National Library of Energy BETA

Sample records for neutron activation analysis

  1. Neutron activation analysis system

    DOE Patents [OSTI]

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  2. Neutron activation analysis and gamma ray spectrometry

    SciTech Connect (OSTI)

    Lyon, W.S. . Analytical Chemistry Div.)

    1989-11-01

    The authors present scientometric study of the citations and publication data. It shows the present state of neutron activation analysis (NAA) and applied nuclear chemistry as compared to other analytical techniques.

  3. Application of neutron-activation analysis to geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  4. Neutron Activation Analysis and Product Isotope Inventory Code System.

    Energy Science and Technology Software Center (OSTI)

    1990-10-31

    Version 00 NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength, and the absorbed dose rate at 1 meter from an unshielded point source. The inducedmore » activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated.« less

  5. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  6. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  7. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  8. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect (OSTI)

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  9. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1984-03-01

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, our data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials.

  10. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect (OSTI)

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  11. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect (OSTI)

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  12. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect (OSTI)

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential

  13. Investigation of therapeutic potentials of some selected medicinal plants using neutron activation analysis

    SciTech Connect (OSTI)

    Abubakar, Sani; Isa, Nasiru Fage; Usman, Ahmed Rufa’i; Khandaker, Mayeen Uddin; Abubakar, Nuraddeen

    2015-04-24

    Series of attempts were made to investigate concentrations of trace elements and their therapeutic properties in various medicinal plants. In this study, samples of some commonly used plants were collected from Bauchi State, Nigeria. They includes leaves of azadirachta indica (neem), Moringa Oleifera (moringa), jatropha curcas (purgin Nut), guiera senegalensis (custard apple) and anogeissus leiocarpus (African birch). These samples were analyzed for their trace elements contents with both short and long irradiation protocols of Instrumental Neutron Activation Analysis (INAA) at Nigerian Research Reactor-1 (NIRR-1) of Ahmadu Bello University, Zaria, Nigeria. The level of trace elements found varies from one sample to another, with some reported at hundreds of mg/Kg dry weight. The results have been compared with the available literature data. The presence of these trace elements indicates promising potentials of these plants for relief of certain ailments.

  14. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect (OSTI)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  15. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  16. European Neutron Activation System.

    Energy Science and Technology Software Center (OSTI)

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  17. Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis

    SciTech Connect (OSTI)

    Firestone, Richard B; Revay, Zsolt

    2009-12-01

    Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

  18. Self-Shielding Correlation of Foil Activation Neutron Spectra Analysis by SAND-II.

    Energy Science and Technology Software Center (OSTI)

    2008-11-21

    Version 00 SELFS-3 corrects for the influence of the self-shielding effect in neutron spectrum determinations by means of the multifoil activation method. It is used in combination with the SAND-II program for unfolding the responses of an irradiated set of activation detectors in 620 groups. The program SELFS can calculate a corrected 620 group cross section data set for specified reactions used in the SAND-II library, and for specified foil thicknesses. This procedure requires nomore » additional assumption on the shape of the neutron spectrum and on other experimental conditions, but only some foil characteristics (reaction type, material composition, foil thickness). Application of this procedure is possible when multigroup unfolding programs are used with suitably small energy intervals. This code system was developed in the 1970’s at Reactor Centrum Nederland, Petten, The Netherlands, and was contributed to RSICC through the NEA Data Bank. No changes were made to the package when it was released by RSICC in 2008. Modifications will be required to run SELFS-3 on current computer systems.« less

  19. Neutron activated switch

    DOE Patents [OSTI]

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  20. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect (OSTI)

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  1. Nondestructive examination using neutron activated positron annihilation

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  2. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOE Patents [OSTI]

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  3. Neutronics activities for next generation devices

    SciTech Connect (OSTI)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  4. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect (OSTI)

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  5. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect (OSTI)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  6. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect (OSTI)

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  7. ACTIV87: Fast Neutron Activation Cross Section File

    Energy Science and Technology Software Center (OSTI)

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  8. The synchronous active neutron detection assay system

    SciTech Connect (OSTI)

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  9. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C. )

    1991-01-01

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. The authors have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235}U sample mass, AmLi source strength, and source-to-sample coupling.

  10. Neutron Resonance Spectroscopy for the Analysis of Materials and Objects

    SciTech Connect (OSTI)

    Borella, A.; Lampoudis, C.; Schillebeeckx, P.; Kopecky, S.; Postma, H.; Moxon, M.

    2009-12-02

    The presence of resonances in neutron induced reaction cross sections is the basis of the Neutron Resonance Capture (NRCA) and Transmission (NRTA) Analysis techniques. Since resonances can be observed at neutron energies which are specific for each nuclide, they can be used as fingerprints to identify and quantify elements in materials and objects. Both NRCA and NRTA are fully non-destructive methods which determine the bulk elemental composition, do not require any sample preparation and result in a negligible residual activation. In this text we review the technique and present an analysis procedures including one based on a more methodological approach which relies on a full Resonance Shape Analysis (RSA) and accounts directly for the neutron self-shielding, multiple scattering, Doppler broadening and instrumental resolution.

  11. Trace rare earth element analysis of IAEA hair (HH-1), animal bone (H-5) and other biological standards by radiochemical neutron activation

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1986-03-01

    A radiochemical neutron activation analysis using a rare earth group separation scheme has been used to measure ultratrace levels of rare earth elements (REE) in IAEA Human Hair (HH-1), IAEA Animal Bone (H-5), NBS Bovine Liver (SRM 1577), and NBS Orchard Leaf (SRM 1571) standards. The REE concentrations in Human Hair and Animal Bone range from 10/sup -8/g/g to 10/sup -11/g/g and their chondritic normalized REE patterns show a negative Eu anomaly and follow as a smooth function of the REE ionic radii. The REE patterns for NBS Bovine Liver and Orchard Leaf are identical except that their concentrations are higher. The similarity among the REE patterns suggest that the REE do not appear to be fractionated during the intake of biological materials by animals or humans. 14 refs., 3 figs., 2 tabs.

  12. Passive and Active Neutron Matrix Correction for Heterogeneous Distributions Utilizing the Neutron Imaging Technique

    SciTech Connect (OSTI)

    Villani, M.F.; Croft, St.; Alvarez, E.; Wilkins, C.G.; Stamp, D.; Fisher, J.; Ambrifi, A.; Simone, G.; Bourva, L.C.

    2008-07-01

    Classical Non-Destructive Assay (NDA) Passive Neutron Coincidence Counting (PNCC) and Differential Die-Away (DDA) active neutron interrogation techniques [1, 2] are well suited for determining the gross matrix correction factors for homogenous mass distributions of Special Nuclear Material (SNM) within an interfering waste drum matrix. These measured passive and active matrix correction factors are crucial in quantifying the SNM mass, associated Total Measurement Uncertainty (TMU), and Minimum Detectable Activity (MDA) within the drum. When heterogeneous SNM mass distributions are encountered, the measured SNM mass, TMU and MDA biases introduced may be 100%, or greater, especially for dense hydrogenous matrices. The standard matrix correction factors can be adjusted if a coarse spatial image of the SNM mass, relative to the matrix, is available. The image can then be analyzed to determine the spatially-adjusted, matrix correction factors case by case. This image analysis approach was accomplished by modifying the standard Passive-Active Neutron (PAN) counter design [3] to accommodate a unique data acquisition architecture that supports a newly developed image acquisition and analysis application called the Neutron Imaging Technique (NIT). The NIT functionality supports both PNCC and DDA acquisition and analysis modes and exploits the symmetry between a stored set of factory acquired NIT images with those from the unknown PAN assay. The NIT result is then an adjustment to the classical correction factor reducing, if not removing, the SNM mass bias and revealing the true TMU and MDA values. In this paper we describe the NIT for the PAN design from the software and algorithmic perspectives and how this technique accommodates waste matrix drums that are difficult, from the classical standpoint, if not impossible, to extract meaningful SNM mass, TMU and MDA results. (authors)

  13. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect (OSTI)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  14. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect (OSTI)

    Klix, A.; Fischer, U.; Gehre, D.; Kleizer, G.; Raj, P.; Rovni, I.; Ruecker, Tom

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  15. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    SciTech Connect (OSTI)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  16. The synchronous active neutron detection system for spent fuel assay

    SciTech Connect (OSTI)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  17. Neutronic Analysis of Candidate Accident-tolerant Cladding Concepts...

    Office of Scientific and Technical Information (OSTI)

    Concepts in Light Water Reactors Citation Details In-Document Search Title: Neutronic Analysis of Candidate Accident-tolerant Cladding Concepts in Light Water Reactors Authors: ...

  18. Neutronic Analysis of Candidate Accident-Tolerant Cladding Concepts...

    Office of Scientific and Technical Information (OSTI)

    in Pressurized Water Reactors Citation Details In-Document Search Title: Neutronic Analysis of Candidate Accident-Tolerant Cladding Concepts in Pressurized Water Reactors ...

  19. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine Citation Details In-Document Search Title: Neutron Transport and Nuclear Burnup ...

  20. Neutronics Design and Fuel Cycle Analysis of a High Conversion...

    Office of Scientific and Technical Information (OSTI)

    ... core height and improve neutron economy without the risk of a positive void coefficient. ... been well assessed and benchmarked for analysis of light water reactor systems. ...

  1. ACORNS: Analysis of Correlations Used in Neutron Spectrometry

    Energy Science and Technology Software Center (OSTI)

    1988-05-01

    The program ACORNS performs the complete analysis of the input covariance and/or relative covariance and/or correlation matrices, first of all used in the activation neutron spectrometry. These matrices have to be positive definite. To check the fulfillment of this requirement, the program calculates the eigenvalues and eigenvectors of those. If all the eigenvalues are positive, the program optionally performs the factor analysis. The user's input can be either made manually, or the cross section librariesmore » generated by the code X333.« less

  2. The National Nuclear Security Administration's Neutron Generator Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Nuclear Security Administration's Neutron Generator Activities OAS-L-14-11 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 20, 2014 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo Director, Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The National Nuclear Security Administration's Neutron Generator Activities"

  3. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  4. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and

    Office of Scientific and Technical Information (OSTI)

    Polarimeter Diagnostic Corner Cube Retroreflectors (Journal Article) | SciTech Connect Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors Citation Details In-Document Search Title: Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors ITER is an international project under construction in France that will demonstrate nuclear fusion at a power

  5. Active helium target: Neutron scalar polarizability extraction via Compton scattering

    SciTech Connect (OSTI)

    Morris, Meg Hornidge, David; Annand, John; Strandberg, Bruno

    2015-12-31

    Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.

  6. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect (OSTI)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  7. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect (OSTI)

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  8. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect (OSTI)

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  9. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect (OSTI)

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  10. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HFIR is also used for medical, industrial, and research isotope production; research on severe neutron damage to materials; and neutron activation analysis to examine trace ...

  11. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOE Patents [OSTI]

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  12. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOE Patents [OSTI]

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  13. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    SciTech Connect (OSTI)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1995-12-31

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p) {sup 16}N reaction using 14-MeV neutrons produced at the neutron source via the {sup 3}H(d,n) {sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes.

  14. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  15. Neutron powder diffraction analysis of (Tm{sub 0.50}Ca{sub 0...

    Office of Scientific and Technical Information (OSTI)

    Neutron powder diffraction analysis of (Tmsub 0.50Casub 0.50)MnOsub 3 and (Lusub 0.50Casub 0.50)MnOsub 3 Citation Details In-Document Search Title: Neutron powder ...

  16. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Cai -Lin; Riedel, Richard A.

    2016-01-14

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a1, b0) obtained from Wiener filter; iv). an effective amplitude (m)more » obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.« less

  17. Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU

    SciTech Connect (OSTI)

    David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

    2012-10-01

    A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

  18. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray-induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 μs) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux

  19. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; Heller, William T.

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO3)4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/Rg, where Rg is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis from SANS data when Rgmore » is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  20. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect (OSTI)

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  1. Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Rainwater, L. J.; Havens, W. W. Jr.

    1945-02-28

    A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

  2. Bayesian calibration of reactor neutron flux spectrum using activation detectors measurements: Application to CALIBAN reactor

    SciTech Connect (OSTI)

    Cartier, J.; Casoli, P.; Chappert, F.

    2013-07-01

    In this paper, we present calibration methods in order to estimate reactor neutron flux spectrum and its uncertainties by using integral activation measurements. These techniques are performed using Bayesian and MCMC framework. These methods are applied to integral activation experiments in the cavity of the CALIBAN reactor. We estimate the neutron flux and its related uncertainties. The originality of this work is that these uncertainties take into account measurements uncertainties, cross-sections uncertainties and model error. In particular, our results give a very good approximation of the total flux and indicate that neutron flux from MCNP simulation for energies above about 5 MeV seems to overestimate the 'real flux'. (authors)

  3. Development of the prototype pneumatic transfer system for ITER neutron activation system

    SciTech Connect (OSTI)

    Cheon, M. S.; Seon, C. R.; Pak, S.; Lee, H. G.; Bertalot, L.

    2012-10-15

    The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.

  4. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    SciTech Connect (OSTI)

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani; G. Nebbia

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a samples mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5 by 5 EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when

  5. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect (OSTI)

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  6. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    SciTech Connect (OSTI)

    Landoas, Olivier; Rosse, Bertrand; Briat, Michelle; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc; Glebov, Vladimir Yu; Sangster, Thomas C.; Duffy, Tim; Disdier, Laurent

    2011-07-15

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat a l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  7. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Activities NREL conducts a broad range of energy analysis in support of the laboratory's programs and initiatives, DOE's Office of Energy Efficiency and Renewable Energy (EERE), technology transfer, and the greater energy analysis community. NREL's recent analysis activities include: Analysis of Project Finance Electric Sector Integration Energy-Water Nexus Life Cycle Assessment Harmonization Manufacturing Analysis Resource Assessment Printable Version Energy Analysis Home Capabilities &

  8. DIVERSE ACTIVE WELL NEUTRON COINCIDENCE COUNTER UTILITY AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Dewberry, R; Saleem Salaymeh, S

    2007-01-08

    In this paper we describe use of the Aquila active well neutron coincidence counter for nuclear material assays of {sup 235}U in multiple analytical techniques at Savannah River Site (SRS), at the Savannah River National Laboratory (SRNL), and at Argonne West National Laboratory (AWNL). The uses include as a portable passive neutron counter for field measurements searching for evidence of {sup 252}Cf deposits and storage; as a portable active neutron counter using an external activation source for field measurements searching for trace {sup 235}U deposits and holdup; for verification measurements of U-Al reactor fuel elements; for verification measurements of uranium metal; and for verification measurements of process waste of impure uranium in a challenging cement matrix. The wide variety of uses described demonstrate utility of the technique for neutron coincidence verification measurements over the dynamic ranges of 100 g-5000 g for U metal, 200 g-1300 g for U-Al, and 8 g-35 g for process waste. In addition to demonstrating use of the instrument in both the passive and active modes, we also demonstrate its use in both the fast and thermal neutron modes.

