Sample records for neutrino properties number

  1. Neutrino properties deduced from the study of lepton number violating processes at low and high energies

    SciTech Connect (OSTI)

    Stoica, Sabin [Horia Hulubei Foundation, P.O. Box MG-12, 077125 Magurele-Bucharest (Romania) and Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Magurele-Bucharest 077125 (Romania)

    2012-11-20T23:59:59.000Z

    There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

  2. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect (OSTI)

    Väänänen, Daavid; Volpe, Cristina, E-mail: vaananen@ipno.in2p3.fr, E-mail: volpe@ipno.in2p3.fr [Institut de Physique Nucléaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France)

    2011-10-01T23:59:59.000Z

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  3. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15T23:59:59.000Z

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  4. Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states --Neutrino oscillations and decay probabilities--

    E-Print Network [OSTI]

    Fujii, Kanji

    2014-01-01T23:59:59.000Z

    On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e. pre-mixing) formulas of decay probabilities. Together, it is shown that the oscillation formulas, similar to the usual ones, are applied irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are the same in form as the usually used ones except for the oscillation length.

  5. Universal neutrino mass hierarchy and cosmological baryon number asymmetry

    SciTech Connect (OSTI)

    Xing Zhizhong [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China); Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918 (4), Beijing 100039 (China)

    2004-10-01T23:59:59.000Z

    We conjecture that three light Majorana neutrinos and their right-handed counterparts may have a universal geometric mass hierarchy. Incorporating this phenomenological conjecture with the Fritzsch texture of lepton mass matrices in a simple seesaw mechanism, we show that it is possible to simultaneously account for current neutrino oscillation data and the cosmological baryon number asymmetry via leptogenesis.

  6. Probing Late Neutrino Mass Properties With SupernovaNeutrinos

    SciTech Connect (OSTI)

    Baker, Joseph; Goldberg, Haim; Perez, Gilad; Sarcevic, Ina

    2007-08-08T23:59:59.000Z

    Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an Abelian U(1) model for generating neutrino masses at low scales, and show that there are cases for which the changes induced in the flux allow one to distinguish the Majorana or Dirac nature of neutrinos, as well as the type of neutrino mass hierarchy (normal or inverted or quasi-degenerate). In some region of parameter space the determination of the absolute values of the neutrino masses is also conceivable. Measurements of the presence of these effects may be possible at the next-generation water Cerenkov detectors enriched with Gadolinium, or a 100 kton liquid argon detector.

  7. Neutrino masses and the number of neutrino species from WMAP and 2dFGRS

    E-Print Network [OSTI]

    Steen Hannestad

    2003-03-04T23:59:59.000Z

    We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of \\sum m_nu < 1.0 eV (95% conf.), but this limit is dependent on priors. We find that the WMAP and 2dF data alone cannot rule out the evidence from neutrinoless double beta decay reported by the Heidelberg-Moscow experiment. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, N_nu, that N_nu = 4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\

  8. INTRODUCTION TO THE NEUTRINO PROPERTIES LISTINGS

    E-Print Network [OSTI]

    of neutrino oscillation searches show that the mixing matrix contains two large mixing angles. We cannot is determined and the study of neutrino oscillations provides us with the values of all neutrino mass neutrino oscillation experiments can be consistently described using three active neutrino flavors, i

  9. Neutrino Properties Before and After KamLAND

    E-Print Network [OSTI]

    S. Pakvasa; J. W. F. Valle

    2003-02-05T23:59:59.000Z

    We review neutrino oscillation physics, including the determination of mass splittings and mixings from current solar, atmospheric, reactor and accelerator neutrino data. A brief discussion is given of cosmological and astrophysical implications. Non-oscillation phenomena such as neutrinoless double beta decay would, if discovered, probe the absolute scale of neutrino mass and also reveal their Majorana nature. Non-oscillation descriptions in terms of spin-flavor precession (SFP) and non-standard neutrino interactions (NSI) currently provide an excellent fit of the solar data. However they are at odds with the first results from the KamLAND experiment which imply that, despite their theoretical interest, non-standard mechanisms can only play a sub-leading role in the solar neutrino anomaly. Accepting the LMA-MSW solution, one can use the current solar neutrino data to place important restrictions on non-standard neutrino properties, such as neutrino magnetic moments. Both solar and atmospheric neutrino data can also be used to place constraints on neutrino instability as well as the more exotic possibility of $CPT$ and Lorentz Violation. Weillustrate the potential of future data from experiments such as KamLAND, Borexino and the upcoming neutrino factories in constraining non-standard neutrino properties.

  10. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect (OSTI)

    Cooper, N.G. [ed.] [ed.

    1997-12-31T23:59:59.000Z

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  11. INTRODUCTION TO THE NEUTRINO PROPERTIES LISTINGS

    E-Print Network [OSTI]

    of neutrino oscillation searches show that the mixing matrix contains two large mixing angles. We cannot oscillations provides us with the values of all neutrino mass-squared differences m2 ij m2 i - m2 j be determined. All confirmed neutrino oscillation experiments using solar, reactor, atmospheric and accelerator

  12. INTRODUCTION TO THE NEUTRINO PROPERTIES LISTINGS

    E-Print Network [OSTI]

    of neutrino oscillation searches show that the mixing matrix contains two large mixing angles. We cannot oscillations provides us with the values of all neutrino mass-squared differences m2 ij m2 i - m2 j be determined. So far solar, reactor, atmospheric and accelerator neutrino oscillation experiments can

  13. Mass Spectrum and Number of Light Neutrinos: An Attempt of the Gauge Explanation

    E-Print Network [OSTI]

    Dyatlov, I T

    2009-01-01T23:59:59.000Z

    Symplectic flavour symmetry group Sp(n/2) (n is even) of n Majorana states does not allow for invariant Majorana masses. Only specific mass matrices with diagonal and nondiagonal elements are possible here. As a result of the spontaneous violation of flavour and chiral symmetries, a mass matrix could appear only for the number of flavours n = 6 and only together with R,L-symmetry violation (i.e., parity violation). The see-saw mechanism produces here three light and three heavy Dirac particles (neutrinos). The peculiarity of the observed light neutrino spectrum: two states located far from the third one, can be explained by certain simple properties of mass matrices appearing in Sp(3). The ordering of the states corresponds to normal mass hierarchy. Situation, when neutrino mass differences are significantly less than masses themselves, appears to be unrealizable here. Mixing angles for neutrinos can not be determined without understanding formation mechanisms for charged lepton spectrum and Majorana state we...

  14. Mass Spectrum and Number of Light Neutrinos: An Attempt of the Gauge Explanation

    E-Print Network [OSTI]

    I. T. Dyatlov

    2009-10-01T23:59:59.000Z

    Symplectic flavour symmetry group Sp(n/2) (n is even) of n Majorana states does not allow for invariant Majorana masses. Only specific mass matrices with diagonal and nondiagonal elements are possible here. As a result of the spontaneous violation of flavour and chiral symmetries, a mass matrix could appear only for the number of flavours n = 6 and only together with R,L-symmetry violation (i.e., parity violation). The see-saw mechanism produces here three light and three heavy Dirac particles (neutrinos). The peculiarity of the observed light neutrino spectrum: two states located far from the third one, can be explained by certain simple properties of mass matrices appearing in Sp(3). The ordering of the states corresponds to normal mass hierarchy. Situation, when neutrino mass differences are significantly less than masses themselves, appears to be unrealizable here. Mixing angles for neutrinos can not be determined without understanding formation mechanisms for charged lepton spectrum and Majorana state weak currents.

  15. Computation of the number of neutrino events which can be registered in Borexino detector from the Sun neutrinos flux with energy $E_?= 0.862 MeV$

    E-Print Network [OSTI]

    Kh. M. Beshtoev

    2008-08-14T23:59:59.000Z

    This paper gives an estimation of the number of neutrinos which can be registered in Borexino detector from the Sun neutrinos generated in reaction $^{7}Be + e^{-} \\to ^{7}Li + \

  16. Neutrino mass, lepton number, and the origin of matter

    E-Print Network [OSTI]

    antiparticles? And many other things% Do neutrinos violate CP? #12;Neutrinoless Double Beta Decay W. Rodejohann? #12;Neutrinoless Double Beta Decay 1 sigma W. Rodejohann, 1206.2560 #12;14 F. Iachello #12;15 Regions

  17. CPT and lepton number violation in neutrino sector: Modified mass matrix and oscillation due to gravity

    E-Print Network [OSTI]

    Monika Sinha; Banibrata Mukhopadhyay

    2007-11-21T23:59:59.000Z

    We study the consequences of CPT and lepton number violation in neutrino sector. For CPT violation we take gravity with which neutrino and antineutrino couple differently. Gravity mixes neutrino and antineutrino in an unequal ratio to give two mass eigenstates. Lepton number violation interaction together with CPT violation gives rise to neutrino-antineutrino oscillation. Subsequently, we study the neutrino flavor mixing and oscillation under the influence of gravity. It is found that gravity changes flavor oscillation significantly which influences the relative abundance of different flavors in present universe. We show that the neutrinoless double beta decay rate is modified due to presence of gravity- the origin of CPT violation, as the mass of the flavor state is modified.

