Powered by Deep Web Technologies
Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Neutron activation analysis applied to perspiration electrolytes  

E-Print Network [OSTI]

) Member) (Eieisber) (Hie isbn r ) (Nc, . ib": ) J iniar ! Vl R P 3STR-'. CT Neutron ';ctivatior. Imalysis iipplied to Perspiration Electrolytes. (January 1969) Robert C. N Andrew:, B. S. , Norcester Poly' echnic Institut Directed by: Dr. James B... dlX II1 last Neutron Act ivsticn Cross-Eec!iona - - - 73 J Igf 0F TABL? S TABLE 1 TABLE 2 TABLE 3 TABLE 6! Nuclear Properties of Pertinent Elec!eats - - 6 Sodium Reactions Interfering Reactions - - - - - - ~ - - - - 13 Sodium Concentrations...

McAndrew, Robert Gavin

2012-06-07T23:59:59.000Z

2

On the determination of trace elements in cocoa and coffee by instrumental neutron activation analysis  

E-Print Network [OSTI]

. Charlene Helton for her helpful and productive suggestions, and, of course, for undertaking the laborious task or. typing the final manuscript. DEDICATION To mv parents. TABLE OF CONTENTS Chapter ~Pa e INTRODUCTION THEORY Neutron Activation..., commercial cocoa. CHAPTER II THEORY Neutron Activation Analysis Neutron Activation Analysis was proposed by Von Hevesy and Levi in 1936 (32). hey irradiated a yttrium sample with neutrons from a radium-beryllium source and determined the im urity...

Adanuvor, Prosper Kwasi

2012-06-07T23:59:59.000Z

3

The investigation of spices by use of instrumental neutron activation analysis  

E-Print Network [OSTI]

contaminants. For this research, instrumental neutron-activation analysis (INAA) was used to determine the activities of U-235 fission products in common spices. Using this information, the concentrations of natural uranium in these spices and the doses...

Wise, Jatara Rob

2008-10-10T23:59:59.000Z

4

Improved mesh based photon sampling techniques for neutron activation analysis  

SciTech Connect (OSTI)

The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

Relson, E.; Wilson, P. P. H.; Biondo, E. D. [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

2013-07-01T23:59:59.000Z

5

Iodine-129 separation and determination by neutron activation analysis  

SciTech Connect (OSTI)

A method is described for analysis of /sup 129/I in fission product mixtures originating from fuel reprocessing studies and low-level wastes. The method utilizes conventional iodine valence adjustment and solvent extraction techniques to chemically separate /sup 129/I from most fission products. The /sup 129/I is determined by neutron irradiation and measurement of the 12.4 h /sup 130/I produced by the neutron capture reaction. Special techniques were devised for neutron irradiation of /sup 129/I samples in the pneumatic tube irradiation facilities at the High Flux Isotope (HFIR) and Oak Ridge Research (ORR) Reactors. Chemically separated /sup 129/I is adsorbed on an anion exchange resin column made from an irradiation container. The loaded resin is then irradiated in either of the pneumatic facilities to produce /sup 130/I. Sensitivity of the analysis with the HFIR facility (flux: 5 x 10/sup 14/ n/cm/sup 2//sec) and a 100-second irradiation time is approximately 0.03 nanograms. Samples up to 250 ml in volume can be easily processed.

Bate, L.C.; Stokely, J.R.

1981-01-01T23:59:59.000Z

6

Determination of isotopic thorium in biological samples by combined alpha spectrometry and neutron activation analysis.  

SciTech Connect (OSTI)

Thorium is a naturally occurring element for whom all isotopes are radioactive . Many of these isotopes are alpha emitting radionuclides, some of which have limits for inhalation lower than plutonium in current regulations . Neutron activation analysis can provide for the low-level determination of 232Th but can not determine other isotopes of dosimetric importance . Biological and environmental samples often have large quantities of materials which activate strongly, limiting the capabilities of instrumental neutron activiation analysis . This paper will discuss the application of a combined technique using alpha spectrometry and radiochemical neutron activiation analysis for the determination of isotopic thorium .

Glover, S. E. (Samuel E.)

2003-01-01T23:59:59.000Z

7

Utilization of neutron activation analysis in groundwater analyses  

SciTech Connect (OSTI)

Although work at the Massachusetts Institute of Technology's Nuclear Reactor Laboratory is basically research oriented, over the past number of years, numerous neutron activation analyses (NAAs) have been performed for commercial purposes. This has been true particularly in cases where other analytical techniques have been found to be insufficient or in cases where special sample considerations are involved. The requests for these analyses came from a wide range of institutions, including government laboratories, medical centers, utilities, and commercial companies. In most cases, instrumental NAA (INAA) was the method of choice because of the method's extremely low detection limits, multielement characteristics, nondestructive nature, and ability to work with different sample sizes.

Beal, J.W. (Fairfield Univ., CT (United States)); Olmez, I. (Massachusetts Institute of Technology, Cambridge, MA (United States))

1993-01-01T23:59:59.000Z

8

Analysis by neutron activation analysis a some ancient ceramics from Romanian territories  

E-Print Network [OSTI]

In this paper we have analyzed samples of Neolithic ceramics from Cucuteni-Scanteia - Vaslui county and Neolithic and Dacian ceramics from Magurele - Bucharest, by the method of neutron activation analysis. The following elements have been observed: Fe, K, La, Mn, Na, Sc and Sm. It has been noticed a relative and a slight clusterization of the analyzed items on the ratios of concentrations Na/Mn, La/Sc and La/Sm.

Agata Olariu

1999-08-27T23:59:59.000Z

9

A laser-induced repetitive fast neutron source applied for gold activation analysis  

SciTech Connect (OSTI)

A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki [Quantum Optics Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of)

2012-12-15T23:59:59.000Z

10

The determination of phosphorus by fast neutron activation analysis  

E-Print Network [OSTI]

SCALER POWER SUPPLY NAI(TlJ CRYSTAL NAIPL) CRYSTAL PIN LIGHT SOL. SYSTEM CONTROL CHASSIS PRE AMP VACUUM NEUTRON DETECTOR AIR VALVE I50 KV COCKCROFT- WALTON ACCELERA LIGHT Figure 4. Block Diagram of the Nark III System 21 3, When.... At the center of the irradiation position, the neutron flux varies from 10 - 106 n/cm /sec. depending on the str'ength 2 of the tritium target, beam current, and the target life time. Targets are commercially available from Texas Nuclear Corporation...

To-On, Maen

2012-06-07T23:59:59.000Z

11

Determination of thorium in seawater by neutron activation analysis and mass spectrometry  

SciTech Connect (OSTI)

The recent development of neutron activation analysis and mass spectrometric methods for the determination of /sup 232/Th in seawater has made possible rapid sampling and analysis of this long-lived, non-radiogenic thorium isotope on small-volume samples. The marine geochemical utility of /sup 232/Th, whose concentration in seawater is extremely low, warrants the development of these sensitive techniques. The analytical methods and some results are presented and discussed in this article. 24 refs., 3 figs.

Huh, Chih-An

1987-01-01T23:59:59.000Z

12

Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin  

SciTech Connect (OSTI)

Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

Duliu, O. G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125, Magurele (Ilfov) (Romania); Cristache, C. I. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125, Magurele (Ilfov) (Romania); Oaie, G. [National Institute of Research and Development for Geology and Marine Geoecologylogy, 34 Dimitrie Onciul str., 024504 Bucharest (Romania); Ricman, C. [Geological Institute of Romania, 1 Caransebes Street, 012271 Bucharest (Romania); Culicov, O. A.; Frontasyeva, M. V. [Joint Institute for Nuclear Research, 6, Joliot-Curie str. 141980 Dubna (Russian Federation)

2010-01-21T23:59:59.000Z

13

Determination of selected trace elements in human head hair by neutron activation analysis  

E-Print Network [OSTI]

barber shops and beauty salons in the Bryan-College Station Met- ropolitan Area. The locations of the prospective collection sites were selected at random from the local telephone directory. Though some of these sites did not elect to participate... for the degree of MASTER OF SCIENCE December 1981 Major Subject: Nuclear Engineering DETERMINATION OF SELECTEO TRACE ELEMENTS IN HUMAN HEAD HAIR BY NEUTRON ACTIVATION ANALYSIS A Thesis by LEONARD AUSTIN COURSON Approved as to style and content by Chai r...

Courson, Leonard Austin

1981-01-01T23:59:59.000Z

14

Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample  

SciTech Connect (OSTI)

In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

Dahing, Lahasen Normanshah [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia); Yahya, Redzuan [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yahya, Roslan; Hassan, Hearie [Malaysian Nuclear Agency (Nuklear Malaysia), Bangi 43000, Kajang (Malaysia)

2014-09-03T23:59:59.000Z

15

Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys  

E-Print Network [OSTI]

embrittlement by decreasing overall corrosion and/or by decreasing the amount of hydrogen ingress for a givenCold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level to quantitatively assess hydrogen concentration in zirconium alloys. The technique, called Cold Neutron Prompt Gamma

Motta, Arthur T.

16

Methods for preparing comparative standards and field samples for neutron activation analysis of soil  

SciTech Connect (OSTI)

One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques.

Glasgow, D.C.; Dyer, F.F.; Robinson, L.

1994-06-01T23:59:59.000Z

17

Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity  

SciTech Connect (OSTI)

We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ? 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

Hahn, K. D., E-mail: kdhahn@sandia.gov; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A. [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States); Cooper, G. W.; Nelson, A. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Leeper, R. J. [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

18

E-Print Network 3.0 - advanced neutronic analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Chadwick, neutron spectroscopy Summary: activation analysis (PGNAA) and delayed gamma-ray neutron activation analysis (DGNAA), i.e. with respect... improvement in neutron...

19

Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials  

E-Print Network [OSTI]

relative to the linear axis of the neutron generator and toto the linear axis of the neutron generator. To protectto the linear axis of the neutron generator) to reduce the

English, G.A.

2008-01-01T23:59:59.000Z

20

Comparison of IUPAC k0 Values and Neutron Cross Sections to Determine a Self-consistent Set of Data for Neutron Activation Analysis  

SciTech Connect (OSTI)

Independent databases of nuclear constants for Neutron Activation Analysis (NAA) have been independently maintained by the physics and chemistry communities for many year. They contain thermal neturon cross sections s0, standardization values k0, and transition probabilities Pg. Chemistry databases tend to rely upon direct measurements of the nuclear constants k0 and Pg which are often published in chemistry journals while the physics databases typically include evaluated s0 and Pg data from a variety of experiments published mainly in physics journals. The IAEA/LBNL Evaluated Gamma-ray Activation File (EGAF) also contains prompt and delayed g-ray cross sections sg from Prompt Gamma-ray Activation Analysis (PGAA) measurements that can also be used to determine k0 and s0 values. As a result several independent databases of fundamental constants for NAA have evolved containing slightly different and sometimes discrepant results. An IAEA CRP for a Reference Database for Neutron Activation Analysis was established to compare these databases and investigate the possibilitiy of producing a self-consistent set of s0, k0, sg, and Pg values for NAA and other applications. Preliminary results of this IAEA CRP comparison are given in this paper.

Firestone, Richard B; Revay, Zsolt

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of a database for prompt gamma-ray neutron activation analysis: Summary report of the third research coordination meeting  

SciTech Connect (OSTI)

The main discussions and conclusions from the Third Co-ordination Meeting on the Development of a Database for Prompt Gamma-ray Neutron Activation Analysis are summarized in this report. All results were reviewed in detail, and the final version of the TECDOC and the corresponding software were agreed upon and approved for preparation. Actions were formulated with the aim of completing the final version of the TECDOC and associated software by May 2003.

Lindstrom, Richard M.; Firestone, Richard B.; Pavi, ???

2003-04-01T23:59:59.000Z

22

Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis  

E-Print Network [OSTI]

Analytical measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or under-estimated uncertainties. A review of the existing data confirms the high-purity of silicon with respect to a large number of elements. In order to obtain a direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro crystal WASO 04. The investigation concerned twenty-nine elements. The mass fraction of Au was quantified to be 1.03(18) x 10-12. For the remaining twenty-eight elements, the mass fractions are below the detection limits, which range between 1 x 10-12 and 1 x 10-5.

D'Agostino, Giancarlo; Giordani, Laura; Mana, Giovanni; Massa, Enrico; Oddone, Massimo; 10.1088/0026-1394/49/6/696

2013-01-01T23:59:59.000Z

23

Neutron flux and energy characterization of a plutonium-beryllium isotopic neutron source by Monte Carlo simulation with verification by neutron activation analysis.  

E-Print Network [OSTI]

??The purpose of this research was to characterize the neutron energy distribution and flux emitted from the UNLV plutonium-beryllium source, serial number MRC-N-W PuBe 453.… (more)

Harvey, Zachary R

2010-01-01T23:59:59.000Z

24

E-Print Network 3.0 - analysis neutron activation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2106533431 Large Scale Experimental Facilities at RRL Nuclear Research Reactor 5 MW power Neutron... Scattering Facilities ... Source: National Center for Scientific Research...

25

Measurement of chromium VI and chromium III in stainless steel welding fumes with electron spectroscopy for chemical analysis and neutron activation analysis  

E-Print Network [OSTI]

Measurement of Chromium YI and Chromium III in Stainless Steel Welding Fumes with Electron Spectroscopy for Chemical Analysis and Neutron Activation Analysis (December 1977) Gerald Myron Lautner; B. S. , Louisiana State University; Co-Chairmen of Advisory... steel plates sized 15. 2 by 26. 7 by 0. 64 centimeters (6. 0 by 10. 5 by 0. 25 inches). The manufacturer lists the following typical analysis for Type 304 stainless plate; C ? 0. 08 percent; Mn - 2. 00 percent; Si - 1 00 percent; Cr = 18. 00 - 20. 00...

Lautner, Gerald Myron

1977-01-01T23:59:59.000Z

26

Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste  

E-Print Network [OSTI]

was reduced from 20% to 13%. Gamma-ray spectroscopy using a Ge(Li) detector was used to measure the 559 keV photopeak emitted from Cd via the Cd(n, y) Cd reaction. The optimal sample size was determined to be 15 x 15 x 6 cm. The neutron flux throughout... setup. requirements for shielding of the germanium detectors. Some of the following matrix effects can be anticipated: additional neutron moderation due to moisture content of the sample (H moderates the neutrons); gamma-ray attenuation due...

Dendahl, Katherine Hoge

1991-01-01T23:59:59.000Z

27

Calcium sensitivity determinations by neutron activation analysis as applied to bone  

E-Print Network [OSTI]

. ated, eliminating a total body dose. But primarily, the ettuipment used is greatly reduced in size and cost froa~ praY. . ou" roric?u. in' a poa tai~lc neutron aource (againat t', u uacs of a cyclo' ton) aad on1 y onu acinti llatf on cry tnl...PII(IILiL'1 of r il 'lto. l Iir, 'L 'v;il'(i(i', N ~ ? - (1-e ) &5 Nc& i a e(5uation 1 N ? null&'~er of radioactive atoms present at end of irradiation (atoms) - neutron flux (neutrons/cm 'sec) 2. N . - total nuAer of orig" nal atoms (atoms) 1 ? decay...

Blasdel, Michael John

2012-06-07T23:59:59.000Z

28

Nondestructive examination using neutron activated positron annihilation  

DOE Patents [OSTI]

A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

29

active neutron interrogation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by fast neutron activation analysis Texas A&M University - TxSpace Summary: , biological materials, ' steel, and organic compounds, 12, 13 14 1. The phosphoru, s must be separated...

30

Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems  

SciTech Connect (OSTI)

Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

2013-10-01T23:59:59.000Z

31

Neutron activation analysis of the 30Si content of highly enriched 28Si: proof of concept and estimation of the achievable uncertainty  

E-Print Network [OSTI]

We investigated the use of neutron activation to estimate the 30Si mole fraction of the ultra-pure silicon material highly enriched in 28Si for the measurement of the Avogadro constant. Specifically, we developed a relative method based on Instrumental Neutron Activation Analysis and using a natural-Si sample as a standard. To evaluate the achievable uncertainty, we irradiated a 6 g sample of a natural-Si material and modeled experimentally the signal that would be produced by a sample of the 28Si-enriched material of similar mass and subjected to the same measurement conditions. The extrapolation of the expected uncertainty from the experimental data indicates that a measurement of the 30Si mole fraction of the 28Si-enriched material might reach a 4% relative combined standard uncertainty.

D'Agostino, Giancarlo; Oddone, Massimo; Prata, Michele; Bergamaschi, Luigi; Giordani, Laura

2014-01-01T23:59:59.000Z

32

Experiment Design and Analysis Guide - Neutronics & Physics  

SciTech Connect (OSTI)

The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

Misti A Lillo

2014-06-01T23:59:59.000Z

33

Thermal Neutron Imaging in an Active Interrogation Environment  

SciTech Connect (OSTI)

We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutron-emitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

Vanier, Peter E. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Forman, Leon [Ion Focus Technology, Inc., Miller Place, NY 11764 (United States); Norman, Daren R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

2009-03-10T23:59:59.000Z

34

Neutron Data Analysis & Visualization | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Analysis and Visualization As the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities'...

35

Data Analysis & Visualization | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Analysis and Visualization As the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities'...

36

Neutron counter based on beryllium activation  

SciTech Connect (OSTI)

The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

2014-08-21T23:59:59.000Z

37

Thermal neutron imaging in an active interrogation environment  

SciTech Connect (OSTI)

We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

Vanier,P.E.; Forman, L., and Norman, D.R.

2009-03-10T23:59:59.000Z

38

Active neutron multiplicity counting of bulk uranium  

SciTech Connect (OSTI)

This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

1991-01-01T23:59:59.000Z

39

Calibration of the delayed-gamma neutron activation facility  

SciTech Connect (OSTI)

The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99{percent} of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1{percent}. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. {copyright} {ital 1996 American Association of Physicists in Medicine.}

Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D. [Medical Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Medical Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

1996-02-01T23:59:59.000Z

40

Fusion neutronics experiments and analysis  

SciTech Connect (OSTI)

This report discusses the following topics: Tritium breeding measurements and analysis; induced radioactivity measurements and analysis; and nuclear heating measurements and analysis. (LSP)

Abdou, M.A.

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Neutron Activation of NIF Final Optics Assemblies  

SciTech Connect (OSTI)

Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within 10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

Sitaraman, S; Dauffy, L; Khater, H; Brereton, S

2009-09-29T23:59:59.000Z

42

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect (OSTI)

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

43

Improved Fission Neutron Data Base for Active Interrogation of Actinides  

SciTech Connect (OSTI)

This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

2013-11-06T23:59:59.000Z

44

Application of neutron activation analysis and high resolution x-ray spectrometry for the determination of trace quantities of elements with short-lived activation products  

E-Print Network [OSTI]

Conversion Interferences and Errors 3, PROCEDURES AND EXPERIMENTAL SETUP Sample Preparation Pneumatic Sample Transfer System Sample Irradiation X-ray Spectrometry Data Reduction 4. DISCUSSION AND RESULTS System Analysis Analysis Problems.... C. Roentgen made the classic observation that a highly penatrative radiation, unknown at that time, was produced when fast electrons impinged on matter. This radiation, which h called x-rays, was being studied in all parts of the world less than...

Marshall, John Richard

1974-01-01T23:59:59.000Z

45

Experimental neutronics tests for a neutron activation system for the European ITER TBM  

SciTech Connect (OSTI)

We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

Klix, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gehre, D. [Technical University of Dresden, IKTP, Zellescher Weg 19, 01062 Dresden (Germany); Kleizer, G. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Raj, P. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Université Paris-Sud, 15 rue Georges Clemenceau, F-91405 Paris (France); Rovni, I. [Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Ruecker, Tom [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and University of Applied Sciences Zittau-Goerlitz, Theodor-Körner-Allee 16, D-02754 Zittau (Germany)

2014-08-21T23:59:59.000Z

46

Neutrons and Granite: Transport and Activation  

SciTech Connect (OSTI)

In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

Bedrossian, P J

2004-04-13T23:59:59.000Z

47

E-Print Network 3.0 - active neutron scanner Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: active neutron scanner Page: << < 1 2 3 4 5 > >> 1 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

48

E-Print Network 3.0 - activation 14-mev neutrons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: activation 14-mev neutrons Page: << < 1 2 3 4 5 > >> 1 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

49

E-Print Network 3.0 - active neutron correlation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: active neutron correlation Page: << < 1 2 3 4 5 > >> 1 The Neutron Scattering Society www.neutronscattering.org Summary: of antiferromagnetic spin...

50

Enhanced reaction rates in NDP analysis with neutron scattering  

SciTech Connect (OSTI)

Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

Downing, R. Gregory, E-mail: gregory.downing@nist.gov [National Institute of Standards and Technology, Chemical Sciences Division, Gaithersburg, Maryland 20899 (United States)

2014-04-15T23:59:59.000Z

51

The effect of graded doses of corticosteroids on regional body calcium in the cebus monkey: an analysis with in vivo neutron activation  

E-Print Network [OSTI]

followed by a 5-week, daily treatment with aqueous hydrocortisone succinate at a dose of 26 mg/kg b. w. /day. All drugs were given by intramuscular injection. Body calcium in the leg and spinal regions was monitored by regional activation analysis... Experimentals - Spine Position Normalized Calcium . . . . . . 8 Controls - Spine Position Normalized Calcium . 9 Monkey 52A - Leg Position. 10 Monkey 36A ? Leg Position. 11 Monkey 128 - Leg Position. 12 Monkey 98 - Leg Position 13 Nonkey 38 - Leg...