  9. Neutronic and depletion analysis of the Pb-AHTR

    SciTech Connect (OSTI)

    Fratoni, Massimiliano; Greenspan, Ehud; Peterson, Per F.

    2007-07-01

    The PB-AHTR is a Pebble Bed Advanced High Temperature Reactor that is cooled with the liquid salt flibe (LiF-BeF{sub 2}) rather than helium. This study presents a preliminary neutronic and depletion analysis for the PBAHTR. The attainable burnup is determined as a function of uranium loading per pebble, power density and core dimensions. It is found that the optimal design for a 425 {mu}m UC{sub 0.5}O{sub 1.5} fuel kernel diameter, 10% enriched uranium, features a graphite-to-heavy metal ratio of {approx}360 and its reactivity coefficients are all negative. A comparison with the helium-cooled pebble-bed reactor and with a prismatic-fuel reactor that is cooled with either flibe or helium is also presented. It is found that the PB-AHTR offers similar discharge burnup as the other three designs. As compared to the gas-cooled pebble bed, the PB-AHTR uranium loading and energy generated per pebble are {approx}2.5 times higher. (authors)

  10. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect (OSTI)

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  11. Neutronic Analysis of the Burning of Transuranics in Fully Ceramic...

    Office of Scientific and Technical Information (OSTI)

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic ... of coolant voiding suggest that the behavior of this fuel would be similar to a MOX ...

  12. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOE Patents [OSTI]

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  13. Recent activities for ?-decay half-lives and ?-delayed neutron emission of very neutron-rich isotopes

    SciTech Connect (OSTI)

    Dillmann, Iris; Abriola, Daniel; Singh, Balraj

    2014-05-02

    Beta-delayed neutron (?n) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material ?-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure ?n-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 ?-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 ?-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of ?-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and theoretical models.

  14. Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

    2007-12-01

    An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

  15. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect (OSTI)

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  16. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    SciTech Connect (OSTI)

    Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea; Koehler, Katrina Elizabeth; Henzl, Vladimir; Henzlova, Daniela; Parker, Robert Francis; Croft, Stephen

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  17. Analysis Activities at Idaho National Engineering & Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's analysis ...

  18. Parameters Covariance in Neutron Time of Flight Analysis Explicit Formulae

    SciTech Connect (OSTI)

    Odyniec, M.; Blair, J.

    2014-12-01

    We present here a method that estimates the parameters variance in a parametric model for neutron time of flight (NToF). The analytical formulae for parameter variances, obtained independently of calculation of parameter values from measured data, express the variances in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.

  19. FY15 Status Report on NEAMS Neutronics Activities

    SciTech Connect (OSTI)

    Lee, C. H.; Shemon, E. R.; Smith, M. A.; Connaway, H. M.; Aliberti, G.

    2015-09-30

    This report summarizes the current status of NEAMS activities in FY2015. The tasks this year are (1) to improve solution methods for steady-state and transient conditions, (2) to develop features and user friendliness to increase the usability and applicability of the code, (3) to improve and verify the multigroup cross section generation scheme, (4) to perform verification and validation tests of the code using SFRs and thermal reactor cores, and (5) to support early users of PROTEUS and update the user manuals.

  20. Review of Non-Neutron and Neutron Nuclear Data, 2004

    SciTech Connect (OSTI)

    Holden, Norman E.

    2005-05-24

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  1. REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.

    SciTech Connect (OSTI)

    HOLDEN, N.E.

    2004-09-26

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  2. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  3. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  4. An example of neutronic penalizations in reactivity transient analysis using 3D coupled chain HEMERA

    SciTech Connect (OSTI)

    Dubois, F.; Normand, B.; Sargeni, A.

    2012-07-01

    HEMERA (Highly Evolutionary Methods for Extensive Reactor Analyses), is a fully coupled 3D computational chain developed jointly by IRSN and CEA. It is composed of CRONOS2 (core neutronics, cross sections library from APOLLO2), FLICA4 (core thermal-hydraulics) and the system code CATHARE. Multi-level and multi-dimensional models are developed to account for neutronics, core thermal-hydraulics, fuel thermal analysis and system thermal-hydraulics, dedicated to best-estimate, conservative simulations and sensitivity analysis. In IRSN, the HEMERA chain is widely used to study several types of reactivity accidents and for sensitivity studies. Just as an example of the HEMERA possibilities, we present here two types of neutronic penalizations and their impact on a power transient due to a REA (Rod Ejection Accident): in the first one, we studied a bum-up distribution modification and in the second one, a delayed-neutron fraction modification. Both modifications are applied to the whole core or localized in a few assemblies. Results show that it is possible to use global or local changes but 1) in case of bum-up modification, the total core power can increase when assembly peak power decrease so, care has to be taken if the goal is to maximize a local power peak and 2) for delayed-neutron fraction, a local modification can have the same effect as the one on the whole core, provided that it is large enough. (authors)

  5. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  6. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    SciTech Connect (OSTI)

    Thatcher, T; Madsen, S; Sudowe, R; Meigooni, A Soleimani

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cm solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.

  7. Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus

    SciTech Connect (OSTI)

    Giacomelli, L.; Department of Physics, Universit degli Studi di Milano-Bicocca, Milano ; Conroy, S.; Department of Physics and Astronomy, Uppsala University, Uppsala ; Gorini, G.; Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B.

    2014-02-15

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/? discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

  8. A neutron method for NDA analysis in the SAPPHIRE Project

    SciTech Connect (OSTI)

    Lewis, K.D.

    1995-01-09

    The implementation of Project SAPPHIRE, the top secret mission to the Republic of Kazakhstan to recover weapons grade nuclear materials, consisted of four major elements: (1) the re-packing of fissile material from Kazakh containers into suitable US containers; (2) nondestructive analyses (NDA) to quantify the U-235 content of each container for Nuclear Criticality Safety and compliance purposes; (3) the packaging of the fissile material containers into 6M/2R drums, which are internationally approved for shipping fissile material; and (4) the shipping or transport of the recovered fissile material to the United States. This paper discusses the development and application of a passive neutron counting technique used in the NDA phase of SAPPHIRE operations to analyze uranium/beryllium (U/Be) alloys and compounds for U-235 content.

  9. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect (OSTI)

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary

  10. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    SciTech Connect (OSTI)

    Arnold, Owen; Bilheux, Jean-Christophe; Borreguero Calvo, Jose M; Buts, Alex; Campbell, Stuart I; Doucet, Mathieu; Draper, Nicholas J; Ferraz Leal, Ricardo F; Gigg, Martyn; Lynch, Vickie E; Mikkelson, Dennis J; Mikkelson, Ruth L; Miller, Ross G; Perring, Toby G; Peterson, Peter F; Ren, Shelly; Reuter, Michael A; Savici, Andrei T; Taylor, Jonathan W; Taylor, Russell J; Zhou, Wenduo; Zikovsky, Janik L

    2014-11-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

  11. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect (OSTI)

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  12. Analysis Activities at Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Analysis Activities at Lawrence Livermore National Laboratory Presentation on Lawrence Livermore's analysis activities to the DOE Systems ...

  13. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect (OSTI)

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 1020. The H count rates were roughly 13 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  14. Nondestructive assay of spent boiling water reactor fuel by active neutron interrogation

    SciTech Connect (OSTI)

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Spent fuel rods containing 9 kg of heavy metal were chopped into 5-cm segments and loaded into three 1-liter cans. The three cans were assayed in seven combinations of one, two, or three cans, enabling an evaluation of the precision and accuracy of the NDA system for different amounts of fissile material. The fissile mass in each combination was determined by comparing the induced-fission-neutron counts with the counts obtained from a known standard comprising chopped segments of unirradiated Dresden fuel. These masses were compared to the masses determined by chemical analyses of the spent fuel. The results from the nondestructive assays agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondesctuctive assays. The assay of BWR spent fuel served as a test of the NDA system which was developed at the Oak Ridge National Laboratory for the assay of spent liquid metal fast breeder reactor (LMFBR) fuel subassemblies at the heat-end of a reprocessing plant. Results of previous experiments and calculations reported earlier using simulated LMFBR fuel subassemblies indicated that the NDA system can measure the fissile masses of spent fuel subassemblies to within an accuracy of 3%. Results of the assays of spent BWR fuel reported herein support this conclusion.

  15. Neutron lifetimes behavior analysis considering the two-region kinetic model in the IPEN/MB-01 reactor

    SciTech Connect (OSTI)

    Gonnelli, Eduardo; Diniz, Ricardo

    2014-11-11

    This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.

  16. Implementation of the active neutron Coincidence Collar for the verification of unirradiated PWR and BWR fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-01-01

    An active neutron interrogation technique has been developed for the measurement of the /sup 235/U content in fresh fuel assemblies. The method employs an AmLi neutron source to induce fission reactions in the fuel assembly and coincidence counting of the resulting fission reaction neutrons. When no interrogation source is present, the passive neutron coincidence rate gives a measure of the /sup 238/U by the spontaneous fission reactions. The system can be applied to the fissile content determination in fresh fuel assemblies for accountability, criticality control, and safeguards purposes. Field tests have been performed by International Atomic Energy Agency (IAEA) staff using the Coincidence Collar to verify the /sup 235/U content in light-water-reactor fuel assemblies. The results gave an accuracy of 1 to 2% in the active mode (/sup 235/U) and 2 to 3% in the passive mode (/sup 238/U) under field conditions.

  17. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    SciTech Connect (OSTI)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug.

  18. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect (OSTI)

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  19. Introduction to the theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    SciTech Connect (OSTI)

    Larson, N.M.

    1998-02-01

    Neutron cross-section data are important for two distinct purposes: First, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher energy regions.

  20. Introduction to the Theory and Analysis of Resolved (and Unresolved) Neutron Resonances via SAMMY

    SciTech Connect (OSTI)

    Larson, N.

    2000-03-13

    Neutron cross-section data are important for two purposes: First, they provide insight into the nature of matter, increasing our understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, or for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this report, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  1. Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    SciTech Connect (OSTI)

    Larson, N.M.

    1998-07-01

    Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  2. Analysis of neutron data in the resonance region via the computer code SAMMY

    SciTech Connect (OSTI)

    Larson, N.M.

    1985-01-01

    Procedures for analysis of resonance neutron cross-section data have been implemented in a state-of-the-art computer code SAMMY, developed at the Oak Ridge Electron Linear Accelerator (ORELA) at Oak Ridge National Laboratory. A unique feature of SAMMY is the use of Bayes' equations to determine ''best'' values of parameters, which permits sequential analysis of data sets (or subsets) while giving the same results as would be given by a simultaneous analysis. Another important feature is the inclusion of data-reduction parameters in the fitting procedure. Other features of SAMMY are also described.

  3. Neutron xyz - polarization analysis at a time-of-flight instrument

    SciTech Connect (OSTI)

    Ehlers, Georg; Stewart, John Ross; Andersen, Ken

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  4. Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Campbell, Stuart I; Kohl, James Arthur; Granroth, Garrett E; Miller, Ross G; Doucet, Mathieu; Stansberry, Dale V; Proffen, Thomas E; Taylor, Russell J; Dillow, David

    2014-01-01

    ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

  5. Precise trace rare earth analysis by radiochemical neutron activation

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.; Weimer, W.C.; Wogman, N.A.

    1981-06-01

    A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppB level. Based on the selected ..gamma..-ray energies, normal Ge(Li) counting is favored for /sup 140/La, /sup 170/Tb, and /sup 169/Yb; LEPD is favored for low ..gamma..-ray energies of /sup 147/Nd, /sup 153/Sm, /sup 166/Ho, and /sup 169/Yb; and noncoincidence counting is favored for /sup 141/Ce, /sup 143/Ce, /sup 142/Pr, /sup 153/Sm, /sup 171/Er, and /sup 175/Yb. The detection of radionuclides /sup 152m/Eu, /sup 159/Gd, and /sup 177/Lu is equally sensitive by normal Ge(Li) and noncoincidence counting; /sup 152/Eu is equally sensitive by LEPD and normal Ge(Li); and /sup 153/Gd and /sup 170/Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards.

  6. DANDE: a linked code system for core neutronics/depletion analysis

    SciTech Connect (OSTI)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem.

  7. Covariance of Neutron Cross Sections for {sup 16}O through R-matrix Analysis

    SciTech Connect (OSTI)

    Kunieda, S.; Kawano, T.; Paris, M.; Hale, G.M.; Shibata, K.; Fukahori, T.

    2015-01-15

    Through the R-matrix analysis, neutron cross sections as well as the covariance are estimated for {sup 16}O in the resolved resonance range. Although we consider the current results are still preliminary, we present the summary of the cross section analysis and the results of data uncertainty/covariance, including those for the differential cross sections. It is found that the values obtained highlight consequences of nature in the theory as well as knowledge from measurements, which gives a realistic quantification of evaluated nuclear data covariances.

  8. Analysis of fluid fuel flow to the neutron kinetics on molten...

    Office of Scientific and Technical Information (OSTI)

    Data of reactivity, neutron flux, and the macroscopic fission cross section for ... NEUTRONS; NUCLEAR DATA COLLECTIONS; REACTIVITY; REACTOR OPERATION; SALTS; THERMAL ...

  9. Experience operating LANL`s passive/active neutron (PAN) assay system

    SciTech Connect (OSTI)

    Taggart, D.P.; Betts, S.E.; Martinez, E.F.; Mendez, J.L.; Rael, C.D.; Vigil, J.J.

    1997-01-01

    We present a summary of our operating experience with LANL`s mobile PAN assay system, which was acquired from the Carlsbad Area Office in 1994, refurbished, calibrated, and fielded for the first time on LANL`s TRU waste in the winter of 1996. It is functionally identical to other PAN systems throughout the DOE complex and its software is the same as at INEL. Since Jan. 1996, it has passed the first round of the Performance Demonstration Program and has been used to assay several hundred drums of LANL`s TRU waste. Difficulties in assaying homogeneous wastes with high ({alpha},n) neutron fluxes and experience in assaying debris waste in both active and passive PAN modes are reported on.