  18. Constraining neutrino properties with a Euclid-like galaxy cluster survey

    SciTech Connect (OSTI)

    Cerbolini, M. Costanzi Alunno; Sartoris, B.; Borgani, S. [Universitá di Trieste, Dipartimento di Fisica, via Valerio, 2, 34127 Trieste (Italy); Xia, Jun-Qing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O.Box 918-3, Beijing 100049, P.R.China (China); Biviano, A.; Viel, M., E-mail: costanzi@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: xiajq@ihep.ac.cn, E-mail: borgani@oats.inaf.it, E-mail: viel@oats.inaf.it, E-mail: biviano@oats.inaf.it [INAF-Osservatorio Astronomico di Trieste, via Tiepolo 11, 34143 Trieste (Italy)

    2013-06-01T23:59:59.000Z

    We perform a forecast analysis on how well a Euclid-like photometric galaxy cluster survey will constrain the total neutrino mass and effective number of neutrino species. We base our analysis on the Monte Carlo Markov Chains technique by combining information from cluster number counts and cluster power spectrum. We find that combining cluster data with Cosmic Microwave Background (CMB) measurements from Planck improves by more than an order of magnitude the constraint on neutrino masses compared to each probe used independently. For the ?CDM+m{sub ?} model the 2? upper limit on total neutrino mass shifts from ?m{sub ?} < 0.35 eV using cluster data alone to ?m{sub ?} < 0.031 eV when combined with Planck data. When a non-standard scenario with N{sub eff}?3.046 number of neutrino species is considered, we estimate an upper limit of N{sub eff} < 3.14 (95%CL), while the bounds on neutrino mass are relaxed to ?m{sub ?} < 0.040 eV. This accuracy would be sufficient for a 2? detection of neutrino mass even in the minimal normal hierarchy scenario (?m{sub ?} ? 0.05 eV). In addition to the extended ?CDM+m{sub ?}+N{sub eff} model we also consider scenarios with a constant dark energy equation of state and a non-vanishing curvature. When these models are considered the error on ?m{sub ?} is only slightly affected, while there is a larger impact of the order of ? 15% and ? 20% respectively on the 2? error bar of N{sub eff} with respect to the standard case. To assess the effect of an uncertain knowledge of the relation between cluster mass and optical richness, we also treat the ?CDM+m{sub ?}+N{sub eff} case with free nuisance parameters, which parameterize the uncertainties on the cluster mass determination. Adopting the over-conservative assumption of no prior knowledge on the nuisance parameter the loss of information from cluster number counts leads to a large degradation of neutrino constraints. In particular, the upper bounds for ?m{sub ?} are relaxed by a factor larger than two, ?m{sub ?} < 0.083 eV (95%CL), hence compromising the possibility of detecting the total neutrino mass with good significance. We thus confirm the potential that a large optical/near-IR cluster survey, like that to be carried out by Euclid, could have in constraining neutrino properties, and we stress the importance of a robust measurement of masses, e.g. from weak lensing within the Euclid survey, in order to full exploit the cosmological information carried by such survey.

  19. Attempt at a gauge-theory-based explanation of the mass spectrum and number of light neutrinos

    SciTech Connect (OSTI)

    Dyatlov, I. T. [Russian Academy of Sciences, Petersburg Nuclear Physics Institute (Russian Federation)

    2009-12-15T23:59:59.000Z

    The symplectic group Sp(n/2) of invariance of flavors of n Majorana states (n is even) does not admit the existence of invariant Majorana masses. Only a specific mass matrix involving diagonal and off-diagonal elements is possible. A mass matrix as a result of spontaneous flavor- and chiral-symmetry breaking may appear here only in the case where the number of flavors is n = 6 and only together with spontaneous R- and L-symmetry violation-that is, parity violation. As a result, three light and three heavy Dirac particles (neutrinos) are present if the seesaw mechanism is operative. Special features of the observed spectrum of light neutrinos-in particular, the fact that two states are far off the third one-can be explained by simple properties of the mass matrices arising in Sp(3). The arrangement of states corresponds to an ordinary mass hierarchy. The mixing angles for physical neutrinos cannot be determined without understanding the mechanisms responsible for the formation of the charged-lepton spectrum and the weak current of Majorana states.

  20. A new map of neutrino cosmology - revised bounds on the number of neutrino species and the cosmological lepton asymmetry from WMAP data

    E-Print Network [OSTI]

    Hannestad, S

    2003-01-01T23:59:59.000Z

    We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of equivalent number of neutrino species, N_nu, that N_nu = 2.1+1.6-1.8 (95% conf.). This limit on relativistic energy density can be translated into a bound on the neutrino lepton asymmetry of |eta| 5% conf), assuming that the asymmetry is entirely in one flavour. When BBN constraints are added, the bound on N_nu is 2.5 +- 0.5 (95% conf), suggesting that N_nu could possibly be lower than the standard model value of 3. this can for instance be the case in models with very low reheating temperature and incomplete neutrino thermalization.

  1. The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit

    E-Print Network [OSTI]

    Boris V. Tarasov

    2007-04-07T23:59:59.000Z

    In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

  2. Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection

    E-Print Network [OSTI]

    Price, P. Buford

    Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection P. Buford Price The collecting power and imaging ability of planned ultrahigh-energy neutrino, and for deep seawater. The effective scattering coefficient is smallest for the clearest deep ocean sites

  3. Probing New Physics with Astrophysical Neutrinos

    E-Print Network [OSTI]

    Nicole F. Bell

    2008-11-06T23:59:59.000Z

    We review the prospects for probing new physics with neutrino astrophysics. High energy neutrinos provide an important means of accessing physics beyond the electroweak scale. Neutrinos have a number of advantages over conventional astronomy and, in particular, carry information encoded in their flavor degree of freedom which could reveal a variety of exotic neutrino properties. We also outline ways in which neutrino astrophysics can be used to constrain dark matter properties, and explain how neutrino-based limits lead to a strong general bound on the dark matter total annihilation cross-section.

  4. Lepton number violating processes mediated by Majorana neutrinos at hadron colliders

    SciTech Connect (OSTI)

    Kovalenko, Sergey; Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico, Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2009-10-01T23:59:59.000Z

    We study the lepton number violating like-sign dilepton processes h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}jjX and h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}W{sup {+-}}X, mediated by heavy GeV scale Majorana neutrinos. We focus on the resonantly enhanced contributions with a nearly on-mass-shell Majorana neutrino in the s channel. We study the constraints on like-sign dilepton production at the Tevatron and the LHC on the basis of the existing experimental limits on the masses of heavy neutrinos and their mixings U{sub {alpha}}{sub N} with {alpha}={nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}. Special attention is paid to the constraints from neutrinoless double beta decay. We note that searches for like-sign e{sup {+-}}e{sup {+-}} events at Tevatron and LHC may provide evidence of CP violation in the neutrino sector. We also discuss the conditions under which it is possible to extract individual constraints on the mixing matrix elements in a model independent way.

  5. Collective Property of Numbers and Its Mathematical Refutation

    E-Print Network [OSTI]

    Guang-Liang Li; Victor O. K. Li

    2008-12-18T23:59:59.000Z

    A number has the "collective" property if the number is the greatest lower bound of a bounded, strictly decreasing sequence on the real line. We prove that numbers with the collective property constitute an empty set.

  6. Property:PhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter iconNumOfPlants JumpPhoneNumber Jump to:

  7. Neutrino Physics

    E-Print Network [OSTI]

    Gil-Botella, I

    2013-01-01T23:59:59.000Z

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  8. Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30NeutrinoNeutrinos from the

  9. Aspects of Neutrino Masses and Lepton-Number Violation in the light of the Super-Kamiokande data

    E-Print Network [OSTI]

    Smaragda Lola

    1999-03-01T23:59:59.000Z

    We discuss aspects of neutrino masses and lepton-number violation, in the light of the observations of Super-Kamiokande. As a first step, we use the data from various experiments, in order to obtain a phenomenological understanding of neutrino mass textures. We then investigate how the required patterns of neutrino masses and mixings are related to the flavour structure of the underlying theory. In supersymmetric extensions of the Standard Model, renormalisation group effects can have important implications: for small tanb, bottom-tau unification indicates the presence of significant muon-tau flavour mixing. The evolution of the neutrino mixing may be described by simple semi-analytic expressions, which confirm that, for large tanb, very small mixing at the GUT scale may be amplified to maximal mixing at low energies, and vice versa. Passing to specific models, we first discuss the predictions for neutrino masses in different GUT models (including superstring-embedded solutions). Imposing the requirement for successful leptogenesis may give additional constraints on the generic structure of the neutrino mass textures. Finally, we discuss direct ways to look for lepton-number violation in ultra-high energy neutrino interactions.

  10. Neutrinos: in and out of the standard model

    SciTech Connect (OSTI)

    Parke, Stephen; /Fermilab

    2006-07-01T23:59:59.000Z

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  11. Connection between the neutrino seesaw mechanism and properties of the Majorana neutrino mass matrix

    SciTech Connect (OSTI)

    Ma, Ernest [Physics Department, University of California, Riverside, California 92521 (United States)

    2005-06-01T23:59:59.000Z

    If it can be ascertained experimentally that the 3x3 Majorana neutrino mass matrix M{sub {nu}} has vanishing determinants for one or more of its 2x2 submatrices, it may be interpreted as supporting evidence for the theoretically well-known canonical seesaw mechanism. I show how these two things are connected and offer a realistic M{sub {nu}} with two zero subdeterminants as an example.

  12. Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino cross section

  13. Cosmic neutrino cascades from secret neutrino interactions

    E-Print Network [OSTI]

    Kenny C. Y. Ng; John F. Beacom

    2014-11-01T23:59:59.000Z

    The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the Cosmic Neutrino Background (C$\

  14. Secret of Neutrino Oscillations

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2012-03-08T23:59:59.000Z

    The new effect of partial and full destruction of the neutrino oscillation pattern due to the neutrino wave packets separation in the transverse plane to the direction of the neutrino propagation is investigated. It is shown that this effect is significant in the real oscillation data, in particular, for the solar neutrinos, and dramatically changes the extracted physical properties of neutrinos.

  15. On some arithmetic properties of polynomial expressions involving Stirling numbers

    E-Print Network [OSTI]

    Klazar, Martin

    On some arithmetic properties of polynomial expressions involving Stirling numbers of the second by the grant SEP-CONACYT 37259-E. 1 #12;Abstract Let S(n, k) be the classical Stirling numbers of the second. We give similar but more particular results on the more general Stirling-like numbers T(n, k). 2 #12

  16. Experimental Neutrino Physics: Final Report

    SciTech Connect (OSTI)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05T23:59:59.000Z

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  17. Neutrino Physics: Fundamentals of Neutrino Oscillations

    E-Print Network [OSTI]

    C. W. Kim

    1996-07-22T23:59:59.000Z

    In this lecture we review some of the basic properties of neutrinos, in particular their mass and the oscillation behavior. First we discuss how to describe the neutrino mass. Then, under the assumption that neutrinos are massive and mixed, the fundamentals of the neutrino oscillations are discussed with emphasis on subtle aspects which have been overlooked in the past. We then review the terrestrial neutrino oscillation experiments in the framework of three generations of neutrinos with the standard mass hierarchy. Finally, a brief summary of the current status of the solar and atmospheric neutrino problems will be given.

  18. Neutrino Masses

    E-Print Network [OSTI]

    Christian Weinheimer; Kai Zuber

    2013-09-04T23:59:59.000Z

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino mass of {\\cal O}(100) meV. The principle methods and these experiments will be discussed in this short review.

