly. January Multiphysics Simulations Transmuting Designs for Safer Nuclear Power Engineering.com 1/7 Like the rest of the US's nuclear research reactors, Oak Ridge National Lab's (ORNL) high flux isotope reactor (HFIR) is moving from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU). As such, the safety of the system must be assessed to incorporate the changes in fuel properties and the subsequently modified fuel plate. Due to the recent growth in multiphysics, fluid-structure dynamics

292

EFFECT OF NEUTRON IRRADIATION ON MATERIALS SUBJECTED TO MULTI-AXIAL STRESS DISTRIBUTIONS. Quarterly Report for the Period Ending June 30, 1962  

SciTech Connect

Activities in a program to determine the effects of neutron irradiation on A-302B steel are reported. Plans are discussed concerning performance tests on tensile, notched tensile, tube, and Charpy specimens. An irradiation capsule design was finalized. A theoretical analysis of the critical conditions arising in a tube subjected to both internal pressure and axial load is included. (J.R.D.)

Trozera, T A

1962-08-13T23:59:59.000Z

293

The Neutron Residual Stress Mapping Facility at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Residual Stress Mapping Facility at HFIR Neutron Residual Stress Mapping Facility (HB-2B) Neutron Residual Stress Mapping Facility (HB-2B). The HB-2B beam port is optimized...

294

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

295

Spallation Neutron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

D/gim D/gim Spallation Neutron Source SNS is an accelerator-based neutron source. This one-of-a-kind facility pro- vides the most intense pulsed neutron beams in the world. When ramped up to its full beam power of 1.4 MW, SNS will be eight times more powerful than today's best facility. It will give researchers more detailed snapshots of the smallest samples of physical and biological materials than ever before

296

Neutron-detection apparatus  

DOE Patents (OSTI)

An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

Kopp, M.K.; Valentine, K.H.

1981-04-24T23:59:59.000Z

297

Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Physics Neutron Scattering in Quantum Condensed Matter Physics flyer The first cyber enabled collaborative graduate course was launched in Fall semester 2012. It addresses...

298

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

299

Neutron Spin Filters  

Science Conference Proceedings (OSTI)

... many nice scientific results from the use of high intensity polarized neutrons ... Electromagnetic radiation of exactly the right energy can exert a sort of ...

2013-03-12T23:59:59.000Z

300

Physics Out Loud - Neutron  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter Previous Video (Matter) Physics Out Loud Main Index Next Video (Niobium) Niobium Neutron Karl Slifer, a physicist based at the University of New Hampshire and who conducts...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Neutron Scattering Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA University of...

302

Neutron Scattering Web  

NLE Websites -- All DOE Office Websites (Extended Search)

at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for...

303

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

304

NCNR Neutron Spin Filters  

Science Conference Proceedings (OSTI)

... be characterized either by the transmission asymmetry A ... defined to be the transmissions for neutrons ... P sub n, (solid thick line), transmission T sub n ...

305

Neutron detection apparatus  

DOE Patents (OSTI)

An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

Kopp, Manfred K. (Oak Ridge, TN); Valentine, Kenneth H. (Lenoir City, TN)

1983-01-01T23:59:59.000Z

306

Neutron Scattering Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgements The graphics used on the Neutron Scattering Web Pages were designed by Tami Sharley (Information and Publishing Services Division) and Jack Carpenter (Intense...

307

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.241.2897 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

308

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Sciences Division Oak Ridge National Laboratory Phone: 865.576.2779 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

309

Neutrons in Biology, ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Division Oak Ridge National Laboratory Phone: 865.241.5176 SNS Logo HFIR Logo General Information The unique potential of neutron scattering in structural...

310

ORNL Neutron Sciences Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

at other facilties by Neutron Sciences Directorate staff. We strongly encourage SNS and HFIR users to submit citation information, including URLs, for all publications regarding...

311

Towards a Neutron Microscope  

Science Conference Proceedings (OSTI)

Towards a Neutron Microscope. Summary: ... The novel lens is a Wolter Optic similar in design to the telescope of the CHANDRA x-ray observatory. ...

2013-07-23T23:59:59.000Z

312

Neutrons in Soft Matter Science | Education | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Complex Materials on Mesoscopic Scales Neutron in Soft Matter Science flyer The new cyber-enabled collaborative graduate course "Neutrons in Soft Matter Science: Complex...

313

Neutron Science Facilities Operating Status | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Facilities Operating Status High Flux Isotope Reactor The reactor is currently operating at 100% power for fuel cycle 449. Spallation Neutron Source SNS is shutdown...

314

Neutronic Aspects and Recent Experimental Results with ...  

Science Conference Proceedings (OSTI)

... Neutronic Aspects and Recent Experimental Results with Methane Moderators at IUCF Low Energy Neutron Source (LENS). ...

315

Sampling and analysis plan for RCRA closure activities at 218-E-8 Borrow Pit Demolition Site  

Science Conference Proceedings (OSTI)

Purpose of this document is to provide guidance for sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 218-E-8 West Ash Pit Demolition Site. The borrow pit was used for demolition of discarded explosive chemicals, asbestos disposal, tumbleweed incineration, and storage of hazardous waste. Soil samples will be taken from around the blasting pit, to verify that the concentrations of all detonation activity contaminants are below action levels.

Lucas, J.G.

1994-06-02T23:59:59.000Z

316

Dim Isolated Neutron Stars, Cooling and Energy Dissipation  

E-Print Network (OSTI)

The cooling and reheating histories of dim isolated neutron stars(DINs) are discussed. Energy dissipation due to dipole spindown with ordinary and magnetar fields, and due to torques from a fallback disk are considered as alternative sources of reheating which would set the temperature of the neutron star after the initial cooling era. Cooling or thermal ages are related to the numbers and formation rates of the DINs and therefore to their relations with other isolated neutron star populations. Interaction with a fallback disk, higher multipole fields and activity of the neutron star are briefly discussed.

M. Ali Alpar

2006-09-07T23:59:59.000Z

317

Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture  

SciTech Connect

The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

Scott Wilde, Raymond Keegan

2008-07-01T23:59:59.000Z

318

NIST: NIF - Neutron Imaging Facility  

Science Conference Proceedings (OSTI)

... 1 above) is located at Beam Tube 2 (BT-2 ... Figure 2. Plan view of the neutron imaging facility ... still a significant amount of high energy neutrons and ...