Loeffler, Scott Howard

1984-01-01T23:59:59.000Z

52

EU Blanket Design Activities and Neutronics Support Efforts  

SciTech Connect (OSTI)

An overview is provided of the design activities and the related neutronics support efforts conducted in the European Union for the development of breeder blankets for future fusion power reactors. The EU fusion programme considers two blanket lines, the Helium-Cooled Pebble Bed (HCPB) blanket with Lithium ceramics pebbles (Li{sub 4}SiO{sub 4} or Li{sub 2}TiO{sub 3}) as breeder and beryllium pebbles as neutron multiplier, and the Helium-Cooled Lithium-Lead (HCLL) blanket with the Pb-Li eutectic alloy as breeder and neutron multiplier. The blanket design and the related R and D efforts are based on the use of the same coolant and the same modular blanket structure to minimise the development costs as much as possible. The neutronic support efforts include design analyses for the layout and optimization of the modular HCPB/HCLL blankets based on detailed three-dimensional Monte Carlo calculations as well as underlying neutronics activities conducted in the frame of the European Fusion and Activation File (EFF/EAF) projects to develop qualified nuclear data and computational tools for reliable neutronics design calculations.

Fischer, U. [Forschungszentrum Karlsruhe (Germany); Batistoni, P. [ENEA Fusion Division (Italy); Boccaccini, L.V. [Forschungszentrum Karlsruhe (Germany); Giancarli, L. [CEA Saclay (France); Hermsmeyer, S. [Forschungszentrum Karlsruhe (Germany); Poitevin, Y. [CEA Saclay (France)

2005-05-15T23:59:59.000Z

53

Neutronics analysis for HYLIFE-II  

SciTech Connect (OSTI)

A preliminary neutronics analysis of the HYLIFE-2 reactor concept gives a tritium breeding ratio of 1.17 and a system energy multiplication factor of 1.14. Modified SS-316 (in which Mn is substituted for Ni) is superior to Hastelloy X and Hastelloy N as a firstwall material considering He generation, dpa-limited lifetime, and shallow-burial index. Since Flibe is corrosive to Mn metals, however, a favorable first-wall material is yet to be decided on. Flibe impurities considered (e.g., inherent impurities and those arising from wall erosion or secondary-coolant leakage) do not increase the hazard to the public over that of pure Flibe. The main issues for HYLIFE-2 are the high shallow-burial index (106) and the requirement to contain some 99.7% of the {sup 18}F inventory to prevent its release to the public 18 refs., 3 figs., 9 tabs.

Tobin, M.T.

1990-12-20T23:59:59.000Z

54

activation analysis naa: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

55

activation analysis caracterizacao: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

56

analysis activation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

57

activation analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

58

activation analysis pgaa: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

59

activation analysis avaliacao: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

60

activation analysis metod: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

activation analysis analise: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

62

activation analysis wth: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

63

activation analysis enaa: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

64

activation analysis determinacao: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

treated cocoa, and untreatec, cocoa) and a total analyze'1 by activation sr'tn thermal reactor neutrons gamma ? ray spec . rometry . The ana' ysis o-. cccc- in... Analysis...

65

Neutronic analysis of a proposed plutonium recycle assembly  

E-Print Network [OSTI]

A method for the neutronic analysis of plutonium recycle assemblies has been developed with emphasis on relative power distribution prediction in the boundary area of vastly different spectral regions. Such regions are ...

Solan, George Michael

1975-01-01T23:59:59.000Z

66

BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

1998-06-14T23:59:59.000Z

67

BNL Activities in Advanced Neutron Source Development: Past and Present  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

1998-06-14T23:59:59.000Z

68

Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments  

E-Print Network [OSTI]

Flux-averaged cross sections for cosmogenic-neutron activation of natural tellurium were measured using a neutron beam containing neutrons of kinetic energies up to $\\sim$800 MeV, and having an energy spectrum similar to that of cosmic-ray neutrons at sea-level. Analysis of the radioisotopes produced reveals that 110mAg will be a dominant contributor to the cosmogenic-activation background in experiments searching for neutrinoless double-beta decay of 130Te, such as CUORE and SNO+. An estimate of the cosmogenic-activation background in the CUORE experiment has been obtained using the results of this measurement and cross-section measurements of proton activation of tellurium. Additionally, the measured cross sections in this work are also compared with results from semi-empirical cross-section calculations.

Barbara S. Wang; Eric B. Norman; Nicholas D. Scielzo; Alan R. Smith; Keenan J. Thomas; Stephen A. Wender

2015-03-06T23:59:59.000Z

69

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data  

E-Print Network [OSTI]

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data electron and neutron scattering density profiles. A key result of the analysis is the molecular surface

Nagle, John F.

70

Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

71

A JOINT ANALYSIS OF HIGH-ENERGY NEUTRONS AND NEUTRON-l)ECAY PROTONS FROM A FLARE  

E-Print Network [OSTI]

A JOINT ANALYSIS OF HIGH-ENERGY NEUTRONS AND NEUTRON-l)ECAY PROTONS FROM A FLARE I.. G. KOCI'l.I)elel:sl~zHg 194021. RHs.ffa (Received ll April, 19%; in final form 19.1uly., 1996) Abstract. A .joint. analysis of the 1990 May 24 neutron event provided an oppor u ~ ly to delect neu[ron decay prolons of higher energies

Usoskin, Ilya G.

72

Radiography apparatus using gamma rays emitted by water activated by fusion neutrons  

DOE Patents [OSTI]

Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

Smith, Donald L. (Plainfield, IL); Ikeda, Yujiro (Ibaraki, JP); Uno, Yoshitomo (Ibaraki, JP)

1996-01-01T23:59:59.000Z

73

Radiography apparatus using gamma rays emitted by water activated by fusion neutrons  

DOE Patents [OSTI]

Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

1996-11-05T23:59:59.000Z

74

Data Analysis & Visualization | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic2005-2007DanMesoporousDarkDash forNeutron

75

Analysis of a time-of-flight neutron spectrometer  

SciTech Connect (OSTI)

A neutron spectrometer is analyzed. The spectrum is resolved using a time-of-flight method in which the angular position of a rapidly spinning wheel is used to measure time. The measurement method is summarized, the data-analysis problem is formulated, units are discussed, the calibration technique is described, and a spectral transformation is developed.

Biggs, F.

1983-12-01T23:59:59.000Z

76

Kalman filter analysis of delayed neutron nondestructive assay measurements.  

SciTech Connect (OSTI)

The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation.

Aumeier, S. E.

1998-04-29T23:59:59.000Z

77

Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU  

SciTech Connect (OSTI)

A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including wood, steel, cement, polyethylene, and borated polyethylene; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, tungsten, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. The important impact engineered shields can play towards degrading detectability and methods for mitigating this will be discussed.

David L. Chichester; Scott J. Thompson; Scott M. Watson; James T. Johnson; Edward H. Seabury

2012-10-01T23:59:59.000Z

78

On the analysis method of effective delayed neutron fraction at thermal neutron systems  

SciTech Connect (OSTI)

The effective delayed neutron fraction (beta-effective) was numerically analyzed with different analysis methods, and their effects on the results were investigated. The cores investigated in this study were light-water moderated low enriched UO{sub 2} lattices, of which the beta-effective had been reported. The effects of transport/diffusion calculation, energy group collapsing, and change of nuclear data library were studied. The study showed that the diffusion calculation with coarse group cross section gave smaller beta-effective than the transport one with fine group cross section, although the difference was not so large, about 2%. On the other hand, the change of nuclear data library from JENDL-3.3 to ENDF/B-VI.8 gave a significant difference, over than 4%. In comparisons with the experiments, it was indicated that the delayed neutron data in JENDL-3.3 are more reliable than those in ENDF/B-VI.8. (authors)

Nakajima, K.; Unesaki, H. [Research Reactor Inst., Kyoto Univ., Asashiro-Nishi 2, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

2006-07-01T23:59:59.000Z

79

NEUTRON DIFFRACTION ANALYSIS OF CYTOCHROME b5 RECONSTITUTED IN DEUTERATED LIPID MULTILAYERS  

E-Print Network [OSTI]

NEUTRON DIFFRACTION ANALYSIS OF CYTOCHROME b5 RECONSTITUTED IN DEUTERATED LIPID MULTILAYERS E. P centrosymmetric pairs of asymmetric lipid-protein bilayers. Lamellar neutron diffraction data were collected. A neutron diffraction analysis ofcytochrome b5, incorporated into ordered lipid multilayers, promised

80

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect (OSTI)

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Neutronic reactor  

DOE Patents [OSTI]

A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

1983-01-01T23:59:59.000Z

82

Neutron Capture Measurements and Resonance Analysis of Dysprosium Y.R. Kang,1  

E-Print Network [OSTI]

Neutron Capture Measurements and Resonance Analysis of Dysprosium Y.R. Kang,1 M.W. Lee,1 T.I. Ro,2 The electron linear accelerator facility at the Rensselaer Polytechnic Institute was used to measure neutron capture yields of dysprosium with the time-of-flight method in the neutron energy region from 10 eV to 1

Danon, Yaron

83

Analysis Activities at Idaho National Engineering & Environmental...  

Broader source: Energy.gov (indexed) [DOE]

Analysis Activities at Idaho National Engineering & Environmental Laboratory Analysis Activities at Idaho National Engineering & Environmental Laboratory Presentation on INEENL's...

84

Real-Time Active Cosmic Neutron Background Reduction Methods  

SciTech Connect (OSTI)

Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

2013-09-01T23:59:59.000Z

85

RIS-M-2356 STANDARDIZATION ACTIVITIES OF THE EURATOM NEUTRON  

E-Print Network [OSTI]

- ing in light water reactor fuel", was produced (T|. #12;- 6 - For the sake of testing the radiographic the atlas of neutron radiographic findings in light water reactor fuel, the Euratom Neutron Radiography pins, beam purity, and sensitivity indicators were designed and produced and they will be tested under

86

Iso-geometric analysis for neutron diffusion problems  

SciTech Connect (OSTI)

Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry to be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)

Hall, S. K.; Eaton, M. D.; Williams, M. M. R. [Dept. of Earth Science and Engineering, Imperial College, South Kensington Campus, London SW7 2AZ (United Kingdom)

2012-07-01T23:59:59.000Z

87

Energy-dependent multipole analysis for photoproduction of pions from neutrons  

SciTech Connect (OSTI)

An energy-dependent multipole analysis for photoproduction of pions from neutrons from threshold up to 450 MeV is presented.

Smith, A.W.; Zagury, N.

1980-05-01T23:59:59.000Z

88

3D neutronic/thermal-hydraulic coupled analysis of MYRRHA  

SciTech Connect (OSTI)

The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

Vazquez, M.; Martin-Fuertes, F. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain)

2012-07-01T23:59:59.000Z

89

Fast-Neutron Activation of Long-Lived Nuclides in Natural Pb  

E-Print Network [OSTI]

We measured the production of the long-lived nuclides Bi-207, Pb-202, and Hg-194 in a sample of natural Pb due to high-energy neutron interactions using a neutron beam at the Los Alamos Neutron Science Center. The activated sample was counted by a HPGe detector to measure the amount of radioactive nuclides present. These nuclides are critical in understanding potential backgrounds in low background experiments utilizing large amounts of Pb shielding due to cosmogenic neutron interactions in the Pb while residing on the Earth's surface. By scaling the LANSCE neutron flux to a cosmic neutron flux, we measure the sea level cosmic ray production rates of 8.0 +/- 1.3 atoms/kg/day of Hg-194, 120 +/- 25 atoms/kg/day Pb-202, and 0.17 +/- 0.04 atoms/kg/day Bi-207.

V. E. Guiseppe; S. R. Elliott; N. E. Fields; D. Hixon

2012-09-20T23:59:59.000Z

90

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

SciTech Connect (OSTI)

The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad

2004-10-13T23:59:59.000Z

91

Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique  

E-Print Network [OSTI]

1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

92

activation neutron spectra: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of heavy elements. V. Suleimanov; K. Werner 2007-02-15 27 Theoretical description of prompt fission neutron multiplicity and spectra Nuclear Theory (arXiv) Summary: The present...

93

active neutron detection: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the device ("skyshine"). Taylor, David; Turner, Andrew; Davis, Andrew 2014-01-01 48 An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons...

94

Investigation of elemental analysis using neutron-capture gamma ray spectra  

E-Print Network [OSTI]

This thesis evaluated the potential of neutron-capture gamma rays in elemental analysis. A large portion of the work was devoted to the development of a method for the analysis of weak peaks in gamma ray spectra. This was ...

Hamawi, John Nicholas

1969-01-01T23:59:59.000Z

95

In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques  

SciTech Connect (OSTI)

To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

Ellis, K.J.

1986-01-01T23:59:59.000Z

96

Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials  

SciTech Connect (OSTI)

Using a beam of tagged 14.1 MeV neutrons to probe for the presence of fissionable materials, we have measured n-?-? coincidences from depleted uranium (DU). The multiple coincidence rate is substantially above that measured from lead, tungsten, and iron. The presence of coincidences involving delayed gammas in the DU time spectra provides a signature for fissionable materials that is distinct from non-fissionable ones. In addition, the information from the tagged neutron involved in the coincidence gives the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is more compact and that produces much less radiation than other solutions.

J.P. Hurley, R.P. Keegan, J.R. Tinsley, R. Trainham, and S.C. Wilde

2008-08-06T23:59:59.000Z

97

Analysis of neutron scattering data: Visualization and parameter estimation  

SciTech Connect (OSTI)

Traditionally, small-angle neutron and x-ray scattering (SANS and SAXS) data analysis requires measurements of the signal and corrections due to the empty sample container, detector efficiency and time-dependent background. These corrections are then made on a pixel-by-pixel basis and estimates of relevant parameters (e.g., the radius of gyration) are made using the corrected data. This study was carried out in order to determine whether treatment of the detector efficiency and empty sample cell in a more statistically sound way would significantly reduce the uncertainties in the parameter estimators. Elements of experiment design are shortly discussed in this paper. For instance, we studied the way the time for a measurement should be optimally divided between the counting for signal, background and detector efficiency. In Section 2 we introduce the commonly accepted models for small-angle neutron and x-scattering and confine ourselves to the Guinier and Rayleigh models and their minor generalizations. The traditional approaches of data analysis are discussed only to the extent necessary to allow their comparison with the proposed techniques. Section 3 describes the main stages of the proposed method: visual data exploration, fitting the detector sensitivity function, and fitting a compound model. This model includes three additive terms describing scattering by the sampler, scattering with an empty container and a background noise. We compare a few alternatives for the first term by applying various scatter plots and computing sums of standardized squared residuals. Possible corrections due to smearing effects and randomness of estimated parameters are also shortly discussed. In Section 4 the robustness of the estimators with respect to low and upper bounds imposed on the momentum value is discussed. We show that for the available data set the most accurate and stable estimates are generated by models containing double terms either of Guinier's or Rayleigh's type. The optimal partitioning of the total experimental time between measuring various signals is discussed in Section 5. We applied a straightforward optimization instead of some special experimental techniques because of the numerical simplicity of the corresponding problem. As a criterion of optimality we selected the variance of the gyration radius maximum likelihood estimator. The statistical background of the proposed approach is given in the appendix. The properties of the maximum likelihood estimators and the corresponding iterated estimator together with its possible numerical realization are presented in subsection A.1. In subsection A.2 we prove that the use of a compound model leads to more efficient estimators than a stage-wise analysis of different components entering that model.

Beauchamp, J.J.; Fedorov, V.; Hamilton, W.A.; Yethiraj, M.

1998-09-01T23:59:59.000Z

98

Incident spectrum determination for time-of-flight neutron powder diffraction data analysis.  

SciTech Connect (OSTI)

Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor.

Hodges, J. P.

1998-08-27T23:59:59.000Z

99

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

SciTech Connect (OSTI)

The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral however, changed very little.

Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

2007-02-06T23:59:59.000Z

100

The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function  

SciTech Connect (OSTI)

This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)

Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Activation Analysis of the Final Optics Assemblies at the National Ignition Facility  

SciTech Connect (OSTI)

Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

2008-10-14T23:59:59.000Z

102

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments  

E-Print Network [OSTI]

the time-of-flight technique. Lithium-6 glass scintillation detectors were used for transmission for natural hafnium, it did affect the way the hafnium interactions would change with exposure to a neutron

Danon, Yaron

103

Computational neutronics analysis of TRIGA reactors during power pulsing  

E-Print Network [OSTI]

Training, Research, Isotopes, General Atomics (TRIGA) reactors have the unique capability of generating high neutron flux environments with the removal of a transient control rod, creating conditions observed in fast fission ...

Bean, Malcolm (Malcolm K.)

2011-01-01T23:59:59.000Z

104

Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis  

SciTech Connect (OSTI)

Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

Xie Xufei; Zhang Xing; Yuan Xi; Chen Jinxiang; Li Xiangqing; Zhang Guohui; Fan Tieshuan [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing (China); Yuan Guoliang; Yang Jinwei; Yang Qingwei [Southwestern Institute of Physics, Chengdu (China)

2012-09-15T23:59:59.000Z

105

Minimum activation martensitic alloys for surface disposal after exposure to neutron flux  

DOE Patents [OSTI]

Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

Lechtenberg, Thomas (San Diego, CA)

1985-01-01T23:59:59.000Z

106

Analysis Activities at National Renewable Energy Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NREL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

107

Analysis Activities at Sandia National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on SNL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

108

Analysis Activities at Pacific Northwest National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on PNNL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

109

Analysis Activities at Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

110

Analysis Activities at Oak Ridge National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on ORNL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

111

Analysis Activities at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on Argonne’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

112

Database of prompt gamma rays from slow neutron capture forelemental analysis  

SciTech Connect (OSTI)

The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.

Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

2004-12-31T23:59:59.000Z

113

Innovative high pressure gas MEM's based neutron detector for ICF and active SNM detection.  

SciTech Connect (OSTI)

An innovative helium3 high pressure gas detection system, made possible by utilizing Sandia's expertise in Micro-electrical Mechanical fluidic systems, is proposed which appears to have many beneficial performance characteristics with regards to making these neutron measurements in the high bremsstrahlung and electrical noise environments found in High Energy Density Physics experiments and especially on the very high noise environment generated on the fast pulsed power experiments performed here at Sandia. This same system may dramatically improve active WMD and contraband detection as well when employed with ultrafast (10-50 ns) pulsed neutron sources.

Martin, Shawn Bryan; Derzon, Mark Steven; Renzi, Ronald F.; Chandler, Gordon Andrew

2007-12-01T23:59:59.000Z

114

Recent activities for ?-decay half-lives and ?-delayed neutron emission of very neutron-rich isotopes  

SciTech Connect (OSTI)

Beta-delayed neutron (?n) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material ?-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure ?n-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 ?-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 ?-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of ?-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and theoretical models.

Dillmann, Iris [TRIUMF, Vancouver BC, V6T 2A3, Canada and GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Abriola, Daniel [Laboratorio Tandar, Comisión Nacional de Energía Atómica, B1650KINA, San Martín, Buenos Aires (Argentina); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1 (Canada)

2014-05-02T23:59:59.000Z

115

Mechanical approach to the neutrons spectra collimation and detection  

SciTech Connect (OSTI)

Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

2014-11-15T23:59:59.000Z

116

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

Michael R. Kruzic

2008-06-01T23:59:59.000Z

117

Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion  

SciTech Connect (OSTI)

The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

Boyd D. Christensen

2009-05-01T23:59:59.000Z

118

Neutronics Design and Fuel Cycle Analysis of a High Conversion BWR with Pu-Th Fuel  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy's (DOE) Nuclear Energy Research Initiative (NERI), a 'Generation IV' high conversion Boiling Water Reactor design is being investigated at Purdue University and Brookhaven National Laboratory. One of the primary innovative design features of the core proposed here is the use of Thorium as fertile material. In addition to the advantageous nonproliferation and waste characteristics of thorium fuel cycles, the use of thorium is particularly important in a tight pitch, high conversion lattice in order to insure a negative void coefficient throughout the operating life of the reactor. The principal design objective of a high conversion light water reactor is to substantially increase the conversion ratio (fissile atoms produced per fissile atoms consumed) of the reactor without compromising the safety performance of the plant. Since existing LWRs have a relatively low conversion ratio they require relatively frequent refueling which limits the economic efficiency of the plant. Also, the high volume of spent fuel can pose a burden for waste storage and the accumulation of plutonium in the uranium fuel cycle can become a materials proliferation issue. The development of Fast Breeder Reactors (FBR) as an alternative technology to alleviate some of these concerns has been delayed for various reasons. An intermediate solution has been to examine tight pitch light water reactors which can provide significant improvements in the fuel cycle performance of the existing LWRs by taking advantage of the increased conversion ratios from the harder neutron spectrum in the tight pitch lattice, as well as the by taking advantage of the waste and nonproliferation benefits of the thorium fuel cycle. Several High Conversion BWR designs have been proposed by researchers in Japan and elsewhere during the past several years. One of the more promising HCR designs is the Reduced Moderation Water Reactor (RMWR) proposed by JAERI [1]. Their design was based on a uranium fuel cycle and showed significant improvements in the fuel cycle performance compared to conventional BWRs. However, one of the drawbacks of their design was the potential for a positive void coefficient. In order to insure a negative void coefficient, the JAERI researchers designed a 'flat core' and introduced void tube assemblies in order to enhance neutron leakage in the event of core voiding. The use of thorium in the Purdue/BNL HCBWR design proposed here obviates the need for void tubes and makes it possible to increase the core height and improve neutron economy without the risk of a positive void coefficient. The principal reason for the improvement in the void coefficient is because Th-232 has a smaller fast fission cross section and resonance integral than U-238. In the design proposed here, it is possible to eliminate the void tubes in the RMWR design and replace the axial blanket with active fuel to increase the core height and further improve neutron economy. The core analyses in the work here was performed with the Purdue Fuel Management Code System [2] which is based on the Studsvik/Scandpower lattice physics code HELIOS, and the U.S. NRC core neutronics simulator, PARCS, which is coupled to the thermal-hydraulics code RELAP5. All these codes have been well assessed and benchmarked for analysis of light water reactor systems. (authors)

Xu, Yunlin; Downar, T.J. [Purdue University, West Lafayette, IN 47906-1290 (United States); Takahashi, H.; Rohatgi, U.S. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

2002-07-01T23:59:59.000Z

119

REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.  