  19. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

    2015-04-01T23:59:59.000Z

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  20. The Intermediate Neutrino Program

    E-Print Network [OSTI]

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01T23:59:59.000Z

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  1. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  2. Neutrinos in Nuclear Physics

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  3. Detecting neutrinos from black hole neutron stars mergers

    E-Print Network [OSTI]

    O. L. Caballero; G. C. McLaughlin; R. Surman

    2009-10-08T23:59:59.000Z

    While it is well known that neutrinos are emitted from standard core collapse protoneutron star supernovae, less attention has been focused on neutrinos from accretion disks. These disks occur in some supernovae (i.e. "collapsars") as well as in compact object mergers, and they emit neutrinos with similar properties to those from protoneutron star supernovae. These disks and their neutrinos play an important role in our understanding of gamma ray bursts as well as the nucleosynthesis they produce. We study a disk that forms in the merger of a black hole and a neutron star and examine the neutrino fluxes, luminosities and neutrino surfaces for the disk. We also estimate the number of events that would be registered in current and proposed supernova neutrino detectors if such an event were to occur in the Galaxy.

  4. Transport properties and neutrino emissivity of dense neutron-star matter with localized protons

    E-Print Network [OSTI]

    D. A. Baiko; P. Haensel

    1999-06-18T23:59:59.000Z

    As pointed out by Kutschera and W{\\'o}jcik, very low concentration of protons combined with a specific density dependence of effective neutron-proton interaction could lead to a localization of ``proton impurities'' in neutron medium at densities exceeding four times normal nuclear matter density. We study consequences of the localization of protons for transport processes in dense neutron star cores, assuming random distribution of proton impurities. Kinetic equations, relevant for the transport of charge, heat and momentum, are solved using variational method. Localization of protons removes a T^{-2} factor from the transport coefficients, which leads, at lower temperatures, to a strong decrease of thermal conductivity, electrical conductivity and shear viscosity of neutron star matter, as compared to the standard case, where protons form a Fermi liquid. Due to the localization of protons a number of conventional neutrino emission processes (including modified URCA process) become inoperative in neutron star cores. On the other hand, the energy loss rate from neutrino-antineutrino pair bremsstrahlung due to electron and neutron scattering off (localized) protons, will have a specific T^6 dependence, which could modify the cooling of the neutron star core, as compared to the standard case. Possible astrophysical implications of the localization of protons for neutron star evolution and dynamics are discussed.

  5. Neutrino astrophysics : recent advances and open issues

    E-Print Network [OSTI]

    Volpe, Cristina

    2015-01-01T23:59:59.000Z

    We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

  6. FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

    SciTech Connect (OSTI)

    Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d'Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France)

    2012-02-10T23:59:59.000Z

    We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

  7. Property:Buildings/ReportNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType Jump to: navigation, search This is a propertyReportNumber

  8. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDscProperty EditSerialNumber

  9. UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments

    E-Print Network [OSTI]

    Bryce Littlejohn; K. M. Heeger; T. Wise; E. Gettrust; M. Lyman

    2009-07-21T23:59:59.000Z

    UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.

  10. Acquiring information about neutrino parameters by detecting supernova neutrinos

    SciTech Connect (OSTI)

    Huang, Ming-Yang; Guo, Xin-Heng [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Young, Bing-Lin [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 5001 (United States); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-01T23:59:59.000Z

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  11. Solar Models: current epoch and time dependences, neutrinos, and helioseismological properties

    E-Print Network [OSTI]

    John N. Bahcall; M. H. Pinsonneault; Sarbani Basu

    2001-03-13T23:59:59.000Z

    We calculate accurate solar models and report the detailed time dependences of important solar quantities. We use helioseismology to constrain the luminosity evolution of the sun and report the discovery of semi-convection in evolved solar models that include diffusion. In addition, we compare the computed sound speeds with the results of p-mode observations by BiSON, GOLF, GONG, LOWL, and MDI instruments. We contrast the neutrino predictions from a set of eight standard-like solar models and four deviant (or deficient) solar models with the results of solar neutrino experiments. For solar neutrino and for helioseismological applications, we present present-epoch numerical tabulations of characteristics of the standard solar model as a function of solar radius, including the principal physical and composition variables, sound speeds, neutrino fluxes, and functions needed for calculating solar neutrino oscillations.

  12. LSND neutrino oscillation results

    SciTech Connect (OSTI)

    Louis, W.C.

    1996-06-01T23:59:59.000Z

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say {bar {nu}}{sub {mu}}) spontaneously transforms into a neutrino of another type (say {bar {nu}}{sub e}). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with {bar {nu}}{sub {mu}} oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations.

  13. Sterile Neutrinos and Light Dark Matter Save Each Other

    E-Print Network [OSTI]

    Chiu Man Ho; Robert J. Scherrer

    2013-03-13T23:59:59.000Z

    Short baseline neutrino experiments such as LSND and MiniBooNE seem to suggest the existence of light sterile neutrinos. Meanwhile, current cosmic microwave background (CMB) and big bang nucleosynthesis (BBN) measurements place an upper bound on the effective number of light neutrinos, $N_{eff}$ and the PLANCK satellite will measure $N_{eff}$ to a much higher accuracy and further constrain the number of sterile neutrinos allowed. We demonstrate that if an MeV dark matter particle couples more strongly to electrons and/or photons than to neutrinos, then p-wave annihilation after neutrino decoupling can reduce the value of $N_{eff}$ inferred from BBN and PLANCK. This mechanism can accommodate two eV sterile neutrinos even if PLANCK observes $N_{eff}$ as low as the standard model theoretical value of 3.046, and a large neutrino asymmetry is not needed to obtain the correct primordial element abundances. The dark matter annihilation also weakens the cosmological upper bounds on the neutrino masses, and we derive a relationship between the change in these bounds and the corresponding change in $N_{eff}$. Dark matter with an electric dipole moment or anapole moment is a natural candidate that exhibits the desired properties for this mechanism. Coincidentally, a dark matter particle with these properties and lighter than 3 MeV is precisely one that can explain the 511 keV gamma-ray line observed by INTEGRAL. We show that the addition of two eV sterile neutrinos allows this kind of dark matter to be lighter than 3 MeV, which is otherwise ruled out by the CMB bound on $N_{eff}$ if only active neutrinos are considered.

  14. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30T23:59:59.000Z

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  15. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05T23:59:59.000Z

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  16. B-L Neutrinos

    E-Print Network [OSTI]

    Cahill, K E

    1999-01-01T23:59:59.000Z

    Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu=0 for Dirac neutrinos and theta_nu=pi/2 for Majorana neutrinos. At theta_nu = 0 baryon-minus-lepton number is conserved. If theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the tiny mass differences exhibited in the solar and atmospheric neutrino experiments are naturally explained by the approximate conservation of B-L. Neutrinos are nearly Dirac fermions. This B-L model leads to these predictions: neutrinos oscillate mainly between flavor eigenfields and sterile eigenfields, and so neither KARMEN, nor SNO, nor BooNE will detect the appearance of neutrinos or antineutrinos; neutrinos may well be of cosmological importance; in principle the disappearance of the tau neutrino should be observable; and neutrinoless double-beta d...

  17. B-L Neutrinos

    E-Print Network [OSTI]

    Kevin Cahill

    2000-06-19T23:59:59.000Z

    Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu=0 for Dirac neutrinos and theta_nu=pi/2 for Majorana neutrinos. At theta_nu = 0 baryon-minus-lepton number is conserved. If theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the tiny mass differences exhibited in the solar and atmospheric neutrino experiments are naturally explained by the approximate conservation of B-L. Neutrinos are nearly Dirac fermions. This B-L model leads to these predictions: neutrinos oscillate mainly between flavor eigenfields and sterile eigenfields, and so the appearance of neutrinos and antineutrinos is suppressed; neutrinos may well be of cosmological importance; in principle the disappearance of the tau neutrino should be observable; and neutrinoless double-beta decay is suppressed by an extra factor of 10^(-5) and so will not be seen in the Heidelberg/Moscow, IGEX, GENIUS, or CUORE experiments.

  18. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResultsUtility JumpProperty

  19. Investigation of Neutrino Properties in Experiments at Nuclear Reactors: Present Status and Prospects

    E-Print Network [OSTI]

    L. A. Mikaelyan

    2002-10-07T23:59:59.000Z

    This paper was submitted in Russian edition of Journal Physics of Atomic Nuclei in 2001. The present status of experiments that are being performed at nuclear reactors in order to seek the neutrino masses, mixing, and magnetic moments, whose discovery would be a signal of the existence of physics beyond the Standard Model, is considered, along with their future prospects.

  20. Property:NumberOfIncentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation,NumberOfIncentives

  1. Property:NumberOfSolarResources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to:NumberOfSolarResources Jump to:

  2. Property:NumberOfUsers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to:NumberOfSolarResources Jump

  3. Property:NumberOfUtilityCompanies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to:NumberOfSolarResources

  4. MINOS Sterile Neutrino Search

    SciTech Connect (OSTI)

    Koskinen, David Jason; /University Coll. London

    2009-09-01T23:59:59.000Z

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  5. Neutrinos: Nature's Ghosts?

    SciTech Connect (OSTI)

    Lincoln, Don

    2013-06-18T23:59:59.000Z

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  6. Neutrinos: Nature's Ghosts?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12T23:59:59.000Z

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  7. Property:NumberOfUnits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon Twitter iconNumOfPlants Jump to:

  8. Property:FERC License Docket Number | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to: navigation, search This

  9. Property:GRR/SubsectionElementNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to:

  10. Property:NEPA FundingNumber | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpDocumentFundingNumber

  11. Property:NumberOfCompanies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation, search This is a

  12. Property:NumberOfDOELabPrograms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation, search This is

  13. Property:NumberOfEZFeedDsirePolicies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation, search This

  14. Property:NumberOfEZFeedPolicies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation, search

  15. Property:NumberOfEmployees | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to: navigation,

  16. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump to:

  17. Property:NumberOfLowCarbonPrograms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies

  18. Property:NumberOfNonCorporateOrganizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation, search This is a

  19. Property:NumberOfOrganizations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation, search This is

  20. Property:NumberOfPrograms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation, search This

  1. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation, search

  2. Property:NumberOfResourceAssessmentsEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation,

  3. Property:NumberOfResourceAssessmentsLand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to:

  4. Supernova Neutrinos Detection On Earth

    E-Print Network [OSTI]

    Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

    2009-05-12T23:59:59.000Z

    In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

  5. Neutrino mass matrix

    SciTech Connect (OSTI)

    Strobel, E.L.