  10. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    SciTech Connect (OSTI)

    Aji, Indarta Kuncoro; Waris, Abdul Permana, Sidik

    2015-09-30

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  11. Key research issues in the pulsed fast-neutron analysis technique for cargo inspection

    SciTech Connect (OSTI)

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1994-07-01

    Non-invasive inspection systems based on the use of fast neutrons are being studied for the inspection of large cargo containers. A key advantage of fast neutrons is their sensitivity to low-Z elements such as carbon, nitrogen, and oxygen, which are the primary constituents of explosives and narcotics. The high energy allows penetration of relatively large containers. The pulsed fast-neutron analysis (PFNA) technique is currently the baseline system. A workshop on the PFNA technique involving industrial, government, and university participants was held at Argonne National Lab. in January 1994. The purpose of this workshop was to review the status of research on the key technical issues involved in PFNA, and to develop a list of those areas where additional modeling and/or experimentation were needed. The workshop also focused on development of a near-term experimental assessment program using existing prototypes and on development of a long-term test program at the Tacoma Testbed, where a PFNA prototype will be installed in 1995. A summary of conclusions reached at this workshop is presented. Results from analytic and Monte Carlo modeling of simplified PFNA systems are also presented.

  12. The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila

    SciTech Connect (OSTI)

    Feder, Russell; Youssef, Mahamoud; Klabacha, Jonathan

    2013-11-01

    USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

  13. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect (OSTI)

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel

  14. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect (OSTI)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  15. Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field

    SciTech Connect (OSTI)

    D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

    2011-10-01

    Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

  16. Neutron Activation and Thermoluminescent Detector Responses to a Bare Pulse of the CEA Valduc SILENE Critical Assembly

    SciTech Connect (OSTI)

    Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.; Lee, Yi-kang; Gagnier, Emmanuel; Authier, Nicolas; Piot, Jerome; Jacquet, Xavier; Rousseau, Guillaume; Reynolds, Kevin H.

    2015-09-01

    This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). The goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.

  17. 2010 Neutron Review: ORNL Neutron Sciences Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: 2010 Neutron Review: ORNL Neutron Sciences Progress Report Citation Details In-Document Search Title: 2010 Neutron Review: ORNL Neutron Sciences Progress Report During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown

  18. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    SciTech Connect (OSTI)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performance of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.

  19. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  20. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    SciTech Connect (OSTI)

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  1. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  2. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation

    SciTech Connect (OSTI)

    Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Smelser, R. M.; Snow, C. S.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cooper, G. W.; Nelson, A. J. [Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-10-15

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the {sup 63}Cu(n,2n){sup 62}Cu({beta}+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 {mu}m thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n){sup 4}He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced {sup 62}Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  3. NUCLEAR ENERGY UNIVERSITY PROGRAMS Improved Fission Neutron Data...

    National Nuclear Security Administration (NNSA)

    NUCLEAR ENERGY UNIVERSITY PROGRAMS Improved Fission Neutron Data Base for Active ... the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. ...

  4. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  5. Measurement of cross sections for inelastic cold-neutron scattering in metals and polymers by the method of (n, {gamma}) analysis

    SciTech Connect (OSTI)

    Arzumanov, S. S.; Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Panin, Yu. N.; Chernyavsky, S. M.

    2008-11-15

    The results obtained by measuring the cross sections for the inelastic scattering of very cold neutrons for a number of metals and polymers by the method of a neutron-irradiation analysis are presented. The method is based on simultaneously measuring events of inelastic scattering and neutron capture in the sample under investigation via recording gamma radiation with a semiconductor germanium detector. Neutron capture by a nucleus of the sample is accompanied by the prompt radiation of gamma rays having a known spectrum. Upon inelastic scattering, a neutron acquires thermal energy. Upon leaving the sample, this neutron is absorbed in a special converter that contains the isotope {sup 10}B. The capture of the neutron by a {sup 10}B nucleus is followed by the emission of a 477-keV gamma ray. The probabilities of capture and inelastic scattering are proportional to the respective neutron-interaction cross sections, and the ratio of the recorded detector counts corresponding to events of the two types does not depend on the spectrum of the incident flux of very cold neutrons or on the trajectory of neutron motion in the sample. The sought inelastic-scattering cross section at a fixed sample temperature is calculated by using this ratio and the known cross section for neutron capture by the sample isotope having a known gamma-radiation spectrum.

  6. Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2012-09-01

    This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu

  7. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  8. Analysis of incident-energy dependence of delayed neutron yields in actinides

    SciTech Connect (OSTI)

    Nasir, Mohamad Nasrun bin Mohd Metorima, Kouhei Ohsawa, Takaaki Hashimoto, Kengo

    2015-04-29

    The changes of delayed neutron yields (?{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ?{sub d}=?Y{sub i} P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ?{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  9. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  10. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  11. PERSONNEL NEUTRON DOSIMETER

    DOE Patents [OSTI]

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  12. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect (OSTI)

    Bi, G.; Liu, C.; Si, S.

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no

  13. Inspecting the minefield and residual explosives by fast neutron activation method

    SciTech Connect (OSTI)

    Sudac, D.; Majetic, S.; Kollar, R.; Nad, K.; Obhodas, J.; Valkovic, V.

    2011-07-01

    As an upgrade of a robotic mobile system for antipersonnel land-mine clearance, a fast neutron probe has been considered for the detection of mines and explosive residues. Laboratory tests were made by using the 14 MeV 6 x 10{sup 7} neutrons/sec beam with the associated alpha particle detection and with a LaBr{sub 3} gamma ray detector. Simulant of the anti-personal mine was used as a target. Several measurements were made with the target buried into the soil at different depths. For each depth minimal time measurement was estimated for false negative 0.4 % and false positive equal to 10 %. Tests showed that is possible to detect buried land-mine as well as residual explosives; however, in order to reach the optimal speed of 10 cm/s for de-mining vehicle it is necessarily to use several sealed tube neutron generators and few tens of LaBr{sub 3} gamma ray detectors. (authors)

  14. Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source

    SciTech Connect (OSTI)

    Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

    2007-06-20

    A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

  15. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    SciTech Connect (OSTI)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-30

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup −1}) in a tube, their delta

  16. Summary of comparison and analysis of results from exercises 1 and 2 of the OECD PBMR coupled neutronics/thermal hydraulics transient benchmark

    SciTech Connect (OSTI)

    Mkhabela, P.; Han, J.; Tyobeka, B.; Ivanov, K.; Reitsma, F.; Sartori, E.

    2006-07-01

    The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises and six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)

  17. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment Neutronics Analysis using the ATTILA Discrete Ordinates Code

    SciTech Connect (OSTI)

    Russell Feder and Mahmoud Z. Yousef

    2009-05-29

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv

  18. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    SciTech Connect (OSTI)

    Worrall, Louise G.; Croft, Stephen

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  19. An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis

    SciTech Connect (OSTI)

    William R. Martin; John C. Lee

    2009-12-30

    Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

  20. Fundamental neutron physics at LANSCE

    SciTech Connect (OSTI)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  1. Analysis Activities at National Renewable Energy Laboratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Renewable Energy Laboratory Analysis Activities at National Renewable Energy Laboratory Presentation on NREL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 12_nrel_mann.pdf (2.09 MB) More Documents & Publications Hydrogen Analysis Planning, Budget, and Analysis Analysis Activities at Lawrence Livermore

  2. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    SciTech Connect (OSTI)

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fast neutron fluxes.

  3. Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sammarruca, Francesca

    2015-09-14

    Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.

  4. Active neutron interrogation for verification of storage of weapons components at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.; Mullens, J.A.; Hughes, S.S.

    1998-02-23

    A nuclear weapons identification system (NWIS), under development since 1984 at the Oak Ridge Y-12 Plant and presently in use there, uses active neutron interrogation with low-intensity {sup 252}Cf sources in ionization chambers to provide a timed source of fission neutrons from the spontaneous fission of {sup 252}Cf. To date, measurements have been performed on {approximately}15 different weapons systems in a variety of configurations both in and out of containers. Those systems included pits and fully assembled systems ready for deployment at the Pantex Plant in Amarillo, Texas, and weapons components at the Oak Ridge Y-12 Plant. These measurements have shown that NWIS can identify nuclear weapons and/or components; nuclear weapons/components can be distinguished from mockups where fissile material has been replaced by nonfissile material; omissions of small amounts (4%) of fissile material can be detected; changes in internal configurations can be determined; trainer parts can be identified as was demonstrated by verification of 512 containers with B33 components at the Y-12 Plant (as many as 32 in one 8-hour shift); and nonfissile components can be identified. The current NWIS activities at the Oak Ridge Y-12 Plant include: (1) further development of the system for more portability and lower power consumption, (2) collection of reference signatures for all weapons components in containers, and (3) confirmation of a particular weapons component in storage and confirmation of receipts. This paper describes the recent measurements with NWIS for a particular weapons component in storage that have resolved an Inspector General (IG`s) audit finding with regard to performance of confirmation of inventory.

  5. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  6. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  7. W-026, acceptance test report imaging passive/active neutron(IPAN) (submittal {number_sign}54.3 - C3)

    SciTech Connect (OSTI)

    Watson, T.L.

    1997-02-21

    In the Spring of 1996, Site Acceptance Tests were performed for the 2 Imaging Passive/Active Neutron (IPAN) assay systems installed in the WRAP I Facility. This report includes the test documentation and the completed test checklists, with comments and resolutions. All testing was completed, with comments resolved by August 1996.

  8. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    SciTech Connect (OSTI)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  9. Code System to Perform Neutronic and Thermal-Hydraulic Subchannel Analysis from Converged Coarse-Mesh Nodal Solutions.

    Energy Science and Technology Software Center (OSTI)

    2000-06-14

    Version 00 NORMA-FP is an auxiliary program which can perform a neutronic and thermal-hydraulic subchannel analysis, starting from global core calculations carried out by both PSR-471/NORMA or PSR-492/QUARK codes. Detailed flux and power distributions inside homogenized nodes are computed by a two-stage bivariate interpolation method, upon separation of the axial variable for which an analytical solution is adopted. The actual heterogeneous structure of a node is accounted for by fuel rod power factors computed asmore » functions of burnup, burnup-weighted coolant density, and instantaneous coolant density.« less

  10. Dynamical magnetic correlations in the YbB{sub 12} kondo insulator: Neutron investigations with a polarization analysis

    SciTech Connect (OSTI)

    Alekseev, P. A. Nemkovski, K. S.; Mignot, J.-M.; Nefeodova, E. V.; Sadikov, I. P.; Iga, F.; Takabatake, T.

    2007-05-15

    The results of investigations into the spin dynamics in the YbB{sub 12} Kondo insulator with the use of inelastic neutron scattering, including experiments with a polarization analysis, are discussed. It is shown that, at low temperatures, the dynamic magnetic response in the structure of the YbB{sub 12} Kondo insulator is characterized by three dispersive excitations with a nontrivial q-dependence of the intensity. An increase in the temperature results in a crossover to the single-site spin fluctuation regime accompanied by suppression of collective excitations.

  11. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured

  12. NEUTRON COUNTER

    DOE Patents [OSTI]

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  13. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  14. Analysis of DOE international environmental management activities

    SciTech Connect (OSTI)

    Ragaini, R.C.

    1995-09-01

    The Department of Energy`s (DOE) Strategic Plan (April 1994) states that DOE`s long-term vision includes world leadership in environmental restoration and waste management activities. The activities of the DOE Office of Environmental Management (EM) can play a key role in DOE`s goals of maintaining U.S. global competitiveness and ensuring the continuation of a world class science and technology community. DOE`s interest in attaining these goals stems partly from its participation in organizations like the Trade Policy Coordinating Committee (TPCC), with its National Environmental Export Promotion Strategy, which seeks to strengthen U.S. competitiveness and the building of public-private partnerships as part of U.S. industrial policy. The International Interactions Field Office task will build a communication network which will facilitate the efficient and effective communication between DOE Headquarters, Field Offices, and contractors. Under this network, Headquarters will provide the Field Offices with information on the Administration`s policies and activities (such as the DOE Strategic Plan), interagency activities, as well as relevant information from other field offices. Lawrence Livermore National Laboratory (LLNL) will, in turn, provide Headquarters with information on various international activities which, when appropriate, will be included in reports to groups like the TPCC and the EM Focus Areas. This task provides for the collection, review, and analysis of information on the more significant international environmental restoration and waste management initiatives and activities which have been used or are being considered at LLNL. Information gathering will focus on efforts and accomplishments in meeting the challenges of providing timely and cost effective cleanup of its environmentally damaged sites and facilities, especially through international technical exchanges and/or the implementation of foreign-development technologies.

  15. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  16. Analysis of the properties of SGRs and AXPs with realistic neutron star configurations

    SciTech Connect (OSTI)

    Lima, Rafael C. R. de; Coelho, Jaziel G.; Rueda, Jorge A.; Ruffini, Remo; Malheiro, Manuel

    2015-12-17

    We show that nine soft gamma repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) of the twenty three known sources can be described as rotation-powered canonical pulsars. To accomplish this we use realistic parameters of rotating neutron stars obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium. We present limits to the NS mass where the sources can be rotation-powered.

  17. Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay

    SciTech Connect (OSTI)

    Chen, Jianwei; Lineberry, Michael

    2007-07-01

    Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)

  18. COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE

    SciTech Connect (OSTI)

    O. GASNAULT; W. FELDMAN; ET AL

    2001-01-01

    The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.

  19. Analysis of Integrated Safety Management at the Activity Level...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, ...