SciTech Connect (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

HOLDEN, N.E.

2004-09-26T23:59:59.000Z

120

Review of Non-Neutron and Neutron Nuclear Data, 2004  

SciTech Connect (OSTI)

Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

Holden, Norman E. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

2005-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety  

SciTech Connect (OSTI)

This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

1993-03-01T23:59:59.000Z

122

NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION  

E-Print Network [OSTI]

NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION M. INTRODUCTION The High Average Power Laser (HAPL) program is carrying out a coordinated effort to develop laser accommodate the ion and photon threat spectra from the fusion micro-explosion over its required lifetime

Raffray, A. René

123

SHARP Neutronics Expanded  

Broader source: Energy.gov [DOE]

The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

124

Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments  

SciTech Connect (OSTI)

The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

Arnold, Owen [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Bilheux, Jean-Christophe [ORNL; Borreguero Calvo, Jose M [ORNL; Buts, Alex [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Campbell, Stuart I [ORNL; Doucet, Mathieu [ORNL; Draper, Nicholas J [ORNL; Ferraz Leal, Ricardo F [ORNL; Gigg, Martyn [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lynch, Vickie E [ORNL; Mikkelson, Dennis J [ORNL; Mikkelson, Ruth L [ORNL; Miller, Ross G [ORNL; Perring, Toby G [ORNL; Peterson, Peter F [ORNL; Ren, Shelly [ORNL; Reuter, Michael A [ORNL; Savici, Andrei T [ORNL; Taylor, Jonathan W [ORNL; Taylor, Russell J [ORNL; Zhou, Wenduo [ORNL; Zikovsky, Janik L [ORNL

2014-01-01T23:59:59.000Z

125

Tomographic analysis of neutron and gamma pulse shape distributions from liquid scintillation detectors at Joint European Torus  

SciTech Connect (OSTI)

The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/? discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.

Giacomelli, L. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom) [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); Conroy, S. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom) [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Gorini, G. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy)] [Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); Horton, L.; Murari, A.; Popovichev, S.; Syme, D. B. [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)] [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

2014-02-15T23:59:59.000Z

126

E-Print Network 3.0 - activ-87 fast neutron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2106533431 Large Scale Experimental Facilities at RRL Nuclear Research Reactor 5 MW power Neutron... Scattering Facilities Neutron diffractometer, ... Source: National Center for...

127

Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick  

SciTech Connect (OSTI)

The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

Livingston, R. A.; Al-Sheikhly, M. [Materials Science and Engineering Dept., U. of Maryland, College Park MD 20742 (United States); Grissom, C.; Aloiz, E. [Museum Conservation Institute, Smithsonian Institution, Washington DC 20746 (United States); Paul, R. [Chemical Sciences Division, NIST, Gaithersburg MD 20899 (United States)

2014-02-18T23:59:59.000Z

128

Summary of experiments and analysis from the JAERI/USDOE collaborative program on fusion blanket neutronics  

SciTech Connect (OSTI)

The JAERI/USDOE Collaborative program on Fusion Blanket Neutronics was started officially on Oct. 23, 1984 using the intense D-T neutron generator FNS and terminated in 1993. The objectives of the program are: (1) to validate neutronics methods, codes and nuclear data, (2) to provide estimates of uncertainties in satisfying tritium self-sufficiency in fusion reactors, (3) to provide integral data on nuclear heating, induced radioactivity and afterheat, and (4) to develop the neutronics technology for the design and testing of the next fusion devices. The program was divided into three phases depending on the ideas of the source and test blanket arrangements. Useful and reliable benchmark data have been accumulated through this collaboration experiments. They are tritium production rates (TPR) of Li-6, Li-7 and Li-natural, various reaction rates measured by activation foils, neutron spectra, gamma-ray spectra, gamma-ray heating rates and so on. Both Japan and US analyzed these benchmark experiments using latest and/or newly developed data and methods, e.g., GMVP, MCNP, JENDL-3, etc. A novel methodology has been developed to estimate design safety factors and the associated confidence levels. These safety factors are based on the prediction uncertainties of TPR as derived from the numerous calculational and experimental data accumulated during the program.

Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan); Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

129

Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum  

SciTech Connect (OSTI)

Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fast neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.

Odsuren, M.; Khuukhenkhuu, G. [Nuclear Research Center, National University of Mongolia, Ulaanbaatar (Mongolia)

2011-06-28T23:59:59.000Z

130

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

analytical techniques employed included instrumental neutron activation analysis (INAA), atomic absorption spectroscopy (AAS), direct-current plasma atomic emission spectroscopy...

131

Transportation activity analysis using smartphones  

E-Print Network [OSTI]

Transportation activity surveys investigate when, where and how people travel in urban areas to provide information necessary for urban transportation planning. In Singapore, the Land Transport Authority (LTA) carries out ...

Xiao, Yu

132

Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis  

SciTech Connect (OSTI)

In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

Mitra,S.

2008-11-17T23:59:59.000Z

133

Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY  

SciTech Connect (OSTI)

Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

Larson, N.M.

1998-07-01T23:59:59.000Z

134

Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source  

SciTech Connect (OSTI)

ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

Campbell, Stuart I [ORNL; Kohl, James Arthur [ORNL; Granroth, Garrett E [ORNL; Miller, Ross G [ORNL; Doucet, Mathieu [ORNL; Stansberry, Dale V [ORNL; Proffen, Thomas E [ORNL; Taylor, Russell J [ORNL; Dillow, David [None

2014-01-01T23:59:59.000Z

135

Neutronic analysis of pebble-bed cores with transuranics  

E-Print Network [OSTI]

(ORNL). This Department of Energy sponsored center is authorized to collect, maintain, analyze, and distribute computer software and data sets in the area of radiation transport and safety. The full-core VHTR pebble-bed model was developed... II.A SCALE 5.0 The 3D full-core pebble-bed VHTR model was initially built using SCALE version 5.0. The modular code system is developed and maintained by ORNL and is readily validated and accepted for use in thermal reactor analysis around...

Pritchard, Megan Leigh

2009-05-15T23:59:59.000Z

136

Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments  

SciTech Connect (OSTI)

Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at T{sub d} from the collective (?) structural relaxation rates of the solvation shell as input. By contrast, the secondary (?) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature T{sub g}. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature T{sub d}.

Doster, W. [Physik-Department, Technische Universität München, D-85748 Garching (Germany)] [Physik-Department, Technische Universität München, D-85748 Garching (Germany); Nakagawa, H. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany) [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany); Japan Atomic Energy Agency, Quantum Beam Science Directorate, Tokai, Ibaraki 319-1195 (Japan); Appavou, M. S. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)] [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

2013-07-28T23:59:59.000Z

137

Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials  

SciTech Connect (OSTI)

Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs.

Kelly, J.G.; Vehar, D.W.

1987-12-01T23:59:59.000Z

138

Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source  

SciTech Connect (OSTI)

This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

2014-01-01T23:59:59.000Z

139

The Status of USITER Diagnostic Port Plug Neutronics Analysis Using Attila  

SciTech Connect (OSTI)

USITER is one of seven partner domestic agencies (DA) contributing components to the ITER project. Four diagnostic port plug packages (two equatorial ports and two upper ports) will be engineered and fabricated by Princeton Plasma Physics Lab (PPPL). Diagnostic port plugs as illustrated in Fig. 1 are large primarily stainless steel structures that serve several roles on ITER. The port plugs are the primary vacuum seal and tritium confinement barriers for the vessel. The port plugs also house several plasma diagnostic systems and other machine service equipment. Finally, each port plug must shield high energy neutrons and gamma photons from escaping and creating radiological problems in maintenance areas behind the port plugs. The optimization of the balance between adequate shielding and the need for high performance, high throughput diagnostics systems is the focus of this paper. Neutronics calculations are also needed for assessing nuclear heating and nuclear damage in the port plug and diagnostic components. Attila, the commercially available discrete-ordinates software package, is used for all diagnostic port plug neutronics analysis studies at PPPL.

Feder, Russell [1; Youssef, Mahamoud [2; Klabacha, Jonathan [1

2013-11-01T23:59:59.000Z

140

Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field  

SciTech Connect (OSTI)

Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - active neutron counter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 11 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

142

E-Print Network 3.0 - active neutron ipan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Academy of Sciences Collection: Computer Technologies and Information Sciences 2 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

143

E-Print Network 3.0 - absolute neutron activation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 2 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

144

E-Print Network 3.0 - accelerator-based neutron activation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controlled Fusion Atomic Data Center (CFADC) Collection: Plasma Physics and Fusion 12 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

145

HFIR History - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its...

146

Underground Corrosion of Activated Metals, 6-Year Exposure Analysis  

SciTech Connect (OSTI)

The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

M. K. Adler Flitton; T. S. Yoder

2006-03-01T23:59:59.000Z

147

Subcriticality measurements for coupled uranium metal cylinders using the /sup 252/Cf-source-driven neutron noise analysis method  

SciTech Connect (OSTI)

Experiments performed with two coupled uranium metal cylinders are the first application to coupled systems of the /sup 252/Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor. These coaxial cylinders were separated axially by various thicknesses of either air or borated plaster between the flat surfaces. In all measurements, the /sup 252/Cf neutron source was located at the center of the outer flat surface of one cylinder, and the two detectors were located in three configurations. By comparing the subcriticality from the measurements performed with borated plaster separating the uranium cylinders to those separated by air, it was found that the neutron multiplication factor was always increased by the insertion of borated plaster between the cylinders, regardless of their separation.

Mihalezo, J.T.; King, W.T.; Blakeman, E.D.

1987-01-01T23:59:59.000Z

148

E-Print Network 3.0 - aerial neutron detection Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

monochromatization Automation and control of micro... development for Data acquisition Neutron scattering data analysis Neutron detection Instrument control 12;... Neutronic...

149

Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.  

SciTech Connect (OSTI)

This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

2008-11-01T23:59:59.000Z

150

Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel  

SciTech Connect (OSTI)

This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

J. W. Sterbentz; D. L. Chichester

2011-09-01T23:59:59.000Z

151

E-Print Network 3.0 - active fast-neutron imaging Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging Page: << < 1 2 3 4 5 > >> 1 GLASPPE200832 24 th November 2008 Summary: the polyethylene converter is used for the tracking fast neutrons. The results showed that such a...

152

Spacecraft Habitation Systems, Water Recovery and Waste Active Charged Particle and Neutron Radiation Measurement  

E-Print Network [OSTI]

-PMWC) Orbital Technologies Corporation Technical Abstract Model calculations and risk assessment estimates Particle and Neutron Radiation Measurement Technologies Technical Abstract The innovative High Efficiency the resultant plastic tiles. This system requires access to power, data, and cooling interfaces. The system

153

Analysis of Integrated Safety Management at the Activity Level...  

Broader source: Energy.gov (indexed) [DOE]

Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and...

154

Analysis Activities at Fossil Energy/ National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

155

Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes  

SciTech Connect (OSTI)

A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions.

D'Auria, Francesco [Universita di Pisa (Italy); Moreno, Jose Luis Gago [Universidad Politecnica de Barcelona (Spain); Galassi, Giorgio Maria [Universita di Pisa (Italy); Grgic, Davor [University of Zagreb (Croatia); Spadoni, Antonino [Universita di Pisa (Italy)

2003-05-15T23:59:59.000Z

156

Active Automobile Engine Vibration Analysis Technical Report Number 1  

E-Print Network [OSTI]

Active Automobile Engine Vibration Analysis Technical Report Number 1 Page 1 of 26 DISTRIBUTION STATEMENT: Distribution authorized to all. Active Automobile Engine Vibration Analysis Technical Report at the University of Southern California #12;Active Automobile Engine Vibration Analysis Technical Report Number 1

Levi, Anthony F. J.

157

Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs  

SciTech Connect (OSTI)

This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

Hikaru Hiruta; Gilles Youinou

2012-09-01T23:59:59.000Z

158

NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY  

SciTech Connect (OSTI)

The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new requirement for which the Savannah River National Laboratory (SRNL) Research Operations Department (ROD) MC&A group was unprepared. The criteria for exemption from verification were: (1) isotope content below 50 grams; (2) intrinsically tamper indicating or TID sealed items which contain a Category IV quantity of material; (3) assembled components; and (4) laboratory samples. Therefore all (SRNL) Material Balance Area (MBA) items with greater than 50 grams total Pu or greater than 50 grams HEU were subject to a verification measurement. The pass/fail criteria of reference 7 stated 'The facility will report measured values, book values, and statistical control limits for the selected items to DOE SR...', and 'The site/facility operator must develop, document, and maintain measurement methods for all nuclear material on inventory'. These new requirements exceeded SRNL's experience with prior semi-annual inventory expectations, but allowed the AD nuclear field measurement group to demonstrate its excellent adaptability and superior flexibility to respond to unpredicted expectations from the DOE customer. The requirements yielded five SRNL items subject to Pu verification and two SRNL items subject to HEU verification. These items are listed and described in Table 1.

Dewberry, R.; Ayers, J.; Tietze, F.; Klapper, K.

2010-02-05T23:59:59.000Z

159

E-Print Network 3.0 - assesment neutronics analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2106533431 Large Scale Experimental Facilities at RRL Nuclear Research Reactor 5 MW power Neutron... Scattering Facilities ... Source: National Center for Scientific Research...

160

Comparative analysis of neutron sources produced by low-energy electrons and deuterons for driving subcritical assemblies.  

SciTech Connect (OSTI)

A conceptual design of an accelerator driven subcritical assembly has been developed using the existing accelerators at Kharkov Institute of Physics and Technology (KIPT) in Ukraine. Two different external neutron source options were examined for driving the subcritical assembly. Electrons with energies below 200 MeV and deuterons with energies below 100 MeV were considered. Comparative analysis of these two options is presented and discussed. The Comparative analysis of neutron sources produced by low-energy electrons and deuterons show that: (1) An electron accelerator with electron energy in the range of 150 to 200 MeV is preferred for producing neutron source; (2) The uranium target material produces the highest neutron yield per electron; (3) The uranium target with 100 KW electron beam produces 3.3 x 10{sup 14} n/s; (4) The thermal hydraulics analyses of the uranium target operating with the 100 KW electron beam power satisfy the engineering design requirements; and (5) The peak thermal stresses (secondary stress) is less than the yield strength of the uranium target material.

Naberezhnev, D.; Gohar, Y.; Belch, H.; Duo, J.; Bolshinsky, I. (Nuclear Engineering Division); (INL)

2008-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

SciTech Connect (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

162

Neutron range spectrometer  

DOE Patents [OSTI]

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

Manglos, Stephen H. (East Syracuse, NY)

1989-06-06T23:59:59.000Z

163

Comparison of SEM and Optical Analysis of DT Neutron Tracks in CR-39 Detectors  

SciTech Connect (OSTI)

A solid state nuclear track detector, CR-39, was exposed to DT neutrons. After etching, the resultant tracks were analyzed using both an optical microscope and a scanning electron microscope (SEM). In this communication, both methods of analyzing DT neutron tracks are discussed.

P.A. Mosier-Boss, L.P.G. Forsley, P. Carbonnelle, M.S. Morey, J.R. Tinsley, J. P. Hurley, F.E. Gordon

2012-01-01T23:59:59.000Z

164

Inspecting the minefield and residual explosives by fast neutron activation method  

SciTech Connect (OSTI)

As an upgrade of a robotic mobile system for antipersonnel land-mine clearance, a fast neutron probe has been considered for the detection of mines and explosive residues. Laboratory tests were made by using the 14 MeV 6 x 10{sup 7} neutrons/sec beam with the associated alpha particle detection and with a LaBr{sub 3} gamma ray detector. Simulant of the anti-personal mine was used as a target. Several measurements were made with the target buried into the soil at different depths. For each depth minimal time measurement was estimated for false negative 0.4 % and false positive equal to 10 %. Tests showed that is possible to detect buried land-mine as well as residual explosives; however, in order to reach the optimal speed of 10 cm/s for de-mining vehicle it is necessarily to use several sealed tube neutron generators and few tens of LaBr{sub 3} gamma ray detectors. (authors)

Sudac, D. [Rudjer Boskovic Inst., Bijenicka c. 54, 10000 Zagreb (Croatia); Majetic, S. [DOK-ING Ltd., Kanalski put 1, 10000 Zagreb (Croatia); Kollar, R. [A.C.T. D.o.o., Prilesje 4, 10000 Zagreb (Croatia); Nad, K.; Obhodas, J. [Rudjer Boskovic Inst., Bijenicka c. 54, 10000 Zagreb (Croatia); Valkovic, V. [A.C.T. D.o.o., Prilesje 4, 10000 Zagreb (Croatia)

2011-07-01T23:59:59.000Z

165

Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm  

SciTech Connect (OSTI)

One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup ?1}) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 10{sup 6} cm{sup ?1}) the limits were exceeded.

Susmikanti, Mike, E-mail: mike@batan.go.id [Center for Development of Nuclear Informatics, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Dewayatna, Winter, E-mail: winter@batan.go.id [Center for Nuclear Fuel Technology, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Sulistyo, Yos, E-mail: soj@batan.go.id [Center for Nuclear Equipment and Engineering, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia)

2014-09-30T23:59:59.000Z

166

An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis  

SciTech Connect (OSTI)

Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

William R. Martin; John C. Lee

2009-12-30T23:59:59.000Z

167

Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ forthe Accelerator Driven Neutron Source  

SciTech Connect (OSTI)

A high-yield neutron source to screen sea-land cargocontainers for shielded Special Nuclear Materials (SNM) has been designedat LBNL [1,2]. The Accelerator-Driven Neutron Source (ADNS) uses theD(d,n)3He reaction to create a forward directed neutron beam. Keycomponents are a high-current radio-frequency quadrupole (RFQ)accelerator and a high-power target capable of producing a neutron fluxof>107 n/(cm2 cdot s) at a distance of 2.5 m. The mechanical designand analysis of the four-module, bolt-together RFQ will be presentedhere. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mAdeuteron beam to 6 MeV. At a 5 percent duty factor, the time-average d+beam current on target is 1.5 mA. Each of the 1.27 m long RFQ moduleswill consist of four solid OFHC copper vanes. A specially designed 3-DO-ring will provide vacuum sealing between both the vanes and themodules. RF connections are made with canted coil spring contacts. Aseries of 60 water-cooled pi-mode rods provides quadrupole modestabilization. A set of 80 evenly spaced fixed slug tuners is used forfinal frequency adjustment and local field perturbationcorrection.

Virostek, Steve; Hoff, Matt; Li, Derun; Staples, John; Wells,Russell

2007-06-20T23:59:59.000Z

168

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

169

Analysis of spent, highly enriched reactor fuel by delayed neutron interrogation  

SciTech Connect (OSTI)

Design aspects are given of a neutron shuffler designed to measure fissile material content of spent, highly enriched reactor fuel. The mode of operation used, results of analyzing 176 fuel packages and recommended system improvements are also discussed. Four measurements were made on each of the fuel packages with the mean of the 176 standard deviations being 1.7 percent of value. The maximum individual standard deviation was 6.3%. Use of a stronger neutron source, an improved neutron source shuffler, an improved fuel package motion system and modernized computer system should permit significant improvement of present performance. 2 refs.

Piper, T.C.; Kirkham, R.J. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); Eccleston, G.W.; Menlove, H.O. (Los Alamos National Lab., NM (United States))

1989-06-22T23:59:59.000Z

170

Coupled neutronic and thermal-hydraulic code benchmark activities at the International Nuclear Safety Center.  

SciTech Connect (OSTI)

Two realistic benchmark problems are defined and used to assess the performance of coupled thermal-hydraulic and neutronic codes used in simulating dynamic processes in VVER-1000 and RBMK reactor systems. One of the problems simulates a design basis accident involving the ejection of three control and protection system rods from a VVER-1000 reactor. The other is based on a postulated rod withdrawal from an operating RBMK reactor. Preliminary results calculated by various codes are compared. While these results show significant differences, the intercomparisons performed so far provide a basis for further evaluation of code limitations and modeling assumptions.

Podlazov, L. N.