    1985-01-01T23:59:59.000Z

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed.

  6. Baryogenesis via neutrino oscillations

    E-Print Network [OSTI]

    E. Kh. Akhmedov; V. A. Rubakov; A. Yu. Smirnov

    1998-07-29T23:59:59.000Z

    We propose a new mechanism of leptogenesis in which the asymmetries in lepton numbers are produced through the CP-violating oscillations of ``sterile'' (electroweak singlet) neutrinos. The asymmetry is communicated from singlet neutrinos to ordinary leptons through their Yukawa couplings. The lepton asymmetry is then reprocessed into baryon asymmetry by electroweak sphalerons. We show that the observed value of baryon asymmetry can be generated in this way, and the masses of ordinary neutrinos induced by the seesaw mechanism are in the astrophysically and cosmologically interesting range. Except for singlet neutrinos, no physics beyond the Standard Model is required.

  7. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect (OSTI)

    Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

    2012-11-20T23:59:59.000Z

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  8. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Frank F. Deppisch; P. S. Bhupal Dev; Apostolos Pilaftsis

    2015-03-09T23:59:59.000Z

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  9. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Deppisch, Frank F; Pilaftsis, Apostolos

    2015-01-01T23:59:59.000Z

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  10. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan [University of Alabama Department of Physics and Astronomy, Tuscaloosa, AL-35487 (United States)

    2011-10-06T23:59:59.000Z

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  11. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  12. Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande

    E-Print Network [OSTI]

    Tokyo, University of

    Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande Gaku- standard interactions using large number of atmospheric neutrino data in Super-Kamiokande. The analysis. As a result of the analyses with the atmospheric neutrino data from the Super-Kamiokande-I (1996

  13. Oscillation Effects and Time Variation of the Supernova Neutrino Signal

    E-Print Network [OSTI]

    James P. Kneller; Gail C. McLaughlin; Justin Brockman

    2007-05-25T23:59:59.000Z

    The neutrinos detected from the next Galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the MSW neutrino transformations as the star explodes by using the S-matrix - Monte Carlo - approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a Galactic supernova the evolution of the positron spectra within a water Cerenkov detector and the ratio of charged current to neutral current event rates for a heavy water - SNO like - detector and find that these detector signals are feasible probes of a number of explosion features.

  14. The Physics Of Supernova Neutrino Oscillations

    E-Print Network [OSTI]

    Kneller, James P

    2015-01-01T23:59:59.000Z

    On February 23, 1987 we collected 24 neutrinos from the explosion of a blue super-giant star in the Large Magellanic Cloud confirming the basic paradigm of core-collapse supernova. During the many years we have been waiting for a repeat of that momentous day, the number and size of neutrino detectors around the world has grown considerably. If the neutrinos from the next supernova in our Galaxy arrive tomorrow we shall collect upwards of tens of thousands of events and next generation detectors will increase the amount of data we collect by more than an order of magnitude. But it is also now apparent that the message is much more complex than previously thought because many time, energy and neutrino flavor dependent features are imprinted upon the signal either at emission or by the passage through the outer layers of the star. These features arise due to the explosion dynamics, the physics of nuclei at high temperatures and densities, and the properties of neutrinos. In this proceedings I will present some a...

  15. Neutrino properties in E{sub 6} Multiplication-Sign SU(2){sub F} SUSY GUT with spontaneous CP violation

    SciTech Connect (OSTI)

    Takayama, Kenichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2012-07-27T23:59:59.000Z

    We examined the neutrino sector in E{sub 6} Multiplication-Sign SU(2){sub F} SUSY GUT with spontaneous CP violation. At a first glance, the discrete symmetry, which is introduced in order to solve the SUSY CP problem, constrains the allowed operators too strongly for the neutrino sector to be consistent with the experimental data, i.e., the {mu} neutrino becomes massless as commented in the previous work. We showed that this issue can be solved if some operators are taken into account. The predictions on the neutrino masses and mixings are the same as the E{sub 6} models, which are consistent with various experiments on the neutrino oscillations.

  16. The influence of Reynolds numbers on resistance properties of jet pumps

    SciTech Connect (OSTI)

    Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

    2014-01-29T23:59:59.000Z

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  17. WMAPping out Neutrino Masses

    E-Print Network [OSTI]

    Aaron Pierce; Hitoshi Murayama

    2003-10-28T23:59:59.000Z

    Recent data from from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND). We also note that the Heidelberg--Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  18. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01T23:59:59.000Z

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  19. Neutrino Masses and Flavor Oscillations

    E-Print Network [OSTI]

    Yifang Wang; Zhi-zhong Xing

    2015-04-23T23:59:59.000Z

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.

  20. Neutrino Masses and Flavor Oscillations

    E-Print Network [OSTI]

    Wang, Yifang

    2015-01-01T23:59:59.000Z

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects will also be addressed.

  1. Neutrino Physics: A Selective Overview

    E-Print Network [OSTI]

    Scott M. Oser

    2006-04-11T23:59:59.000Z

    Neutrinos in the Standard Model of particle physics are massless, neutral fermions that seemingly do little more than conserve 4-momentum, angular momentum, lepton number, and lepton flavour in weak interactions. In the last decade conclusive evidence has demonstrated that the Standard Model's description of neutrinos does not match reality. We now know that neutrinos undergo flavour oscillations, violating lepton flavour conservation and implying that neutrinos have non-zero mass. A rich oscillation phenomenology then becomes possible, including matter-enhanced oscillation and possibly CP violation in the neutrino sector. Extending the Standard Model to include neutrino masses requires the addition of new fields and mass terms, and possibly new methods of mass generation. In this review article I will discuss the evidence that has established the existence of neutrino oscillation, and then highlight unresolved issues in neutrino physics, such as the nature of three-generational mixing (including CP-violating effects), the origins of neutrino mass, the possible existence of light sterile neutrinos, and the difficult question of measuring the absolute mass scale of neutrinos.

  2. Neutrino Mixing

    E-Print Network [OSTI]

    Carlo Giunti; Marco Laveder

    2004-10-01T23:59:59.000Z

    In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

  3. Relic neutrino decoupling including flavour oscillations

    E-Print Network [OSTI]

    Gianpiero Mangano; Gennaro Miele; Sergio Pastor; Teguayco Pinto; Ofelia Pisanti; Pasquale D. Serpico

    2005-06-16T23:59:59.000Z

    In the early universe, neutrinos are slightly coupled when electron-positron pairs annihilate transferring their entropy to photons. This process originates non-thermal distortions on the neutrino spectra which depend on neutrino flavour, larger for nu_e than for nu_mu or nu_tau. We study the effect of three-neutrino flavour oscillations on the process of neutrino decoupling by solving the momentum-dependent kinetic equations for the neutrino spectra. We find that oscillations do not essentially modify the total change in the neutrino energy density, giving N_eff=3.046 in terms of the effective number of neutrinos, while the small effect over the production of primordial 4He is increased by O(20%), up to 2.1 x 10^{-4}. These results are stable within the presently favoured region of neutrino mixing parameters.

  4. Neutrinos Are Nearly Dirac Fermions

    E-Print Network [OSTI]

    Kevin Cahill

    2000-06-10T23:59:59.000Z

    Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle x_nu characterizes the kind of the neutrinos, with x_nu = 0 for Dirac neutrinos and x_nu = pi/2 for Majorana neutrinos. If x_nu = 0, then baryon-minus-lepton number is conserved. When x_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the smallness of the differences in neutrino masses exhibited in the solar and atmospheric neutrino experiments and the stringent limits on neutrinoless double beta decay are naturally explained if B-L is approximately conserved and neutrinos are nearly Dirac fermions. If one sets sin(x_nu) = 0.003, suppresses inter-generational mixing, and imposes a quark-like mass hierarchy, then one may fit the essential features of the solar, reactor, and atmospheric neutrino experiments with otherwise random mass matrices in the eV range. This B-L model leads to these predictions: neutrinos oscillate mainly between flavor eigenfields and sterile eigenfields, and so the probabilities of the appearance of neutrinos or antineutrinos are very small; neutrinos may well be of cosmological importance; in principle the disappearance of the tau neutrino should be observable; and neutrinoless double beta decay is suppressed by an extra factor of < 10^(-5) and hence will not be seen in the Heidelberg/Moscow, IGEX, GENIUS, or CUORE experiments.

  5. Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2010-01-01T23:59:59.000Z

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  6. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    SciTech Connect (OSTI)

    Cabrera, Blas [Professor, Stanford University] [Professor, Stanford University; Gratta, Giorgio [Professor, Stanford University] [Professor, Stanford University

    2013-08-30T23:59:59.000Z

    Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performance period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on the first 120 days of data is the second best but, when translated into a Majorana mass scale, it

  7. Neutrino factories: realization and physics potential

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

    2006-12-01T23:59:59.000Z

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  8. Evidence for Neutrino Oscillations I: Solar and Reactor Neutrinos

    E-Print Network [OSTI]

    A. B. McDonald

    2004-12-06T23:59:59.000Z

    This paper discusses evidence for neutrino oscillations obtained from measurements with solar neutrinos and reactor neutrinos.

  9. Neutrinos Are Nearly Dirac Fermions

    E-Print Network [OSTI]

    Cahill, K E

    1999-01-01T23:59:59.000Z

    Neutrino masses and mixings are analyzed in terms of left-handed fields and a 6x6 complex symmetric mass matrix whose singular values are the neutrino masses. An angle theta_nu characterizes the kind of the neutrinos, with theta_nu = 0 for Dirac neutrinos and theta_nu = pi/2 for Majorana neutrinos. If theta_nu = 0, then baryon-minus-lepton number is conserved. When theta_nu is approximately zero, the six neutrino masses coalesce into three nearly degenerate pairs. Thus the smallness of the differences in neutrino masses exhibited in the solar and atmospheric neutrino experiments and the stringent limits on neutrinoless double-beta decay are naturally explained if B-L is approximately conserved and neutrinos are nearly Dirac fermions. If one sets theta_nu = 0.0005, suppresses inter-generational mixing, and imposes a quark-like mass hierarchy, then one may fit the essential features of the solar, reactor, and atmospheric neutrino experiments with otherwise random mass matrices in the eV range. This B-L model le...