  20. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    SciTech Connect (OSTI)

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in the fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to

  1. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Maldonado, Ivan

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the

  2. SU-E-T-495: Neutron Induced Electronics Failure Rate Analysis for a Single Room Proton Accelerator

    SciTech Connect (OSTI)

    Knutson, N; DeWees, T; Klein, E

    2014-06-01

    Purpose: To determine the failure rate as a function of neutron dose of the range modulator's servo motor controller system (SMCS) while shielded with Borated Polyethylene (BPE) and unshielded in a single room proton accelerator. Methods: Two experimental setups were constructed using two servo motor controllers and two motors. Each SMCS was then placed 30 cm from the end of the plugged proton accelerator applicator. The motor was then turned on and observed from outside of the vault while being irradiated to known neutron doses determined from bubble detector measurements. Anytime the motor deviated from the programmed motion a failure was recorded along with the delivered dose. The experiment was repeated using 9 cm of BPE shielding surrounding the SMCS. Results: Ten SMCS failures were recorded in each experiment. The dose per monitor unit for the unshielded SMCS was 0.0211 mSv/MU and 0.0144 mSv/MU for the shielded SMCS. The mean dose to produce a failure for the unshielded SMCS was 63.5 58.3 mSv versus 17.0 12.2 mSv for the shielded. The mean number of MUs between failures were 2297 1891 MU for the unshielded SMCS and 2122 1523 MU for the shielded. A Wilcoxon Signed Ranked test showed the dose between failures were significantly different (P value = 0.044) while the number of MUs between failures were not (P value = 1.000). Statistical analysis determined a SMCS neutron dose of 5.3 mSv produces a 5% chance of failure. Depending on the workload and location of the SMCS, this failure rate could impede clinical workflow. Conclusion: BPE shielding was shown to not reduce the average failure of the SMCS and relocation of the system outside of the accelerator vault was required to lower the failure rate enough to avoid impeding clinical work flow.

  3. Operational Experience with an Imaging Passive/Active Neutron System (IPAN{sup TM}) in a Mature Production Application to Perform WIPP Certified Non-destructive Assays

    SciTech Connect (OSTI)

    Simpson, A.P.; West, J.M.; Carlton, T.; Peterson, T.; Harvill, J.

    2006-07-01

    BIL Solutions Inc. have deployed and operated an Imaging Passive/Active Neutron System (IPANTM) System at the Savannah River Site (SRS) in South Carolina for the purpose of performing non-destructive assays on contact handled transuranic (CH-TRU) waste in 55-gallon containers. During the four-plus years of operation (May 2001 through August 2005), a vast amount of experience has been gained, with approximately 8950 waste containers assayed. This experience has provided the knowledge base for the evolution of improvements in the assay technique and instrument maintenance and troubleshooting. Additionally, operational experience provides for very reliable characterization of the robustness and applicability of this assay technique for a wide variety of waste streams and provides for assessment of the achievable production output capabilities over a long period of time in a production environment. The assay technique combines passive/active neutron data with gamma energy analysis (GEA) data and acceptable knowledge (AK) data to provide Waste Isolation Pilot Plant (WIPP) compliant quantification of the required nuclides within the waste. These data are incorporated through system software, which automate the data analysis process. However, due to the complex nature of NDA and the potential for a wide variety of interferences, each analysis is reviewed by an Expert Analyst (EA). The software allows the EA to interact with the data analysis process to provide regulatory compliant and defensible results. This technique has evolved with time as a vast array of waste and isotopic compositions have been encountered During 1555 days from the beginning of production operations, the system maintenance log indicates 63 days of downtime due to hardware problems. This translates to an operational availability of 96%. Given the extensive length of time represented by this availability data, 96% availability would represent a very reliable estimate for future applications

  4. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  5. Neutron skins and neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J.

    2013-11-07

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  6. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  7. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  8. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  9. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect (OSTI)

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  10. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  11. Neutron dosimetry

    DOE Patents [OSTI]

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  12. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect (OSTI)

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  13. Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; Singh, Saurabh; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Majewski, Jaroslaw

    2015-03-01

    Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)].more » Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.« less

  14. Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces

    SciTech Connect (OSTI)

    Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; Singh, Saurabh; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Majewski, Jaroslaw

    2015-03-01

    Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.

  15. APPARATUS FOR CONTROLLING NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Dietrich, J.R.; Harrer, J.M.

    1958-09-16

    A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.

  16. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect (OSTI)

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  17. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  18. Analysis Activities at Lawrence Livermore National Laboratory | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lawrence Livermore National Laboratory Analysis Activities at Lawrence Livermore National Laboratory Presentation on Lawrence Livermore's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 11_llnl_stewart.pdf (717.16 KB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production CX-100522 Categorical Exclusion Determination Analysis Activities at Argonne

  19. Analysis Activities at Sandia National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratory Analysis Activities at Sandia National Laboratory Presentation on SNL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 14_snl_lutz.pdf (623.71 KB) More Documents & Publications Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Analysis Activities at Oak Ridge National Laboratory Thermochemical Energy Storage

  20. Quality assurance of temporal variability of natural decay chain and neutron induced background for low-level NORM analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon

    2015-09-22

    In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fast neutronmore » fluxes.« less

  1. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    SciTech Connect (OSTI)

    E.H. Seabury; D.L. Chichester; C.J. Wharton; A.J. Caffrey

    2008-08-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  2. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect (OSTI)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  3. Analysis Activities at Argonne National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Analysis Activities at Argonne National Laboratory Presentation on Argonne's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 10_anl_mintz.pdf (4.76 MB) More Documents & Publications Advanced Vehicle Technology Analysis & Evaluation Team Vehicle Technologies Office Merit Review 2016: VTO Program Benefits Analysis Vehicle Technologies Office Merit Review 2016: ANL Vehicle Technologi

  4. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fossil Energy/ National Energy Technology Laboratory Analysis Activities at Fossil Energy/ National Energy Technology Laboratory Presentation on NETL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 17_fe_netl_ruether.pdf (759.42 KB) More Documents & Publications Production, Storage, and FC Analysis Systems Analysis Workshop Agenda EIS-0394: Draft Environmental Impact Statement

  5. Analysis Activities at Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Analysis Activities at Oak Ridge National Laboratory Presentation on ORNL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 15_ornl_greene_ferrada.pdf (4.45 MB) More Documents & Publications Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans DOE Hydrogen Transition Analysis Workshop DOE Analysis Related to H2USA

  6. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore » component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  7. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect (OSTI)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  8. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  9. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 2. External neutron- and gamma flux measurements by sample activation. Section 1

    SciTech Connect (OSTI)

    Biggers, W.A.; Brown, L.J.

    1985-09-01

    The Greenhouse operation consisted of a series of four shots conducted at Eniwetok during the Srping of 1951. The external neutron threshold measurements consisted of the use of good samples to measure integrated thermal neutron fluxes and sulfur, iodine, and zirconium samples to measure fluxes of higher-energy neutrons. The iodine also measured high-energy gamma-ray intensity. Measurements were also made on slow- and fast-neutron intensities as a function of time.

  10. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  11. Ultracold neutrons

    SciTech Connect (OSTI)

    Saunders, Alexander

    2015-06-22

    This series of slides describes ultracold neutrons (UCN) and their properties, various UCN sources, and an overview of UCN-based experiments. Numerous diagrams and photographs are included.

  12. Soil Analysis using the semi-parametric NAA technique

    SciTech Connect (OSTI)

    Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.

    2007-10-26

    The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.

  13. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  14. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  15. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  16. Neutron source

    DOE Patents [OSTI]

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  17. NEUTRON MEASURING METHOD AND APPARATUS

    DOE Patents [OSTI]

    Seaborg, G.T.; Friedlander, G.; Gofman, J.W.

    1958-07-29

    A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.

  18. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  19. Analysis Activities at Idaho National Engineering & Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 16_ineel_southworth.pdf (585.23 KB) More Documents & Publications Nuclear Hydrogen R&D Plan Nuclear Hydrogen R&D Plan International Nuclear Energy Research Initiative: Annual Report 2005

  20. Analysis Activities at Pacific Northwest National Laboratory | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Pacific Northwest National Laboratory Analysis Activities at Pacific Northwest National Laboratory Presentation on PNNL's analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004. 13_pnnl_placet.pdf (6.03 MB) More Documents & Publications There is no Silver Bullet: Regionalization and Market Fragmentation in Greenhouse Gas Mitigation Strategies Meeting Materials: April 15 - 16, 2002 DOE Fuel Cell Technologies Office Record 12024:

  1. Analysis of Integrated Safety Management at the Activity Level: Work

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning and Control, Final Report | Department of Energy Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report May 15, 2013 Presenter: Stephen L. Domotor, Director, Office of Analysis, Office of Health, Safety and Security Topic: On August 28, 2012, the Defense Nuclear Facilities Safety Board (DNFSB or "Board") wrote to the

  2. Method for photon activation positron annihilation analysis

    DOE Patents [OSTI]

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  3. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the codes versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research projects primary objective is to advance the state of the art for reactor analysis.

  4. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  5. Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis

    SciTech Connect (OSTI)

    Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi

    2008-09-01

    The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the

  6. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  7. Typical BWR/4 MSIV closure ATWS analysis using RAMONA-3B code with space-time neutron kinetics

    SciTech Connect (OSTI)

    Neymotin, L.; Saha, P.

    1984-01-01

    A best-estimate analysis of a typical BWR/4 MSIV closure ATWS has been performed using the RAMONA-3B code with three-dimensional neutron kinetics. All safety features, namely, the safety and relief valves, recirculation pump trip, high pressure safety injections and the standby liquid control system (boron injection), were assumed to work as designed. No other operator action was assumed. The results show a strong spatial dependence of reactor power during the transient. After the initial peak of pressure and reactor power, the reactor vessel pressure oscillated between the relief valve set points, and the reactor power oscillated between 20 to 50% of the steady state power until the hot shutdown condition was reached at approximately 1400 seconds. The suppression pool bulk water temperature at this time was predicted to be approx. 96/sup 0/C (205/sup 0/F). In view of code performance and reasonable computer running time, the RAMONA-3B code is recommended for further best-estimate analyses of ATWS-type events in BWRs.

  8. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  9. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  10. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  11. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  12. NEUTRON SOURCES

    DOE Patents [OSTI]

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  13. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  14. Neutron Emission Characteristics of Two Mixed-Oxide Fuels: Simulations and Initial Experiments

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. Flaska; J. T. Johnson; E. H. Seabury; E. M. Gantz

    2009-07-01

    Simulations and experiments have been carried out to investigate the neutron emission characteristics of two mixed-oxide (MOX) fuels at Idaho National Laboratory (INL). These activities are part of a project studying advanced instrumentation techniques in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and it's Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. This analysis used the MCNP-PoliMi Monte Carlo simulation tool to determine the relative strength and energy spectra of the different neutron source terms within these fuels, and then used this data to simulate the detection and measurement of these emissions using an array of liquid scintillator neutron spectrometers. These calculations accounted for neutrons generated from the spontaneous fission of the actinides in the MOX fuel as well as neutrons created via (alpha,n) reactions with oxygen in the MOX fuel. The analysis was carried out to allow for characterization of both neutron energy as well as neutron coincidences between multiple detectors. Coincidences between prompt gamma rays and neutrons were also analyzed. Experiments were performed at INL with the same materials used in the simulations to benchmark and begin validation tests of the simulations. Data was collected in these experiments using an array of four liquid scintillators and a high-speed waveform digitizer. Advanced digital pulse-shape discrimination algorithms were developed and used to collect this data. Results of the simulation and modeling studies are presented together with preliminary results from the experimental campaign.

  15. In vivo assessment of magnesium status in human body using accelerator-based neutron activation measurement of hands: A pilot study

    SciTech Connect (OSTI)

    Aslam; Pejovic-Milic, A.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Chettle, D. R.

    2008-02-15

    Magnesium (Mg) is an element essential for many enzymatic reactions in the human body. Various human and animal studies suggest that changes in Mg status are linked to diseases such as cardiac arrhythmia, coronary heart disease, hypertension, premenstrual syndrome, and diabetes mellitus. Thus, knowledge of Mg levels in the human body is needed. A direct measurement of human blood serum, which contains only 0.3% of the total body Mg, is generally used to infer information about the status of Mg in the body. However, in many clinical situations, Mg stored in large levels, for example in bones, muscles, and soft tissues, needs to be monitored either to evaluate the efficacy of a treatment or to study the progression of diseases associated with the deficiency of total body Mg. This work presents a feasibility study of a noninvasive, in vivo neutron activation analysis (IVNAA) technique using the {sup 26}Mg(n,{gamma}){sup 27}Mg reaction to measure Mg levels in human hands. The technique employs the McMaster University high beam current Tandetron accelerator hand irradiation facility and an array of eight NaI (T1) detectors arranged in a 4{pi} geometry for delayed counting of the 0.844 and 1.014 MeV gamma rays emitted when {sup 27}Mg decays in the irradiated hand. Mg determination in humans using IVNAA of hands has been demonstrated to be feasible, with effective doses as low as one-quarter of those delivered in chest x rays. The overall experimental uncertainty in the measurements is estimated to be approximately 5% (1{sigma}). The results are found to be in the range of the in vitro measurements reported for other cortical bones collected from different sites of the human skeleton, which confirms that this technique mainly provides a measure of the amount of Mg in hand bones. The average concentration of Mg determined in human hands is 10.96{+-}1.25 ({+-}1 SD) mg Mg/g Ca. The coefficient of variation (11%) observed in this study is comparable with or lower than several

  16. Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis

    SciTech Connect (OSTI)

    Oliveira, Laura C.; Zamboni, Cibele B.

    2013-05-06

    In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

  17. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.

    1983-10-01

    Data have been presented for 35 elements determined by INAA for NBS oyster tissue (SRM 1566) and for 38 elements determined by INAA and RNAA for IAEA animal bone (H-5). The experimental data showed excellent agreement with published values wherever the comparison exists. Additional trace-element data in the ppb range have been presented for the elements Sc, Sb, Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W and Th in NBS oyster tissue. Also, additional trace-element data for IAEA animal bone (H-5) in the ppb range for the elements Al, Sc, Co, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, lu, Hf, Ta and Th have been presented.

  18. NEUTRONIC REACTORS AND CONTROL MEANS THEREFOR

    DOE Patents [OSTI]

    Kesselring, K.A.

    1962-08-14

    A nuclear reactor comprising a cylindrical active portion, a fixed reflector around the active portion having equally spaced apertures therein parallel to the longitudinal axis of the active portion, and rotatable cylindrical bodies in each of these apertures including parallel neutron reflector portions and parallel neutron absorber portions are described. (AEC)

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  20. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. Neutron Log At Alum Area (Moos & Ronne, 2010) | Open Energy Informatio...

    Open Energy Info (EERE)

    Technique Neutron Log Activity Date Usefulness useful DOE-funding Unknown Notes Density, photo-electric factor (PEF), neutron, and gamma ray (GR) logs provided sufficient...

  2. PANWAS: A Passive/Active Neutron Waste Assay System for the Radiological Characterization of Waste Packages at the Nucleco Facility at Casaccia

    SciTech Connect (OSTI)

    Alvarez, E.; Wilkins, C.G.; Croft, S.; Villani, M.F.; Ambrifi, A.; Simone, G.