1998-07-29T23:59:59.000Z

171

Beam characterization at the Neutron Radiography Reactor  

SciTech Connect (OSTI)

The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

2013-12-01T23:59:59.000Z

172

Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry  

E-Print Network [OSTI]

1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

173

Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino  

E-Print Network [OSTI]

A super-light sterile neutrino was proposed to explain the absence of the expected upturn of the survival probability of low energy solar boron neutrinos. This is because this super-light sterile neutrino can oscillate efficiently with electron neutrino through a MSW resonance happened in Sun. One may naturally expect that a similar resonance should happen for neutrinos propagating in Earth matter. We study the flavor conversion of this super-light sterile neutrino with active neutrinos in Earth matter. We find that the scenario of the super-light sterile neutrino can easily pass through possible constraints from experiments which can test the Earth matter effect in oscillation of neutrinos. Interestinlgy, we find that this is because the naively expected resonant conversion disappears or is significantly suppressed due to the presence of a potential $V_n$ which arises from neutral current interaction of neutrino with neutrons in matter. In contrast, the neutron number density in the Sun is negligible and the effect of $V_n$ is effectively switched off. This enables the MSW resonance in Sun needed in oscillation of the super-light sterile neutrino with solar electron neutrinos. It's interesting to note that it is the different situation in the Sun and in the Earth that makes $V_n$ effectively turned off and turned on respectively. This observation makes the scenario of the super-light sterile neutrino quite interesting.

Wei Liao; Yuchen Luo; Xiao-Hong Wu

2014-03-11T23:59:59.000Z

174

Status report on the analysis of inelastic neutron scattering from carbon, iron, yttrium and lead at 96 MeV  

E-Print Network [OSTI]

This work is part of an effort to provide more experimental data for the (n,n'x) reaction. The experiments were carried out at The Svedberg Laboratory in Uppsala, Sweden, at the quasi-mono-energetic neutron beam of 96 MeV, before the facility was upgraded in 2004. Using an extended data analysis of data primarily intended for measuring elastic neutron scattering only, it was found to be possible to extract information on the inelastic scattering from several nuclei. In the preliminary data analysis, an iterative forward-folding technique was applied, in which a physically reasonable trial spectrum was folded with the response function of the detector system and the output was compared to the experimental data. As a result, double-differential cross sections and angular distributions of inelastic neutron scattering from 12-C, 56-Fe, 89-Y and 208-Pb could be obtained. In this paper, a status update on the efforts to improve the description of the detector response function is given.

C. Gustavsson; C. Hellesen; S. Pomp; A. Öhrn; J. Blomgren; U. Tippawan

2013-03-27T23:59:59.000Z

175

CAFNA{sup (c)}, coded aperture imaging for fast neutron analysis: Application to contraband and explosive detection  

SciTech Connect (OSTI)

Fast neutron analysis is a technique for determination of the elemental composition of materials in bulk by detecting the energies of characteristic gamma rays, which are emitted by elements after a neutron interaction. These gamma rays are typically in the 2 to 6 MeV range and it is desired to image them with a high efficiency system. Coded aperture imaging is a technique, which can improve system sensitivity by as much as a factor of fifty as compared to conventional collimators. Such systems have been used in x-ray astronomy, but unlike x-ray astronomy, our system is designed for near field imaging. The choice of pattern is critical to the performance of the system but we have devised patterns such that the reconstruction of point like objects is clean and rapid with no spurious response. We have also used the technique for imaging of high energy radioisotopes used in nuclear medicine.

Lanza, R. C.; Zhang, L. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138 (United States)

1999-06-10T23:59:59.000Z

176

ANALYSIS OF GENE EXPRESSION PROFILES AND DRUG ACTIVITY PATTERNS BY  

E-Print Network [OSTI]

are more related to the kind of cancer than to drug activity patterns. Dependency analysis using Bayesian1 11 ANALYSIS OF GENE EXPRESSION PROFILES AND DRUG ACTIVITY PATTERNS BY CLUSTERING AND BAYESIAN of data produced from up- to-date biological experimental processes needs appropriate data mining

177

BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification  

SciTech Connect (OSTI)

The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

Hartmann, C.; Sanchez, V. [Karlsruhe Inst. of Technology (KIT), Inst. for Neutron Physics and Reactor Technology INR, Hermann-vom-Helmholtz-Platz-1, D-76344 Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany); Stieglitz, R. [Karlsruhe Inst. of Technology (KIT), Inst. for Neutron Physics and Reactor Technology INR, Hermann-vom-Helmholtz-Platz-1, D-76344 Eggenstein-Leopoldshafen (Germany)

2012-07-01T23:59:59.000Z

178

Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory

2014-08-31T23:59:59.000Z

179

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

180

Neutron activation diagnostics at the National Ignition Facility (invited) D. L. Bleuel, C. B. Yeamans, L. A. Bernstein, R. M. Bionta, J. A. Caggiano et al.  

E-Print Network [OSTI]

. H. G. Schneider1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation manipulators in the NIF target chamber, 25­50 cm from the source, to measure 2.45 MeV deuterium

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An analysis of the parallel scalability of spatial domain decomposition for the neutron transport equation  

E-Print Network [OSTI]

by consecutive iterations (4'&"l and 4'&"+'l). The iteration matrix C in Equation 24 relates these fluxes, and thus deflnes the convergence of the iterative process. Given initial neutron flux approximation 4'& l(2:;, p, ), the approximation to the neutron... is not scaled to match the in- creased computational power. The goal of parallel source iteration for transport problems is to not only solve problems faster as the machine size is increased, but to also solve larger problems than could be previously solved...

Perez, Lennard

2012-06-07T23:59:59.000Z

182

Analysis of the proposed relocation of the neutron criticality clusters in the process buildings for the Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

Radiation levels in Buildings X-326, X-330 and X-333 have been determined for the ANSI minimum accident of concern at both the current and the proposed locations of the criticality alum system neutron detectors. This was performed in order to evaluate whether or not the detectors could be lowered from their current positions and still respond to the minimum accident of concern. Relocating the detectors could reduce the potential for worker in injury when the approximately 90-pound alarms need to be removed for periodic maintenance. It could also decrease the incidence of battery failure from elevated temperatures which can exceed 160 degrees F. At the proposed 1-meter elevation the detectors would be surrounded by the cells containing the cascade equipment; therefore, the detectors would be less responsive to a criticality event. The results of this analysis indicate that the detectors could be lowered from their current height of 5 meters to a height of 1 meter and still respond to the minimum accident of concern. This analysis was performed using the MCNP monte carlo code with a source corresponding to a critical system of uranyl fluoride solutions of 1.2, 3.0, and 4.95 weight percent U-235 enrichment. The neutron dose rates were evaluated at positions of 69 meters and 100 meters radially outward from the source at 5 meter and 1 meter heights. All neutron detectors located in the three process buildings are located within 100 meters from any potential criticality. This report details the methodology used for this study, background on the data employed, and a comparison to a similar analysis performed in 1983.

Negron, S.B.; Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

1994-01-01T23:59:59.000Z

183

Analysis of the effective delayed neutron fraction in the coupled fast-thermal system HERBE  

SciTech Connect (OSTI)

The results of measurements {beta}{sub eff} and {beta}{sub eff}/{Lambda} and calculation results based on various sets of evaluated six-group delayed neutron parameters for the coupled fast-thermal system HERBE are shown in this paper.

Milosevic, M.; Pesic, M.; Avdic, S.; Nikolic, D. [Institute of Nuclear Sciences, Beograd (Yugoslavia)

1994-12-31T23:59:59.000Z

184

Measurements of D-T neutron induced radioactivity in plasma-facing materials and their role in qualification of activation cross-section libraries and codes  

SciTech Connect (OSTI)

USDOE/JAERI collaborative program on induced radioactivity measurements has been spread over last five years and has covered, among others, a large number of plasma facing materials of interest to D-T fusion reactors, including ITER and DEMO. The experiments have consisted of irradiation of high purity material samples in a range of neutron energy spectra in simulated fusion environments of prototypical blanket assemblies driven by D-T neutrons at FNS/JAERI. A typical sample measured 10 mm in diameter by 1 mm thickness, and the neutron fluence ranged from {approximately}10{sup 10} n/cm{sup 2} to {approximately}10{sup 14} n/cm{sup 2}, over an irradiation period of 30 m and 10 h. The irradiated samples were then cooled for varying times, from {approximately}10 m to {approximately}3 weeks, and their activity was derived by counting associated {gamma}-rays with intrinsic germanium detectors.

Kumar, A.; Abdou, M.A.; Youssef, M.Z. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

185

Analysis of the Activation and Heterolytic Dissociation of H2...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dissociation of H2 by Frustrated Lewis Pairs: NH3BX3 (X H, F, and Cl) . Analysis of the Activation and Heterolytic Dissociation of H2 by Frustrated Lewis Pairs: NH3...

186

Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

2008-10-31T23:59:59.000Z

187

A Thermal Discrete Element Analysis of EU Solid Breeder Blanket subjected to Neutron Irradiation  

E-Print Network [OSTI]

Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular material, it exhibits strong coupling between temperature and stress fields. In this paper, we study these thermo-mechanical problems by developing a thermal discrete element method (Thermal-DEM). This proposed simulation tool models each individual ceramic pebble as one element and considers grain-scale thermo-mechanical interactions between elements. A small section of solid breeder pebble bed in HCPB is modelled using thousands of individual pebbles and subjected to volumetric heating profiles calculated from neutronics under ITER-relevant conditions. We consider heat transfer at the grain-scale between pebbles through both solid-to-solid contacts and the interstitial gas phase, and we calculate stresses arising from thermal expansion of pebbles. The overall effective conductivity of the bed depends on the resulting compressive stress state during the neutronic heating. The thermal-DEM method proposed in this study provides the access to the grain-scale information, which is beneficial for HCPB design and breeder material optimization, and a better understanding of overall thermo-mechanical responses of the breeder units under fusion-relevant conditions.

Yixiang Gan; Francisco Hernandez; Dorian Hanaor; Ratna Annabattula; Marc Kamlah; Pavel Pereslavtsev

2014-06-17T23:59:59.000Z

188

COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE  

SciTech Connect (OSTI)

The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.

O. GASNAULT; W. FELDMAN; ET AL

2001-01-01T23:59:59.000Z

189

Neutron sources and applications  

SciTech Connect (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

190

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

Michael R. Kruzic

2007-09-16T23:59:59.000Z

191

Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions  

SciTech Connect (OSTI)

An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

2013-11-15T23:59:59.000Z

192

Application of thermal analysis techniques in activated carbon production  

SciTech Connect (OSTI)

Several current research programs at the Illinois State Geological Survey (ISGS) relate to the development of activated carbons from Illinois coal, fly ash, and scrap tires. Preparation of activated carbons involves thermal processing steps that include preoxidation, pyrolysis and activation. Reaction time, temperature and gas composition during these processing steps ultimately determine the nature of the activated carbon produced. Thermal analysis plays a significant role in developing carbons by providing fundamental and engineering data that are useful in carbon production and characterization for process development.

Donnals, G.L.; DeBarr, J.A.; Brady, T.A. [Illinois State Geological Survey, Champaign, IL (United States)] [and others

1996-12-31T23:59:59.000Z

193

Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation  

SciTech Connect (OSTI)

Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

Goldman, Ira N.; Adelfang, Pablo [Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)], E-mail: I.Goldman@iaea.org, E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan [Division of Physical and Chemical Sciences, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)], E-mail: N.Ramamoorthy@iaea.org

2008-07-15T23:59:59.000Z

194

Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS  

SciTech Connect (OSTI)

An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

Lee, Deokjung [Purdue University (United States); Downar, Thomas J. [Purdue University (United States); Ulses, Anthony [U.S. Nuclear Regulatory Commission (United States); Akdeniz, Bedirhan [Pennsylvania State University (United States); Ivanov, Kostadin N. [Pennsylvania State University (United States)

2004-10-15T23:59:59.000Z

195

Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source  

SciTech Connect (OSTI)

We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

1996-12-31T23:59:59.000Z

196

Measurement and analysis of the Am-243 neutron capture cross section at the n_TOF facility at CERN  

E-Print Network [OSTI]

Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.

n_TOF Collaboration; :; E. Mendoza; D. Cano-Ott; C. Guerrero; E. Berthoumieux; U. Abbondanno; G. Aerts; F. Alvarez-Velarde; S. Andriamonje; J. Andrzejewski; P. Assimakopoulos; L. Audouin; G. Badurek; J. Balibrea; P. Baumann; F. Becvar; F. Belloni; F. Calvino; M. Calviani; R. Capote; C. Carrapico; A. Carrillo de Albornoz; P. Cennini; V. Chepel; E. Chiaveri; N. Colonna; G. Cortes; A. Couture; J. Cox; M. Dahlfors; S. David; I. Dillmann; R. Dolfini; C. Domingo-Pardo; W. Dridi; I. Duran; C. Eleftheriadis; L. Ferrant; A. Ferrari; R. Ferreira-Marques; L. Fitzpatrick; H. Frais-Koelbl; K. Fujii; W. Furman; I. Goncalves; E. Gonzalez-Romero; A. Goverdovski; F. Gramegna; E. Griesmayer; F. Gunsing; B. Haas; R. Haight; M. Heil; A. Herrera-Martinez; M. Igashira; S. Isaev; E. Jericha; F. Kappeler; Y. Kadi; D. Karadimos; D. Karamanis; V. Ketlerov; M. Kerveno; P. Koehler; V. Konovalov; E. Kossionides; M. Krticka; C. Lampoudis; H. Leeb; A. Lindote; I. Lopes; R. Lossito; M. Lozano; S. Lukic; J. Marganiec; L. Marques; S. Marrone; T. Martinez; C. Massimi; P. Mastinu; A. Mengoni; P. M. Milazzo; C. Moreau; M. Mosconi; F. Neves; H. Oberhummer; S. O Brien; M. Oshima; J. Pancin; C. Papachristodoulou; C. Papadopoulos; C. Paradela; N. Patronis; A. Pavlik; P. Pavlopoulos; L. Perrot; M. T. Pigni; R. Plag; A. Plompen; A. Plukis; A. Poch; J. Praena; C. Pretel; J. Quesada; T. Rauscher; R. Reifarth; M. Rosetti; C. Rubbia; G. Rudolf; P. Rullhusen; J. Salgado; C. Santos; L. Sarchiapone; I. Savvidis; C. Stephan; G. Tagliente; J. L. Tain; L. Tassan-Got; L. Tavora; R. Terlizzi; G. Vannini; P. Vaz; A. Ventura; D. Villamarin; M. C. Vicente; V. Vlachoudis; R. Vlastou; F. Voss; S. Walter; H. Wendler; M. Wiescher; K. Wisshak

2014-12-04T23:59:59.000Z

197

Verification of a neutronic code for transient analysis in reactors with Hex-z geometry  

SciTech Connect (OSTI)

Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmark and with the results provided by PARCS code. (authors)

Gonzalez-Pintor, S.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

2012-07-01T23:59:59.000Z

198

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

199

Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV  

SciTech Connect (OSTI)

The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

Derrien, H

2005-12-05T23:59:59.000Z

200

INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS  

SciTech Connect (OSTI)

Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be included as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.

D.A. Kalinich

1999-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

COUPLED MULTI-GROUP NEUTRON PHOTON TRANSPORT FOR THE SIMULATION OF HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY APPLICATIONS  

SciTech Connect (OSTI)

The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

Burns, Kimberly A.

2009-08-01T23:59:59.000Z

202

High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification  

SciTech Connect (OSTI)

Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

David L. Chichester; James T. Johnson; Edward H. Seabury

2012-07-01T23:59:59.000Z

203

Small angle neutron scattering analysis of novel carbons for lithium secondary batteries.  

SciTech Connect (OSTI)

Small angle neutron scattering analyses of carbonaceous materials used as anodes in lithium ion cells have been performed. The carbons have been synthesized using pillared clays (PILCs) as inorganic templates. Pillared clays are layered silicates whose sheets have been permanently propped open by sets of thermally stable molecular props. The calcined PILC was loaded with five different organic precursors and heated at 700 C under nitrogen. When the inorganic pillars were removed by acid treatment, carbon sheets are produced with holes. The fitting of the data in the high q region suggested that the carbon sheets have voids with radii ranging from 4 to 8 {angstrom}. Similar radii were obtained for the PILC and PILC/organic precursor, which suggests that the carbon was well distributed in the clay prior to pyrolysis.

Sandi, G.; Thiyagarajan, P.; Winans, R.; Carrado, K.

1998-01-14T23:59:59.000Z

204

Derivation of nuclear parameters for delayed neutron detector measurements for D-D and D-T plasma operation at the Joint European Torus  

SciTech Connect (OSTI)

The first attempt to calculate the parameters for [sup 238]U and [sup 232]Th used in the analysis of delayed neutron counter measurements of the total neutron yield from deuterium-tritium (D-T) plasmas is described. The nuclear theory of systematics is employed, together with nuclear data from the literature. As a check on the methods used, the delayed neutron parameters were also calculated for deuterium-deuterium plasma conditions; the resulting neutron yields agreed within [+-]7% with the results obtained using the experimentally calibrated delayed neutron counter assemblies. After the calculations were completed, the first D-T plasma experiment was performed at the Joint European Torus (JET). Delayed neutron measurements were made using [sup 232]Th samples. The calculated delayed neutron parameters gave neutron yields that agreed within [+-]8% with those obtained with conventional activation methods, using iron and silicon samples. 30 refs., 5 figs., 8 tabs.

Angelone, M. (JET Joint Undertaking Abingdon, Oxon (United Kingdom))

1993-08-01T23:59:59.000Z

205

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from Major Evaluated Data Libraries  

E-Print Network [OSTI]

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellianaveraged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented.

Pritychenko, B

2012-01-01T23:59:59.000Z

206

In-vessel thermohydraulics evaluation of an unprotected transient overpower accident and delayed neutron precursor concentration transport analysis using a multidimensional code  

SciTech Connect (OSTI)

This paper reports on a three-dimensional in-vessel thermohydraulics analysis that is carried out for the early phase of an unprotected transient overpower (UTOP) accident and delayed neutron precursor concentration transport in a typical loop-type fast breeder reactor plant. In the UTOP calculations, the time at which the sodium temperature reaches the reactor trip level is evaluated based on calculated upper plenum flow and temperature distributions. For fission product release from the core assemblies, the delayed neutron precursor concentration in the sodium that reaches the detectors depends on the location of the faulted assembly. Three-dimensional flow patterns, and hence, the residence time in the upper plenum. Delayed neutron precursors that bypassed the recirculation flow to appear in the plenum primarily contribute to the peak concentration.

Muramatsu, T.; Ninokata, H. (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan))

1992-02-01T23:59:59.000Z

207

Post irradiation experiment analysis using the APOLLO2 deterministic tool. Validation of JEFF-3.1.1 thermal and epithermal actinides neutron induced cross sections through MELUSINE experiments  

SciTech Connect (OSTI)

Two different experiments performed in the 8 MWth MELUSINE experimental power pool reactor aimed at analyzing 1 GWd/t spent fuel pellets doped with several actinides. The goal was to measure the averaged neutron induced capture cross section in two very different neutron spectra (a PWR-like and an under-moderated one). This paper summarizes the combined deterministic APOLLO2-stochastic TRIPOLI4 analysis using the JEFF-3.1.1 European nuclear data library. A very good agreement is observed for most of neutron induced capture cross section of actinides and a clear underestimation for the {sup 241}Am(n,{gamma}) as an accurate validation of its associated isomeric ratio are emphasized. Finally, a possible huge resonant fluctuation (factor of 2.7 regarding to the 1=0 resonance total orbital momenta) is suggested for isomeric ratio. (authors)

Bernard, D.; Fabbris, O. [CEA, DEN, SPRC, Laboratoire d'Etudes de Physique, F-13108 Saint Paul Lez Durance (France)

2012-07-01T23:59:59.000Z

208

Solid state neutron detector array  

DOE Patents [OSTI]

A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

1999-08-17T23:59:59.000Z

209

Solid state neutron detector array  

DOE Patents [OSTI]

A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

1999-01-01T23:59:59.000Z

210

Neutron spectral and angular distribution measurements for 113 and 256 MeV protons on range-thick Al and sup 238 U targets using the foil activation techniques  

SciTech Connect (OSTI)

Second neutron yields, energy spectra, and angular distributions have been measured at seven angles from 0 to 150{degree} for 113 and 256 MeV protons stopped in range-thick targets of aluminum and depleted uranium ({sup 238}U). Thin foil stacks of ten different materials were activated by secondary neutrons at distances of 20--30 cm from the targets. Following each irradiation, 30--40 different activation products were measured by gamma-ray spectroscopy. These activation rates were then used to adjust neutron energy spectra calculated by the HETC computer code. Activation cross sections were taken from ENDF/BV below 20 MeV, from literature values tested in Be(d,n) fields up to 50 MeV, and from proton spallation data and calculations from 50--250 MeV. Spectral adjustments were made with the STAY'SL computer code using a least-squares technique to minimize {chi}{sup 2} for a covariance matrix determined from uncertainties in the measured activities, cross sections, and calculated flux spectra. Neutron scattering effects were estimated from foil packets irradiated at different distances from the target. Proton effects were measured with (p,n) reactions. Systematic differences were found between the adjusted and calculated neutron spectra, namely, that HETC underpredicts the neutron flux at back angles by a factor of 2--3 and slightly overpredicts the flux at forward angles. 19 refs., 23 figs., 13 tabs.

Greenwood, L.R.; Intasorn, A.