  10. High energy neutrino telescopes as a probe of the neutrino mass mechanism

    E-Print Network [OSTI]

    Kfir Blum; Anson Hook; Kohta Murase

    2014-08-17T23:59:59.000Z

    We show that measurements of the spectral shape and flavor ratios of high energy astrophysical neutrinos at neutrino telescopes can be sensitive to the details of the neutrino mass mechanism. We propose a simple model for Majorana neutrino mass generation that realizes the relevant parameter space, in which small explicit lepton number violation is mediated to the Standard Model through the interactions of a light scalar. IceCube, with about ten years of exposure time, could reveal the presence of anomalous neutrino self-interactions. Precision electroweak and lepton flavor laboratory experiments and a determination of the total neutrino mass from cosmology would provide consistency checks on the interpretation of a signal.

  11. Experimental Neutrino Physics

    ScienceCinema (OSTI)

    Chris Walter

    2010-01-08T23:59:59.000Z

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  12. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12T23:59:59.000Z

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  13. Neutrino masses and solar neutrinos

    SciTech Connect (OSTI)

    Wolfenstein, L.

    1992-01-01T23:59:59.000Z

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m([nu][sub [mu

  14. Neutrinos from Hell: the Dawn of Neutrino Geophysics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only.I will discuss the results of these new measurements and put them in the context of the Earth Sciences."

  15. Searching for sterile neutrinos in ice

    E-Print Network [OSTI]

    Soebur Razzaque; A. Yu. Smirnov

    2011-07-04T23:59:59.000Z

    Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass $\\sim 1$ eV and mixing with the active neutrinos $|U_{\\mu 0}|^2 \\sim (0.02 - 0.04)$. It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the $\

  16. Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits

    SciTech Connect (OSTI)

    Bell, Nicole F.; /Fermilab

    2004-01-01T23:59:59.000Z

    The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.

  17. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09T23:59:59.000Z

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  18. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25T23:59:59.000Z

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  19. Recent Results in Neutrino Physics

    E-Print Network [OSTI]

    K. V. L. Sarma

    1994-11-07T23:59:59.000Z

    This is a survey of the current experimental information on some of the interesting issues in neutrino physics: neutrino species, neutrino masses, neutrino magnetic moments, solar neutrinos, and the atmospheric neutrino anomaly.

  20. A bound on neutrino masses from baryogenesis

    E-Print Network [OSTI]

    W. Buchmüller; P. Di Bari; M. Plümacher

    2002-09-25T23:59:59.000Z

    Properties of neutrinos, the lightest of all elementary particles, may be the origin of the entire matter-antimatter asymmetry of the universe. This requires that neutrinos are Majorana particles, which are equal to their antiparticles, and that their masses are sufficiently small. Leptogenesis, the theory explaining the cosmic matter-antimatter asymmetry, predicts that all neutrino masses are smaller than 0.2 eV, which will be tested by forthcoming laboratory experiments and by cosmology.

  1. Neutrino Physics, Superbeams, and the Neutrino Factory

    E-Print Network [OSTI]

    Boris Kayser

    2003-06-09T23:59:59.000Z

    We summarize what has been learned about the neutrino mass spectrum and neutrino mixing, identify interesting open questions that can be answered by accelerator neutrino facilities of the future, and discuss the importance and physics of answering them.

  2. Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies

    E-Print Network [OSTI]

    JiJi Fan; Paul Langacker

    2012-01-31T23:59:59.000Z

    We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains only one eV-scale sterile neutrino but with an effective non-unitary mixing matrix between the light sterile and active neutrinos. We find that though this may explain the anomalies, if the non-unitarity originates from a heavy sterile neutrino with a large (fine-tuned) mixing angle, this scenario is highly constrained by cosmological and laboratory observations.

  3. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operators in the Lagrangian (Majorana mass terms), or both. The ongoing neutrinoless double-beta decay searches may be able to shine light on the matter. But the neutrino sector...

  4. Four-Way Neutrino Oscillations

    E-Print Network [OSTI]

    V. Barger; T. J. Weiler; K. Whisnant

    1997-12-22T23:59:59.000Z

    We present a four-neutrino model with three active neutrinos and one sterile neutrino which naturally has maximal $\

  5. Quantum E ects of Majorana Neutrinos in Precision Observables

    E-Print Network [OSTI]

    with Majorana Neutrinos . . . . . . . . . . . . . 17 2.6 Properties of the Matrices B and CQuantum E#11;ects of Majorana Neutrinos in Precision Observables Dissertation zur Erlangung des{ Leptonsektors um beliebig mischende Majorana{Neutrinos auf theoretische Vorher- sagen fur sehr genau gemessene

  6. Phenomenology of Neutrino Oscillations

    E-Print Network [OSTI]

    S. M. Bilenky; C. Giunti; W. Grimus

    1999-06-04T23:59:59.000Z

    This review is focused on neutrino mixing and neutrino oscillations in the light of the recent experimental developments. After discussing possible types of neutrino mixing for Dirac and Majorana neutrinos and considering in detail the phenomenology of neutrino oscillations in vacuum and matter, we review all existing evidence and indications in favour of neutrino oscillations that have been obtained in the atmospheric, solar and LSND experiments. We present the results of the analyses of the neutrino oscillation data in the framework of mixing of three and four massive neutrinos and investigate possibilities to test the different neutrino mass and mixing schemes obtained in this way. We also discuss briefly future neutrino oscillation experiments.

  7. Neutrinoless double beta decay and direct searches for neutrino mass

    E-Print Network [OSTI]

    Craig Aalseth; Henning Back; Loretta Dauwe; David Dean; Guido Drexlin; Yuri Efremenko; Hiro Ejiri; Steven Elliott; Jon Engel; Brian Fujikawa; Reyco Henning; G. W. Hoffmann; Karol Lang; Kevin Lesko; Tadafumi Kishimoto; Harry Miley; Rick Norman; Silvia Pascoli; Serguey Petcov; Andreas Piepke; Werner Rodejohann; David Saltzberg; Sean Sutton; Petr Vogel; Ray Warner; John Wilkerson; Lincoln Wolfenstein

    2004-12-21T23:59:59.000Z

    Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.

  8. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2013-05-23T23:59:59.000Z

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  9. Solar Neutrinos and the Decaying Neutrino Hypothesis

    E-Print Network [OSTI]

    Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

    2014-11-02T23:59:59.000Z

    We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

  10. Neutrino Nucleosynthesis of radioactive nuclei in supernovae

    E-Print Network [OSTI]

    Sieverding, A; Langanke, K; Martínez-Pinedo, G; Heger, A

    2015-01-01T23:59:59.000Z

    We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M$_\\odot$ and 40 M$_\\odot$. We improve previous investigations i) by using a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers $Z < 76 $ and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of $^7$Li, $^{11}$B, $^{138}$La, and $^{180}$Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M$_\\odot$, $^{19}$F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the $\

  11. Large neutrino asymmetries from neutrino oscillations

    E-Print Network [OSTI]

    R. Foot; M. J. Thomson; R. R. Volkas

    1995-09-19T23:59:59.000Z

    We re-examine neutrino oscillations in the early universe. Contrary to previous studies, we show that large neutrino asymmetries can arise due to oscillations between ordinary neutrinos and sterile neutrinos. This means that the Big Bang Nucleosynthesis (BBN) bounds on the mass and mixing of ordinary neutrinos with sterile neutrinos can be evaded. Also, it is possible that the neutrino asymmetries can be large (i.e. $\\stackrel{>}{\\sim} 10\\%$), and hence have a significant effect on BBN through nuclear reaction rates.

  12. Solar neutrino with Borexino: results and perspectives

    E-Print Network [OSTI]

    O. Smirnov; G. Bellini; J. Benziger; D. Bick; G. Bonfini; D. Bravo; B. Caccianiga; F. Calaprice; A. Caminata; P. Cavalcante; A. Chavarria; A. Chepurnov; D. D'Angelo; S. Davini; A. Derbin; A. Empl; A. Etenko; K. Fomenko; D. Franco; G. Fiorentini; C. Galbiati; S. Gazzana; C. Ghiano; M. Giammarchi; M. Goeger-Neff; A. Goretti; C. Hagner; E. Hungerford; Aldo Ianni; Andrea Ianni; V. Kobychev; D. Korablev; G. Korga; D. Kryn; M. Laubenstein; B. Lehnert; T. Lewke; E. Litvinovich; F. Lombardi; P. Lombardi; L. Ludhova; G. Lukyanchenko; I. Machulin; S. Manecki; W. Maneschg; F. Mantovani; S. Marcocci; Q. Meindl; E. Meroni; M. Meyer; L. Miramonti; M. Misiaszek; P. Mosteiro; V. Muratova; L. Oberauer; M. Obolensky; F. Ortica; K. Otis; M. Pallavicini; L. Papp; L. Perasso; A. Pocar; G. Ranucci; A. Razeto; A. Re; B. Ricci; A. Romani; N. Rossi; R. Saldanha; C. Salvo; S. Schoenert; H. Simgen; M. Skorokhvatov; A. Sotnikov; S. Sukhotin; Y. Suvorov; R. Tartaglia; G. Testera; D. Vignaud; R. B. Vogelaar; F. von Feilitzsch; H. Wang; J. Winter; M. Wojcik; A. Wright; M. Wurm; O. Zaimidoroga; S. Zavatarelli; K. Zuber; G. Zuzel

    2014-10-03T23:59:59.000Z

    Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.

  13. Testing standard and nonstandard neutrino physics with cosmological data Elena Giusarma,1

    E-Print Network [OSTI]

    Adolphs, Ralph

    Testing standard and nonstandard neutrino physics with cosmological data Elena Giusarma,1 Roland de) Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from

  14. Testing Radiative Neutrino Mass Models at the LHC

    E-Print Network [OSTI]

    Yi Cai; Jackson D. Clarke; Michael A. Schmidt; Raymond R. Volkas

    2015-02-07T23:59:59.000Z

    The Large Hadron Collider provides us new opportunities to search for the origin of neutrino mass. Beyond the minimal see-saw models a plethora of models exist which realise neutrino mass at tree- or loop-level, and it is important to be sure that these possibilities are satisfactorily covered by searches. The purpose of this paper is to advance a systematic approach to this problem. Majorana neutrino mass models can be organised by SM-gauge-invariant operators which violate lepton number by two units. In this paper we write down the minimal ultraviolet completions for all of the mass-dimension 7 operators. We predict vector-like quarks, vector-like leptons, scalar leptoquarks, a charged scalar, and a scalar doublet, whose properties are constrained by neutrino oscillation data. A detailed collider study is presented for $O_3=LLQ\\bar dH$ and $O_8 = L\\bar d\\bar e^\\dagger \\bar u^\\dagger H$ completions with a vector-like quark $\\chi\\sim(3, 2, -\\frac{5}{6})$ and a leptoquark $\\phi\\sim(\\bar 3,1,\\frac{1}{3})$. The existing LHC limits extracted from searches for vector-like fermions and sbottoms/stops are $m_\\chi \\gtrsim 620$ GeV and $m_\\phi\\gtrsim 600$ GeV.