    2006-07-01

    CANBERRA has recently supplied Nucleco SpA with a new Passive/Active Neutron Waste Assay System (PANWAS) for use at their waste management facility at Casaccia in Italy. The system complements two existing CANBERRA high-resolution gamma spectrometry waste assay systems. The three waste assay systems have been integrated into a combined facility for the radiological characterization of the waste managed by Nucleco in order to provide the information required to: - Determine the physical inventory of the nuclear material present for Safeguards purposes, - Segregate the waste into different categories, - Allow transportation to and storage in the final repository for the waste. This paper describes the main characteristics of the PANWAS, how it is used (in conjunction with the two gamma monitoring systems) to determine the radionuclide inventory of the waste and how the system was calibrated and characterized for use in this application. (authors)

  3. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect (OSTI)

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  4. Neutronic reactor

    DOE Patents [OSTI]

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  5. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  6. INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS

    SciTech Connect (OSTI)

    D.A. Kalinich

    1999-09-27

    Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be included as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.

  7. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  8. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  9. CONTROL MEANS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  10. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  11. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  12. COMPOSITE NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Menke, J.R.

    1963-06-11

    This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)

  13. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    SciTech Connect (OSTI)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.

  14. Neutron spectrometry for ${\\rm UF}_6$ enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmorecomponent analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.less

  15. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  16. Neutron Log At Coso Geothermal Area (1977) | Open Energy Information

    Open Energy Info (EERE)

    Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Neutron Log At Coso Geothermal Area (1977) Exploration Activity...

  17. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  18. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    SciTech Connect (OSTI)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  19. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect (OSTI)

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrn-Palos, L.; Maldonado-Velzquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of d?/dz = 1 10{sup ?7} rad/m.

  20. Safety control circuit for a neutronic reactor

    DOE Patents [OSTI]

    Ellsworth, Howard C. (Richland, WA)

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  1. Multi-scale statistical analysis of coronal solar activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  2. Analysis of alternatives for immobilized low activity waste disposal

    SciTech Connect (OSTI)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  3. NEUTRON SOURCE

    DOE Patents [OSTI]

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  4. The Advanced Neutron Source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  5. The Advanced Neutron Source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  6. Monitoring the dynamics of miscible P3HT:PCBM blends: A quasi elastic neutron scattering study of organic photovoltaic active layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Etampawala, Thusitha; Ratnaweera, Dilru; Morgan, Brian; Diallo, Souleymane; Mamontov, Eugene; Dadmun, Mark

    2015-02-02

    Our work reports on the detailed molecular dynamic behavior of miscible blends of Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and their pure counterparts by quasi-elastic neutron scattering measurements (QENS). The study provides the measure of relaxation processes on pico-to-nanosecond time scales. A single relaxation process was observed in pure P3HT and PCBM while two relaxation processes, one fast and one slow, were observed in the blends. The fast process was attributed to the dynamics of P3HT while the slow process was correlated to the dynamics of PCBM. The results show that the relaxation process is a balance betweenmore » two opposing effects: increased mobility due to thermal activation of P3HT molecules and decrease mobility due to the presence of PCBM which is correlated to the percent crystallinity of P3HT and local packing density of PCBM in the amorphous phase. The threshold for the domination of the thermally activated relaxation is between 5 and 9 vol.% of PCBM loading. Two distinct spatial dependences of the relaxation processes, in which the crossover length scale depends neither on temperature nor composition, were observed for all the samples. They were attributed to the collective motions of the hexyl side chains and the rotational motions of the C-C single bonds of the side chains. Finally, these results provide an understanding of the effects of PCBM loading and temperature on the dynamics of the polymer-fullerene blends which provides a tool to optimize the efficiency of charge carrier and exciton transport within the organic photovoltaic (OPV) active layer to improve the high performance of organic solar cells.« less

  7. Cofrentes NPP activities on PSA and severe accident analysis

    SciTech Connect (OSTI)

    Suarez, J.; Borondo, L.; Garcia, P.J.

    1996-07-01

    Cofrentes NPP (CNPP) has developed a Level 1 PSA with the following scope: analysis of internal events, with the reactor initially operating at power, internal and external flooding risk analysis; internal fire risk analysis; reliability analysis of the containment heat removal and containment isolation systems. Level 1 CNPP-PSA results reveal that total core damage frequency in CNPP is less than other similar BWR/6 plants. The CNPP-PSA related activities and applications being carried out currently are: adjusting of MAAP 3.0B, revision 10, on VAX and PC; acquisition of MAAP 4; development of Level1/Level2-PSA interface; seismic site categorization for the IPEEE; prioritization of motor operated valves related to GL-89/10, complementary analysis for exemption to some 10CFR50 App. J requirements; Q-List grading; reliability-centered maintenance; maintenance rule support; on-line maintenance support, off-line risk-monitor development, PSA applicability to the 10CFR50 App. R requirements, analysis of the frequency of mis-oriented fuel bundle event, etc. About severe accident management, CNPP, as part of the Spanish-BWROG, is currently analyzing the generic products of the US-BWROG AMG in order to generate their specific ones. Also, in this group BWR, the development of tools to simulate accident scenarios beyond core damage will be studied and a training process oriented to warrant the optimum use of new EOP/AMG in accident scenarios will be implemented.

  8. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    SciTech Connect (OSTI)

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

  9. Gamma/neutron time-correlation for special nuclear material detection – Active stimulation of highly enriched uranium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paff, Marc G.; Monterial, Mateusz; Marleau, Peter; Kiff, Scott; Nowack, Aaron; Clarke, Shaun D.; Pozzi, Sara A.

    2014-06-21

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highlymore » Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.« less

  10. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  11. (International Collaboration on Advanced Neutron Sources)

    SciTech Connect (OSTI)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  12. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  13. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    SciTech Connect (OSTI)

    Hunt, Alan; Reedy, E. T.E.; Mozin, V.; Tobin, S. J.

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  14. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  15. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  16. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  17. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    SciTech Connect (OSTI)

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  18. Neutron multiplication error in TRU waste measurements

    SciTech Connect (OSTI)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  19. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  20. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    SciTech Connect (OSTI)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David; MacLaren, Donald A.; Webb, Paul B.; Tooze, Robert P.; Taylor, Jon; Ewings, Russell A.; Parker, Stewart F.

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon feature disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.

  1. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect (OSTI)

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  2. The characterization of metal/ceramic interfaces using specular neutron reflection

    SciTech Connect (OSTI)

    Xiao, P.; Derby, B.; Webster, J.; Penfold, J.

    1997-01-01

    The authors have characterized the chemical composition of three interfaces between metals and a sapphire (Al{sub 2}O{sub 3}) single crystal using specular neutron reflection. The interfaces are Sn/sapphire, Sn/sapphire containing a thin, {approximately}20 nm, Ti interlayer and an interface between sapphire and a Ti-containing Ag-Cu eutectic active braze alloy. The authors have evaluated the neutron reflection results using a multilayer model of the interface. The technique is extremely sensitive to the presence of Ti at the interface being probed because of the negative neutron scattering length of Ti compared with the positive scattering lengths of the other elements present in the systems. The analysis of the data revealed a thin, {approximately}70 nm, titanium suboxide layer t the sapphire/active braze alloy interface, consistent with observations made using other techniques.

  3. Cryogenic Neutron Protein Crystallography: routine methods and potential benefits

    SciTech Connect (OSTI)

    Weiss, Kevin L; Tomanicek, Stephen J; NG, Joseph D

    2014-01-01

    The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

  4. Active nondestructive assay of nuclear materials: principles and applications

    SciTech Connect (OSTI)

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  5. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  6. Neutron streak camera

    DOE Patents [OSTI]

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  7. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  8. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  9. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The recently commissioned 11 Tesla horizontal field magnet at GP-SANS will enable advanced neutron scattering research. Credit: Genevieve MartinORNL. 11 Tesla Magnet Commissioned ...

  10. Neutronic Reactor Design to Reduce Neutron Loss

    DOE Patents [OSTI]

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  11. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOE Patents [OSTI]

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  12. Report on INL Activities for Uncertainty Reduction Analysis of FY11

    SciTech Connect (OSTI)

    G. Plamiotti; H. Hiruta; M. Salvatores

    2011-09-01

    This report presents the status of activities performed at INL under the ARC Work Package on 'Uncertainty Reduction Analyses' that has a main goal the reduction of uncertainties associated with nuclear data on neutronic integral parameters of interest for the design of advanced fast reactors under consideration by the ARC program. First, an analysis of experiments was carried out. For both JOYO (the first Japanese fast reactor) and ZPPR-9 (a large size zero power plutonium fueled experiment performed at ANL-W in Idaho) the performance of ENDF/B-VII.0 is quite satisfying except for the sodium void configurations of ZPPR-9, but for which one has to take into account the approximation of the modeling. In fact, when one uses a more detailed model (calculations performed at ANL in a companion WP) more reasonable results are obtained. A large effort was devoted to the analysis of the irradiation experiments, PROFIL-1 and -2 and TRAPU, performed at the French fast reactor PHENIX. For these experiments a pre-release of the ENDF/B-VII.1 cross section files was also used, in order to provide validation feedback to the CSWEG nuclear data evaluation community. In the PROFIL experiments improvements can be observed for the ENDF/B-VII.1 capture data in 238Pu, 241Am, 244Cm, 97Mo, 151Sm, 153Eu, and for 240Pu(n,2n). On the other hand, 240,242Pu, 95Mo, 133Cs and 145Nd capture C/E results are worse. For the major actinides 235U and especially 239Pu capture C/E's are underestimated. For fission products, 105,106Pd, 143,144Nd and 147,149Sm are significantly underestimated, while 101Ru and 151Sm are overestimated. Other C/E deviations from unity are within the combined experimental and calculated statistical uncertainty. From the TRAPU analysis, the major improvement is in the predicted 243Cm build-up, presumably due to an improved 242Cm capture evaluation. The COSMO experiment was also analyzed in order to provide useful feedback on fission cross sections. It was found out that ENDF

  13. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  14. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  15. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  16. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  17. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  18. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  19. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  20. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  1. ULTRASONIC NEUTRON DOSIMETER

    DOE Patents [OSTI]

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  2. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  3. Neutrons - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons Neutron beams are available at the 88-Inch Cyclotron. Available energies range of from 8 to 30 MeV, with fluxes of up to 1E8 neutrons/cm^2/sec. For more information, please contact Mike Johnson via e-mail at MBJohnson@lbl.gov, or by phone at at (510) 486-4389.

  4. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  5. Prototype Neutron Energy Spectrometer

    SciTech Connect (OSTI)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  6. SNS Sample Activation Calculator Flux Recommendations and Validation

    SciTech Connect (OSTI)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.; Lu, Wei

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  7. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of /sup 235/U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the /sup 235/U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described.

  8. Neutron detector using sol-gel absorber

    DOE Patents [OSTI]

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  9. Li2Se as a Neutron Scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua; Shi, Hongliang; Singh, David J.

    2015-06-23

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe.

  10. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  11. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  12. Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints

    SciTech Connect (OSTI)

    Das, Sujit; Peterson, Bruce E; Chin, Shih-Miao

    2010-01-01

    This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

  13. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  14. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  15. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  16. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  17. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  18. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  19. Neutron and X-ray Detectors

    SciTech Connect (OSTI)

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  20. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    SciTech Connect (OSTI)

    Hartini, Entin Andiwijayakusuma, Dinan

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  1. Rocky Flats Neutron Detector Testing at Valduc, France

    SciTech Connect (OSTI)

    Kim, S S; Dulik, G M

    2011-01-03

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  2. Overview and Progress of the Battery Testing, Analysis, and Design Activity

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 16_cunningham_2012_o.pdf (1.72 MB) More Documents & Publications Overview and Progress of the Battery Testing, Analysis, and Design Activity Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity Overview and Progress of the Applied Battery Research (ABR) Activity

  3. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    SciTech Connect (OSTI)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  4. Analysis of ISM Activity-level Work Planning and Control Within...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of ISM Activity-level Work Planning and Control Within DOE May 15, 2013 Presenter: Stephen L. Domotor, Office of Analysis, Office of Health, Safety and Security Topics ...

  5. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associated with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.

  6. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore » with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  7. Neutron Log At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Neutron Log At Silver Peak Area (DOE GTP) Exploration Activity Details...

  8. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect (OSTI)

    Milanese, M.; Moroso, R.; Barbaglia, M.; Universidad del Centro de la Provincia de Buenos Aires , Pinto 399, Tandil 7000, Buenos Aires ; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the in situ analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  9. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  10. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  11. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  12. Neutron detection apparatus

    DOE Patents [OSTI]

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

  13. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  14. Review of current neutron detection systems for emergency response

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-05

    Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  15. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE

  16. Active Well Counting Using New PSD Plastic Detectors

    SciTech Connect (OSTI)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    2015-11-01

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to the existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating

  17. Schoenborn wins Bau Neutron Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of LANL's Bioenergy and Biome Sciences group, to receive the 2016 Bau Neutron Diffraction Award. The award recognizes exceptional research achievement in neutron...

  18. Current and anticipated uses of thermalhydraulic and neutronic codes at PSI

    SciTech Connect (OSTI)

    Aksan, S.N.; Zimmermann, M.A.; Yadigaroglu, G.

    1997-07-01

    The thermalhydraulic and/or neutronic codes in use at PSI mainly provide the capability to perform deterministic safety analysis for Swiss NPPs and also serve as analysis tools for experimental facilities for LWR and ALWR simulations. In relation to these applications, physical model development and improvements, and assessment of the codes are also essential components of the activities. In this paper, a brief overview is provided on the thermalhydraulic and/or neutronic codes used for safety analysis of LWRs, at PSI, and also of some experiences and applications with these codes. Based on these experiences, additional assessment needs are indicated, together with some model improvement needs. The future needs that could be used to specify both the development of a new code and also improvement of available codes are summarized.

  19. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  20. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  1. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  2. NEUTRON SHIELDING STRUCTURE

    DOE Patents [OSTI]

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  3. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  4. NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES

    DOE Patents [OSTI]

    Newson, H.W.

    1958-06-01

    A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

  5. Improving Neutron Measurement Capabilities; Expanding the Limits of Correlated Neutron Counting

    SciTech Connect (OSTI)

    Santi, Peter Angelo; Geist, William H.; Dougan, Arden

    2015-11-05

    A number of technical and practical limitations exist within the neutron correlated counting techniques used in safeguards, especially within the algorithms that are used to process and analyze the detected neutron signals. A multi-laboratory effort is underway to develop new and improved analysis and data processing algorithms based on fundamental physics principles to extract additional or more accurate information about nuclear material bearing items.