1989-07-01T23:59:59.000Z

211

Neutron skins and neutron stars  

SciTech Connect (OSTI)

The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

2013-11-07T23:59:59.000Z

212

Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

1996-10-01T23:59:59.000Z

213

SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY  

E-Print Network [OSTI]

SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY A Thesis Presented to explain the baryon asymmetry of the universe. In this thesis, a limit on the neutron anti-neutron (nnbar is sampled from the three phases of the SNO experiment to construct a three-phase blind analysis. The profile

Waltham, Chris

214

Neutron guide  

DOE Patents [OSTI]

A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

Greene, Geoffrey L. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

215

Beam Characterization at the Neutron Radiography Facility  

SciTech Connect (OSTI)

The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

Sarah Morgan; Jeffrey King

2013-01-01T23:59:59.000Z

216

Shielding Experiments Under JASMIN Collaboration at Fermilab(III) - Measurement of High-Energy Neutrons Penetrating a Thick Iron Shield from the Antiproton Production Target by AU Activation Method  

E-Print Network [OSTI]

In an antiproton production (Pbar) target station of the Fermi National Accelerator Laboratory (FNAL), the secondary particles produced by bombarding a target with 120-GeV protons are shielded by a thick iron shield. In order to obtain experimental data on high-energy neutron transport at more than 100-GeV-proton accelerator facilities, we indirectly measured more than 100-MeV neutrons at the outside of the iron shield at an angle of 50{\\deg} in the Pbar target station. The measurement was performed by using the Au activation method coupled with a low-background {\\gamma}-ray counting system. As an indicator for the neutron flux, we determined the production rates of 8 spallation nuclides (196-Au, 188-Pt, 189-Ir, 185-Os, 175-Hf, 173-Lu, 171-Lu, and 169-Yb) in the Au activation detector. The measured production rates were compared with the theoretical production rates calculated using PHITS. We proved that the Au activation method can serve as a powerful tool for indirect measurements of more than 100-MeV neutrons that play a vital role in neutron transport. These results will be important for clarifying the problems in theoretical calculations of high-energy neutron transport.

H. Matsumura; N. Kinoshita; H. Iwase; A. Toyoda; Y. Kasugai; N. Matsuda; Y. Sakamoto; H. Nakashima; H. Yashima; N. Mokhov; A. Leveling; D. Boehlein; K. Vaziri; G. Lautenschlager; W. Schmitt; K. Oishi

2012-05-01T23:59:59.000Z

217

R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range  

SciTech Connect (OSTI)

Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

Derrien, H. [OECD, Paris (France). Nuclear Energy Agency Data Bank; Bouland, O. [Commissariat Energie Atomique, Saint Paul-lez-Durance (France). Centre d`Etudes; Larson, N.M.; Leal, L.C. [Oak Ridge National Lab., TN (United States)

1997-08-01T23:59:59.000Z

218

Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis  

E-Print Network [OSTI]

Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

2015-01-01T23:59:59.000Z

219

Consilience: Radiocarbon, Instrumental Neutron Activation Analysis, and Litigation in the Ancestral Caddo Region  

E-Print Network [OSTI]

.................................................................................. 37 41CE19 (George C. Davis Site) ..................................................... 38 41DT6 (Tick Site)............................................................................. 39 41DT16 (Spike Site...) ......................................................................... 39 41HP106 (Hurricane Hill Site) ....................................................... 40 41LR297 (Stallings Ranch Site) ...................................................... 41 vii 41NA236 (Naconiche Creek Site...

Selden, Robert Zachary

2013-08-13T23:59:59.000Z

220

Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis  

SciTech Connect (OSTI)

In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

Oliveira, Laura C.; Zamboni, Cibele B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP) Av. Professor Lineu Prestes 2242 05508-000 Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Texture analysis of silicon with an heterogeneous morphology used for the photovoltaic conversion by neutron diffraction  

E-Print Network [OSTI]

603 Texture analysis of silicon with an heterogeneous morphology used for the photovoltaic.10F - 61.14F 1. Introduction. In order to lower the production cost of solar cells, the Research perpendicularly to growth axis, which led to photovoltaic efficiency q ~ 11 % under AM1 conditions, starting

Paris-Sud XI, Université de

222

Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge  

SciTech Connect (OSTI)

This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

J. W. Sterbentz; D. L. Chichester

2010-12-01T23:59:59.000Z

223

Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors  

SciTech Connect (OSTI)

This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

2013-11-29T23:59:59.000Z

224

Cynod: A Neutronics Code for Pebble Bed Modular Reactor Coupled Transient Analysis  

SciTech Connect (OSTI)

The Pebble Bed Reactor (PBR) is one of the two concepts currently considered for development into the Next Generation Nuclear Plant (NGNP). This interest is due, in particular, to the concept’s inherent safety characteristics. In order to verify and confirm the design safety characteristics of the PBR computational tools must be developed that treat the range of phenomena that are expected to be important for this type of reactors. This paper presents a recently developed 2D R-Z cylindrical nodal kinetics code and shows some of its capabilities by applying it to a set of known and relevant benchmarks. The new code has been coupled to the thermal hydraulics code THERMIX/KONVEK[1] for application to the simulation of very fast transients in PBRs. The new code, CYNOD, has been written starting with a fixed source solver extracted from the nodal cylindrical geometry solver contained within the PEBBED code. The fixed source solver was then incorporated into a kinetic solver.. The new code inherits the spatial solver characteristics of the nodal solver within PEBBED. Thus, the time-dependent neutron diffusion equation expressed analytically in each node of the R-Z cylindrical geometry sub-domain (or node) is transformed into one-dimensional equations by means of the usual transverse integration procedure. The one-dimensional diffusion equations in each of the directions are then solved using the analytic Green’s function method. The resulting equations for the entire domain are then re-cast in the form of the Direct Coarse Mesh Finite Difference (D-CMFD) for convenience of solution. The implicit Euler method is used for the time variable discretization. In order to correctly treat the cusping effect for nodes that contain a partially inserted control rod a method is used that takes advantage of the Green’s function solution available in the intrinsic method. In this corrected treatment, the nodes are re-homogenized using axial flux shapes reconstructed based on the Green’s function method. The performance of the new code is demonstrated by applying it to a delayed supercritical problem and a to the OECD PBMR400 rod ejection benchmark problem. The latter makes use of the coupled CYNOD-THERMIX/KONVEK codes. A final improvement to the code is the subject of a companion paper: a heterogeneous TRISO fuel particle model was devised and incorporated into the code and used to provide an enhanced Doppler treatment. The new code is currently being coupled to the RELAP5-3D code for thermal-hydraulics. The full length paper will include extensive summaries of the equations and algorithm, descriptions of the sample and benchmark problems and details of the results. It is shown, in inter-code comparisons, that the new code correctly predicts the transient behaviors of the test problems.

Hikaru Hiruta; Abderrafi M. Ougouag; Hans D. Gougar; Javier Ortensi

2008-09-01T23:59:59.000Z

225

Post-initiating phase neutronics analysis of an unprotected LOF event in CRBRP  

SciTech Connect (OSTI)

The reactor system is expected to achieve permanent subcriticality in a loss-of-flow (LOF) event by virtue of fuel removal from the core even under the hypothetical assumption that both shutdown systems fail to function. Based on the analysis performed by S.K. Rhow, et al., adequate fuel removal would occur in the CRBRP heterogeneous core during a meltout period after the initiating phase of the unprotected LOF event. This paper discusses reactivity levels relative to fuel removal in the accident progression beyond the initiating phase for the CRBRP core at the beginning of cycle 1 (BOC-1).

Turski, R.B.; Rhow, S.K.

1983-01-01T23:59:59.000Z

226

Neutron detector  

DOE Patents [OSTI]

A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

2011-04-05T23:59:59.000Z

227

A Detailed Analysis and Monte Carlo Simulation of the Neutron Lifetime Experiment S. Arzumanov et al., Phys. Lett. B 483 (2000) 15  

E-Print Network [OSTI]

We performed a detailed analysis and the Monte Carlo simulation of the neutron lifetime experiment [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15] because of the strong disagreement by 5.6 standard deviations between the results of this experiment and our experiment [A. Serebrov et al., Phys. Lett. B 605 (2005) 72]. We found a few effects which were not taken into account in the experiment [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15]. The possible correction is -5.5 s with uncertainty of 2.4 s which comes from initial data knowledge. We assume that after taking into account this correction the result of work [S. Arzumanov et al., Phys. Lett. B 483 (2000) 15] for neutron lifetime 885.4 +/- 0.9stat +/- 0.4syst s could be corrected to 879.9 +/- 0.9stat +/- 2.4syst s.

A. K. Fomin; A. P. Serebrov

2010-05-17T23:59:59.000Z

228

The Neutronics Design and Analysis of a 200-MW(electric) Simplified Boiling Water Reactor Core  

SciTech Connect (OSTI)

A 200-MW(electric) simplified boiling water reactor (SBWR) was designed and analyzed under sponsorship of the U.S. Department of Energy Nuclear Energy Research Initiative program. The compact size of a 200-MW(electric) reactor makes it attractive for countries with a less well developed engineering infrastructure, as well as for developed countries seeking to tailor generation capacity more closely to the growth of their electricity demand. The 200-MW(electric) core design reported here is based on the 600-MW(electric) General Electric SBWR core, which was first analyzed in the work performed here in order to qualify the computer codes used in the analysis. Cross sections for the 8 x 8 fuel assembly design were generated with the HELIOS lattice physics code, and core simulation was performed with the U.S. Nuclear Regulatory Commission codes RELAP5/PARCS. In order to predict the critical heat flux, the Hench-Gillis correlation was implemented in the RELAP5 code. An equilibrium cycle was designed for the 200-MW(electric) core, which provided a cycle length of more than 2 yr and satisfied the minimum critical power ratio throughout the core life.

Tinkler, Daniel R.; Downar, Thomas J. [Purdue University (United States)

2003-06-15T23:59:59.000Z

229

Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL  

SciTech Connect (OSTI)

The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

2009-05-01T23:59:59.000Z

230

Exact-to-precision generalized perturbation for neutron transport calculation  

SciTech Connect (OSTI)

This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)

Wang, C.; Abdel-Khalik, H. S. [North Carolina State University, 911 Oval Dr., Centennial Campus, Raleigh, NC 27606 (United States)

2013-07-01T23:59:59.000Z

231

Neutron tubes  

DOE Patents [OSTI]

A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

2008-03-11T23:59:59.000Z

232

Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research  

E-Print Network [OSTI]

We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

Murazaki, M; Uno, Y

2003-01-01T23:59:59.000Z

233

Scattered neutron tomography based on a neutron transport problem  

E-Print Network [OSTI]

scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

Scipolo, Vittorio

2005-11-01T23:59:59.000Z

234

Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements.

Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

1999-11-14T23:59:59.000Z

235

Carbon Dioxide Information Analysis Center: FY 1992 activities  

SciTech Connect (OSTI)

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

1993-03-01T23:59:59.000Z

236

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

237

SRS delayed neutron instruments for safeguards measurements  

SciTech Connect (OSTI)

Six analytical systems measuring delayed neutrons have been used for safeguards measurements at the Savannah River Site (SRS). A predecessor, the 252Cf Activation Analysis Facility installed at the Savannah River Technology Center (formally SR Laboratory) has been used since 1974 to analyze small samples, measuring both delayed neutrons and gammas. The six shufflers, plus one currently being fabricated, were developed, designed and fabricated by the LANL N-1 group. These shufflers have provided safeguards measurements of product (2 each), in-process scrap (2 each plus a conceptual replacement) and process waste (2 each plus one being fabricated). One shuffler for scrap assay was the first shuffler to be installed (1978) in a process. Another (waste) was the first installed in a process capable of assaying barrels. A third (waste) is the first pass-through model and a fourth (product) is the most precise ({+-}.12%) and accurate NDA instrument yet produced.

Studley, R.V. [Westinghouse SRC, Aiken, SC (United States)

1993-12-31T23:59:59.000Z

238

RELIABILITY ANALYSIS IN A FAULT TOLERANT CONTROL STRATEGY DEDICATED TO ACTIVE POWER FILTER  

E-Print Network [OSTI]

RELIABILITY ANALYSIS IN A FAULT TOLERANT CONTROL STRATEGY DEDICATED TO ACTIVE POWER FILTER P. WEBER on reliability analysis dedicated to an active power filter. Once a fault has been detected and isolated, all reliability indicate the optimal structure. Keywords: Fault Tolerant Control, System Reliability, Active power

Paris-Sud XI, Université de

239

Neutron Tomography and Space  

E-Print Network [OSTI]

Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

Egbert, Hal; Walker, Ronald; Flocchini, R.

2007-01-01T23:59:59.000Z

240

Neutron range spectrometer  

DOE Patents [OSTI]

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Report on INL Activities for Uncertainty Reduction Analysis of FY11  

SciTech Connect (OSTI)

This report presents the status of activities performed at INL under the ARC Work Package on 'Uncertainty Reduction Analyses' that has a main goal the reduction of uncertainties associated with nuclear data on neutronic integral parameters of interest for the design of advanced fast reactors under consideration by the ARC program. First, an analysis of experiments was carried out. For both JOYO (the first Japanese fast reactor) and ZPPR-9 (a large size zero power plutonium fueled experiment performed at ANL-W in Idaho) the performance of ENDF/B-VII.0 is quite satisfying except for the sodium void configurations of ZPPR-9, but for which one has to take into account the approximation of the modeling. In fact, when one uses a more detailed model (calculations performed at ANL in a companion WP) more reasonable results are obtained. A large effort was devoted to the analysis of the irradiation experiments, PROFIL-1 and -2 and TRAPU, performed at the French fast reactor PHENIX. For these experiments a pre-release of the ENDF/B-VII.1 cross section files was also used, in order to provide validation feedback to the CSWEG nuclear data evaluation community. In the PROFIL experiments improvements can be observed for the ENDF/B-VII.1 capture data in 238Pu, 241Am, 244Cm, 97Mo, 151Sm, 153Eu, and for 240Pu(n,2n). On the other hand, 240,242Pu, 95Mo, 133Cs and 145Nd capture C/E results are worse. For the major actinides 235U and especially 239Pu capture C/E's are underestimated. For fission products, 105,106Pd, 143,144Nd and 147,149Sm are significantly underestimated, while 101Ru and 151Sm are overestimated. Other C/E deviations from unity are within the combined experimental and calculated statistical uncertainty. From the TRAPU analysis, the major improvement is in the predicted 243Cm build-up, presumably due to an improved 242Cm capture evaluation. The COSMO experiment was also analyzed in order to provide useful feedback on fission cross sections. It was found out that ENDF/B-VII.1 238,240Pu fission cross sections have improved with respect to VII.0 files while 242Pu's fission cross section has not.

G. Plamiotti; H. Hiruta; M. Salvatores

2011-09-01T23:59:59.000Z

242

E-Print Network 3.0 - advanced dynamic neutron Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

balance... Measurement and Monte Carlo Simulation of the Neutron Spectra of the Subcritical Reactor Experiment... of this thesis is to perform neutron spectrum analysis in a...

243

E-Print Network 3.0 - ans advanced neutron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Summary: Measurement and Monte Carlo Simulation of the Neutron Spectra of the Subcritical Reactor Experiment... of this thesis is to perform neutron spectrum analysis in a...

244

E-Print Network 3.0 - absorber neutronics performance Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Summary: of this thesis is to perform neutron spectrum analysis in a model of the Subcritical Accelerator Driven System... neutrons) while another isotope is created....

245

activation analysis technique: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Geography 478 Techniques of Remote Sensing Image Analysis (Earth Observation System Science) Dr of Remote Sensing Image Analysis (Earth Observation System Science) Remote...

246

activation analysis techniques: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Geography 478 Techniques of Remote Sensing Image Analysis (Earth Observation System Science) Dr of Remote Sensing Image Analysis (Earth Observation System Science) Remote...

247

Calibration of the JET neutron yield monitors using the delayed neutron counting technique  

SciTech Connect (OSTI)

The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET.

van Belle, P.; Jarvis, O.N.; Sadler, G. (JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA (Great Britain)); de Leeuw, S.; D'Hondt, P. (C.E.N./S.C.K., B-2400 Mol (Belgium)); Pillon, M. (Associazione EURATOM-ENEA, CRE Frascati (Italy))

1990-10-01T23:59:59.000Z

248

Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis  

SciTech Connect (OSTI)

Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.

Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Rother, Gernot [ORNL; Allard Jr, Lawrence Frederick [ORNL; Jackson, Andrew [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Littrell, Ken [ORNL

2013-01-01T23:59:59.000Z

249

Systems report on the analysis of spent, highly enriched U-235 reactor fuel by delayed neutron interrogation  

SciTech Connect (OSTI)

Design aspects are briefly given of a neutron source shuffler used to measure fissile material content of spent, highly enriched reactor fuel. The mode of operation used, results of analyzing 176 fuel packages and recommended system improvements are discussed. Four measurements were made on each of the fuel packages with the mean of the 176 standard deviations being 2.03 percent of value. The maximum individual standard deviation was 9.27 percent. Appendixes concerning imprecisions introduced by counting statistics and crane speed irregularities are given. Use of an improved neutron source shuffler, an improved fuel package motion system and modernized computer system should permit system performance to be limited mainly by counting statistics, to about 1.5 percent of measured value. A stronger source could then be installed to further enhance system operation. 16 figs., 3 tabs.

Piper, T.C.; Kirkham, R.J.

1990-05-01T23:59:59.000Z

250

E-Print Network 3.0 - activity based analysis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences 4 Reasoning about Repairability of Workflows at Design Time Summary: activities can be provided by the workflow designer based on the analysis of different aspects...

251

Identification and use of surrogate precursors to represent delayed neutron groups  

SciTech Connect (OSTI)

Time-dependent delayed neutron activities have traditionally been represented by six delayed neutron precursor groups, whose yields and decay constants are obtained from nonlinear least-squares fits to out-of-pile measurements. The group decay constants obtained in this manner are empirical. They do not coincide with decay constants of specific delayed neutron precursors. Different values are used for each fissionable nuclide, and the values used also depend on the energy spectrum of the neutrons causing fission. Having a different value of the six-group decay constants for each fissionable nuclide complicates the analysis of the dynamic behavior of fast reactors. A fast reactor containing six principal fissioning nuclides of uranium and plutonium must, in effect, be described by 36 delayed neutron groups. The use of group decay constants that depend on the neutron energy spectrum makes it difficult to select values that describe the dynamic response of epithermal systems because virtually all delayed neutron activity measurements have been performed for fast or thermal spectra. Clearly, it would be desirable to have a single set of group decay constants that could be applied to all fissionable nuclei. A set of seven fixed decay constants is associated with a specific, dominant delayed neutron precursor. In effect, each group is represented by a single surrogate precursor. Using recently measured delayed neutron activities for {sup 235}U and {sup 237}Np, the proposed set of decay constants actually improved the fit to the data. For other fissionable nuclei, a method has been devised to obtain yields consistent with the proposed set of decay constants from the traditional six-group parameters. This transformation is accomplished without altering the inferred reactivity scale.

Loaiza, D.J. [Los Alamos National Lab., NM (United States); Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States)

1998-09-01T23:59:59.000Z

252

Neutron Repulsion  

E-Print Network [OSTI]

Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

Oliver K. Manuel

2011-02-08T23:59:59.000Z

253

Analyses of engineering-oriented neutronics integral experiments utilizing beryllium in various configurations with 14 MeV point source  

SciTech Connect (OSTI)

The analysis of integral experiments on tritium breeding rate (TPR), in-system spectrum, and several reaction rates inside a Li{sub 2}O test assembly were performed in a closed geometry with a 14 MeV point source in which beryllium has been extensively utilized as a neutron multiplier. This activity was part of the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics with the objective of verifying the present neutron transport codes and databases in predicting key design parameters such as TPR. The test assembly itself (with dimension of {approximately}87 cm x {approximately}87 cm x 60 cm) is located at one end of a Li{sub 2}CO{sub 3} enclosure and the neutron point source is located at a distance of {approximately}78 cm from the assembly. The enclosure is surrounded from the outside by polyethylene layer (5 cm-thick) to minimize the neutron wall-room effect.

Youssef, M.; Abdou, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

254

Ion chamber based neutron detectors  

DOE Patents [OSTI]

A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

2014-12-16T23:59:59.000Z

255

Switching Activity Analysis and Pre-Layout Activity Prediction for FPGAs  

E-Print Network [OSTI]

activity on a net changes when delays are zero (zero delay activity) versus when logic delays values. Our approach is novel in that it estimates each net's routed delay activity using only zero activity). Low-power synthesis and early power esti- mation are typically done on the basis of zero delay

Najm, Farid N.

256

Switching Activity Analysis and PreLayout Activity Prediction for FPGAs  

E-Print Network [OSTI]

activity on a net changes when delays are zero (zero delay activity) versus when logic delays values. Our approach is novel in that it estimates each net's routed delay activity using only zero activity). Low­power synthesis and early power esti­ mation are typically done on the basis of zero delay

Najm, Farid N.

257

Composition and On Demand Deployment of Distributed Brain Activity Analysis Application on Global Grids  

E-Print Network [OSTI]

1 Composition and On Demand Deployment of Distributed Brain Activity Analysis Application on Global are brain science and high-energy physics. The analysis of brain activity data gathered from the MEG and analyze brain functions and requires access to large-scale computational resources. The potential platform

Abramson, David

258

Specification and Analysis of the AER/NCA Active Network Protocol Suite in  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite to the specification and analy- sis of the AER/NCA suite of active network multicast protocol compo- nents, AER/NCA poses challenging new problems for its formal specification and analysis. Real-Time Maude

Ã?lveczky, Peter Csaba

259

X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator  

SciTech Connect (OSTI)

Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J. [Idaho National Laboratory, 2525 N. Freemont Avenue, Idaho Falls, Idaho 83415 (United States); Simpson, J.; Lemchak, M. [Thermo-Fisher Scientific/MF Physics, 5074 List Drive, Colorado Springs, Colorado 80919 (United States)

2011-06-01T23:59:59.000Z

260

analysis activities reporting: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ability of Penn State researchers to compete Lee, Dongwon 26 NOAA ARL Monthly Activity Report October 2000 Geosciences Websites Summary: for Climate Monitoring 8. CMDP CBRAMS...