  15. Neutrinos in Physics and Astrophysics

    E-Print Network [OSTI]

    G. G. Raffelt

    2003-03-05T23:59:59.000Z

    The observed flavor oscillations of solar and atmospheric neutrinos determine several elements of the leptonic mixing matrix, but leave open the small mixing angle Theta_13, a possible CP-violating phase, the mass ordering, the absolute mass scale m_nu, and the Dirac vs. Majorana property. Progress will be made by long-baseline, tritium endpoint, and 2-beta decay experiments. The best constraint on m_nu obtains from cosmological precision observables, implying that neutrinos contribute very little to the dark matter. However, massive Majorana neutrinos may well be responsible for ordinary matter by virtue of the leptogenesis mechanism for creating the baryon asymmetry of the universe. In future, neutrinos could play an important role as astrophysical messengers if point sources are discovered in high-energy neutrino telescopes. In the low-energy range, a high-statistics observation of a galactic supernova would allow one to observe directly the dynamics of stellar collapse and perhaps to discriminate between certain mixing scenarios. An observation of the relic neutrinos from all past supernovae has come within reach.

  16. Neutrino masses and solar neutrinos

    SciTech Connect (OSTI)

    Wolfenstein, L.

    1992-11-01T23:59:59.000Z

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m({nu}{sub {mu}}) {approximately} 10{sup {minus}3} eV consistent with ideas grand unified theories (GUTS). There is a second possibility consistent with GUTS ideas with m({nu}{sub {tau}}) {approximately} 10{sup {minus}2} eV and m({nu} {sub {mu}}) {approximately} 10 {sup {minus}4} eV. The two cases can be distinguished by a measurement of the solar neutrinos from {sup {tau}}Be.

  17. Neutrinos: Theory and Phenomenology

    SciTech Connect (OSTI)

    Parke, Stephen

    2013-10-22T23:59:59.000Z

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  18. Neutrino Factory Downstream Systems

    E-Print Network [OSTI]

    Zisman, Michael S.

    2010-01-01T23:59:59.000Z

    Neutrino Factory Downstream Systems Michael S. Zisman*Factory accelerator systems downstream from the target andthe Neutrino Factory systems downstream of the target and

  19. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated October 2011 by K compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations

  20. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Written May 2010 by K. Nakamura for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations, the phenomenology

  1. Constrains on Dark Matter sterile neutrino resonant production in the light of Planck

    E-Print Network [OSTI]

    Popa, L A; Tonoiu, D

    2015-01-01T23:59:59.000Z

    Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium ab...

  2. Ultra High Energy Neutrino Astronomy

    E-Print Network [OSTI]

    V. Berezinsky

    2005-05-11T23:59:59.000Z

    The short review of theoretical aspects of ultra high energy (UHE) neutrinos and superGZK neutrinos. The sources and diffuse fluxes of UHE neutrinos are discussed. Much attention is given to comparison of the cascade and cosmic ray upper bounds for diffuse neutrino fluxes. Cosmogenic neutrinos and neutrinos from the mirror mater are considered as superGZK neutrinos.

  3. Neutrino mass matrix

    SciTech Connect (OSTI)

    Capps, R.H.; Strobel, E.L.

    1985-07-01T23:59:59.000Z

    It is assumed that the Dirac mass matrix for the neutrinos (..nu../sub e/,..nu../sub ..mu../,..nu../sub tau/) is similar in form to those for the quarks and charged leptons, and that the smallness of the observed ..nu.. masses results from the Gell-Mann--Ramond--Slansky mechanism. It is shown that if certain tentative experimental results concerning the ..nu.. masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. Some general properties of the Dirac matrices are discussed.

  4. Neutrino Mixing and Discrete Symmetries

    E-Print Network [OSTI]

    Hu, Bo

    2012-01-01T23:59:59.000Z

    A model independent study of neutrino mixing based on a new method to derive mixing patterns is presented. An interesting result we find is that, in the case where unbroken residual symmetries of the Majorana neutrino and left-handed charged-lepton mass matrices obey some general assumptions, the complete set of possible mixing patterns can be determined by the solutions to the constraint equation with the help of algebraic number theory. This method can also be applied to more general cases beyond the minimal scenario. Several applications and phenomenological implications are discussed.

  5. Low-energy neutrino factory design

    SciTech Connect (OSTI)

    Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; /Jefferson Lab; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01T23:59:59.000Z

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  6. Detectability of the Supernova Relic Neutrinos and Neutrino Oscillation

    E-Print Network [OSTI]

    S. Ando; K. Sato; T. Totani

    2002-04-08T23:59:59.000Z

    We investigate the flux and the event rate of the supernova relic neutrino background (SRN) at the SuperKamiokande detector for various neutrino oscillation models with parameters inferred from recent experimental results. A realistic model of neutrino emission from supernova explosions and several models of the cosmic star formation history are adopted in the calculation. The number flux over entire energy range is found to be $11-15 \\mathrm{cm^{-2}s^{-1}}$. We discuss the detection possibility of SRN at SuperKamiokande, comparing this SRN flux with other background neutrinos in more detail than previous studies. Even though there is no energy window in which SRN is dominant, we might detect it as the distortion of the other background event. We found in the energy range $17-25 \\mathrm{MeV}$ the expected event rate at SuperKamiokande $0.4-0.8 ~\\mathrm{yr^{-1}}$. In this range, ten-year observation might enable us to detect SRN signal (at one sigma level) in the case of LMA solar neutrino solution. We also investigate event rate at SNO and KamLAND. Although we can find energy window, the expected event rate is rather small (0.03 yr$^{-1}$ for SNO, 0.1 yr$^{-1}$ for KamLAND).

  7. Primordial nucleosynthesis and neutrino physics

    E-Print Network [OSTI]

    Smith, Christel Johanna

    2009-01-01T23:59:59.000Z

    A Brief History of and Introduction to Neutrino Physics . 13Nucleosynthesis and Neutrino Physics A dissertationdensity depend on new neutrino physics in di?erent ways. In

  8. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  9. Neutrino physics at accelerators

    E-Print Network [OSTI]

    Enrique Fernandez

    2006-07-16T23:59:59.000Z

    Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

  10. Muons and Neutrinos 2007

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2008-01-29T23:59:59.000Z

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  11. Tachyonic Field Theory and Neutrino Mass Running

    E-Print Network [OSTI]

    U. D. Jentschura

    2012-05-01T23:59:59.000Z

    In this paper three things are done. (i) We investigate the analogues of Cerenkov radiation for the decay of a superluminal neutrino and calculate the Cerenkov angles for the emission of a photon through a W loop, and for a collinear electron-positron pair, assuming the tachyonic dispersion relation for the superluminal neutrino. The decay rate of a freely propagating neutrino is found to depend on the shape of the assumed dispersion relation, and is found to decrease with decreasing tachyonic mass of the neutrino. (ii) We discuss a few properties of the tachyonic Dirac equation (symmetries and plane-wave solutions), which may be relevant for the description of superluminal neutrinos seen by the OPERA experiment, and discuss the calculation of the tachyonic propagator. (iii) In the absence of a commonly accepted tachyonic field theory, and in view of an apparent "running" of the observed neutrino mass with the energy, we write down a model Lagrangian, which describes a Yukawa-type interaction of a neutrino coupling to a scalar background field via a scalar-minus-pseudoscalar interaction. This constitutes an extension of the standard model. If the interaction is strong, then it leads to a substantial renormalization-group "running" of the neutrino mass and could potentially explain the experimental observations.

  12. Neutrino Physics with JUNO

    E-Print Network [OSTI]

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01T23:59:59.000Z

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  13. Property:Number of Plants Included in Planned Estimate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit withTieredDoc

  14. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    E-Print Network [OSTI]

    Ivone F. M. Albuquerque; George F. Smoot

    2001-03-28T23:59:59.000Z

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

  15. Aspects of Neutrino Oscillation in Alternative Gravity Theories

    E-Print Network [OSTI]

    Chakraborty, Sumanta

    2015-01-01T23:59:59.000Z

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. This finally lends itself to non-zero probability of neutrino helicity flip. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to different gravity theories. These include dilaton field coupled to Maxwell field tensor, generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action and finally regular black hole solutions. In all these cases using the solar neutrino oscil...

  16. Property:NumberOfLowCarbonPlanningPrograms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies Jump

  17. Property:NumberOfLowCarbonPlanningProgramsAgriculture | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompanies JumpInformation

  18. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompaniesInformation

  19. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOidNumberOfCompaniesInformationInformation

  20. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino crossN/SΒ ν

  1. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30T23:59:59.000Z

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  2. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect (OSTI)

    Meskhidze, Nicholas [NCSU] [NCSU

    2013-10-21T23:59:59.000Z

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  3. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated May 2012 by K. Nakamura have provided compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses of neutrino oscillations, the phenomenology of neutrino mixing, the problem of the nature - Dirac or Majorana

  4. Booster Neutrino Experiment - About Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolarAbout Neutrinos General Information

  5. High-energy neutrinos in the context of multimessenger physics

    E-Print Network [OSTI]

    Julia K. Becker

    2008-01-28T23:59:59.000Z

    The field of astroparticle physics is currently developing rapidly, since new experiments challenge our understanding of the investigated processes. Three messengers can be used to extract information on the properties of astrophysical sources: photons, charged Cosmic Rays and neutrinos. This review focuses on high-energy neutrinos (E>100 GeV) with the main topics as follows. The production mechanism of high-energy neutrinos in astrophysical shocks. The connection between the observed photon spectra and charged Cosmic Rays is described and the source properties as they are known from photon observations and from charged Cosmic Rays are presented. High-energy neutrino detection. Current detection methods are described and the status of the next generation neutrino telescopes are reviewed. In particular, water and ice Cherenkov detectors as well as radio measurements in ice and with balloon experiments are presented. In addition, future perspectives for optical, radio and acoustic detection of neutrinos are reviewed. Sources of neutrino emission. The main source classes are reviewed, i.e. galactic sources, Active Galactic Nuclei, starburst galaxies and Gamma Ray Bursts. The interaction of high energy protons with the cosmic microwave background implies the production of neutrinos, referred to as GZK neutrinos. Implications of neutrino flux limits. Recent limits given by the AMANDA experiment and their implications regarding the physics of the sources are presented.