319

Neutron and Nano User Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Science @ Neutron and Nano Facilities User Workshops Integrated Agendas Venue Travel Information Contacts and Sponsors Registration Talks Neutron and Nano User Meeting August...

320

Neutron and Nano User Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Science @ Neutron and Nano Facilities Science @ Neutron and Nano Facilities: Complementary Techniques Oak Ridge National Laboratory, Building 5200 Tuesday-Wednesday, August 13-14,...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

News & Awards | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards Events and Conferences Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | News and Awards SHARE News and Awards 1-6 of 6 Results...

322

Californium-252: neutron source for industry and medicine  

SciTech Connect

From eleventh conference on radioisotopes; Tokyo, Japan (13 Nov 1973). The history, production, and availability of /sup 252/Cf and its many potential uses are discussed. Applications in life sciences, education chemical analysis, exploration for natural resources, industrial process control, neutron radiography, nondestructive inspection, and neutron flux enhancement are described. (TFD)

Reinig, W.C.; Permar, P.H.; Cornman, W.R.

1973-01-01T23:59:59.000Z

323

BINP accelerator based epithermal neutron source V. Aleynik a  

E-Print Network (OSTI)

medical physics to Homeland security. Summary: Neutrons are a powerful tool for the identificationImaging Technique for a Neutron Based Elemental Analysis Interrogation System D. S. Koltick* and I. S. Novikov Purdue University, Physics Department and Center for Sensing Science and Technology 525

Taskaev, Sergey Yur'evich

324

Measurements of Activation and Decay Heat Produced in Materials Irradiated with D-T Neutron and Comparison with EASY-2007 Code Predictions  

Science Conference Proceedings (OSTI)

Nuclear Analysis & Experiments / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Mario Pillon; Maurizio Angelone; Sandro Sandri

325

NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES  

DOE Patents (OSTI)

A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

Newson, H.W.

1958-06-01T23:59:59.000Z

326

Neutron charge radius and the neutron electric form factor  

Science Conference Proceedings (OSTI)

For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G{sub E}{sup n}, vs the square of the four-momentum transfer, Q{sup 2}. Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G{sub E}{sup n} data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G{sub E}{sup n} (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

Gentile, T. R. [Stop 8461, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Crawford, C. B. [University of Kentucky, Lexington, Kentucky 40506 (United States)

2011-05-15T23:59:59.000Z

327

2010 Neutron Review: ORNL Neutron Sciences Progress Report  

SciTech Connect

During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and chalcogenides), a class of materials discovered in 2008. This research is yielding new insights into the relationship between magnetism and superconductivity and has established several key features of this family of high-temperature superconducting (HTS ) materials: the maximum magnetic field at which they can function, the nature of the electrons involved in the superconductivity, the dependence of the properties upon chemical substitution, and the character of the magnetic fluctuations in the material. The results suggest that despite important differences between these materials and the HTS copper oxides, a universal mechanism may be responsible for the unconventional superconductivity. (4) Coal Sequestration Research: A New Home for Greenhouse Gases - One possibility for slowing down the increasing levels of carbon dioxide (CO{sub 2}) in the atmosphere is to capture the gas in natural underground features such as coal seams. Critical to the feasibility of this technology is determining how much CO{sub 2} can be stored, no method for which has been found - until now. (5) Accelerator Reliability Passes 92% - In December 2010, SNS set a new record for itself when the accelerator ran at 1 MW with 100% reliability. Target Performance Exceeds All Expectations - The mercury target used at SNS is the first of its kind. During the design and planning for SNS, many people were skeptical that the target would work. In 2010, it was confirmed that the target was working not only well but much better than anyone would have imagined. (6) Changing the World of Data Acquisition - Researchers at SNS are starting to benefit from event-based data analysis. Event data mode captures and stores an individual data set for every single neutron that strikes a detector - precisely when and where the neutron is detected. This technique provides numerous advantages over traditional methods. Event data mode allows researchers to process their data at the highest resolution possible with no loss of data. This method of data collection provides a much more efficient way for users to gather data a

Bardoel, Agatha A [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

2011-06-01T23:59:59.000Z

328

Testing and forecasting the time series of the solar activity by singular spectrum analysis  

E-Print Network (OSTI)

To study and forecast the solar activity data a quite perspective method of singular spectrum analysis (SSA) is proposed. As known, data of the solar activity are usually presented via the Wolf numbers associated with the effective amount of the sunspots. The advantages and disadvantages of SSA are described by its application to the series of the Wolf numbers. It is shown that the SSA method provides a sufficiently high reliability in the description of the 11-year solar cycle. Moreover, this method is appropriate for revealing more long cycles and forecasting the further solar activity during one and a half of 11-year cycle.

A. Loskutov; I. A. Istomin; K. M. Kuzanyan; O. L. Kotlyarov

2000-10-13T23:59:59.000Z

329

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

330

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

331

Pocked surface neutron detector  

DOE Patents (OSTI)

The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

2003-04-08T23:59:59.000Z

332

THERMAL NEUTRON BACKSCATTER IMAGING.  

DOE Green Energy (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

333

Pulsed neutron detector  

DOE Patents (OSTI)

A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

1989-03-21T23:59:59.000Z

334

Neutron Science TeraGrid Gateway  

Science Conference Proceedings (OSTI)

The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

Lynch, Vickie E [ORNL; Chen, Meili [ORNL; Cobb, John W [ORNL; Kohl, James Arthur [ORNL; Miller, Stephen D [ORNL; Speirs, David A [ORNL; Vazhkudai, Sudharshan S [ORNL