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

activation analysis summary: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HURRICANE FORECASTS FOR 2011 activity. 3 12;DEFINITIONS AND ACRONYMS Accumulated Cyclone Energy (ACE) - A measure of a named storm 146 SUMMARY OF 2014 ATLANTIC TROPICAL...

262

A ROBUST ABSOLUTE DETECTION EFFICIENCY CALIBRATION METHOD UTILIZING BETA/GAMMA COINCIDENCE SIGNATURES AND ISOTOPICALLY PURIFIED NEUTRON ACTIVATED RADIOXENON ISOTOPES  

SciTech Connect (OSTI)

Efforts to calibrate the absolute efficiency of gas cell radiations detectors have utilized a number of methodologies which allow adequate calibration but are time consuming and prone to a host of difficult-to-determine uncertainties. A method that extrapolates the total source strength from the measured beta and gamma gated beta coincidence signal was developed in the 1960’s and 1970’s. It has become clear that it is possible to achieve more consistent results across a range of isotopes and a range of activities using this method. Even more compelling is the ease with which this process can be used on routine samples to determine the total activity present in the detector. Additionally, recent advances in the generation of isotopically pure radioxenon samples of Xe-131m, Xe-133, and Xe-135 have allowed these measurement techniques to achieve much better results than would have been possible before when using mixed isotopic radioxenon source. This paper will discuss the beta/gamma absolute detection efficiency technique that utilizes several of the beta-gamma decay signatures to more precisely determine the beta and gamma efficiencies. It will than compare these results with other methods using pure sources of Xe-133, Xe-131m, and Xe-135 and a Xe-133/Xe-133m mix.

McIntyre, Justin I.; Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Schrom, Brian T.

2012-09-21T23:59:59.000Z

263

Safety control circuit for a neutronic reactor  

DOE Patents [OSTI]

A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

Ellsworth, Howard C. (Richland, WA)

2004-04-27T23:59:59.000Z

264

Methods for absorbing neutrons  

DOE Patents [OSTI]

A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

2012-07-24T23:59:59.000Z

265

activation analysis rates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure signal. Although it is known rate analysis often replaces electrocardiogram (ECG) devices with the advantage that it does a device, worn at the wrist for a great...

266

activation instrumental analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

car electronics industry. There are currently many electronic systems improving the safety Wieringa, Roel 17 Runtime Instrumentation for Precise Flow-Sensitive Type Analysis...

267

NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS  

E-Print Network [OSTI]

NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

268

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

269

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

Wood, J.L.

1992-12-01T23:59:59.000Z

270

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-12-31T23:59:59.000Z

271

Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source  

SciTech Connect (OSTI)

The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

Andreani, C.; Pietropaolo, A.; Salsano, A. [Centro NAST, Universita degli Studi di Roma Tor Vergata (Italy); Gorini, G.; Tardocchi, M. [Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca (Italy); Paccagnella, A.; Gerardin, S. [Dipartimento di Ingegneria dell'Informazione, Universita di Padova (Italy); Frost, C. D.; Ansell, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Platt, S. P. [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, Lancs. PR1 2HE (United Kingdom)

2008-03-17T23:59:59.000Z

272

The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect (OSTI)

Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)

1996-06-26T23:59:59.000Z

273

Unsupervised Activity Analysis and Monitoring Algorithms for Effective Surveillance Systems  

E-Print Network [OSTI]

in escalators and at platforms as well as human presence at lift ) that provide a global view of the activ- ity of sensors deployed in the real world, being it in large scale sensor networks or closed-circuit television

274

Seven surrogate precursors for modeling delayed neutron decay and predicting reactivity  

SciTech Connect (OSTI)

The use of a different set of group decay constants for each fissionable nuclide complicates analysis of the dynamic behavior of fast reactors. A fast reactor containing six principal fissioning nuclides of uranium and plutonium must, in effect, be described by 36 delayed neutron groups. Additionally, the use of group decay constants that depend on the neutron energy spectrum makes it difficult to select values that describe the dynamic response of epithermal systems because virtually all delayed neutron activity measurements have been performed for fast or thermal-neutron-induced fission. Clearly, it would be desirable to have a single set of group decay constants that could be applied to all fissionable nuclides. A set of seven fixed decay constants is proposed herein. Each of the proposed decay constants is associated with a specific, dominant delayed neutron precursor. In effect, each group is represented by a single surrogate precursor. Using recently measured delayed neutron activities for U-235 and Np-237, the proposed set of decay constants actually improved the goodness of fit to the data. For other fissionable nuclides lacking experimental data, a method has been devised to obtain yields consistent with the proposed set of decay constants from the traditional six-group parameters. This transformation is accomplished without altering the traditional inferred reactivity scale.

Loaiza, D.J.; Haskin, F.E.

1997-12-31T23:59:59.000Z

275

Comparison of MCNP calculation and measurement of neutron fluence in a channel for short-time irradiation in the LVR-15 reactor  

SciTech Connect (OSTI)

The main purpose of this work was to evaluate the neutron energy distribution in a channel of the LVR-15 reactor used mostly for short-time neutron activation analysis. Twenty types of activation monitors were irradiated in this channel equipped with a pneumatic facility with a transport time of 3.5 s. The activities measured and the corresponding reaction rates were used to determinate the neutron spectrum. The reaction rates were compared with MCNP calculations to confirm the results. The second purpose of this work was to verify our nuclear data library used for the reaction rate calculations. The experiment results were also incorporated into our database system of neutron energy distribution at the reactor core. (authors)

Lahodova, Z.; Flibor, S.; Klupak, V. [Nuclear Research Inst. Rez Plc, Reactor Services Div., 250 68 Rez (Czech Republic); Kucera, J. [Nuclear Physics Inst., Academy of Science of the Czech Republic, 250 68 Rez (Czech Republic); Marek, M.; Viererbl, L. [Nuclear Research Inst. Rez Plc, Reactor Services Div., 250 68 Rez (Czech Republic)

2006-07-01T23:59:59.000Z

276

A Noise Analysis Approach for Measuring Effective Delayed Neutron Parameters in the IPEN/MB-01 Reactor  

SciTech Connect (OSTI)

A reactor noise approach has been successfully performed at the IPEN/MB-01 research reactor facility in order to determine experimentally the effective delayed neutron parameters {beta}i and {lambda}i in a six-group model and the point kinetic equations. The theory/experiment comparison shows that for the abundances the JENDL3.3 presents the best performance while for the decay constants the revised version of ENDF/B-VI.8 shows the best agreement. As a by-product and a consistency check, the {beta}eff parameter was obtained without the need of the Diven factor and the power normalization and it is in excellent agreement with independent measurements. Also, the {beta}eff result is independent on the nuclear data library used in the fitting procedure. The reflector effect appears to be important only for frequencies larger than {beta}eff/{lambda}, and the results for the kinetic parameters are almost the same as for the non-reflected case.

Santos, Adimir dos; Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, 05508-900 Butanta, Cidade Universitaria, S.P. (Brazil)

2005-05-24T23:59:59.000Z

277

Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri  

SciTech Connect (OSTI)

Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

2013-07-01T23:59:59.000Z

278

Design and analysis of active vibration control in a microgravity environment  

E-Print Network [OSTI]

DESIGN AND ANALYSIS OF ACTIVE VIBRATION CONTROL IN A MICROGRAVITY ENVIRONMENT A Thesis by CLAY BRIAN ATWOOD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1990 Major Subject: Mechanical Engineering DESXGN AND ANALYSIS OF ACTIVE VIBRATION CONTROL XN A MXCROGRAVXTY ENVIRONMENT A Thesis by CLAY BRIAN ATWOOD Approved as to style and content by: Richard'Alexander (Chair...

Atwood, Clay Brian

1990-01-01T23:59:59.000Z

279

Publications | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications SHARE Publications The Neutron Science publications system contains peer-reviewed publications based on research conducted at ORNL's Neutron Science facilities or...

280

CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS AND GAIT ANALYSIS  

E-Print Network [OSTI]

CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS AND GAIT ANALYSIS CONTROL SYSTEM FOR ACTIVE ANKLE system has mounted into two basic components: insole for the healthy leg and ankle-foot orthoses. Proposed ankle-foot orthosis is with one degree of freedom which foot segment is connected to the shank

Mustakerov, Ivan

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic Controlled Variable Selection  

E-Print Network [OSTI]

Sensitivity Analysis of Optimal Operation of an Activated Sludge Process Model for Economic operation conducted on an activated sludge process model based on the test-bed benchmark simulation model no structure that leads to optimal economic operation, while promptly rejecting disturbances at lower layers

Skogestad, Sigurd

282

Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation  

E-Print Network [OSTI]

E Analysis of Seismic Activity near Theodore Roosevelt Dam, Arizona, during the Occupation, and Lepolt Linkimer Online Material: Plot of viable focal mechanisms and table of regional seismic velocity model. INTRODUCTION Rate and distribution of seismic activity are important indica- tors of the overall

Fouch, Matthew J.

283

Analysis of the Seismic Activity Associated with the 20101 Eruption of Merapi Volcano, Java2  

E-Print Network [OSTI]

Analysis of the Seismic Activity Associated with the 20101 Eruption of Merapi Volcano, Java2 3 4 Keywords16 Merapi Volcano, Volcano Seismology, Eruption Forecasting, Pre-eruptive Seismicity,17 RSAM. The main features of the seismic activity during the23 pre-eruptive period and the crisis are presented

Boyer, Edmond

284

Water Research 36 (2002) 11811192 Accuracy analysis of a respirometer for activated sludge  

E-Print Network [OSTI]

Water Research 36 (2002) 1181­1192 Accuracy analysis of a respirometer for activated sludge dynamic transfer, pH, and the influence of sludge condition on ``start-up'' behaviour. It is shown to what extent Elsevier Science Ltd. All rights reserved. Keywords: Respirometry; Oxygen uptake rate; Activated sludge

2002-01-01T23:59:59.000Z

285

Specification and Analysis of the AER/NCA Active Network Protocol Suite in  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real­Time Maude Peter and the Maude formal methodology to the specification and analy­ sis of the AER/NCA suite of active network and the composability of its components, AER/NCA poses challenging new problems for its formal specification

Ã?lveczky, Peter Csaba

286

Analysis of chemical competition for binding sites on activated charcoal  

E-Print Network [OSTI]

chanical and physical adsorptixm are ~ defined. Yet, in ~ce they are not so le. Physical adsorption will occur in any gas-solid system when the heat of adsorption is of the same order as the latent heat of condensation. A multi molecular layer is always... Research Hypothesis 10 12 15 Vapor Generation. Exper~ Procedure. Sample Analysis. 15 19 21 23 DISCUSS IGN. 02XLUSIGNS AND REKXMMENQATIGNS. 29 33 35 37 TABLE A-1 Calihration of Wilkes Miran Gas Analyzer. . . . . . . 38 TABLE A-2 Pump...

Gallerani, Susan Jane

1981-01-01T23:59:59.000Z

287

Analysis of Integrated Safety Management at the Activity Level: Work  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysis of Crossover Points forNEPA

288

Elemental composition of nickel silicide layers using thermal and fast neutrons  

SciTech Connect (OSTI)

Metal silicides are important contact materials used in the manufacture of semiconductor devices. The presence of impurities has been observed to alter or control the formation of the silicide during fabrication and to influence critically the thermal and electrical performance characteristics of the metal-semiconductor interface. The purpose of this investigation has been to use neutron activation analysis (NAAA), relying on both thermal and fast neutrons, to determine relative concentrations of nickel and impurity elements in nickel silicide/silicon systems. 5 refs., 2 figs., 1 tab.

McGuire, S.C.; Wong, K.; Silcox, J. (Cornell Univ., Ithaca, NY (United States))

1992-01-01T23:59:59.000Z

289

Design and implementation of a dynamic neutron radiographic imaging system: by John Winston Wright.  

E-Print Network [OSTI]

activity, V = the foil volume, (mass)/(density), Z = the macroscopic cross section, cm-i, di = neutron flux to be found, 2, = ln 2/(half-life of tssAu), te = irradiation time, and t = time between removal and measurement. Results of the analysis..., The neutron flux was calculated with the following equation: iyyyjzzzzzzzzzzzzzll7/Jizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzqzy //////&/yy ///////////// ////~Z///&li iPZ~i WZZ///ll~ $4~:~) 4VRA S H 1) A(t) = V&5(1-e-~")e +, where A(t) = the measured...

Wright, John Winston

2012-06-07T23:59:59.000Z

290

Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade  

E-Print Network [OSTI]

, AtMPK3 and AtMPK6. Constitutively active ANP1 mimics the H2O2 effect and initiates the MAPK cascade previously de- scribed drought, cold, and abscisic acid signaling pathways. Thus, manipulation of key multiple stress tolerance that may greatly benefit agriculture. Destined to reside in the habitats

Sheen, Jen

291

WWER Expert System for Fuel Failure Analysis Using Data on Primary Coolant Activity  

SciTech Connect (OSTI)

The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in detail. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

Likhanskii, V.V.; Evdokimov, I.A.; Sorokin, A.A.; Khromov, A.G.; Kanukova, V.D.; Apollonova, O.V. [SRC RF TRINITI, 142190, Troitsk, Moscow Reg. (Russian Federation); Ugryumov, A.V. [JSC TVEL, 119017, 24/26 Bolshaya Ordynka st., Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

292

Neutron-Neutron Correlations in the Dissociation of Halo Nuclei  

E-Print Network [OSTI]

Studies attempting to probe the spatial configuration of the valence neutrons in two-neutron halo nuclei using the technique of intensity interferometry are described. Following a brief review of the method and its application to earlier measurements of the breakup of 6He, 11Li and 14Be, the results of the analysis of a high statistics data set for 6He are presented. The limitations of the technique, including the assumption of incoherent emission in the breakup and the sensitivity to the continuum states populated in the dissociation rather than the ground state, are discussed.

N. A. Orr

2008-03-06T23:59:59.000Z

293

Thermal neutron imaging support with other laboratories BL06-IM-TNI  

SciTech Connect (OSTI)

The goals of this project are: (1) detect and locate a source of thermal neutrons; (2) distinguish a localized source from uniform background; (3) show shape and size of thermalizing material; (4) test thermal neutron imager in active interrogation environment; and (5) distinguish delayed neutrons from prompt neutrons.

Vanier,P.E.

2008-06-17T23:59:59.000Z

294

New 88Sr(n,g)Astrophysical Reaction Rate from Resonance Analysis of New High-Resolution Neutron Capture and Transmission Data  

SciTech Connect (OSTI)

Because of its small cross section, the 88Sr(n,g) reaction is an important bottleneck during s-process nucleosynthesis. Hence, an accurate determination of this rate is needed to better constrain the neutron exposure in s-process models and to more fully exploit the recently discovered isotopic anomalies in certain meteorites. We have completed the resonance analysis of our new and improved measurements of the neutron capture and total cross sections for 88Sr made at the Oak Ridge Electron Linear Accelerator (ORELA). We describe our experimental procedures and resonance analysis, compare our results to previous data, and discuss their astrophysical impact.

Koehler, P.E.

1999-08-30T23:59:59.000Z

295

At tank Low Activity Feed Homogeneity Analysis Verification  

SciTech Connect (OSTI)

This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements.

DOUGLAS, J.G.

2000-09-28T23:59:59.000Z

296

Neutron reflecting supermirror structure  

DOE Patents [OSTI]

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

297

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-09-01T23:59:59.000Z

298

Neutron-Mirror-Neutron Oscillations in a Trap  

E-Print Network [OSTI]

We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

B. Kerbikov; O. Lychkovskiy

2008-04-03T23:59:59.000Z

299

Imaging with Scattered Neutrons  

E-Print Network [OSTI]

We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

2006-10-30T23:59:59.000Z

300

Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core  

SciTech Connect (OSTI)

This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

Hartini, Entin, E-mail: entin@batan.go.id; Andiwijayakusuma, Dinan, E-mail: entin@batan.go.id [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

2014-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Role of Neutron Activation Analysis in the Pathological Evaluation of Silver-Eluting Biomedical Devices in Biological Matrices  

E-Print Network [OSTI]

to their presence was not observed. INAA results correlated with these findings; silver was not detected adjacent to the test article, but a concentration of 74 ppm ± 29% of silver was observed in tissue adjacent to the control article. A complex system of ordinary...

Lancon, Trevor

2014-08-14T23:59:59.000Z

302

Instrumental neutron activation analysis (INAA) characterization of pre-contact basalt quarries on the American Samoan Island of Tutuila  

E-Print Network [OSTI]

This thesis presents a material-centered characterization of 120 geologic samples from four fine-grained basalt quarries on the Samoan Island of Tutuila. Previous unsuccessful attempts at definitive Tutuilan quarry differentiation have utilized x...

Johnson, Phillip Ray, II

2007-04-25T23:59:59.000Z

303

Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials  

SciTech Connect (OSTI)

To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Kumar, A.; Youssef, M.Z.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-08-01T23:59:59.000Z

304

Cryogenic Neutron Protein Crystallography: routine methods and potential benefits  

SciTech Connect (OSTI)

The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

Weiss, Kevin L [ORNL; Tomanicek, Stephen J [ORNL; NG, Joseph D [ORNL

2014-01-01T23:59:59.000Z

305

Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam  

E-Print Network [OSTI]

A measurement of the neutron lifetime $\\tau_{n}$ performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is $\\tau_{n} = (886.6\\pm1.2{\\rm [stat]}\\pm3.2{\\rm [sys]})$ s, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular the mass of the deposit and the $^{6}$Li({\\it{n,t}}) cross section. The measurement technique and apparatus, data analysis, and investigation of systematic uncertainties are discussed in detail.

J. S. Nico; M. S. Dewey; D. M. Gilliam; F. E. Wietfeldt; X. Fei; W. M. Snow; G. L. Greene; J. Pauwels; R. Eykens; A. Lamberty; J. Van Gestel; R. D. Scott

2004-11-19T23:59:59.000Z

306

Analysis of a rod withdrawal accident in a BWR with the neutronic-thermalhydraulic coupled code TRAC-BF1/VALKIN and TRACE/PARCS  

SciTech Connect (OSTI)

The control rod withdrawal accident at hot zero power (HZP) is characterized by a single rod withdrawal from a core position with high reactivity worth, starting at criticality with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main factor limiting the consequences of the accident is a mixed void-Doppler feedback in BWR. The peak power occurs while important power distribution changes take place in the core and also the rod extraction continues. To check the performance of the coupled codes TRAC-BF1/VALKIN and TRACE/PARCS against complex 3D neutronic transients, a rod withdrawal accident in COFRENTES NPP is simulated. This transient is a dynamically complex event, where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly. TRAC-BF1/VALKIN code uses the best estimate TRAC-BF1 code to give account of the heat transfer and thermalhydraulic processes, and a 3D neutronic module. This module has two options, MODKIN that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. TRACE is a code to study also transients in LWR reactors. This code used as a neutronic module the PARCS code. (authors)

Miro, R.; Verdu, G.; Sanchez, A. M.; Barrachina, T. [Chemical and Nuclear Engineering Dept., Polytechnic Univ. of Valencia, Cami de Vera s/n, 46022 Valencia (Spain); Gomez, A. [Iberinco, Avenida de Burgos, Madrid (Spain)

2006-07-01T23:59:59.000Z

307

Layered semiconductor neutron detectors  

DOE Patents [OSTI]

Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

Mao, Samuel S; Perry, Dale L

2013-12-10T23:59:59.000Z

308

Neutron streak camera  

DOE Patents [OSTI]

Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

Wang, C.L.

1981-05-14T23:59:59.000Z

309

Rocky Flats Neutron Detector Testing at Valduc, France  

SciTech Connect (OSTI)

Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

Kim, S S; Dulik, G M

2011-01-03T23:59:59.000Z

310

Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis  

SciTech Connect (OSTI)

This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

Neff, Michael M.

2011-06-23T23:59:59.000Z

311

Small plasma focus as neutron pulsed source for nuclides identification  

SciTech Connect (OSTI)

In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

Milanese, M.; Moroso, R.; Barbaglia, M. [Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina) [Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina); Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina); Niedbalski, J. [CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas), Rivadavia 1917, Buenos Aires (Argentina)] [CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas), Rivadavia 1917, Buenos Aires (Argentina); Mayer, R. [CNEA (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro (Argentina)] [CNEA (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro (Argentina); Castillo, F. [UNAM (Universidad Nacional Autónoma de México)–Circuito Exterior s/n, Ciudad Universitaria, Delg. Coyoacán, P.O. Box 70-543, México DF (Mexico)] [UNAM (Universidad Nacional Autónoma de México)–Circuito Exterior s/n, Ciudad Universitaria, Delg. Coyoacán, P.O. Box 70-543, México DF (Mexico); Guichón, S. [Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina)] [Universidad del Centro de la Provincia de Buenos Aires (CONICET-UNCPBA), Pinto 399, Tandil 7000, Buenos Aires (Argentina)

2013-10-15T23:59:59.000Z

312

Neutron powder diffraction and difference maximum entropy method analysis of protium- and deuterium-dissolved BaSn{sub 0.5}In{sub 0.5}O{sub 2.75+{alpha}}  

SciTech Connect (OSTI)

We propose a new method, a difference maximum entropy method (MEM) analysis of the neutron diffraction data, for revealing the detailed structure around hydrogen atoms in proton-conducting oxides. This MEM analysis uses the differences between the structure factors of protium- and deuterium-dissolved crystals. Simulations demonstrate that it not only provides the distribution of hydrogen atoms alone, but also improves the spatial resolution of MEM mapping around hydrogen atoms. Applied to actual diffraction data of protium- and deuterium-dissolved BaSn{sub 0.5}In{sub 0.5}O{sub 2.75+{alpha}} at 9 K, difference MEM analysis reveals that O-D bonds mostly tilt towards the second nearest oxygen atoms, and that the distributions of deuterium and oxygen atoms are probably insignificant in interstitial regions. - Graphical abstract: A novel method, difference maximum entropy method (MEM) analysis of the neutron diffraction data, is proposed for revealing the detailed structure around hydrogen atoms in proton-conducting oxides. This MEM analysis uses the differences between the structure factors of protium- and deuterium-dissolved crystals and improves the spatial resolution of the MEM mapping around the hydrogen atoms.