  6. Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos

    E-Print Network [OSTI]

    M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

    1998-11-24T23:59:59.000Z

    The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

  7. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect (OSTI)

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili, E-mail: Cecilia.Lunardini@asu.edu, E-mail: Eray.Sabancilar@asu.edu, E-mail: lyang54@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-08-01T23:59:59.000Z

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ? 10{sup ?2} eV), thermal effects are important for ultra high energy neutrino sources at z?>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ? 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}?10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ? 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ? 10–100.

  8. Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions

    E-Print Network [OSTI]

    Christel J. Smith; George M. Fuller; Michael S. Smith

    2008-12-06T23:59:59.000Z

    We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.

  9. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Niki Saoulidou

    2010-01-08T23:59:59.000Z

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  10. Induced Gravity Model Based on External Impinging Neutrinos: Calculation of G in Terms of Collision Phenomena and Inferences to Inertial Mass and Atomic Quantization

    E-Print Network [OSTI]

    William G. Stanley; Gary C. Vezzoli

    2001-02-07T23:59:59.000Z

    Herein, we present a particle-based mechanism and mathematical formulation of gravity, focusing on the neutrino as the gravity-inducing particle. The mechanism is based on the primacy of momentum conservation and postulates an omni-directional distribution throughout the universe of fast small particles of finite mass that have a low probability of colliding with nucleons. The measured acceleration between two neighboring mass bodies results from an alteration of this distribution caused by nucleons of each body interacting with some of those particles. Based on findings establishing that the neutrino has mass, we evaluate the various neutrinos as external particle candidates. We show that for mass quantities up to several times that of the sun the form of the time rate of momentum transfer to each body is proportional to the product of the two body masses because of the probability nature of any collision process, and inversely proportional to the square of the distance between them because of the mathematical properties of an altered particle flux. A derived expression involving the neutrino momentum flux, the neutrino-nucleon collision cross section, and the nucleon mass replaces the constant G from the classical gravitational model. The neutrino momentum flux that is required to account for gravity is so large as to cause us herein to re-evaluate conventional notions in kinematics and the cause of inertial properties and to examine neutrino-nucleon collisions as a possible source of electromagnetic standing waves essential to establish electron shell states. This reasoning indicates that in a much more massive body that is accreting mass, a coulombic collapse to a black hole will ensue when external neutrinos lose the ability to penetrate in sufficient numbers to the central region.

  11. Neutrinos from STORed Muons - nuSTORM

    SciTech Connect (OSTI)

    Bross, Alan [Fermilab

    2013-02-27T23:59:59.000Z

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly, give tantalizing hints of new physics. Models beyond the nSM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or “sterile." Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this talk, I will describe the facility, nuSTORM, and an appropriate far detector for neutrino oscillation searches at short baseline. I will present sensitivity plots that indicate that this experimental approach can provide well over 5 s confirmation or rejection of the LSND/MinBooNE results. In addition I will explain how the facility can be used to make neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments and, in general, add significantly to the study of neutrino interactions. The unique n beam available at the nuSTORM facility has the potential to be transformational in our approach to n interaction physics, offering a “n light source” to physicists from a number of disciplines. Finally, I will describe how nuSTORM can be used to facilitate accelerator R&D for future muon-based accelerator facilities.

  12. Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation

    E-Print Network [OSTI]

    Gary Steigman

    2013-03-18T23:59:59.000Z

    According to conventional wisdom, in the standard model (SM) of particle physics and cosmology the effective number of neutrinos is Neff=3 (more precisely, 3.046). In extensions of the standard model allowing for the presence of DeltaNnu equivalent neutrinos (or dark radiation), Neff is generally >3. The canonical results are reconsidered here, revealing that a measurement of Neff>3 can be consistent with DeltaNnu=0 (dark radiation without dark radiation). Conversely, a measurement consistent with Neff=3 is not inconsistent with the presence of dark radiation (DeltaNnu>0). In particular, if there is a light WIMP that annihilates to photons after the SM neutrinos have decoupled, the photons are heated beyond their usual heating from e+- annihilation, reducing the late time ratio of neutrino and photon temperatures (and number densities), leading to Neff3 even in the absence of equivalent neutrinos or dark radiation. A measurement of Neff>3 is thus no guarantee of the presence of equivalent neutrinos or dark radiation. In the presence of light WIMPs and/or equivalent neutrinos there are degeneracies among the light WIMP mass and its nature (fermion or boson, as well as its couplings to neutrinos or photons), the number and nature (fermion or boson) of the equivalent neutrinos, and their decoupling temperature (the strength of their interactions with the SM particles). There's more to a measurement of Neff than meets the eye.

  13. Non standard neutrino interactions

    E-Print Network [OSTI]

    Miranda, O G

    2015-01-01T23:59:59.000Z

    Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.

  14. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01T23:59:59.000Z

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  15. Oscillations of Mossbauer neutrinos

    E-Print Network [OSTI]

    Evgeny Kh. Akhmedov; Joachim Kopp; Manfred Lindner

    2008-05-02T23:59:59.000Z

    We calculate the probability of recoilless emission and detection of neutrinos (Mossbauer effect with neutrinos) taking into account the boundedness of the parent and daughter nuclei in the neutrino source and detector as well as the leptonic mixing. We show that, in spite of their near monochromaticity, the recoillessly emitted and captured neutrinos oscillate. After a qualitative discussion of this issue, we corroborate and extend our results by computing the combined rate of $\\bar{\

  16. Introduction to Neutrino Physics

    SciTech Connect (OSTI)

    Linares, Edgar Casimiro [Division de Ciencias e Ingenierias Campus Leon, Loma del Bosque 103 Col. Lomas del Campestre, C.P. 37150 Leon (Mexico) and Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Av. Complutense, 22, C.P. 28040, Madrid (Spain)

    2009-04-30T23:59:59.000Z

    I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

  17. Solar neutrinos - Eclipse effect

    E-Print Network [OSTI]

    Mohan Narayan; G. Rajasekaran; Rahul Sinha

    1997-03-12T23:59:59.000Z

    It is pointed out that the enhancement of the solar neutrino rate in a real time detector like Super-Kamioka, SNO or Borexino due to neutrino oscillations in the moon during a partial or total solar eclipse may be observable. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement if seen, can further help to determine the neutrino parameters.

  18. Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay

    E-Print Network [OSTI]

    P. Bamert; C. P. Burgess; R. N. Mohapatra

    1994-10-12T23:59:59.000Z

    We investigate the possibility of producing neutrinoless double beta decay without having an electron neutrino with a mass in the vicinity of 1 eV. We do so by having a much lighter electron neutrino mix with a much heavier (m > 1 GeV) sterile neutrino. We study the constraints on the masses and mixings of such heavy sterile neutrinos from existing laboratory, astrophysical and cosmological information, and discuss the properties it would require in order to produce a detectable signal in current searches for neutrinoless double beta decay.

  19. PHYSICAL REVIEW C 73, 024607 (2006) Relativistic models for quasielastic neutrino scattering

    E-Print Network [OSTI]

    Gent, Universiteit

    2006-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 73, 024607 (2006) Relativistic models for quasielastic neutrino scattering M. C for explor- ing fundamental questions in different domains of physics. The mass of the neutrino remains one of the greatest puzzles in elementary particle physics. In recent years, a number of positive neutrino oscillation

  20. Introduction to direct neutrino mass measurements and KATRIN

    E-Print Network [OSTI]

    Thomas Thümmler; for the KATRIN Collaboration

    2010-12-10T23:59:59.000Z

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of beta-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow beta spectroscopy close to the tritium endpoint at 18.6 keV with unprecedented precision.

  1. Flavor Mixing and CP Violation of Massive Neutrinos

    E-Print Network [OSTI]

    Zhi-zhong Xing

    2004-11-26T23:59:59.000Z

    We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.

  2. Constraining Sterile Neutrinos Using Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Ivan Girardi; Davide Meloni; Tommy Ohlsson; He Zhang; Shun Zhou

    2014-08-21T23:59:59.000Z

    Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle $\\sin^2 2 \\theta_{14} \\lesssim 0.06$ at 3$\\sigma$ confidence level for the mass-squared difference $\\Delta m^2_{41}$ in the range $(10^{-3},10^{-1}) \\, {\\rm eV^2}$. The latter bound can be improved by six years of running of the JUNO experiment, $\\sin^22\\theta_{14} \\lesssim 0.016$, although in the smaller mass range $ \\Delta m^2_{41} \\in (10^{-4} ,10^{-3}) \\, {\\rm eV}^2$. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters $\\theta_{13}$ and $\\Delta m^2_{31}$ (at Daya Bay and JUNO), $\\theta_{12}$ and $\\Delta m^2_{21}$ (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where $\\Delta m^2_{41}\\sim \\Delta m^2_{31}$, sterile states do not affect these measurements substantially.

  3. Neutrino Oscillations and the Solar Neutrino Problem

    E-Print Network [OSTI]

    W. C. Haxton

    2000-04-28T23:59:59.000Z

    I describe the current status of the solar neutrino problem, summarizing the arguments that its resolution will require new particle physics. The phenomenon of matter-enhanced neutrino oscillations is reviewed. I consider the implications of current experiments -- including the SuperKamiokande atmospheric and LSND measurements -- and the need for additional constraints from SNO and other new detectors.

  4. Neutrino Observations from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    A. W. P. Poon; for the SNO Collaboration

    2001-10-07T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D$_{2}$O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar $\

  5. Quantum correlations in two-flavour neutrino oscillations

    E-Print Network [OSTI]

    Alok, Ashutosh Kumar; Sankar, S Uma

    2014-01-01T23:59:59.000Z

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to ask if other quantum correlations are present in neutrino evolution. In this study, we compute a number of such correlations for accelerator neutrinos in the approximation of two flavour nu_{mu} nu_{tau} oscillations. The point of minimum survival probability corresponds to the extremum point of all measures of quantum correlations. We find that Bell's inequality is always violated.