2010-01-01T23:59:59.000Z

335

Cosmogenic neutron-capture-produced nuclides in stony meteorites  

SciTech Connect

The distribution of neutrons with energies below 15 MeV in spherical stony meteoroids is calculated using the ANISN neutron-transport code. The source distributions and intensities of neutrons are calculated using cross sections for the production of tritium. The meteoroid's radius and chemical composition strongly influence the total neutron flux and the neutron energy spectrum, while the location within a meteoroid only affects the relative neutron intensities. Meteoroids need to have radii of more than 50 g/cm/sup 2/ before they have appreciable fluxes of neutrons near thermal energies. Meteoroids with high hydrogen or low iron contents can thermalize neutrons better than chondrites. Rates for the production of /sup 60/Co, /sup 59/Ni, and /sup 36/Cl are calculated with evaluated neutron-capture cross sections and neutron fluxes determined for carbonaceous chondrites with high hydrogen contents, L-chondrites, and aubrites. For most meteoroids with radii < 300 g/cm/sup 2/, the production rates of these neutron-capture nuclides increase monotonically with depth. The highest calculated /sup 60/Co production rate in an ordinary chondrite is 375 atoms/(min g-Co) at the center of a meteoroid with a 250 g/cm/sup 2/ radius. The production rates calculated for spallogenic /sup 60/Co and /sup 59/Ni are greater than the neutron-capture rates for radii less than approx.50-75 g/cm/sup 2/. Only for very large meteoroids and chlorine-rich samples is the neutron-capture production of /sup 36/Cl important. The results of these calculations are compared with those of previous calculations and with measured activities in many meteorites. 44 refs., 15 figs., 1 tab.

Spergel, M.S.; Reedy, R.C.; Lazareth, O.W.; Levy, P.W.

1985-01-01T23:59:59.000Z

336

Energy Density Functional for Nuclei and Neutron Stars  

Science Conference Proceedings (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

337

Time resolved neutron spectrum measurements at the Mirror Fusion Test Facility  

SciTech Connect

An advanced neutron diagnostic system has been developed for spectrum measurements on MFTF. Its collimated field of view allows spatially resolved neutron spectrum measurements. The 10 Mhz pulse height analysis and particle identification capability allow spectrum measurements in intervals as short as 10 ms. These capabilities will be used for space and time resolved determinations of ion energy from measurements of neutron Doppler width.

Slaughter, D.

1985-10-01T23:59:59.000Z

338

A Synoptic Analysis of the Interannual Variability of Winter Cyclone Activity in the Aleutian Low Region  

Science Conference Proceedings (OSTI)

An analysis of cyclone activity in winter associated with years of strong and weak Aleutian low in the North Pacific is presented. From 1958 to 2004, 10 winters with a strong Aleutian low are defined as the strong years, while 8 winters with a ...

Xiaojie Zhu; Jilin Sun; Zhengyu Liu; Qinyu Liu; Jonathan E. Martin

2007-04-01T23:59:59.000Z

339

Lipid Analysis and Lipidomics: New Techniques & ApplicationChapter 18 Phospholipids: Structures and Physicochemical Activities  

Science Conference Proceedings (OSTI)

Lipid Analysis and Lipidomics: New Techniques & Application Chapter 18 Phospholipids: Structures and Physicochemical Activities Methods and Analyses eChapters Methods - Analyses Books 7F901335BDC265F6CD236F34E0A1D72F AOCS Press ...

340

Stability analysis for the generalized Cohen-Grossberg neural networks with inverse Lipschitz neuron activations  

Science Conference Proceedings (OSTI)

In this paper, by using nonsmooth analysis approach, linear matrix inequality (LMI) technique, topological degree theory and Lyapunov-Krasovskii function method, the issue of global exponential stability is investigated for a class of generalized Cohen-Grossberg ... Keywords: Cohen-Grossberg neural networks, Global exponential stability, Inverse Lipschitz neuron activations, Linear matrix inequality, Nonsmooth behaved functions, Topological degree theory

Xiaobing Nie; Jinde Cao

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nonlinear vibration analysis of actively loaded sandwich piezoelectric beams with geometric imperfections  

Science Conference Proceedings (OSTI)

Modal analysis is developed for linear and nonlinear vibrations of deformed sandwich piezoelectric beams with initial imperfections. The beam is subjected to axial displacement and active voltage generated by the top and the bottom piezoelectric layers. ... Keywords: Control, Nonlinear, Piezoelectric, Sandwich, Stability, Vibration

L. Azrar; S. Belouettar; J. Wauer

2008-12-01T23:59:59.000Z

342

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy asymptotics  

E-Print Network (OSTI)

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy, The Netherlands Abstract. New expressions for the mass burning rate are derived from a recently introduced burning rate. The consequences for experimental and numerical studies are investigated. Keywords: premixed

Eindhoven, Technische Universiteit

343

Physics of solar neutron production: Questionable detection of neutrons  

E-Print Network (OSTI)

) A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astro- physical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical

Share, Gerald

344

ORNL Neutron Sciences Annual Report for 2007  

Science Conference Proceedings (OSTI)

This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

2008-07-01T23:59:59.000Z

345

Neutron Scattering | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Neutron Scattering Neutron Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Neutron Scattering Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research on the fundamental interactions of neutrons with matter to achieve an understanding of the atomic, electronic, and magnetic structures and excitations of materials and their relationship to materials properties. Major emphasis is on the application of neutron scattering, spectroscopy, and imaging for materials research, primarily at

346

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries  

Science Conference Proceedings (OSTI)

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

Pritychenko, B. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)] [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Mughabghab, S.F. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)] [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

2012-12-15T23:59:59.000Z

347

LANL Efforts on Neutron Coincidence Modeling of INL Pulsed Neutron Data  

SciTech Connect

Overview of this presentation is: (1) pulsed histogram analysis, (2) creation of SPNS, (3) use of SPNS for modeling pulsed neutron data, (4) creation of MUDI, (5) calculated accidentals correction using GUAM + MUDI, (6) background subtraction analysis, and (7) current/figure work with MCNP.

Stewart, Scott [Los Alamos National Laboratory; Thron, Jonathan L. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Charlton, William S. [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

348

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network (OSTI)

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2006-11-12T23:59:59.000Z

349

Hypernuclear Physics for Neutron Stars  

E-Print Network (OSTI)

The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

Jurgen Schaffner-Bielich

2008-01-24T23:59:59.000Z

350

Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser  

Science Conference Proceedings (OSTI)

Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-06-15T23:59:59.000Z

351

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

Birden, J.H.