  6. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect (OSTI)

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  7. Review of current neutron detection systems for emergency response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-05

    Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutronmore » detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less

  8. RBMK coupled neutronics/thermal-hydraulics analyses by two independent code systems

    SciTech Connect (OSTI)

    Parisi, C.; D'Auria, F.; Malofeev, V.; Ivanov, B.; Ivanov, K.

    2006-07-01

    This paper presents the coupled neutronics/thermal-hydraulics activities carried out in the framework of the part B of the TACIS project R2.03/97, 'Software development for accident analysis of RBMK reactors in Russia'. Two independent code systems were assembled, one from the Russian side and the other from the Western side, for studying RBMK core transients. The Russian code system relies on the use of code UNK for neutron data libraries generation and the three-dimensional neutron kinetics thermal-hydraulics coupled codes BARS-KORSAR for plant transient analyses. The Western code system is instead based on the lattice physics code HELIOS and on the RELAP5-3D C code. Several activities were performed for testing code system's capabilities: the neutron data libraries were calculated and verified by precise Monte Carlo calculations, the coupled codes' steady state results were compared with plant detectors' data, and calculations of several transients were compared. Finally, both code systems proved to have all the capabilities for addressing reliable safety analyses of RBMK reactors. (authors)

  9. Evaluation of sealed-tube neutron generators for the assay of fresh LWR fuel assemblies

    SciTech Connect (OSTI)

    Cutter, J.; Lee, D.; Lindquist, L.O.; Menlove, H.O.; Caldwell, J.T.; Atencio, J.D.; Kunz, W.E.

    1981-11-01

    The use of sealed-tube neutron generators for the active assay of fresh light-water reactor fuel assemblies has been investigated. The results of experimental tests of the Kaman 801 generator are presented. Neutron yields, source moderation, and transportability are discussed. A comparison is made with the AmLi neutron source for use in the Coincidence Collar.

  10. Neutron and Nuclear Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Recent publications related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science Publications Chi-Nu Publications DANCE Publications GEANIE Publications ICE House and ICE II Publications (n,z) Publications Neutron Radiography Publications SPIDER Publications Target 2 Publications TPC Publications Links Publications/Media Neutron and Nuclear Science News Profiles Events at LANSCE LANL Research Libary

  11. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  12. Active Interrogation for Spent Fuel

    SciTech Connect (OSTI)

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  13. Tensor analysis methods for activity characterization in spatiotemporal data

    SciTech Connect (OSTI)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M.

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  14. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    SciTech Connect (OSTI)

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; Grape, Sophie; Hendricks, John S.; Henzl, Vladimir; Swinhoe, Martyn T.

    2015-01-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is be ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.

  15. A qualitative analysis of the neutron population in fresh and spent fuel assemblies during simulated interrogation using the differential die-away technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tobin, Stephen J.; Lundkvist, Niklas; Goodsell, Alison V.; Grape, Sophie; Hendricks, John S.; Henzl, Vladimir; Swinhoe, Martyn T.

    2015-01-01

    In this study, Monte Carlo simulations were performed for the differential die-away (DDA) technique to analyse the time-dependent behaviour of the neutron population in fresh and spent nuclear fuel assemblies as part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Simulations were performed to investigate both a possibly portable as well as a permanent DDA instrument. Taking advantage of a custom made modification to the MCNPX code, the variation in the neutron population, simultaneously in time and space, was examined. The motivation for this research was to improve the design of the DDA instrument, as it is bemore » ing considered for possible deployment at the Central Storage of Spent Nuclear Fuel and Encapsulation Plant in Sweden (Clab), as well as to assist in the interpretation of the both simulated and measured signals.« less

  16. FABRICATION OF NEUTRON SOURCES

    DOE Patents [OSTI]

    Birden, J.H.

    1959-04-21

    A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

  17. Intermediate Energy Activation File - 2001.

    Energy Science and Technology Software Center (OSTI)

    2002-08-21

    Version 00 The IEAF-2001 activation library is suitable for activation analyses in fusion technology and intermediate energy applications such as the IFMIF D-Li neutron source.

  18. Nondestructive analysis of oil shales with PGNAA technique

    SciTech Connect (OSTI)

    Maly, J.; Bozorgmanesh, H.

    1984-02-01

    The feasibility of nondestructive analysis of oil shales using the prompt gamma neutron activation analysis (PGNAA) technique was studied. The PGNAA technique, developed originally for continuous analysis of coal on the belt, was applied to the analysis of eight oil-shale samples, containing between 9 and 60 gallons of oil per ton and 0.8% to 3.4% hydrogen. The PGNAA technique was modified using four neutron moderation conditions: non-moderated neutrons; non-moderated and partially moderated neutrons reflected from a water box behind the source; neutrons moderated in a water box behind and in front of the source; and neutrons strongly moderated in a polyethylene block placed in front of the source and with reflected neutrons from a water box behind the source. The studied oil shales were measured in their aluminum or wooden (masonite) boxes. The obtained Ge-Li spectra were processed by LSI-11/23 computer, using the modified programs previously developed by SAI for continuous coal analysis. The results of such processing (the peak areas for several gamma lines) were corrected and plotted against the weight percent of each analyzed element (from the chemical analysis). Response curves developed for H, C, N, S, Na, Mg, Al, Si, Ti, Ca, Fe and K show generally good linear proportions of peak area to the weight percent of the element. For hydrogen determination, NMD conditions had to be used where the response curve was not linear, but followed a curve whose slope rose with hydrogen concentration. This effect is caused by improving neutron self-moderation in sample boxes of rich oil shales, as compared to poor self-moderation of neutrons in very lean oil shales. The moisture in oil shales was measured by microwave absorption technique in small masonite boxes. This method was calibrated four times using oil-shale samples mixed gradually with larger and larger amounts of water.

  19. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda; Ekkebus, Allen E

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  20. Analysis of palladium coatings to remove hydrogen isotopes from zirconium fuel rods in Canada deuterium uranium-pressurized heavy water reactors; Thermal and neutron diffusion effects

    SciTech Connect (OSTI)

    Stokes, C.L.; Buxbaum, R.E. )

    1992-05-01

    This paper reports that, in pressurized heavy water nuclear reactors of the type standardly used in Canada (Canada deuterium uranium-pressurized heavy water reactors), the zirconium alloy pressure tubes of the core absorb deuterium produced by corrosion reactions. This deuterium weakens the tubes through hydrogen embrittlement. Thin palladium coatings on the outside of the zirconium are analyzed as a method for deuterium removal. This coating is expected to catalyze the reaction D{sub 2} + 1/2O{sub 2} {r reversible} D{sub 2}O when O{sub 2} is added to the annular (insulating) gas in the tubes. Major reductions in the deuterium concentration and, hence, hydrogen embrittlement are predicted. Potential problems such as plating the tube geometry, neutron absorption, catalyst deactivation, radioactive waste production, and oxygen corrosion are shown to be manageable. Also, a simple set of equations are derived to calculate the effect on diffusion caused by neutron interactions. Based on calculations of ordinary and neutron flux induced diffusion, a palladium coating of 1 {times} 10{sup {minus}6} m is recommended. This would cost approximately $60,000 per reactor unit and should more than double reactor lifetime. Similar coatings and similar interdiffusion calculations might have broad applications.

  1. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  2. Schoenborn wins Bau Neutron Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schoenborn wins Bau Neutron Award Schoenborn wins Bau Neutron Award The American Crystallographic Association (ACA) has selected retired Laboratory Senior Fellow Benno Schoenborn to receive the 2016 Bau Neutron Diffraction Award. August 12, 2015 Benno Schoenborn Benno Schoenborn Communications Office (505) 667-7000 Schoenborn is honored for his pioneering research in macromolecular neutron crystallography and the design and development of the neutron crystallography beamline (Protein

  3. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  4. Neutron collar calibration and evaluation for assay of LWR fuel assemblies containing burnable neutron absorbers

    SciTech Connect (OSTI)

    Henriksen, P.W.; Menlove, H.O.; Stewart, J.E.; Qiao, S.Z.; Wenz, T.R. ); Verrecchia, G.P.D. . Safeguards Directorate)

    1990-11-01

    The neutron coincidence collar is used to verify the uranium content in light water reactor fuel assemblies. An AmLi neutron source actively interrogates the fuel assembly to measure the {sup 235}U content and the {sup 238}U content can be verified from a passive neutron coincidence measurement. This report gives the collar calibration data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies both with and without cadmium liners. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and various fuel assembly sizes. The data were collected using the Los Alamos BWR and PWR test assemblies as well as fuel assemblies from several fuel fabrication facilities. 11 refs., 15 figs., 14 tabs.

  5. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  6. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect (OSTI)

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  7. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect (OSTI)

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  8. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect (OSTI)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  9. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  10. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  11. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  12. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  13. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  14. FABRICATION OF NEUTRON SOURCES

    DOE Patents [OSTI]

    Birden, J.H.

    1959-01-20

    A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

  15. NEUTRON FLUX INTENSITY DETECTION

    DOE Patents [OSTI]

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  16. At tank Low Activity Feed Homogeneity Analysis Verification

    SciTech Connect (OSTI)

    DOUGLAS, J.G.

    2000-09-28

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements.

  17. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    SciTech Connect (OSTI)

    Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E; Horak, Charlie M; Nagler, Stephen E; Kszos, Lynn A

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and

  18. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  19. 2008 Annual Progress Report - Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2009-02-24

    Annual Progress Report for fiscal year 2008 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  20. FY2009 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2010-02-19

    Annual Progress Report for fiscal year 2009 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  1. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    SciTech Connect (OSTI)

    Pritychenko, B.; Mughabghab, S.F.

    2012-12-15

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  2. Neutron single target spin asymmetries in SIDIS

    SciTech Connect (OSTI)

    Evaristo Cisbani

    2010-04-01

    The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

  3. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect (OSTI)

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  4. Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery in Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo, Mark Hagen & Thomas Proffen Neutron Data Analysis & Visualization Division Galen Shipman & Bobby Sumpter Computational Science & Mathematics Division Center for Nanophase Materials Science Olivier Delaire Materials Science and Technology Division Oak Ridge National Laboratory NERSC 40 th Anniversary User's Meeting February 5, 2014 Analysis - "data on disk is useless" * Data on disk is

  5. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect (OSTI)

    Wang, Zhonglu

    2006-08-01

    the head phantom for the 5.0-cm thick tungsten filter is (16.6 {+-} 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 {+-} 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 {+-} 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm{sup 2} treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.

  6. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  7. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Laue Photography of Neutron Diffraction; Physical Review, Vol 73, Issue 5, 527-528, March 1, 1948 The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron ...

  8. Neutron Detection Using an Embedded Sol-Gel Neutron Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date Patent 5,973,328 Patent 5,973,328 Neutron detector using sol-gel absorber An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, ...

  9. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect (OSTI)

    Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina; Reece, Michael John; Ma, Dong; Stoica, Alexandru Dan; An, Ke

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresis loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.

  10. In-situ neutron diffraction of LaCoO? perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    SciTech Connect (OSTI)

    Aman, Amjad; Orlovskaya, Nina; Chen, Yan; Lugovy, Mykola; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-07

    The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3?c rhombohedral LaCoO? during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO? perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO? at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve.

  11. Category:Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Looking for the Neutron Log page? For detailed information on Neutron Log, click here. Category:Neutron Log Add.png Add a new Neutron Log Technique Pages in category...

  12. Spallation Neutron Source Radiation Shielding Issues

    SciTech Connect (OSTI)

    Azmy, Y.Y.; Barnes, J.M.; Drischler, J.D.; Johnston, J.O.; Lillie, R.A.; McNeilly, G.S.; Santoro, R.T.

    1999-11-14

    This paper summarizes results of Spallation Neutron Source calculations to estimate radiation hazards and shielding requirements for activated Mercury, target components, target cooling water, and {sup 7}Be plateout. Dose rates in the accelerator tunnel from activation of magnets and concrete were investigated. The impact of gaps and other streaming paths on the radiation environment inside the test cell during operation and after shutdown were also assessed.

  13. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  14. Local Structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

    SciTech Connect (OSTI)

    Sundaram, N.; Jiang, Y.; Anderson, I. E.; Belanger, D. P.; Booth, C. H.; Bridges, F.; Mitchell, J. F.; Proffen, Th.; Zheng, H.

    2009-01-26

    The combined local structure techniques, extended x-ray absorption fine structure (EXAFS) and neutron pair distribution function analysis, have been used for temperatures 4<= T<= 330 K to rule out a large Jahn-Teller (JT) distortion of the Co-O bond in La1?xSrxCoO3 for a significant fraction of Co sites (x<= 0.35), indicating few, if any, JT-active, singly occupied eg Co sites exist.

  15. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Maurer, R., Detweiler, R.

    2012-06-22

    This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

  16. Neutronic reactor construction

    DOE Patents [OSTI]

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  17. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  18. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  19. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  20. METHOD OF PRODUCING NEUTRONS

    DOE Patents [OSTI]

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

  1. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  2. Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of...

  3. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect (OSTI)

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  4. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Sample Heat, Activity, Reactivity, and Dose Analysis for Safety Analysis of Irradiations in a Research Reactor.

    Energy Science and Technology Software Center (OSTI)

    1987-12-01

    SHARDA is a program for assessing sample heating rates, activities produced and reactivity load caused while irradiating a small sample in a well thermalized research reactor like CIRUS. It estimates the sample cooling or lead shielding requirements to limit the gamma-ray dose rates due to the irradiated sample within permissible levels.

  7. GUIDE FOR POLARIZED NEUTRONS

    DOE Patents [OSTI]

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  8. NEUTRONIC REACTOR CONTROL ELEMENT

    DOE Patents [OSTI]

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  9. Simplified fast neutron dosimeter

    DOE Patents [OSTI]

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  10. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  11. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  12. 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGY ANALYSIS AND EVALUATION ACTIVITIES AND HEAVY VEHICLE SYSTEMS OPTIMIZATION PROGRAM annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2008 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and

  13. Solid-state neutron detector offers high sensitivity with reduced cost -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Solid-state neutron detector offers high sensitivity with reduced cost National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Neutron detectors are vital in the national security effort to detect special nuclear material at the hundreds of U.S. ports of entry. Special nuclear material emits neutrons which

  14. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  15. NEUTRONIC REACTOR SHIELDING

    DOE Patents [OSTI]

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  16. NEUTRONIC REACTOR CONTROL ELEMENT

    DOE Patents [OSTI]

    Beaver, R.J.; Leitten, C.F. Jr.