Nagasaki, Takanori, E-mail: nagasaki@esi.nagoya-u.ac.j [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Shiotani, Shinya [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Igawa, Naoki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan); Yoshino, Masahito; Iwasaki, Kouta [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Fukazawa, Hiroshi; Utsumi, Wataru [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

2009-10-15T23:59:59.000Z

313

Interferogram Analysis using Active Instance-Based Olac Fuentes and Thamar Solorio  

E-Print Network [OSTI]

accurate predic- tions. To further reduce the running time, we use a principal component analysis experiments show very accurate results using both noiseless and noisy interferograms. Key Words: active, are combined an made to interfere, which results in a pattern, called interfero- gram, that characterizes

Fuentes, Olac

314

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power Filter Applications  

E-Print Network [OSTI]

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power voltage-source inverters connected in series (known as cascaded hybrid asymmetric multilevel inverter scheme is developed to allow the operation of the inverter modules at different voltages and switching

Catholic University of Chile (Universidad Católica de Chile)

315

Ten channel background alpha radiometer for nondestructive analysis of low activity samples  

SciTech Connect (OSTI)

The description of a ten-channel alpha-radiometer based on large-area semiconductor detectors is presented in this paper. The radiometer is intended for determination of soil pollution by alpha-active radionuclides using thick samples. The analysis of isotopes is also provided. The concentrations of Pu and Am isotopes in soil samples are determined.

Pugatch, V.M.; Pavlenko, Y.N.; Vasiliev, Y.O.; Nenakhov, A.N.; Tkatch, N.M.; Barabash, L.I.; Berdnichenko, S.V.; Litovchenko, P.G.; Rosenfeld, A.B.; Zinets, O.S. (Inst. for Nuclear Research, Kiev (USSR))

1992-10-01T23:59:59.000Z

316

Analysis of patent activity in the field of quantum information processing  

E-Print Network [OSTI]

This paper provides an analysis of patent activity in the field of quantum information processing. Data from the PatentScope database from the years 1993-2011 was used. In order to predict the future trends in the number of filed patents time series models were used.

Ryszard Winiarczyk; Piotr Gawron; Jaros?aw Adam Miszczak; ?ukasz Pawela; Zbigniew Pucha?a

2012-12-11T23:59:59.000Z

317

Analysis of patent activity in the field of quantum information processing  

E-Print Network [OSTI]

This paper provides an analysis of patent activity in the field of quantum information processing. Data from the PatentScope database from the years 1993-2011 was used. In order to predict the future trends in the number of filed patents time series models were used.

Winiarczyk, Ryszard; Miszczak, Jaros?aw Adam; Pawela, ?ukasz; Pucha?a, Zbigniew

2013-01-01T23:59:59.000Z

318

Neutron detector using sol-gel absorber  

DOE Patents [OSTI]

An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

Hiller, John M. (Oak Ridge, TN); Wallace, Steven A. (Oak Ridge, TN); Dai, Sheng (Knoxville, TN)

1999-01-01T23:59:59.000Z

319

Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE  

SciTech Connect (OSTI)

Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

Jandel, Marian [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

320

Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE  

SciTech Connect (OSTI)

Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M. [Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A. [Lawrence Livermore National Laboratory, Livermore, CA, 94550 (United States)

2009-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Neutron dose equivalent meter  

DOE Patents [OSTI]

A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

1996-01-01T23:59:59.000Z

322

Ultrafast neutron detector  

DOE Patents [OSTI]

A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

Wang, C.L.

1985-06-19T23:59:59.000Z

323

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

324

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, Jr., Herbert A. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

325

Cognitive tasks in information analysis: Use of event dwell time to characterize component activities  

SciTech Connect (OSTI)

Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

2004-09-28T23:59:59.000Z

326

Neutron computed tomography  

E-Print Network [OSTI]

to make the Donner Algorithms run. TABLE OF CONTEliiTS CHAPTF. . R I NEI. TRON RADIOGRAPHY . I. 1 Background . I. 2 Theory . l. 3 Neutron Beam Characterization I. 4 Image Detectors . COMPI'TED TOMOGRAPHY . Il I Background . II. 2 Notation II. 3... data which is generated by rays traveling (and being attenuated) in straight lines. However in neutron radiography, what is measured is, to most extents, the levels of neutrons which are not attenuated. Neutrons are particles. They scatter...

Russell, Clifford Marlow

2012-06-07T23:59:59.000Z

327

Advanced neutron absorber materials  

DOE Patents [OSTI]

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

328

Sensitivity analysis in linear programming applied to the problems of activation analysis  

E-Print Network [OSTI]

results were right-nand-side ranging and the assigning to the obJective function a ratio of cost coefficients so each charnel assume as much importance in fitting a curve to the Activation Analvsis data as any other channel iv A CKii0'1LZD GM!'. ITS... CHAPTER III DATA DIFFERENCES AND THE ZFFECTS OF CHANNEL SUMMING CHAPTER IV PROCEDURE QF RIGHT-HAND-SIDE RANGI NG 16 CHAPTER V RATIO COST COEFFICIENTS PROCEDURE CHAPTER VI ANALYS1S GF OUTPUT TO DETERMINE SEIISITIVITY CHAPTER VII UNIFORM VARIATIONS...

Sloan, Thomas Orville

1969-01-01T23:59:59.000Z

329

Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011  

SciTech Connect (OSTI)

A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

Hagen, E. C.

2011-07-02T23:59:59.000Z

330

E-Print Network 3.0 - absolute neutron spectrum Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is a typical spallation neutron flux, with a maximum at 2 MeV. Energy... the absolute neutron flux and its shape: by activation and with a 235 U fission chamber. Three materials...

331

E-Print Network 3.0 - annihilation neutron irradiation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigations of Void Formation in Neutron Irradiated Iron and F82H Steel M... ;Abstract In the present work pure iron and low activation steel F82H have been neutron...

332

Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer  

SciTech Connect (OSTI)

Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60 mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.

Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc. [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Longhino, Juan [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Perona, Marina [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Calzetta, Osvaldo; Blaumann, Herman [Nuclear Reactor RA-6 (Bariloche Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Rebagliati, Raul Jimenez [Department of Chemistry (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Cabrini, Romulo [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Kahl, Steven [Department of Pharmaceutical Chemistry, University of California, San Francisco, CA (United States); Juvenal, Guillermo Juan [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Pisarev, Mario Alberto [Department of Radiobiology (Constituyentes Atomic Center), National Atomic Energy Commission of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina)], E-mail: pisarev@cnea.gov.ar

2007-11-15T23:59:59.000Z

333

Semiconductor neutron detector  

DOE Patents [OSTI]

A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

2011-03-08T23:59:59.000Z

334

High energy neutron dosimeter  

DOE Patents [OSTI]

A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

Rai, K.S.F.

1994-01-11T23:59:59.000Z

335

High energy neutron dosimeter  

DOE Patents [OSTI]

A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

Sun, Rai Ko S.F. (Albany, CA)

1994-01-01T23:59:59.000Z

336

Applying observations of work activity in designing prototype data analysis tools  

SciTech Connect (OSTI)

Designers, implementers, and marketers of data analysis tools typically have different perspectives than users. Consequently, data analysis often find themselves using tools focused on graphics and programming concepts rather than concepts which reflect their own domain and the context of their work. Some user studies focus on usability tests late in development; others observe work activity, but fail to show how to apply that knowledge in design. This paper describes a methodology for applying observations of data analysis work activity in prototype tool design. The approach can be used both in designing improved data analysis tools, and customizing visualization environments to specific applications. We present an example of user-centered design for a prototype tool to cull large data sets. We revisit the typical graphical approach of animating a large data set from the point of view of an analysis who is culling data. Field evaluations using the prototype tool not only revealed valuable usability information, but initiated in-depth discussions about user`s work, tools, technology, and requirements.

Springmeyer, R.R.

1993-07-06T23:59:59.000Z

337

The Neutron Lifetime  

E-Print Network [OSTI]

The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

F. E. Wietfeldt

2014-11-13T23:59:59.000Z

338

Neuroscience Instrumentation and Distributed Analysis of Brain Activity Data: A Case for eScience on Global Grids  

E-Print Network [OSTI]

1 Neuroscience Instrumentation and Distributed Analysis of Brain Activity Data: A Case for e commonly observed in scientific disciplines. Two popular scientific disciplines of this nature are brain science and high-energy physics. The analysis of brain activity data gathered from the MEG

Buyya, Rajkumar

339

Articulated Motion Modeling for Activity Analysis Jiang Gao, Robert T. Collins, Alexander G. Hauptmann and Howard D. Wactlar  

E-Print Network [OSTI]

on blobs and trajectories output from this tracking system. In Zelnik-Manor and Irani (2001), dynamicArticulated Motion Modeling for Activity Analysis Jiang Gao, Robert T. Collins, Alexander G at a nursing home. 1. Introduction Much recent research has been focused on activity analysis in videos

Wactlar, Howard D.

340

A compact stilbene crystal neutron spectrometer for EAST D-D plasma neutron diagnostics  

SciTech Connect (OSTI)

A new compact stilbene crystal neutron spectrometer has been investigated and applied in the neutron emission spectroscopy on the EAST tokamak. A new components analysis method is presented to study the anisotropic light output in the stilbene crystal detector. A Geant4 code was developed to simulate the neutron responses in the spectrometer. Based on both the optimal light output function and the fitted pulse height resolution function, a reliable neutron response matrix was obtained by Geant4 simulations and validated by 2.5 MeV and 14 MeV neutron measurements at a 4.5 MV Van de Graaff accelerator. The spectrometer was used to diagnose the ion temperature in plasma discharges with lower hybrid wave injection and ion cyclotron resonance heating on the EAST tokamak.

Zhang Xing; Yuan Xi; Xie Xufei; Chen Zhongjing; Peng Xingyu; Chen Jinxiang; Zhang Guohui; Li Xiangqing; Fan Tieshuan [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Chengfu Road 201, 100871 Beijing (China); Zhong Guoqiang; Hu Liqun; Wan Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, 230031 Hefei, Anhui (China)

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The computerized identification of reactor-produced isotopes in an activation analysis environment  

E-Print Network [OSTI]

- ability of a complete, positive identification appears small. How- ever, with the addition of a least squares method of resolving interferences and the application of a figure indicating the value (figure-of-merit) placed on each elimination test...THE COMPUTERIZED IDENTIFICATION OF REACTOR-PRODUCED ISOTOP ' S IN AN ACTIVATION ANALYSIS ENVIRON&vIENT A Thesi. s by DANIEI. aOIIN SCHLUETER Submitted to the Grec'u&ate College of Texas ARM University in pa. tial fulfillment o...

Schlueter, Daniel John

1971-01-01T23:59:59.000Z

342

Neutron beta-decay, Standard Model and cosmology  

E-Print Network [OSTI]

The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. The neutron lifetime recently obtained, 878.5 +/- 0.7stat +/- 0.3sys s, is the most accurate one to date. The new result for the neutron lifetime differs from the world average value by 6.5 standard deviations. The impact of the new result on testing of Standard Model and on data analysis for the primordial nucleosynthesis model is scrutinized.

A. P. Serebrov

2006-11-22T23:59:59.000Z

343

PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was modified by splitting it into multiple sections, isolating the T0 chopper from the rest of the beam line, and each section was then reinstalled and re-grouted. After these modifications, the vibration levels were reduced by a factor of 30. The reduction in vibration level was sufficient to allow the Vision beam line to operate at full capacity for the first time since its completed construction date.

Van Hoy, Blake W [ORNL

2014-01-01T23:59:59.000Z

344

ANALYSIS OF CDTE ACTIVATION TREATMENT WITH A NOVEL APPROACH Andrei Salavei^, Ivan Rimmaudo^, Fabio Piccinelli*, Daniele Menossi+  

E-Print Network [OSTI]

ANALYSIS OF CDTE ACTIVATION TREATMENT WITH A NOVEL APPROACH Andrei Salavei^, Ivan Rimmaudo^, Fabio approach for CdTe activation treatment. Starting from a baseline of CdTe devices made with CdCl2 activation­voltage characteristics) of finished devices. Keywords: CdTe, CdCl2, High-Efficiency. 1 INTRODUCTION CdTe thin film solar

Romeo, Alessandro

345

Delayed neutrons measurement at the MEGAPIE target  

E-Print Network [OSTI]

In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

Stefano Panebianco; Pavel Bokov; Diane Dore; Xavier Ledoux; Alain Letourneau; Aurelien Prevost; Danas Ridikas

2007-05-25T23:59:59.000Z

346

Delayed neutrons measurement at the MEGAPIE target  

E-Print Network [OSTI]

In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

Panebianco, Stefano; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Prevost, Aurelien; Ridikas, Danas

2007-01-01T23:59:59.000Z

347

International workshop on cold neutron sources  

SciTech Connect (OSTI)

The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States)) [comps.; Los Alamos National Lab., NM (United States)

1991-08-01T23:59:59.000Z

348

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect (OSTI)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

349

Regulatory impact analysis of environmental standards for uranium mill tailings at active sites. Final report  

SciTech Connect (OSTI)

The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978, to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title I of the Act pertains to tailings at inactive sites for which the Agency has developed standards as part of a separate rulemaking. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards developed under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the operations standards is very limited.

Not Available

1983-03-01T23:59:59.000Z

350

Regulatory impact analysis of final environmental standards for uranium mill tailings at active sites  

SciTech Connect (OSTI)

The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards promulgated under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public health and environment after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the standards during mill operations is very limited.

Not Available

1983-09-01T23:59:59.000Z

351

Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data  

SciTech Connect (OSTI)

The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

2000-05-01T23:59:59.000Z

352

Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture  

SciTech Connect (OSTI)

The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

Scott Wilde, Raymond Keegan

2008-07-01T23:59:59.000Z

353

Singular perturbation applications in neutron transport  

SciTech Connect (OSTI)

This is a paper on singular perturbation applications in neutron transport for submission at the next ANS conference. A singular perturbation technique was developed for neutron transport analysis by postulating expansion in terms of a small ordering parameter {eta}. Our perturbation analysis is carried, without approximation, through {Omicron}({eta}{sup 2}) to derive a material interface correction for diffusion theory. Here we present results from an analytical application of the perturbation technique to a fixed source problem and then describe and implementation of the technique in a computational scheme.

Losey, D.C. [Westinghouse Savannah River Company, Aiken, SC (United States); Lee, J.C. [University of Michigan, Ann Arbor, MI (United States)

1996-09-01T23:59:59.000Z

354

Neutron Science Forum | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environment for discussion, innovation, and dissemination of information within the neutron scattering community as well as engaging closely related disciplines through...

355

Neutron wave packet tomography  

E-Print Network [OSTI]

A tomographic technique is introduced in order to determine the quantum state of the center of mass motion of neutrons. An experiment is proposed and numerically analyzed.

G. Badurek; P. Facchi; Y. Hasegawa; Z. Hradil; S. Pascazio; H. Rauch; J. Rehacek; T. Yoneda

2005-03-29T23:59:59.000Z

356

Lujan Neutron Scattering Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

357

Neutron scattering-modern techniques and their scientific impact  

E-Print Network [OSTI]

The sustained interest in the neutron and its use as a probe of the structure and dynamics of condensed matter is examined against the background of neutron availabil-ity. An analysis is made of developments in neutron source brightness, instrument physics and experimental methodology which have been or are likely to be of outstand-ing value in physics, chemistry, biology and materials technology studies. The role of pulsed sources as the next step ahead in neutron source brightness, their need for extensive instrument development to realise this potential and their complementarity with steady-state reactors is analysed using newly available experimental results. This review was received in December 1983.

J W White; C G Windsor; J W White; C G Windsor

358

Neutron charge radius and the neutron electric form factor  

SciTech Connect (OSTI)

For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G{sub E}{sup n}, vs the square of the four-momentum transfer, Q{sup 2}. Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G{sub E}{sup n} data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G{sub E}{sup n} (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

Gentile, T. R. [Stop 8461, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Crawford, C. B. [University of Kentucky, Lexington, Kentucky 40506 (United States)

2011-05-15T23:59:59.000Z

359

Neutron Stars and Fractal Dimensionality  

E-Print Network [OSTI]

We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

Burra G. Sidharth

2008-05-06T23:59:59.000Z

360

Total cross section of neutron-proton scattering at low energies in quark-gluon model  

E-Print Network [OSTI]

We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

V. A. Abramovsky; N. V. Radchenko

2011-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation  

SciTech Connect (OSTI)

Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

2012-06-26T23:59:59.000Z

362

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

363

Energy Density Functional for Nuclei and Neutron Stars  

SciTech Connect (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

364

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

365

Compact neutron generator  

DOE Patents [OSTI]

A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

Leung, Ka-Ngo; Lou, Tak Pui

2005-03-22T23:59:59.000Z

366

Neutron capture therapies  

DOE Patents [OSTI]

In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

1999-01-01T23:59:59.000Z

367

Pocked surface neutron detector  

DOE Patents [OSTI]

The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

2003-04-08T23:59:59.000Z

368

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

369

Pulsed neutron detector  

DOE Patents [OSTI]

A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

1989-03-21T23:59:59.000Z

370

ORNL Neutron Sciences Annual Report for 2007  

SciTech Connect (OSTI)

This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

2008-07-01T23:59:59.000Z

371

What's wrong with the field of bio-neutron scattering? 1) Not enough professional science and not enough professional scientists  

E-Print Network [OSTI]

What's wrong with the field of bio-neutron scattering? 1) Not enough professional science a paper in this field. Anybody can do it! The most detailed analysis of bio-neutron scattering data up independent moment analysis of the neutron scattering spectrum. Up to today nobody, not even MD people, picked

Doster, Wolfgang

372

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

Neutron coincidence counting is an important passive Nondestructive Assay (NDA) technique widely used for qualitative and quantitative analysis of nuclear material in bulk samples. During the fission process, multiple neutrons are simultaneously...

Thornton, Angela Lynn

2009-05-15T23:59:59.000Z

373

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

Neutron coincidence counting is an important passive Nondestructive Assay (NDA) technique widely used for qualitative and quantitative analysis of nuclear material in bulk samples. During the fission process, multiple neutrons are simultaneously...

Thornton, Angela Lynn

2008-10-10T23:59:59.000Z

374

Characterization of fissile material using low energy neutron interrogation  

E-Print Network [OSTI]

The glaring need to develop methods for detecting and interdicting illicit nuclear trafficking has resulted in the exploration of various methods for active neutron interrogation, specifically for the presence of special ...

Padilla, Eduardo A

2007-01-01T23:59:59.000Z

375

Global analysis of active longitudes of solar X-ray flares L. Zhang a,b,c  

E-Print Network [OSTI]

Observatories, Chinese Academy of Sciences, Beijing, China c Key Laboratory of Solar Activity, Chinese AcademyGlobal analysis of active longitudes of solar X-ray flares L. Zhang a,b,c , K. Mursula a,Ã, I of Sciences, Beijing, China d University of Oulu, Sodankyl¨a Geophysical Observatory, Oulu, Finland a r t i c

Usoskin, Ilya G.

376

Teacher's activity analysis within a didactic perspective Patrice Venturini, Chantal AmadeEscot UMR EFTS Universit de Toulouse 2  

E-Print Network [OSTI]

Teacher's activity analysis within a didactic perspective Patrice Venturini, Chantal AmadeEscot UMR framework (the Joint Action Theory in Didactics) we use to analyse ordinary teaching/learning activities in science classrooms. This theory has been developed in French didactic research and takes

Paris-Sud XI, Université de

377

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network [OSTI]

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2007-01-24T23:59:59.000Z

378

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real-Time Maude  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real-Time Maude Peter-Time Maude tool and the Maude formal methodology to the specification and analysis of the AER/NCA suite-sensitive behavior, the presence of probabilistic algorithms, and the composability of its components, AER/NCA poses

Ã?lveczky, Peter Csaba

379

Neutron Reactions in Astrophysics  

E-Print Network [OSTI]

The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19$^{\\rm th}$ century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final breakthrough came eventually with the compilation of elemental and isotopic abundances in the solar system, which are reflecting the various nucleosynthetic processes in detail. This review is focusing on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow ($s$) and rapid ($r$) processes. Following a brief historic account and a sketch of the relevant astrophysical models, emphasis is put on the nuclear physics input, where status and perspectives of experimental approaches are presented in some detail, complemented by the indispensable role of theory.