1959-04-21T23:59:59.000Z

352

Neutron Log At Alum Area (Moos & Ronne, 2010) | Open Energy Information  

Open Energy Info (EERE)

Neutron Log At Alum Area (Moos & Ronne, 2010) Neutron Log At Alum Area (Moos & Ronne, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Neutron Log At Alum Geothermal Area (Moos & Ronne, 2010) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Neutron Log Activity Date Usefulness useful DOE-funding Unknown Notes Density, photo-electric factor (PEF), neutron, and gamma ray (GR) logs provided sufficient information to clearly delineate basement lithologic variations, suggesting that pulsed neutron logs may not in many cases be needed, References Daniel Moos, Joel Ronne (2010) Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Neutron_Log_At_Alum_Area_(Moos_%26_Ronne,_2010)&oldid=511025"

353

Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications  

E-Print Network (OSTI)

The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

Griggs, D. P.

1981-01-01T23:59:59.000Z

354

Switchable radioactive neutron source device  

DOE Patents (OSTI)

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

355

Applying observations of work activity in designing prototype data analysis tools  

Science Conference Proceedings (OSTI)

Designers, implementers, and marketers of data analysis tools typically have different perspectives than users. Consequently, data analysis often find themselves using tools focused on graphics and programming concepts rather than concepts which reflect their own domain and the context of their work. Some user studies focus on usability tests late in development; others observe work activity, but fail to show how to apply that knowledge in design. This paper describes a methodology for applying observations of data analysis work activity in prototype tool design. The approach can be used both in designing improved data analysis tools, and customizing visualization environments to specific applications. We present an example of user-centered design for a prototype tool to cull large data sets. We revisit the typical graphical approach of animating a large data set from the point of view of an analysis who is culling data. Field evaluations using the prototype tool not only revealed valuable usability information, but initiated in-depth discussions about user`s work, tools, technology, and requirements.

Springmeyer, R.R.

1993-07-06T23:59:59.000Z

356

Characterization of fissile material using low energy neutron interrogation  

E-Print Network (OSTI)

The glaring need to develop methods for detecting and interdicting illicit nuclear trafficking has resulted in the exploration of various methods for active neutron interrogation, specifically for the presence of special ...

Padilla, Eduardo A

2007-01-01T23:59:59.000Z

357

Sampling and analysis plan for RCRA closure activities at 200 West Ash Pit Demolition Site  

Science Conference Proceedings (OSTI)

This document provides guidance for sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 200 West Ash Pit Demolition Site. Soil samples will be taken around the blasting pit, in order to verify that the concentrations of all detonation activity contaminants are below action levels. The borrow pit was used for demolition of discarded explosive chemicals, tumbleweed incineration, and as a source of soil for construction material. The demolition site was located apart from the others within the borrow pit.

Lucas, J.G.

1994-06-02T23:59:59.000Z

358

Physics design of a cold neutron source for KIPT neutron source facility.  

SciTech Connect

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The accelerator driven subcritical facility is designed with a provision to add a cryogenically cooled moderator system. This cold neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

2009-02-17T23:59:59.000Z

359

Physics design of a cold neutron source for KIPT neutron source facility.  

Science Conference Proceedings (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

2009-02-17T23:59:59.000Z

360

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

PartTec PartTec ORNL, PartTec Inc. Licensing Agreement ORNL and PartTec sign licensing agreement (Front) ORNL Deputy Director for Science & Technology Thomas Zacharia and PartTec CEO Herschel Workman. (Back) Bruce Hannan (SNS), PartTec production manager Craig Kline, Rick Riedel (SNS), Jason Hodges (SNS) and Ron Cooper (SNS). The SNS guys were on the development team. Representatives from Oak Ridge National Laboratory and PartTec, an Indiana-based firm, formally signed a licensing agreement Thursday, Aug. 12, to market an advanced neutron detector system developed for the Spallation Neutron Source. The Shifting Scintillator Neutron Detector can determine the time and position of captured neutrons, which enables researchers to obtain very accurate time-of-flight measurements.

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Awards | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

| Neutron Science | News and Awards | Awards SHARE Awards for Excellence 1-2 of 2 Results ORNL team wins R&D 100 award for wavelength-shifting scintillator detector January...

362

Personnel neutron dosimetry  

Science Conference Proceedings (OSTI)

This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

Hankins, D.

1982-04-01T23:59:59.000Z

363

Neutron personnel dosimetry  

Science Conference Proceedings (OSTI)

The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

Griffith, R.V.

1981-06-16T23:59:59.000Z

364

Neutron Scattering Science User ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) will be accepted via the web-based proposal system...

365

ORNL Neutron Sciences Users  

NLE Websites -- All DOE Office Websites (Extended Search)

SHUG banner SNS-HFIR User Group The SNS-HFIR User Group (SHUG) consists of all persons interested in using the neutron scattering facilities at Oak Ridge. It provides input to the...

366

In-situ neutron diffraction and crystal plasticity modeling of ?-Uranium  

Science Conference Proceedings (OSTI)

The present study uses a combination of in-situ neutron diffraction and crystal plasticity modeling to elucidate the deformation mechanisms active in ?-Uranium.

367

7-MeV Neutron Interrogation: Scanner for Detection of Special ...  

Medium-energy (3-7 MeV) neutrons are utilized to provide enhanced cargo penetration and reduced activation of cargo materials that would interfere with detection;

368

Magnetic Structure Determination from Neutron Diffraction Data  

NLE Websites -- All DOE Office Websites (Extended Search)

logo logo Magnetic Structure Determination from Neutron Diffraction Data September 17 - 20, 2012 logo Oak Ridge National Laboratory - Oak Ridge, Tennessee, USA About the Workshop Program Lecture Notes Useful Links Organizers Travel & Lodging Wireless Networking Photos filler About the Workshop molecule The Magnetic Structure Determination Workshop 2012 concluded on September 20. The aim of this workshop was to enhance the community studying magnetism in materials by learning from experts the essential theoretical foundations to magnetic representation analysis and work through real examples to gain experience in solving and refining magnetic structures from neutron powder and single crystal diffraction data. Invited speakers: Juan Rodríguez-Carvajal (ILL, Grenoble)

369

Neutron single target spin asymmetries in SIDIS  

Science Conference Proceedings (OSTI)

The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

Evaristo Cisbani

2010-04-01T23:59:59.000Z

370

Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron  

Office of Scientific and Technical Information (OSTI)

Clifford Shull, Neutron Diffraction, and Neutron Scattering Clifford Shull, Neutron Diffraction, and Neutron Scattering Resources with Additional Information Clifford G. Shull was awarded the 1994 Nobel Prize in Physics "for the development of the neutron diffraction technique". 'Professor Shull's prize was awarded for his pioneering work in neutron scattering, a technique that reveals where atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge National Laboratory When a beam of neutrons is directed at a given material, the neutrons bounce off, or are scattered by, atoms in the sample being investigated. The neutrons' directions change, depending on the location of the atoms they hit, and a diffraction pattern of the atoms' positions can then be obtained.