    1962-04-17

    A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

  17. Neutronic reactor thermal shield

    DOE Patents [OSTI]

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  18. NEUTRONIC REACTOR STRUCTURE

    DOE Patents [OSTI]

    Weinberg, A.M.; Vernon, H.C.

    1961-05-30

    A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.

  19. Neutronic Reactor Structure

    DOE Patents [OSTI]

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  20. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  1. The Brief Lives of Neutrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brief Lives of Neutrons 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit The Brief Lives of Neutrons A unique experiment to pin down the neutron's surprisingly elusive half-life July 21, 2016 Most neutrons inside atoms are stable. But get one on its own, and it will disintegrate in about ten minutes. Most neutrons inside atoms are stable. But get one on its own, and it will disintegrate in about ten minutes. Beam and bottle experiments

  2. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect (OSTI)

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  3. 2010 American Conference on Neutron Scattering (ACNS 2010)

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-06-17

    and planning assistance. Additional logistical support is being provided this year through a partnership with the conferencing office of the Materials Research Society (MRS). The ACNS, targeting the entire potential neutron North American user community, complements the annual NIST, ANL and LANSCE neutron and scattering schools which give hands-on experience primarily to graduate students who anticipate using neutron scattering in their thesis research. The summer schools are promoted at the ACNS and represent a natural path for students to take after being inspired by the activities of the ACNS.

  4. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (polarized and unpolarized) Inelastic neutron scattering spectroscopy Small angle neutron scattering Neutron radiographytomography The Lujan instruments webpage...

  5. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  6. The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion

    SciTech Connect (OSTI)

    Fischer, U.; Avrigeanu, M.; Avrigeanu, V.; Cabellos, O.; Kodeli, I.; Koning, A.; Konobeyev, A.Yu.; Leeb, H.; Rochman, D.; Pereslavtsev, P.; Sauvan, P.; Sublet, J.-C.; Dupont, E.; Leichtle, D.; Izquierdo, J.

    2014-06-15

    This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.

  7. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  8. LANSCE | Lujan Center | Highlights | In situ neutron diffraction study of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO clathrate hydrate In situ neutron diffraction study of CO clathrate hydrate The structure of a CO clathrate hydrate has been studied for the first time using high-P low-T neutron diffraction. Clathrate Rietveld analysis shows that lattice parameter a (SII cubic clathrate structure) increases with increasing temperature. CO molecules are positionally disordered and off-centered in both large and small cages. Each large cage is occupied by two CO molecules while each small cage is occupied

  9. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  10. Gamma neutron assay method and apparatus

    DOE Patents [OSTI]

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  11. Small-angle neutron scattering analysis of Mn–C clusters in high-manganese 18Mn–0.6C steel

    SciTech Connect (OSTI)

    Kang, Mihyun; Shin, Eunjoo; Woo, Wanchuck; Lee, Young-Kook

    2014-10-15

    Nanometer-scale particles (Mn–C clusters) were analyzed quantitatively using small-angle neutron scattering in 18Mn–0.6C (wt.%) austenite high-manganese steel. The size, number, and volume fraction of the particles were determined as a function of strain (0, 5, 15, 30, 45, 50%) at different temperatures (25 and 100 °C). The diameter of the cluster ranges from 2 to 14 nm in the matrix. The total volume fraction of the cluster significantly increases from 2.7 × 10{sup −6} to 8.7 × 10{sup −6} as the strain increases. Such clustering phenomenon is correlated to the serration behavior under loading in high-manganese steels. - Highlights: • Show Mn-C clustering as function of strain in 18Mn-0.6C TWIP steel. • Determine the size, number, and volume fraction of clusters quantitatively. • Compare the clustering behavior at 25 and 100 °C.

  12. Continuous Energy MC Neutron/Photon

    Energy Science and Technology Software Center (OSTI)

    1991-10-10

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron or photon (VIM3.0) transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments. In VIM3.0, the photon interactions i.e., pair production, coherent and incoherent scattering, and photoelectric events, and photon heating are tallied by group, region, and isotope.

  13. Elastic Neutron Scattering at 96 MeV

    SciTech Connect (OSTI)

    Hildebrand, A.; Blomgren, J.; Atac, A.; Bergenwall, B.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Esterlund, M.; Dangtip, S.; Tippawan, U.; Phansuke, P.; Jonsson, O.; Renberg, P.-U.; Prokofiev, A.; Nadel-Turonski, P.; Elmgren, K.; Olsson, N.; Blideanu, V.

    2005-05-24

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20 - 180-MeV neutron beam line of The Svedberg Laboratory, Uppsala. Elastic neutron scattering from 12C, 16O, 56Fe, 89Y, and 208Pb has been studied at 96 MeV in the 10-70 deg. interval. The results from 12C and 208Pb have recently been published,6 while the data from 16O, 56Fe, and 89Y are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic theory. Applications for these measurements are nuclear-waste incineration, single-event upsets in electronics, and fast-neutron therapy.

  14. FAST NEUTRON SPECTROMETER

    DOE Patents [OSTI]

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  15. Scintillation neutron detectors

    SciTech Connect (OSTI)

    Davidson, J.B.

    1984-01-01

    Two basic types of scintillation area neutron detectors are reviewed. The first is the prompt detector which uses photomultipliers to convert the neutron scintillations to electrical pulses. These signals are combined in weighting or encoding circuits to give event location. Several embodiments of the weighted and coded scintillator approach are mentioned. The second type of scintillation detector is based on television techniques and has a delayed readout. In this method all the light (or as much as possible) is either focused with a fast lens or is coupled by being put in direct contact with the fiber-optic faceplate of an image intensifier tube. The light from the phosphor screen is intensified and coupled to a television camera tube instead of a photomultiplier, and further amplification is produced in the camera tube by accelerating the photoelectrons in order to produce secondary electrons. (LEW)

  16. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  17. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  18. NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  19. THERMAL NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  20. Neutron Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Neutron Science and Technology From a mountaintop in Mexico where we investigate gamma rays, to underground laboratories where we study the behavior of plutonium under extreme conditions, our research spans the spectrum from fundamental to applied. Contact Us Group Leader Frank Merrill Email Deputy Group Leader David Oro Email Deputy Group Leader Keith Rielage Email Group Office Email Inner workings of a wristwatch that was imaged by a new proton microscope At right, a wristwatch was one of

  1. NEUTRONIC REACTOR CORE

    DOE Patents [OSTI]

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  2. Neutron instrumentation for biology

    SciTech Connect (OSTI)

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  3. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  4. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  5. 2010 Neutron Review: ORNL Neutron Sciences Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... (6) Changing the World of Data Acquisition - Researchers at SNS are starting to ... Country of Publication: United States Language: English Subject: neutron science; ...

  6. Characterization of Chemical Speciation in Ultra Thin Uranium Oxide Films by Neutron Reflectometry

    SciTech Connect (OSTI)

    Wang, Peng

    2012-06-20

    Motivation for this project is due to more than 17 kg of HEU and 400 g of Pu have been interdicted through an international effort to control nuclear smuggling. Nuclear forensics - Detection and analysis of nuclear materials recovered from either the capture of unused materials or from the radioactive debris following a nuclear explosion or activities, which can contribute significantly for national security. Develop new nuclear forensic methods can be applied to: (a) Environmental swipes, (b) Small particulates, and (c) Thin films. Conclusions of the project are: (1) A unique approach: Neutron Reflectometry + Surface Enhanced Raman Spectroscopy; and (2) Detection of chemical speciation with {angstrom}-level resolution.

  7. Non-destructive method for determining neutron exposure

    DOE Patents [OSTI]

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  8. Neutron scattering and absorption properties

    SciTech Connect (OSTI)

    Holden, N.E.

    1993-12-01

    The Table in this report presents an evaluated set of values for the experimental quantities, which characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43{degree}C, corresponds to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1 {times} 10{sup 6} eV, or 0.1 MeV. A list of the major references used is given below. The literature cutoff data is October 1993. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited states(s) and to the ground state of the product nucleus.

  9. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOE Patents [OSTI]

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  10. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  11. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  12. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  13. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  14. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (OSTI)

    2008-06-30

    in the PROJERIX procedures), a fine burn-up analysis subset named MECCYCO (mass balances, activities, decay heat, dose rates). Coupled neutron/gamma calculations are also possible using specific libraries.« less

  15. 11th LANSCE School on Neutron Scattering | Hands-On Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sample picture Hands-on Experiments Students will have an opportunity to participate in experimental set-up and data-analysis of various exemplary neutron experiments in the areas of materials at the mesoscale. They will use several instruments utlizing different neutron scattering and complementary techniques. Featured Instruments (tentative) HIPPO: Texture Studies SPEAR: Study of nanoparticle assemblies with neutron reflectometry LQD: Self-Assembled Structures NPDF: Study of nanostructured

  16. Analysis of standard reference materials by absolute INAA

    SciTech Connect (OSTI)

    Heft, R.E.; Koszykowski, R.F.

    1981-07-01

    Three standard reference materials, flyash, soil, and ASI 4340 steel, were analyzed by a method of absolute instrumental neutron activation analysis (INAA). Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

  17. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    SciTech Connect (OSTI)

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Saarilahti, Kauko; Atula, Timo; Collan, Juhani; Salli, Eero; Kortesniemi, Mika; Uusi-Simola, Jouni; Vaelimaeki, Petteri; Maekitie, Antti; Seppaenen, Marko; Minn, Heikki; Revitzer, Hannu; Kouri, Mauri; Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro; Savolainen, Sauli; Joensuu, Heikki

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  18. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    SciTech Connect (OSTI)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  19. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for

  20. Electroweak bremsstrahlung from neutron-neutron scattering

    SciTech Connect (OSTI)

    Li Yi; Liou, M. K.; Schreiber, W. M.

    2009-09-15

    Background: Nucleon-nucleon (NN) bremsstrahlung processes NN{gamma} (nn{gamma}, np{gamma}, and pp{gamma}) have been extensively investigated. Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering NN{nu}{nu} (nn{nu}{nu}, np{nu}{nu}, and pp{nu}{nu}) have recently attracted attention in studies of neutrino emission in neutron stars. The calculated NN{nu}{nu} cross sections (or emissivities) are found to be sensitive to the two-nucleon dynamical model used in the calculations. Purpose and Method: A realistic one-boson-exchange (ROBE) model for NN interactions is used to construct the electroweak bremsstrahlung amplitudes using the well-known nucleon electromagnetic and weak interaction vertices. The constructed nn{gamma} and nn{nu}{nu} amplitudes are investigated by applying them to calculate nn{gamma} and nn{nu}{nu} cross sections, respectively. Results: (i) The 190-MeV ROBE nn{gamma} cross sections agree well with those calculated using the TuTts amplitude, but they are in disagreement with those calculated using the Low amplitude. (ii) The calculated nn{nu}{nu} cross sections using the ROBE amplitude at the neutrino-pair energy {omega} = 1 MeV are in quantitative agreement with those calculated by Timmermans et al.[Phys. Rev. C 65, 064007 (2002)], who used the leading-order term of the soft neutrino-pair bremsstrahlung amplitude. Conclusions: The nn{gamma} amplitude in the ROBE approach, which obeys the soft-photon theorem, has a predictive power similar to that of the TuTts amplitude. The nn{nu}{nu} amplitude in the ROBE approach, which is consistent with the soft neutrino-pair bremsstrahlung theorem, has a predictive power similar to that of the soft neutrino-pair bremsstrahlung amplitude of Timmermans et al. in the low neutrino-pair energy region.

  1. Neutron Spectrum Measurements from Irradiations at NCERC

    SciTech Connect (OSTI)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen; Hutchens, Gregory Joe; White, Morgan Curtis

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  2. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  3. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; Detweiler, Ryan; Maurer, Richard J.; Mitchell, Stephen E.; Guss, Paul P.; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  4. SciTech Connect: "neutron scattering"

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutron scattering" Semantic Semantic Term Title: Full Text: Bibliographic...

  5. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice"...

  6. Efficiency measurements using tagged neutrons (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Efficiency measurements using tagged neutrons Citation Details In-Document Search Title: Efficiency measurements using tagged neutrons Authors: Taddeucci, Terry N 1 + Show Author ...

  7. Efficiency measurements using tagged neutrons (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Efficiency measurements using tagged neutrons Citation Details In-Document Search Title: Efficiency measurements using tagged neutrons You are accessing a document from the ...

  8. NEUTRONIC REACTOR CONSTRUCTION

    DOE Patents [OSTI]

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  9. Neutrons for technology and science

    SciTech Connect (OSTI)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  10. Fission fragment driven neutron source

    DOE Patents [OSTI]

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  11. High power neutron production targets

    SciTech Connect (OSTI)

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  12. Integration of TGS and CTEN assays using the CTEN{_}FIT analysis and databasing program

    SciTech Connect (OSTI)

    Estep, R.

    2000-05-01

    The CTEN{_}FIT program, written for Windows 9x/NT in C++, performs databasing and analysis of combined thermal/epithermal neutron (CTEN) passive and active neutron assay data and integrates that with isotopics results and gamma-ray data from methods such as tomographic gamma scanning (TGS). The binary database is reflected in a companion Excel database that allows extensive customization via Visual Basic for Applications macros. Automated analysis options make the analysis of the data transparent to the assay system operator. Various record browsers and information displays simplified record keeping tasks.

  13. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect (OSTI)

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  14. Neutron time-of-flight and emission time diagnostics for the National Ignition Facility

    SciTech Connect (OSTI)

    Murphy, T. J.; Jimerson, J. L.; Berggren, R. R.; Faulkner, J. R.; Oertel, J. A.; Walsh, P. J.

    2001-01-01

    Current plans call for a system of current mode neutron detectors for the National Ignition Facility for extending the range of neutron yields below that of the neutron activation system, for ion-temperature measurements over a wide yield range, and for determining the average neutron emission time. The system will need to operate over a yield range of 10{sup 6} for the lowest-yield experiments to 10{sup 19} for high-yield ignited targets. The requirements will be satisfied using several detectors located at different distances from the target. This article presents a conceptual design for the NIF nToF system.

  15. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N.; Goods, Steven Howard; Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  16. LiF/ZnS Neutron Multiplicity Counter

    SciTech Connect (OSTI)

    Stave, Sean C.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Wood, Lynn S.