R. Reifarth; C. Lederer; F. Käppeler

2014-03-22T23:59:59.000Z

380

Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator  

SciTech Connect (OSTI)

A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

D. L. Chichester; J. T. Johnson; E. H. Seabury

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

1992-02-01T23:59:59.000Z

382

Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications  

E-Print Network [OSTI]

The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

Griggs, D. P.

1981-01-01T23:59:59.000Z

383

Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer  

SciTech Connect (OSTI)

In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

Eriksson, J., E-mail: jacob.eriksson@physics.uu.se; Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C. [EURATOM-VR, Department of Physics and Astronomy, Uppsala University (Sweden); Giacomelli, L. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

2014-11-15T23:59:59.000Z

384

Gamma/neutron time-correlation for special nuclear material characterization %3CU%2B2013%3E active stimulation of highly enriched uranium.  

SciTech Connect (OSTI)

A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

Marleau, Peter; Nowack, Aaron B.; Clarke, Shaun D. [University of Michigan; Monterial, Mateusz [University of Michigan; Paff, Marc [University of Michigan; Pozzi, Sara A. [University of Michigan

2013-09-01T23:59:59.000Z

385

In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. I. Crystal structure analysis and texture development  

SciTech Connect (OSTI)

The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3{sup ¯}c rhombohedral LaCoO{sub 3} during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO{sub 3} perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO{sub 3} at high compressive stresses, ranging from 76?GPa at the very beginning of the loading to 194?GPa at 900?MPa at the beginning of the unloading curve.

Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-07-07T23:59:59.000Z

386

Nuclear analysis of integral experiments on a Li{sub 2}O test assembly with local heterogeneities utilizing a 14-MeV neutron source  

SciTech Connect (OSTI)

The integral experiments and postanalyses performed in Phase IIC of the U.S. Department of Energy (U.S. DOE)/Japan Atomic Energy Research Institute (JAERI) collaborative program on fusion neutronics focused on rest blankets that include the actual heterogeneities found in several blanket designs. In one arrangement, multi-layers of Li{sub 2}O and beryllium were placed in an edge-on, horizontally alternating configuration, and in the second arrangement, vertical water coolant channels were deployed. The main objective has been to examine the accuracy of predicting key parameters such as tritium production rate (TPR), in-system spectrum, and other reaction rates around these heterogeneities and to experimentally verify the enhancement in TPR by beryllium in the first experiment. The prediction accuracy was examined in terms of calculated-to-experimental values (c/e){sub i} of the neutronics parameters at several spatial locations. Average local (c/e){sub i} values were statistically calculated for TPR from Li-6 (T{sub 6}) and from Li-7 (T{sub 7}) in addition to quantifying the prediction uncertainties in the line-integrated TPR. A relationship was developed between the prediction uncertainty in the integrated TPR and the corresponding values in the total breeding zone. This relationship enabled us to identify which subzone contributes the most to the prediction uncertainty in the overall integrated TPR. 39 refs., 23 figs., 13 tabs.

Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-09-01T23:59:59.000Z

387

Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13,  

E-Print Network [OSTI]

Neutron LifetimeNeutron Lifetime IUCF Colloquium April 13, 2007 Albert Steyerl Department 940 878.5±0.8 885.7±0.8 new result neutronlifetime(),s year world average Neutron lifetime data #12 world average Neutron lifetime data A. Serebrov et al. 2005Storage of ultra-cold neutrons878.5 ±±±± 0

Steyerl, Albert

388

Solar Neutron Events of October-November 2003  

E-Print Network [OSTI]

During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.

K. Watanabe; M. Gros; P. H. Stoker; K. Kudela; C. Lopate; J. F. Valdes-Galicia; A. Hurtado; O. Musalem; R. Ogasawara; Y. Mizumoto; M. Nakagiri; A. Miyashita; Y. Matsubara; T. Sako; Y. Muraki; T. Sakai; S. Shibata

2005-09-19T23:59:59.000Z

389

Technique for the identification of dominant delayed neutron precursors.  

SciTech Connect (OSTI)

A technique for the identification of delayed neutron precursors has been developed based on the product of cumulative yield and probability of neutron emission. The motivation behind this work is to fix the decay constants of delayed neutrons to those of the dominant delayed neutron precursors. The desirability of identifying a single set of decay constants that would apply to all fissionable isotopes and be independent of the neutron energy spectrum has been addressed by several authors. The main advantages of a fixed-decay constant representation are simplifying the analysis of epithemal and fast reactors with multiple fissioning isotopes, and improving the fit to experimental data while preserving the inferred positive reactivity scale associated with the original six-group representation. It is well known that 27 1 delayed neutron precursors exist, but only a select number of those precursors contribute significantly to the decay of delayed neutron. Using data compiled by England and Rider, which lists fission yield and probability of neutron emission values for the 27 1 known delayed neutron precursors in 32 fissioning systems, thirteen precursors were identified that are consistently dominant for alI fissioning systems.

Loaiza, D. J. (David J.); Haskin, E. (Eric)

2001-01-01T23:59:59.000Z

390

E-Print Network 3.0 - active network analysis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

activity of coupled networks. The neurons... and activity propagation in coupled neural networks from rat cortical cells grown on a micro-electrode array... for parallel activity...

391

Hyperons in neutron stars  

E-Print Network [OSTI]

Using the Dirac-Brueckner-Hartree-Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of $2.08\\,M_{\\odot}$, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

Katayama, Tetsuya

2015-01-01T23:59:59.000Z

392

Neutron single target spin asymmetries in SIDIS  

SciTech Connect (OSTI)

The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

Evaristo Cisbani

2010-04-01T23:59:59.000Z

393

Switchable radioactive neutron source device  

DOE Patents [OSTI]

This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

1987-11-06T23:59:59.000Z

394

Physics design of a cold neutron source for KIPT neutron source facility.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The accelerator driven subcritical facility is designed with a provision to add a cryogenically cooled moderator system. This cold neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

2009-02-17T23:59:59.000Z

395

Neutron Scattering Experiment Automation with Python  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

Zolnierczuk, Piotr A [ORNL] [ORNL; Riedel, Richard A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

396

Fission signal detection using helium-4 gas fast neutron scintillation detectors  

SciTech Connect (OSTI)

We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

2014-07-07T23:59:59.000Z

397

Strangeness in Neutron Stars  

E-Print Network [OSTI]

It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.

Fridolin Weber; Alexander Ho; Rodrigo P. Negreiros; Philip Rosenfield

2006-04-20T23:59:59.000Z

398

Shifting scintillator neutron detector  

DOE Patents [OSTI]

Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

2014-03-04T23:59:59.000Z

399

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo

2005-06-14T23:59:59.000Z

400

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo (Hercules, CA)

2008-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cylindrical neutron generator  

DOE Patents [OSTI]

A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

Leung, Ka-Ngo (Hercules, CA)

2009-12-29T23:59:59.000Z

402

Neutron Star Superfluidity, Dynamics and Precession  

E-Print Network [OSTI]

Basic rotational and magnetic properties of neutron superfluids and proton superconductors in neutron stars are reviewed. The modes of precession of the neutron superfluid are discussed in detail. We emphasize that at finite temperature, pinning of superfluid vortices does not offer any constraint on the precession. Any pinning energies can be surmounted by thermal activation and there exists a dynamical steady state in which the superfluid follows the precession of the crust at a small lag angle between the crust and superfluid rotation velocity vectors. At this small lag the system is far from the critical conditions for unpinning, even if the observed precession of the crust may entail a large angle between the figure axis and the crust's rotation velocity vector. We conclude that if long period modulations of pulse arrival times and pulse shapes observed in a pulsar like the PSR B1828-11 are due to the precession of the neutron star, this does not have any binding implications about the existence of pinning by flux lines or the existence of Type II superconductivity in the neutron star.

M. Ali Alpar

2005-05-04T23:59:59.000Z

403

Monte Carlo Solutions for Selected Problems in Gamma-Ray Spectrometry and Nuclear Activation Analysis  

SciTech Connect (OSTI)

A comprehensive calibration of gamma-ray spectrometers cannot be obtained purely on experimental basis. Problems like self-attenuation effects, coincidence-summing effects and non-uniform source distribution (resulting e.g. from neutron self-shielding in NAA) can be efficiently solved by Monte Carlo simulation. The application of the GESPECOR code to these problems is presented and the associated uncertainty is discussed.

Sima, Octavian [Physics Department, University of Bucharest, Bucharest-Magurele, POBoxMG-11 RO-077125 (Romania)

2008-08-14T23:59:59.000Z

404

Design of a boron neutron capture enhanced fast neutron therapy assembly  

SciTech Connect (OSTI)

The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 {+-} 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 {+-} 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 {+-} 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm{sup 2} treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.

Wang, Zhonglu; /Georgia Tech

2006-08-01T23:59:59.000Z

405

MAGNETIC NEUTRON SCATTERING  

SciTech Connect (OSTI)

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

406

Observation of neutron multiplication by delayed neutrons in {sup 237}Np and {sup 235}U  

SciTech Connect (OSTI)

The authors have applied the method using delayed neutrons developed for the investigation of highly enriched uranium (HEU) systems to investigate {sup 237}Np. This method uses an external radiation probe of 10-MeV bremsstrahlung photons to induce fission of the {sup 237}Np sample. The photon source, a 10-MeV electron linear accelerator (linac), is operated in a pulsed mode with a pulse width of {approximately}6 {micro}s at a frequency of {approximately}50 Hz. For all the measurements, 45,000 pulses from the linac were used. The linac output was {approximately}150 R/min at 1 m from the bremsstrahlung source. Neutrons are detected by a medium-efficiency, {sup 3}He-based, neutron detector system between pulses of the interrogating probe. The data acquisition system is gated off during the linac beam burst and for an additional 2000 {micro}s. The neutron detection times are recorded and subsequently analyzed with the Feynman reduced-variance method. This analysis provides a measure of the number of single (N1/s) and double (N2/s) neutron events detected from fission events. These fission events are predominantly produced by the delayed neutrons from fission products resulting from interactions with the 10-MeV bremsstrahlung photons during the interrogating probe burst.

Hollas, C.L.; Goulding, C.A.; Moss, C.E.; Myers, W.L.

2000-07-01T23:59:59.000Z

407

A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities  

SciTech Connect (OSTI)

Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in this domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.

Gillen, David S.

2014-08-07T23:59:59.000Z

408

First Neutron Spectrometry Measurement at the HL-2A Tokamak  

E-Print Network [OSTI]

A compact neutron spectrometer based on the liquid scintillator is presented for the neutron energy spectrum measurement at the HL-2A tokamak. The spectrometer has been well characterized and a fast digital pulse shape discrimination software has been developed using the charge comparison method. A digitizer data acquisition system with the maximum frequency of 1 MHz can work under the high count rate environment at HL-2A. Specific radiation shielding and magnetic shielding for the spectrometerhas been designed for the neutron spectrum measurement at the HL-2A Tokamak. For the analysis of the pulse height spectrum, dedicated numerical simulation utilizing NUBEAM combining with GENESIS has been made to obtain the neutron energy spectrum, following which the transportation process from the plasma to the detector has been evaluated with Monte Carlo calculations. The distorted neutron energy spectrum has been folded with response matrix of the liquid scintillation spectrometer, and good consistency has been found...

Xi, Yuan; Xufei, Xie; Zhongjing, Chen; Xingyu, Peng; Tieshuan, Fan; Jinxiang, Chen; Xiangqing, Li; Guoliang, Yuan; Jinwei, Yang; Qingwei, Yang

2013-01-01T23:59:59.000Z

409

Position sensitive detection of neutrons in high radiation background field  

SciTech Connect (OSTI)

We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high ? and e{sup ?} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 ?m{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup ?4}.

Vavrik, D., E-mail: vavrik@itam.cas.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, Prague (Czech Republic); Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Jakubek, J.; Pospisil, S. [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic)] [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Vacik, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)] [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)

2014-01-15T23:59:59.000Z

410

Rotational and magnetic field instabilities in neutron stars  

SciTech Connect (OSTI)

In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

Kokkotas, Kostas D. [Theoretical Astrophysics, IAAT, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

2014-01-14T23:59:59.000Z

411

Electron-neutron scattering and transport properties of neutron stars  

E-Print Network [OSTI]

We show that electrons can couple to the neutron excitations in neutron stars and find that this can limit their contribution to the transport properties of dense matter, especially the shear viscosity. The coupling between electrons and neutrons is induced by protons in the core, and by ions in the crust. We calculate the effective electron-neutron interaction for the kinematics of relevance to the scattering of degenerate electrons at high density. We use this interaction to calculate the electron thermal conductivity, electrical conductivity, and shear viscosity in the neutron star inner crust, and in the core where we consider both normal and superfluid phases of neutron-rich matter. In some cases, particularly when protons are superconducting and neutrons are in their normal phase, we find that electron-neutron scattering can be more important than the other scattering mechanisms considered previously.

Bertoni, Bridget; Rrapaj, Ermal

2014-01-01T23:59:59.000Z

412

Novel neutron focusing mirrors for compact neutron sources  

E-Print Network [OSTI]

We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. ...

Gubarev, M.V.

413

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

SciTech Connect (OSTI)

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the probability of UCN losses from the trap was only 1% of that for neutron {beta} decay. The neutron lifetime obtained, 878.5{+-}0.7{sub stat}{+-}0.3{sub sys} s, is the most accurate experimental measurement to date.

Serebrov, A. P.; Varlamov, V. E.; Kharitonov, A. G.; Fomin, A. K.; Krasnoschekova, I. A.; Lasakov, M. S.; Taldaev, R. R.; Vassiljev, A. V.; Zherebtsov, O. M. [Petersburg Nuclear Physics Institute, Russian Academy of Sciences, RU-188300 Gatchina, Leningrad District (Russian Federation); Pokotilovski, Yu. N. [Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow Region (Russian Federation); Geltenbort, P. [Institut Max von Laue Paul Langevin, Boite Postal 156, F-38042 Grenoble Cedex 9 (France)

2008-09-15T23:59:59.000Z

414

Neutron lifetime measurements using gravitationally trapped ultracold neutrons  

E-Print Network [OSTI]

Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

2007-02-06T23:59:59.000Z

415

Enhancing Neutron Beam Production with a Convoluted Moderator  

SciTech Connect (OSTI)

We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

Iverson, Erik B [ORNL] [ORNL; Baxter, David V [Center for the Exploration of Energy and Matter, Indiana University] [Center for the Exploration of Energy and Matter, Indiana University; Muhrer, Guenter [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Ansell, Stuart [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Gallmeier, Franz X [ORNL] [ORNL; Dalgliesh, Robert [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lu, Wei [ORNL] [ORNL; Kaiser, Helmut [Center for the Exploration of Energy and Matter, Indiana University] [Center for the Exploration of Energy and Matter, Indiana University

2014-01-01T23:59:59.000Z

416

activity-based cost analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paris-Sud XI, Universit de 6 Le Time Driven Activity Based Costing (TDABC): "New Wine, or Just New Bottles?" Physics Websites Summary: Le Time Driven Activity Based...

417

Analysis of the interaction between air transportation and economic activity : a worldwide perspective  

E-Print Network [OSTI]

Air transportation usage and economic activity are interdependent. Air transportation provides employment and enables certain economic activities which are dependent on the availability of air transportation services. The ...

Ishutkina, Mariya A. (Mariya Aleksandrovna)

2009-01-01T23:59:59.000Z

418

Strangeness in Neutron Stars  

E-Print Network [OSTI]

It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which numerous novel particles processes are likely to compete with each other. These processes range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, iron. In the latter event, neutron stars would be largely composed of pure quark matter, eventually enveloped in a thin nuclear crust. No matter which physical processes are actually realized inside neutron stars, each one leads to fingerprints, some more pronounced than others though, in the observable stellar quantities. This feature combined with the unprecedented progress in observational astronomy, which allows us to see vistas with remarkable clarity that previously were only imagined, renders neutron stars to nearly ideal probes for a wide range of physical studies, including the role of strangeness in dense matter.

Fridolin Weber

2000-08-23T23:59:59.000Z

419

Portable Neutron Sensors for Emergency Response Operations  

SciTech Connect (OSTI)

This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

Mukhopadhyay, S., Maurer, R., Detweiler, R.

2012-06-22T23:59:59.000Z

420

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

SciTech Connect (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - activation analysis approach Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Approach Analysis of business process graph (before business process execution) Data mining (during... business process execution) 3 12;Optimization Approach: Analysis A B C D E...

422

NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT  

SciTech Connect (OSTI)

We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

Andrew Stroud, Lee Sawyer

2012-08-31T23:59:59.000Z

423

Neutron beam characterization at the Neutron Radiography Reactor (NRAD)  

SciTech Connect (OSTI)

The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

1990-01-01T23:59:59.000Z

424

Neutron tomography of axisymmetric flow fields in porous media A.J. Gilbert, M.R. Deinert  

E-Print Network [OSTI]

Neutron tomography of axisymmetric flow fields in porous media A.J. Gilbert, M.R. Deinert February 2013 Keywords: Preferential flow Wetting front Neutron radiography Image analysis Fingered flow axisymmetric preferential flow fields using neutron radiography. Flow fields such as these are surprisingly

Deinert, Mark

425

Magnetic fields in Neutron Stars  

E-Print Network [OSTI]

Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

Viganò, Daniele; Miralles, Juan A; Rea, Nanda

2015-01-01T23:59:59.000Z

426

Analysis of the Interaction Between Air Transportation and Economic Activity: A Worldwide Perspective  

E-Print Network [OSTI]

Air transportation usage and economic activity are interdependent. Air transportation provides employment

Ishutkina, Mariya A.

2011-10-14T23:59:59.000Z

427

Analysis of the Interaction Between Air Transportation and Economic Activity: A Worldwide Perspective  

E-Print Network [OSTI]

Air transportation usage and economic activity are interdependent. Air transportation provides employment

Hansman, R. John

2009-03-30T23:59:59.000Z

428

Spherical neutron generator  

DOE Patents [OSTI]

A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

Leung, Ka-Ngo

2006-11-21T23:59:59.000Z

429

Personnel electronic neutron dosimeter  

DOE Patents [OSTI]

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

1984-12-18T23:59:59.000Z

430

Personnel electronic neutron dosimeter  

DOE Patents [OSTI]

A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

Falk, R.B.; Tyree, W.H.

1982-03-03T23:59:59.000Z

431

Neutron Scattering Tutorials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamNDiscoveryNeutron

432

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

2013-11-12T23:59:59.000Z

433

Corrosion resistant neutron absorbing coatings  

DOE Patents [OSTI]

A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

2012-05-29T23:59:59.000Z

434

Fast neutron dosimetry  

SciTech Connect (OSTI)

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01T23:59:59.000Z

435

NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY  

SciTech Connect (OSTI)

NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

HOLDEN,N.E.

1999-09-10T23:59:59.000Z

436

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

1992-01-01T23:59:59.000Z

437

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

1992-01-01T23:59:59.000Z

438

Constraints on new interactions from neutron scattering experiments  

E-Print Network [OSTI]

Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.

Yu. N. Pokotilovski

2006-01-19T23:59:59.000Z

439

2010 American Conference on Neutron Scattering (ACNS 2010)  

SciTech Connect (OSTI)

The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local organization and planning assistance. Additional logistical support is being provided this year through a partnership with the conferencing office of the Materials Research Society (MRS). The ACNS, targeting the entire potential neutron North American user community, complements the annual NIST, ANL and LANSCE neutron and scattering schools which give hands-on experience primarily to graduate students who anticipate using neutron scattering in their thesis research. The summer schools are promoted at the ACNS and represent a natural path for students to take after being inspired by the activities of the ACNS.

Billinge, Simon

2011-06-17T23:59:59.000Z

440

Energy density functional for nuclei and neutron stars  

E-Print Network [OSTI]

We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of $^{208}$Pb and the neutron star radius. We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands.

J. Erler; C. J. Horowitz; W. Nazarewicz; M. Rafalski; P. -G. Reinhard

2012-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "neutron activation analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Non-destructive method for determining neutron exposure  

DOE Patents [OSTI]

A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

Gold, R.; McElroy, W.N.

1983-11-01T23:59:59.000Z

442

Characteristics of the Neutron Irradiation Facilities of the PSI Calibration Laboratory  

SciTech Connect (OSTI)

The neutron radiation fields of the Calibration Laboratory at Paul Scherrer Institute (PSI) are traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. A Berthold LB6411 neutron dose rate meter for neutron radiation is used as a secondary standard. Recently, a thorough characterization of the neutron irradiation fields of the {sup 241}Am-Be and {sup 252}Cf sources by means of reference measurements and a detailed MCNPX simulation of the irradiation facility has been initiated. In this work, the characteristics of the neutron radiation fields are summarized and presented together with model equations and an uncertainty analysis. MCNPX results are shown for the {sup 241}Am-Be source. A comparison of measured and simulated data shows an excellent agreement. From the simulation, valuable information about the neutron fields like the contribution of scattered neutrons in the fields and the energy spectra could be obtained.

Hoedlmoser, H.; Schuler, Ch.; Butterweck, G.; Mayer, S. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2011-12-13T23:59:59.000Z

443

Gamma neutron assay method and apparatus  

DOE Patents [OSTI]

The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

Cole, Jerald D. (Idaho Falls, ID); Aryaeinejad, Rahmat (Idaho Falls, ID); Greenwood, Reginald C. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

444

Gamma neutron assay method and apparatus  

DOE Patents [OSTI]

The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

1995-01-03T23:59:59.000Z