371

Spin flip loss in magnetic storage of ultracold neutrons  

E-Print Network (OSTI)

We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magneto-gravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an approximate quantum mechanical analysis such as pioneered by Walstrom \\emph{et al} [Nucl. Instrum. Methods Phys. Res. A 599, 82 (2009)]. Our analysis is not restricted to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap.

A. Steyerl; C. Kaufman; G. Mller; S. S. Malik; A. M. Desai

2013-07-19T23:59:59.000Z

372

NEUTRON FLUX INTENSITY DETECTION  

DOE Patents (OSTI)

A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

Russell, J.T.

1964-04-21T23:59:59.000Z

373

FABRICATION OF NEUTRON SOURCES  

DOE Patents (OSTI)

A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

Birden, J.H.

1959-01-20T23:59:59.000Z

374

Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

1992-02-01T23:59:59.000Z

375

Neutron Scattering Experiment Automation with Python  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

Zolnierczuk, Piotr A [ORNL; Riedel, Richard A [ORNL

2010-01-01T23:59:59.000Z

376

Facilities and Capabilities | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor and the Spallation Neutron Source. The continuous neutron source at HFIR and the pulsed neutron source at SNS complement each other well and, along with their...

377

Science Education Programs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

What are Neutrons Why Research with Neutrons Graduate & Post-doctoral Programs Student & Teacher Programs Science Forum Neutron Scattering Tutorials Kids' Corner News and Awards...

378

ORNL Neutron Sciences Directorate Executive Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Sciences Directorate Executive Office Kelly Beierschmitt ORNL Associate Laboratory Director for Neutron Sciences Kelly Beierschmitt. The Neutron Sciences Directorate (NScD)...

379

Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis.  

E-Print Network (OSTI)

RESEARCH Open Access Overestimation of physical activity level is associated with lower BMI: a cross-sectional analysis Clare Watkinson1, Esther MF van Sluijs1, Stephen Sutton2, Wendy Hardeman2, Kirsten Corder1, Simon J Griffin1* Abstract Background... . 1996. 3. Craig R, Mindell J: Health Survey for England 2006: CVD and risk factors adults, obesity and risk factors children. The NHS Information Centre 2008. 4. Hillsdon M, Foster C, Cavill N, Crombie H, Naidoo B: The effectiveness of public health...

Watkinson, Clare; van Sluijs, Esther M F; Sutton, Stephen; Hardeman, Wendy; Corder, Kirsten; Griffin, Simon J

2010-09-20T23:59:59.000Z

380

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

News & Events | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

8 News 8 News Neutron Science In the News - 2008 November October September August July June May March February January Because some media sources archive past articles and require a subscription for access, some of the links below might not be active. If a citation listed here is no longer available, please contact the newspaper or your library directly. October Research Visits Just Budding at Spallation Neutron Source Knoxville News Sentinel 10/29 When the Spallation Neutron Source was in the proposal stage and under construction, its supporters said the $1.4 billion research complex would eventually attract about 2,000 scientists a year to Oak Ridge to perform experiments and otherwise do their thing. That number, as I recall, was lumped together with researchers at the recently upgraded High Flux Isotope

382

Detectors - Instrument Support | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Detectors › R & D 100 Award Detectors › R & D 100 Award ORNL team wins R&D 100 award for wavelength-shifting scintillator detector Neutron facilities, national security monitoring will benefit from high-accuracy detector June 2012, Written by Agatha Bardoel A team of eight scientists and technicians in the Neutron Sciences Directorate has won a prestigious R&D 100 Award from R&D Magazine for developing a highly efficient new detector system that helps take pressure off dwindling worldwide supplies of 3He as an active neutron converter. Members of the team receiving an R&D 100 Award for the wavelength-shifting scintillator detector Members of the team receiving an R&D 100 Award for the wavelength-shifting scintillator detector are shown with their invention. They are (from left)

383

The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction  

DOE Green Energy (OSTI)

Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Erskine, Peter T. [University of Southampton, England; Cooper, Jon [University of Southampton, England

2008-01-01T23:59:59.000Z

384

Design of a boron neutron capture enhanced fast neutron therapy assembly  

SciTech Connect

The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 {+-} 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 {+-} 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 {+-} 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm{sup 2} treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.

Wang, Zhonglu; /Georgia Tech

2006-08-01T23:59:59.000Z

385

LANSCE | Lujan Center | Highlights | In situ neutron diffraction study of  

NLE Websites -- All DOE Office Websites (Extended Search)

In situ neutron diffraction study of CO clathrate hydrate In situ neutron diffraction study of CO clathrate hydrate The structure of a CO clathrate hydrate has been studied for the first time using high-P low-T neutron diffraction. Clathrate Rietveld analysis shows that lattice parameter a (SII cubic clathrate structure) increases with increasing temperature. CO molecules are positionally disordered and off-centered in both large and small cages. Each large cage is occupied by two CO molecules while each small cage is occupied by one CO. A representative neutron diffraction pattern of SII CO clathrate hydrate. Variation of lattice parameter a of CO SII clathrate hydrate as a function of temperature. A representative neutron diffraction pattern of SII CO clathrate hydrate. Variation of lattice parameter a of CO SII clathrate hydrate as a function of temperature.

386

Neutron Correlations in Special Nuclear Materials, Experiments and Simulations  

SciTech Connect

Fissile materials emit neutrons with an unmistakable signature that can reveal characteristics of the material. We describe here measurements, simulations, and predicted signals expected and prospects for application of neutron correlation measurement methods to detection of special nuclear materials (SNM). The occurrence of fission chains in SNM can give rise to this distinctive, measurable time correlation signal. The neutron signals can be analyzed to detect the presence and to infer attributes of the SNM and surrounding materials. For instance, it is possible to infer attributes of an assembly containing a few kilograms of uranium, purely passively, using detectors of modest size in a reasonable time. Neutron signals of three radioactive sources are shown to illustrate the neutron correlation and analysis method. Measurements are compared with Monte Carlo calculations of the authenticated sources.