    2015-06-01

    Abstract: Alternatives to the use of 3He for the detection of thermal neutrons are being investigated. One of the most challenging applications for 3He alternatives is in neutron multiplicity counters. Neutron multiplicity counters are used to provide rapid assay of samples which contain an unknown amount of plutonium in a potentially unknown configuration. With appropriate detector design, the neutron single, double, and triple coincidence events can be used to extract information of three unknown parameters such as the 240Pu-effective mass, the sample self-multiplication, and the (α,n) rate. A project at PNNL has investigated replacing 3He-based tubes with LiF/ZnS neutron-scintillator sheets and wavelength shifting plastic for light pipes. A four-panel demonstrator module has been constructed, tested, and compared with detailed modeling results. The findings indicate that a full-scale system can be constructed with the same overall size as the most efficient 3He-based system and with improved performance. Remaining design challenges include electronics and robust neutron/gamma-ray discrimination based on pulse shape analysis at high rates. A review of the current effort and the most recent findings will be presented.

  17. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 m) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 m) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 C/min up to 900 C, and the samples were annealed at 900 C for 0.5 hour. These procedures were repeated three (for 100 and 200 C samples) and four (for 500 C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 C to 600 C after 1st annealing for the

  18. R-matrix analysis of {sup 235}U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    SciTech Connect (OSTI)

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of {sup 235}U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which {sup 235}U is present.

  19. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    SciTech Connect (OSTI)

    Hyer, D.K.; DiStravolo, M.A.

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  20. In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids (Top Left) Cyclic Voltammagram of Fe((OHCH2CH2)2NH)6-(CF3SO3)3 in disk electrode (solid) and in in-situ redox XANES cell (dashed). (Top Right) XANES spectra showing IL in fully oxidized and fully reduced states, showing change in Fe Kα edge on oxidation state change (Bottom) EXAFS data showing position of fully oxidized (Fe+3) state of IL,

  1. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  2. LAHET calculations for accelerator neutron production

    SciTech Connect (OSTI)

    Prael, R.E.

    1993-07-01

    LAHET is a Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons in complex geometry; it is the result of a major effort at Los Alamos National Laboratory to develop a code system based on the LANL version of the HETC Monte Carlo code for the transport of nucleons, pions, and muons, which was originally developed at Oak Ridge National Laboratory. The system of codes based on LAHET is designated as the LAHET Code System (LCS). LAHET, as all the variants of HETC, has been widely used over the years for design of neutron production targets, facility shielding, and experimental analysis. LAHET is now widely used for medical accelerator facility design and application. Particle tracking uses the general geometry model of the LANL MCNP code, and shares the geometry description and input of MCNP, except for lattices and/or repeated structures. HMCNP is a modification of MCNP which accepts an. external neutron/photon source created by LAHET. Neutron transport from 20 MeV to thermal and all photon/electron transport is done with HMCNP.

  3. Status of in-plant neutron coincidence counting

    SciTech Connect (OSTI)

    Enssling, N.; Krick, M.; Menlove, H.; Stewart, J.

    1986-01-01

    Neutron coincidence counters are used in nuclear material processing plants to assay bulk quantities of plutonium or uranium. Passive assays of plutonium are often made with the High-Level Neutron Counter (HLNC or HLNC-II), the Dual-Range Coincidence Counter, or customized detector geometries. Active assays of uranium are often made with the Active Well Coincidence Counter or the Uranium Neutron Coincidence Collar. Modern counters may have flattened efficiency profiles, fast AMPTEK amplifier/discriminators mounted directly next to the /sup 3/He detection tubes, external background shields, or special sample-loading mechanisms. Typical counting times and accuracies that can be obtained for plutonium are summarized. If isotopic composition is known, large plutonium samples can be assayed in 100 to 200 s - comparable to the time requires to input sample data into the counter's calculator or computer.

  4. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  5. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  6. Neutron counting and gamma spectroscopy with PVT detectors.

    SciTech Connect (OSTI)

    Mitchell, Dean James; Brusseau, Charles A.

    2011-06-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare {sup 252}Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for {sup 252}Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  7. Neutron Imaging Developments at LANSCE

    SciTech Connect (OSTI)

    Nelson, Ronald Owen; Hunter, James F.; Schirato, Richard C.; Vogel, Sven C.; Swift, Alicia L.; Ickes, Timothy Lee; Ward, William Carl; Losko, Adrian Simon; Tremsin, Anton; Sevanto, Sanna Annika; Espy, Michelle A.; Dickman, Lee Thoresen; Malone, Michael

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800 MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  8. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    SciTech Connect (OSTI)

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D.

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  9. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  10. Neutron absorption detector

    DOE Patents [OSTI]

    Bell, Zane William; Boatner, Lynn Allen

    2011-05-31

    A method of detecting an activator, the method including impinging a receptor material that is not predominately water and lacks a photoluminescent material with an activator and generating Cherenkov effect light due to the activator impinging the receptor material. The method further including identifying a characteristic of the activator based on the light.

  11. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    SciTech Connect (OSTI)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1'-601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance contribution

  12. The nuclear physics of neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  13. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High energy neutron Computed Tomography developed High energy neutron Computed Tomography developed LANSCE now has a high-energy neutron imaging capability that can be deployed on WNR flight paths for unclassified and classified objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs.

  14. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  15. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  16. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOE Patents [OSTI]

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  17. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect (OSTI)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  18. SETTABLE NEUTRON RADIATION SHIELDING MATERIAL

    DOE Patents [OSTI]

    Axelrad, I.R.

    1960-11-22

    A settable, viscous, putty-like shielding composition is described. It consists of an intimate admixture of a major proportion of a compound having a ratio of hydrogen atoms to all other atoms therein within the range of from 0.5: 1 to 2:l. from 0.5 to 10% by weight of boron, and a fluid resinous carrier This composition when cured is adapted to attenuate fast moving neutrons and capture slow moving neutrons.

  19. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  20. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  1. J lich Neutron Spin Echo Instrument Inaugurated (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    J lich Neutron Spin Echo Instrument Inaugurated Citation Details In-Document Search Title: J lich Neutron Spin Echo Instrument Inaugurated The neutron spin echo (NSE) spectrometer ...

  2. DOE Science Showcase - Neutron Science Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's ...

  3. A Proton Recoil Telescope Detector for Neutron Spectroscopy

    SciTech Connect (OSTI)

    Bocci, F.; Cinausero, M.; Rizzi, V.; Barbui, M.; Prete, G.; Andrighetto, A.; Lunardon, M.; Pesente, S.; Fontana, A.; Gemignian, G.; Bonomi, G.; Donzella, A.; Zenoni, A.; Fabris, D.; Morando, M.; Moretto, S.; Nebbia, G.; Viesti, G.

    2007-10-26

    A compact and versatile Proton Recoil Telescope (PRT) detector has been realized to measure neutron energy spectra in the range from few to hundred MeV. The PRT is a position sensitive detector made by: an active multilayer segmented plastic scintillator as neutron to proton converter, two silicon strip detectors for proton energy and position measurement and a final thick CsI(T1) scintillator to measure the residual proton energy. The detector has been tested with the {sup 13}C(d,n) reaction at Laboratori Nazionali del Sud using a 40 MeV deuteron beam.

  4. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect (OSTI)

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; ?-hypernuclei; ?-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. ?-nucleon data are very limited, but ?NN is very important. The role of ? in neutron stars is far from understood; more ?N data are needed. The author's conclusion: We cannot conclude anything with present models.

  5. Measurements of the reactor neutron power in absolute units

    SciTech Connect (OSTI)

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  6. Large Searching for Higher Dimensional Gravity with Neutron Experiments

    SciTech Connect (OSTI)

    Frank, Alejandro

    2007-10-26

    N-dimensional gravity is analized in the context of recent work on 'large' supplementary dimensions. A simple derivation of the compactification radii for additional dimensions in the universe is made, as a function of the Planck and the electro-weak scales. It is argued that the modified gravitational force would give rise to effects that might be within the detection range of dedicated neutron experiments. An analysis suggests that neutron scattering off atomic nuclei with null spin may provide an experimental test for these ideas.

  7. Sustaining knowledge in the neutron generator community and benchmarking study.

    SciTech Connect (OSTI)

    Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

    2008-03-01

    In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

  8. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    SciTech Connect (OSTI)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  9. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    SciTech Connect (OSTI)

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  10. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    SciTech Connect (OSTI)

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advanced in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.

  11. Anti-nuclear weapons activism in the United States and Great Britain: a comparative analysis

    SciTech Connect (OSTI)

    Sussman, G.

    1987-01-01

    This study is a response to the lacuna in empirical research into political activism and the nuclear issue and seeks to ascertain the social and value characteristics, political attitudes, and political behavior of activists in the United States and Great Britain. Consideration is also given to gender differences in light of evidence of an emerging gender gap in these two countries. The study investigates the common forces cited in two sets of literature - post-industrialism and anti-nuclear weapons movements - which provide a framework for analysis. Survey research data is employed to assess cross-national similarities and differences. The findings obtained indicate that while American and British activists exhibit common social and value characteristics, British activists appear more integrated in their political opposition to nuclear weapons compared with their American counterparts. Survey results indicate that the political-action repertoire of these activists is quite diverse, suggesting a new style of politics in advanced industrial democracies. Gender-based analysis reveals two important findings. First, activist American men differ significantly from the other three social groups in their attitudes towards nuclear weapons. Second, activist women in both national settings participate at a level equal to or exceeding that of activist men.

  12. Neutron Library (ENDL82) in the transmittal format

    SciTech Connect (OSTI)

    Howerton, R.J.; Dye, R.E.; Perkins, S.T.

    1982-06-26

    There are four main libraries of data included within the system described. They are ENDL (Evaluated Neutron Data Library), ECPL (Evaluated Charged-Particle Data Library), ACTL (Evaluated Neutron-Induced Activation Cross-Section Library), and EGDL (Evaluated Photon Interaction Data Library). The first three deal with nuclear processes induced by neutrons or light charged particles (Z less than or equal to 2, A less than or equal to 4). The fourth (EGDL) contains the data appropriate to photons with energies between 100 eV and 100 MeV that interact with atoms of the elements in their ground state, i.e., cold targets. EGDL does not contain data for photonuclear reactions.

  13. Fusion materials high energy-neutron studies. A status report

    SciTech Connect (OSTI)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  14. Reactor physics analyses of the advanced neutron source three-element core

    SciTech Connect (OSTI)

    Gehin, J.C.

    1995-08-01

    A reactor physics analysis was performed for the Advanced Neutron Source reactor with a three-element core configuration. The analysis was performed with a two-dimensional r-z 20-energy-group finite-difference diffusion theory model of the 17-d fuel cycle. The model included equivalent r-z geometry representations of the central control rods, the irradiation and production targets, and reflector components. Calculated quantities include fuel cycle parameters, fuel element power distributions, unperturbed neutron fluxes in the reflector and target regions, reactivity perturbations, and neutron kinetics parameters.

  15. Determination of the absolute configuration of (-)-(2R)-succinic-2-d acid by neutron diffraction study: Unambiguous proof of the absolute stereochemistry of the NAD/sup +//NADH interconversion

    SciTech Connect (OSTI)

    Yuan, H.S.H.; Stevens, R.C.; Fujita, S.; Watkins, M.I.; Koetzle, T.F.; Bau, R.

    1988-05-01

    The absolute configuration of the CHD group (D = deuterium) in (-)-(2R)-succinic-2-d acid, as prepared from (-)-(2S,3R)-malic-3-d acid, has been shown unambiguously to be R by the technique of single-crystal neutron diffraction. The optically active cation (+)-phenylethylammonium was used as the chiral reference. The structure of (C/sub 6/H/sub 5/CH/sub 3/CHNH/sub 3/)/sup +/(HOOCCH/sub 2/CHDCOOO)/sup -/ has been studied with x-ray diffraction at room temperature and neutron diffraction at room temperature and neutron diffraction at 100 K. Crystal data from the neutron diffraction analysis of the phenylethylammonium slat of the title compound at 100 K: space group P2/sub 1/; a = 8.407 /angstrom/, b = 8.300 /angstrom/, c = 8.614 /angstrom/, ..beta.. = 91.20/degrees/; unit cell volume = 600.9 /angstrom//sup 3/, Z = 2. The result confirms the stereochemistry of the malate/succinate transformation, as well as the NAD/sup +//NADH interconversion, and demonstrates the usefulness of the single-crystal neutron diffraction method for determining the absolute configuration of molecules having a chiral monodeuteriomethylene group.

  16. Validation of the MCNPX-PoliMi Code to Design a Fast-Neutron Multiplicity Counter

    SciTech Connect (OSTI)

    J. L. Dolan; A. C. Kaplan; M. Flaska; S. A. Pozzi; D. L. Chichester

    2012-07-01

    Many safeguards measurement systems used at nuclear facilities, both domestically and internationally, rely on He-3 detectors and well established mathematical equations to interpret coincidence and multiplicity-type measurements for verifying quantities of special nuclear material. Due to resource shortages alternatives to these existing He-3 based systems are being sought. Work is also underway to broaden the capabilities of these types of measurement systems in order to improve current multiplicity analysis techniques. As a part of a Material Protection, Accounting, and Control Technology (MPACT) project within the U.S. Department of Energy's Fuel Cycle Technology Program we are designing a fast-neutron multiplicity counter with organic liquid scintillators to quantify important quantities such as plutonium mass. We are also examining the potential benefits of using fast-neutron detectors for multiplicity analysis of advanced fuels in comparison with He-3 detectors and testing the performance of such designs. The designs are being developed and optimized using the MCNPX-PoliMi transport code to study detector response. In the full paper, we will discuss validation measurements used to justify the use of the MCNPX-PoliMi code paired with the MPPost multiplicity routine to design a fast neutron multiplicity counter with liquid scintillators. This multiplicity counter will be designed with the end goal of safeguarding advanced nuclear fuels. With improved timing qualities associated with liquid scintillation detectors, we can design a system that is less limited by nuclear materials of high activities. Initial testing of the designed system with nuclear fuels will take place at Idaho National Laboratory in a later stage of this collaboration.

  17. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurement

    SciTech Connect (OSTI)

    Uchida, Y. Takada, E.; Fujisaki, A.; Isobe, M.; Ogawa, K.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2014-11-15

    Neutron and ?-ray (n-?) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-? discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm.

  18. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    SciTech Connect (OSTI)

    Gillen, David S.

    2014-08-07

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in this domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of

  19. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  20. The advanced neutron source research and development plan

    SciTech Connect (OSTI)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.