Verbeke, J; Dougan, A; Nakae, L; Sale, K; Snyderman, N

2007-06-05T23:59:59.000Z

387

POWGEN Users | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information User Information Announcement: POWGEN has started a new partnership with beam line 11A at the Advanced Photon Source where users can get x-ray data if they have an approved POWGEN proposal. Become a POWGEN User POWGEN Experiment Guide: A - Z POWGEN Mail In Program Guide Shipping Addresses for Samples For more detailed information, please visit the ORNL User Facilities Sample Handling and Shipping page. Non-activated samples coming to SNS: Attention: Special requirements (like refrigeration) To: Neutron Sciences User Sample IPTS # XXXX Oak Ridge National Laboratory / SNS Site Chestnut Ridge, Bldg 8920 Oak Ridge, TN 37830 Activated samples (these will also be brought to SNS but must go through check-in procedures at another on-site location): Attention: Special requirements (like refrigeration)

388

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

E-Print Network (OSTI)

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

2007-02-06T23:59:59.000Z

389

Neutronics Analysis of the Divertor Interferometer Diagnostics Inside the Lower Port #8 Plug of ITER with ATTILA 3-D CAD-Based FEM Code  

Science Conference Proceedings (OSTI)

Nuclear Analysis & Experiments / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Mahmoud Z. Youssef; Russell Feder; Mohamed Dagher; Aaron Aoyama; Michael Duco

390

GALLIUM ARSENIDE SEMICONDUCTOR-BASED NEUTRON DETECTOR  

NEUTRON DETECTOR BENEFITS Portable, ... High Flux Isotope Reactor and Spallation Neutron Source. Several Homeland Security. LINKS TO ONLINE ...

391

Portable Neutron Sensors for Emergency Response Operations  

Science Conference Proceedings (OSTI)

This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

Mukhopadhyay, S., Maurer, R., Detweiler, R.

2012-06-22T23:59:59.000Z

392

Analysis of standard reference materials by absolute INAA  

Science Conference Proceedings (OSTI)

Three standard reference materials, flyash, soil, and ASI 4340 steel, were analyzed by a method of absolute instrumental neutron activation analysis (INAA). Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

Heft, R.E.; Koszykowski, R.F.

1981-07-01T23:59:59.000Z

393

Neutron beam characterization at the Neutron Radiography Reactor (NRAD)  

Science Conference Proceedings (OSTI)

The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

1990-01-01T23:59:59.000Z

394

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

395

Contacts | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Points of Contact Science Points of Contact Name Research Area Doug Abernathy Wide Angular-Range Chopper Spectrometer (ARCS). Atomic-scale dynamics at thermal and epithermal energies Ke An Engineering Materials Diffractometer (VULCAN). Residual stress, deformation mechanism of materials, phase transitions/transformation, and in situ/operando neutron diffraction in material systems (e.g., working batteries). John Ankner Liquids Reflectometer (LR). Density profiles normal to the surface at liquid surfaces and liquid interfaces Bryan Chakoumakos Nuclear and magnetic crystal structure systematics and structure-property relationships among inorganic materials, powder and single-crystal neutron and x-ray diffraction methods Leighton Coates Macromolecular Neutron Diffractometer (MaNDi). Protein crystallography, biological structure and function

396

Neutron Scattering Conference Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Archive Conference Archive A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site. We will leave the current content here for archival purposes but no new content will be added. We encourage everyone interested in neutron scattering to take full advantage of this exciting new resource for our community. Neutronsources.org 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 2000 June 12-14, 2000 Workshop on "New Opportunities for Better User Group Software (NOBUGS III)" Location Daresbury Laboratory, Cheshire, UK Contact Mark Enderby, Daresbury Laboratory Email M.J.Enderby@dl.ac.uk URL http://nobugs.dl.ac.uk/

397

METHOD OF PRODUCING NEUTRONS  

DOE Patents (OSTI)

A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

Imhoff, D.H.; Harker, W.H.

1964-02-01T23:59:59.000Z

398

Ultrafast neutron detector  

DOE Patents (OSTI)

The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

Wang, Ching L. (Livermore, CA)

1987-01-01T23:59:59.000Z

399

Personnel electronic neutron dosimeter  

DOE Patents (OSTI)

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, R.B.; Tyree, W.H.

1982-03-03T23:59:59.000Z

400

Corrosion resistant neutron absorbing coatings  

SciTech Connect

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Crystal structure of (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} by neutron powder diffraction analysis  

DOE Green Energy (OSTI)

The crystal structure of (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} was determined by neutron powder diffraction. A final weighted R-factor of 4.54% was obtained for the refinement of 2,373 reflections by the Rietveld method from a sample synthesized using {sup 7}Li{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} (99.9% pure). Slight distortion of the CO{sub 3}{sup 2{minus}} units in the monoclinic cell was observed; the O(1)-C-O(2) angle and C-O(3) length are larger than those for the other C-O bonds and O-C-O angles. These local-structure characteristics can be explained by the difference in the ionic size of Li{sup +} and K{sup +}, and the different electrostatic interactions between the cations and CO{sub 3}{sup 2{minus}} units. (Li{sub 0.5}K{sub 0.5}){sub 2}CO{sub 3} is important as a material for molten carbonate fuel cells.

Idemoto, Yasushi [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source]|[Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Industrial Chemistry; Richardson, J.W. Jr.; Loong, C.K. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source; Koura, Nobuyuki; Kohara, Shinji [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Industrial Chemistry

1997-08-01T23:59:59.000Z

402

GUIDE FOR POLARIZED NEUTRONS  

DOE Patents (OSTI)

The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

Sailor, V.L.; Aichroth, R.W.

1962-12-01T23:59:59.000Z

403

FAST NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

Snell, A.H.

1957-12-01T23:59:59.000Z

404

Fast neutron dosimetry  

Science Conference Proceedings (OSTI)

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01T23:59:59.000Z

405

ANALYSIS ON CORRELATIONS BETWEEN SUBSURFACE KINETIC HELICITY AND PHOTOSPHERIC CURRENT HELICITY IN ACTIVE REGIONS  

Science Conference Proceedings (OSTI)

An investigation on correlations between photospheric current helicity and subsurface kinetic helicity is carried out by analyzing vector magnetograms and subsurface velocities for two rapidly developing active regions. The vector magnetograms are from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) observed Stokes parameters, and the subsurface velocity is from time-distance data-analysis pipeline using HMI Dopplergrams. Over a span of several days, the evolution of the weighted current helicity shows a tendency similar to that of the weighted subsurface kinetic helicity, attaining a correlation coefficient above 0.60 for both active regions. Additionally, there seems to be a phase lag between the evolutions of the unweighted current and subsurface kinetic helicities for one of the active regions. The good correlation between these two helicities indicates that there is some intrinsic connection between the interior dynamics and photospheric magnetic twistedness inside active regions, which may help to interpret the well-known hemispheric preponderance of current-helicity distribution.

Gao Yu; Zhang Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing (China); Zhao Junwei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

2012-12-10T23:59:59.000Z

406

Determination of contamination in rare earth materials by promptgamma activation analysis (PGAA)  

SciTech Connect

Prompt gamma activation analysis (PGAA) has been used to detect and quantify impurities in the analyses of rare earth (RE) oxides. The analytical results are discussed with respect to the importance of having a thorough identification and understanding of contaminant elements in these compounds regarding the function of the materials in their various applications. Also, the importance of using PGAA to analyze materials in support of other physico-chemical studies of the materials is discussed, including the study of extremely low concentrations of ions such as the rare earth ions themselves in bulk material matrices.

Perry, D.L.; English, G.A.; Firestone, R.B.; Molnar, G.L.; Revay,Zs.

2004-11-09T23:59:59.000Z

407

Final.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facilities. These facilities include: Neutron Activation Analysis, Fast Neutron Irradiation, Neutron Radiography, Neutron Induced Auto-Radiography, Cold Neutron Source, Prompt...

408

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

409

NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT  

SciTech Connect

We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

Andrew Stroud, Lee Sawyer

2012-08-31T23:59:59.000Z

410

Summary of alpha-neutron sources in GADRAS.  

SciTech Connect

A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.

Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.

2012-05-01T23:59:59.000Z

411

Neutronic Analysis of the Burning of Transuranics in Fully Ceramic Micro-Encapsulated Tri-Isotropic Particle-Fuel in a PWR  

SciTech Connect

Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU) only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO2 and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO2 and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior is dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

2012-11-01T23:59:59.000Z

412

Neutron Absorbing Alloys  

SciTech Connect

The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

2004-05-04T23:59:59.000Z

413

Neutronic reactor thermal shield  

DOE Patents (OSTI)

1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

Wende, Charles W. J. (West Chester, PA)

1976-06-15T23:59:59.000Z

414

Neutron Science User Program  

E-Print Network (OSTI)

provides a user gateway for SNS and HFIR 11 Managed by UT-Battelle for the U.S. Department of Energy #12.) · Complementary to SNS HFIR produces the world's highest thermal neutron flux #12;13 UT-Battelle Department infrastructure (REDC, HFIR, etc.): $3B+ national asset ORNL is uniquely positioned to support advanced nuclear

415

NEUTRONIC REACTOR STRUCTURE  

DOE Patents (OSTI)

A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.

Weinberg, A.M.; Vernon, H.C.

1961-05-30T23:59:59.000Z

416

NEUTRONIC REACTOR STRUCTURE  

DOE Patents (OSTI)

The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

Vernon, H.C.; Weinberg, A.M.

1961-05-30T23:59:59.000Z

417

NEUTRONIC REACTOR CONTROL ELEMENT  

DOE Patents (OSTI)

A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

Beaver, R.J.; Leitten, C.F. Jr.

1962-04-17T23:59:59.000Z

418

A variety of neutron sensors based on scintillating glass waveguides  

SciTech Connect

Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e{sup {minus}1} length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.

Bliss, M.; Craig, R.A.

1995-05-01T23:59:59.000Z

419

Neutron proton crystallography station (PCS)  

SciTech Connect

The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

420

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

422

SNAP: the Spallation Neutrons and Pressure Diffractometer at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutrons and Pressure Diffractometer at SNS Spallation Neutrons and Pressure Diffractometer. Spallation Neutrons and Pressure Diffractometer. The SNAP Diffractometer...

423

Demonstration of Emitted-Neutron Computed Tomography to Quantify Nuclear Materials  

Science Conference Proceedings (OSTI)

In this document, we report demonstration of emitted-neutron computed tomography using fast fission neutrons to infer the geometry of sources of special nuclear material (SNM). The imaging system employed in the demonstration is based on a newly constructed array of pixelated neutron detectors that are suitable for arrangement in a close-packed imaging array and whose active volume consists of liquid scintillator EJ-309 which allows neutron-gamma discrimination via pulse shape to enable essentially pure fast-neutron imaging. The system is capable of high quality fast-neutron imaging where tomographic reconstruction of slices through an object resolves neutron sources similar in dimension to a fuel pellet, or about 1 cm. During measurements of Pu MOX fuel rodlet arrays in soup cans at the INL ZPPR facility, the position of a partial defect of a single rodlet containing Pu replaced by one containing depleted uranium (DU) was detected.

Hausladen, Paul [ORNL; Blackston, Matthew A [ORNL; Newby, Robert Jason [ORNL

2011-09-01T23:59:59.000Z

424

Neutron Scattering Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Neutron Scattering Facilities Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports the operation of three DOE neutron scattering facilities, which are unique and effective tools for probing the structure of matter. Neutron scattering is particularly well-suited for determining the atomic positions of both light and heavy atoms in a solid and thermal fluctuations in these positions. In addition the neutron

425

Characteristics of the Neutron Irradiation Facilities of the PSI Calibration Laboratory  

Science Conference Proceedings (OSTI)

The neutron radiation fields of the Calibration Laboratory at Paul Scherrer Institute (PSI) are traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. A Berthold LB6411 neutron dose rate meter for neutron radiation is used as a secondary standard. Recently, a thorough characterization of the neutron irradiation fields of the {sup 241}Am-Be and {sup 252}Cf sources by means of reference measurements and a detailed MCNPX simulation of the irradiation facility has been initiated. In this work, the characteristics of the neutron radiation fields are summarized and presented together with model equations and an uncertainty analysis. MCNPX results are shown for the {sup 241}Am-Be source. A comparison of measured and simulated data shows an excellent agreement. From the simulation, valuable information about the neutron fields like the contribution of scattered neutrons in the fields and the energy spectra could be obtained.

Hoedlmoser, H.; Schuler, Ch.; Butterweck, G.; Mayer, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2011-12-13T23:59:59.000Z

426

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in with percent relative standard deviations (%RSDs) % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

427

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Research › Highlights › Biology & Medicine Home › Research › Highlights › Biology & Medicine Research Highlights Biology & Medicine New technique for improving cancer detection Contact:Maria Cekanova Neutrons help shed light on critical protein activity that protects our DNA Published Work: "A new structural framework for integrating replication protein A into DNA processing machinery" Contact: Walter Chazin SNS researchers overcome the freezing sample problem in biostudies (2012) Published Work: "Water-protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions" Contact: Eugene Mamontov Studying how a protein's dynamics can take down a killer (2012) Contact: Melissa Sharp Martha "cow-laborates" to help unravel protein structure in milk

428

SNS | Spallation Neutron Source | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS SNS Instruments Working with SNS Contact Us User Program Manager Laura Morris Edwards 865.574.2966 Spallation Neutron Source Home | User Facilities | SNS SNS | Spallation Neutron Source SHARE SNS is an accelerator-based neutron source in Oak Ridge, Tennessee, USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located on Chestnut Ridge and is part of Oak Ridge National Laboratory. Although most people don't know it, neutron scattering research has a lot to do with our everyday lives. For example, things like medicine, food, electronics, and cars and airplanes have all been improved by neutron scattering research. Neutron research also helps scientists improve materials used in a

429

Coated Fiber Neutron Detector Test  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

2009-10-23T23:59:59.000Z

430

Gamma neutron assay method and apparatus  

DOE Patents (OSTI)

The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

1995-01-03T23:59:59.000Z

431

Gamma neutron assay method and apparatus  

DOE Patents (OSTI)

The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

432

Non-destructive method for determining neutron exposure  

DOE Patents (OSTI)

A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

Gold, R.; McElroy, W.N.

1983-11-01T23:59:59.000Z

433

Measurement of Neutron Background at the Pyhasalmi mine for CUPP Project, Finland  

E-Print Network (OSTI)

A natural neutron flux is one of significant kind of background in high-sensitive underground experiments. Therefore, when scheduling a delicate underground measurements one needs to measure neutron background. Deep underground the most significant source of neutrons are the U-Th natural radioactive chains giving a fission spectrum with the temperature of 2-3 MeV. Another source is the U-Th alpha-reactions on light nuclei of mine rock giving neutrons with different spectra in the 1-15 MeV energy region. Normal basalt mine rocks contain 1 ppm g/g of U-238 and less. Deep underground those rocks produce natural neutron fluxes of 10^{-7} - 10^{-6} cm^{-2}s^{-1} above 1 MeV. To measure such a background one needs a special techniques. In the Institute for Nuclear Research, Moscow, the neutron spectrometer was developed and built which is sensitive to such a low neutron fluxes. At the end of 2001 the collection of neutron data at the Pyhasalmi mine was started for the CUPP project. During 2002 the background and rough energy spectra of neutron at underground levels 410, 660, 990 and 1410 m were measured. The result of the measurement of the neutron background at different levels of the Pyhasalmi mine is presented and discussed. Data analysis is performed in different energy ranges from thermal neutrons up to 25 MeV and above.

J. N. Abdurashitov; V. N. Gavrin; V. L. Matushko; A. A. Shikhin; V. E. Yants; J. Peltoniemi; T. Keranen

2006-07-20T23:59:59.000Z

434

DOE-HDBK-1163-2003; Integration of Multiple Hazard Analysis Requirements and Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1163-2003 October 2003 DOE HANDBOOK INTEGRATION OF MULTIPLE HAZARD ANALYSIS REQUIREMENTS AND ACTIVITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1163-2003 ii This document has been reproduced directly from the best available copy. It is available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1163-2003 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE Components and

435

Neutron electric polarizability  

E-Print Network (OSTI)

We use the background field method to extract the "connected" piece of the neutron electric polarizability. We present results for quenched simulations using both clover and Wilson fermions and discuss our experience in extracting the mass shifts and the challenges we encountered when we lowered the quark mass. For the neutron we find that as the pion mass is lowered below $500\\MeV$, the polarizability starts rising in agreement with predictions from chiral perturbation theory. For our lowest pion mass, $m_\\pi=320\\MeV$, we find that $\\alpha_n = 3.8(1.3)\\times 10^{-4}\\fm^3$, which is still only one third of the experimental value. We also present results for the neutral pion; we find that its polarizability turns negative for pion masses smaller than $500\\MeV$ which is puzzling.

Andrei Alexandru; Frank X. Lee

2009-11-13T23:59:59.000Z

436

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

437

A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

Nagler, Stephen E [ORNL; Mook Jr, Herbert A [ORNL

2008-01-01T23:59:59.000Z

438

Neutron dosimetry at SLAC: Neutron sources and instrumentation  

Science Conference Proceedings (OSTI)

This report summarizes in detail the dosimetric characteristics of the five radioisotopic type neutron sources ({sup 238}PuBe, {sup 252}Cf, {sup 238}PuB, {sup 238}PuF{sub 4}, and {sup 238}PuLi) and the neutron instrumentation (moderated BF{sub 3} detector, Anderson-Braun (AB) detector, AB remmeter, Victoreen 488 Neutron Survey Meter, Beam Shut-Off Ionization Chamber, {sup 12}C plastic scintillator detector, moderated indium foil detector, and moderated and bare TLDs) that are commonly used for neutron dosimetry at the Stanford Linear Accelerator Center (SLAC). 36 refs,. 19 figs.

Liu, J.C.; Jenkins, T.M.; McCall, R.C.; Ipe, N.E.

1991-10-01T23:59:59.000Z

439

Neutron Detection Using an Embedded Sol-Gel Neutron Absorber  

on sol-gel chemistry, uses metallic oxides embedded in a glass film that fission when bombarded with neutrons, producing a signature event in the ...

440

American Conference on Neutron Scattering 2010 - ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Update on Sample Environment Plenary Session: Thom Mason: Neutron Scattering and Energy ACNS website with Program Back to Top an error occurred while processing this directive...

First Page Previous Page 1 2 3 4 5 6 7 8 9 10