  6. Quantum correlations in two-flavour neutrino oscillations

    E-Print Network [OSTI]

    Ashutosh Kumar Alok; Subhashish Banerjee; S. Uma Sankar

    2014-11-20T23:59:59.000Z

    Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given flavour eigenstate. Given this mode entanglement, it is pertinent to ask if other quantum correlations are present in neutrino evolution. In this study, we compute a number of such correlations for accelerator neutrinos in the approximation of two flavour nu_{mu} nu_{tau} oscillations. The point of minimum survival probability corresponds to the extremum point of all measures of quantum correlations. We find that Bell's inequality is always violated.

  7. Geometric gravitational origin of neutrino oscillations and mass-energy

    E-Print Network [OSTI]

    Gustavo R. Gonzalez-Martin

    2014-05-21T23:59:59.000Z

    A mass-energy scale for neutrinos was calculated from the null cone curvature using geometric concepts. The scale is variable depending on the gravitational potential and the trajectory inclination with respect to the field direction. The proposed neutrino covariant equation provides the adequate curvature. The mass-energy at the Earth surface varies from a horizontal value 0.402 eV to a vertical value 0.569 eV. Earth spinor waves with winding numbers n show squared energy differences within ranges from 2.05 x 10*(-3) to 4.10 x 10*(-3) eV*2 for n=0,1 neutrinos and from 3.89 x 10*(-5) to 7.79 x 10*(-5) eV*2 for n=1,2 neutrinos. These waves interfere and the different phase velocities produce neutrino-like oscillations. The experimental results for atmospheric and solar neutrino oscillation mass parameters respectivelly fall within these theoretical ranges. Neutrinos in outer space, where interactions may be neglected, appear as particles travelling with zero mass on null geodesics. These gravitational curvature energies are consistent with neutrino oscillations, zero neutrino rest masses and Einstein's General Relativity and energy mass equivalence principle. When analyzing or averaging experimental neutrino mass-energy results of different experiments on the Earth it is of interest to consider the possible influence of the trajectory inclination angle.

  8. Neutrino Nuclear Responses For Neutrino Studies In Nuclear Femto Laboratories

    SciTech Connect (OSTI)

    Ejiri, H. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan and Nuclear Science, Czech Technical University, Brehova, Prague (Czech Republic)

    2011-12-16T23:59:59.000Z

    Neutrinos are key particles for particle and astro-nuclear physics. Majorana neutrino masses and phases, solar and supernova neutrino productions and oscillations, and neutrino nuclear synthesis and fundamental weak interactions are well studied in nuclei as femto laboratories. Here neutrino nuclear responses are crucial for the neutrino studies. This reports briefly experimental studies of neutrino nuclear responses, charge exchange reactions on Ga to study nuclear responses for solar and {sup 51}Cr neutrinos, and {beta}{sup +} neutrino responses for {beta}{beta}-{nu} matrix elements and astro {nu} interactions by photon and muon probes.

  9. Neutrino oscillation constraints on neutrinoless double beta decay

    E-Print Network [OSTI]

    S. M. Bilenky; C. Giunti; C. W. Kim; M. Monteno

    1997-11-20T23:59:59.000Z

    We have studied the constraints imposed by the results of neutrino oscillation experiments on the effective Majorana mass || that characterizes the contribution of Majorana neutrino masses to the matrix element of neutrinoless double-beta decay. We have shown that in a general scheme with three Majorana neutrinos and a hierarchy of neutrino masses (which can be explained by the see-saw mechanism), the results of neutrino oscillation experiments imply rather strong constraints on the parameter ||. From the results of the first reactor long-baseline experiment CHOOZ and the Bugey experiment it follows that || | > 10^{-1} eV would be a signal for a non-hierarchical neutrino mass spectrum and/or non-standard mechanisms of lepton number violation.

  10. Status of Neutrino Oscillations

    E-Print Network [OSTI]

    J. W. F. Valle

    2001-04-04T23:59:59.000Z

    Solar and atmospheric neutrino data require physics beyond the Standard Model of particle physics. The simplest, most generic, but not yet unique, interpretation of the data is in terms of neutrino oscillations. I summarize the results of the latest three-neutrino oscillation global fit of the data, in particular the bounds on the angle $\\theta_{13}$ probed in reactor experiments. Even though not implied by the data, bi-maximal neutrino mixing emerges as an attractive possibility either in hierarchical or quasi-degenerate neutrino scenarios.

  11. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  12. Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations

    E-Print Network [OSTI]

    Oliviero Cremonesi

    2010-02-07T23:59:59.000Z

    Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

  13. Democratic Neutrino Theory

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2014-05-21T23:59:59.000Z

    New theory of neutrino masses and mixing is introduced. This theory is based on a simple S_3 symmetric democratic neutrino mass matrix, and predicts the neutrino mass spectrum of normal ordering. Taking into account the matter effect and proper averaging of the oscillations, this theory agrees with the variety of atmospheric, solar and accelerator neutrino data. Moreover, the absolute scale of the neutrino masses m of 0.03 eV is determined in this theory, using the atmospheric neutrino oscillation data. In case of tiny perturbations in the democratic mass matrix only one this scale parameter m allows to explain the mentioned above neutrino results, and the theory has huge predictive power.

  14. Neutrino Oscillations Physics 135c

    E-Print Network [OSTI]

    Golwala, Sunil

    Neutrino Oscillations Gary Cheng Physics 135c 6/1/07 #12;Introduction: Theory Neutrinos have mass neutrinos are produced. The difference between the mass eigenstates and the flavor eigenstates of neutrinos is what causes neutrino oscillations. #12;Introduction: Theory 2 The mass eigenstates 1, 2, 3

  15. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24T23:59:59.000Z

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  16. A New Neutrino Oscillation

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2011-07-01T23:59:59.000Z

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background of 1.5 events. The probability that the 6 events are all background is only about 0.7%. Stated differently, this is a 2.7{sigma} indication that the parameter that controls the oscillation, the neutrino mixing angle {theta}{sub 13}, is nonzero, just shy of the 3{sigma} requirement to claim 'evidence for.' Nevertheless, this experiment provides the strongest indication to date that this oscillation actually occurs in nature.

  17. Primordial Nucleosynthesis Constraints on Z' Properties

    E-Print Network [OSTI]

    Vernon Barger; Paul Langacker; Hye-Sung Lee

    2003-02-13T23:59:59.000Z

    In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry often prevents the generation of Majorana masses needed for a conventional neutrino seesaw, leading to three superweakly interacting ``right-handed'' neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be produced prior to big bang nucleosynthesis by the Z' interactions, leading to a faster expansion rate and too much ^4He. We quantify the constraints on the Z' properties from nucleosynthesis for Z' couplings motivated by a class of E_6 models parametrized by an angle theta_E6. The rate for the annihilation of three approximately massless right-handed neutrinos into other particle pairs through the Z' channel is calculated. The decoupling temperature, which is higher than that of ordinary left-handed neutrinos due to the large Z' mass, is evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is obtained numerically as a function of the Z' mass and couplings for a variety of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition temperature T_c. Except near the values of theta_E6 for which the Z' decouples from the right-handed neutrinos, the Z' mass and mixing constraints from nucleosynthesis are much more stringent than the existing laboratory limits from searches for direct production or from precision electroweak data, and are comparable to the ranges that may ultimately be probed at proposed colliders. For the case T_c = 150 MeV with the theoretically favored range of Z-Z' mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger mixing or larger T_c often lead to unacceptably large Delta N_nu except near the nu_R decoupling limit.

  18. Atmospheric neutrino oscillations and tau neutrinos in ice

    E-Print Network [OSTI]

    Gerardo Giordano; Olga Mena; Irina Mocioiu

    2010-04-20T23:59:59.000Z

    The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

  19. Experimental Neutrino Physics

    E-Print Network [OSTI]

    Christopher W. Walter

    2008-10-22T23:59:59.000Z

    It's been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation parameters were measured with man-made neutrino sources. Now, just in this last year, the same neutrinos which were the source of the 30 year old solar neutrino problem were measured for the first time in a real-time experiment. In this talk, I will explain how a set of experiments, especially ones in the last few years, have established a consistent framework of neutrino physics and also explain some outstanding questions. Finally, I will cover how a set of upcoming experiments hope to address these questions in the coming decade.

  20. SuperGZK neutrinos

    E-Print Network [OSTI]

    V. Berezinsky

    2005-09-22T23:59:59.000Z

    The sources and fluxes of superGZK neutrinos, $E>10^{20}$ eV, are discussed. The fluxes of {\\em cosmogenic neutrinos}, i.e. those produced by ultra-high energy cosmic rays (UHECR) interacting with CMB photons, are calculated in the models, which give the good fit to the observed flux of UHECR. The best fit given in no-evolutionary model with maximum acceleration energy $E_{\\rm max}=1\\times 10^{21}$ eV results in very low flux of superGZK neutrinos an order of magnitude lower than the observed flux of UHECR. The predicted neutrino flux becomes larger and observable by next generation detectors at energies $10^{20} - 10^{21}$ eV in the evolutionary models with $E_{\\rm max}=1\\times 10^{23}$ eV. The largest cosmogenic neutrino flux is given in models with very flat generation spectrum, e.g. $\\propto E^{-2}$. The neutrino energies are naturally high in the models of {\\em superheavy dark matter and topological defects}. Their fluxes can also be higher than those of cosmogenic neutrinos. The largest fluxes are given by {\\em mirror neutrinos}, oscillating into ordinary neutrinos. Their fluxes obey some theoretical upper limit which is very weak, and in practice these fluxes are most efficiently limited now by observations of radio emission from neutrino-induced showers.

  1. VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000 Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors

    E-Print Network [OSTI]

    Gratta, Giorgio

    Oscillations at the Palo Verde Nuclear Reactors F. Boehm,3 J. Busenitz,1 B. Cook,3 G. Gratta,4 H. Henrikson,3 J the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium.30.Pt Nuclear reactors have been used as intense sources of ¯ne in experiments searching for neutrino

  2. Vertical Structure of Neutrino Dominated Accretion Disks and Neutrino Transport in the disks

    E-Print Network [OSTI]

    Zhen Pan; Ye-Fei Yuan

    2012-09-06T23:59:59.000Z

    We investigate the vertical structure of neutrino dominated accretion disks by self-consistently considering the detailed microphysics, such as the neutrino transport, vertical hydrostatic equilibrium, the conservation of lepton number, as well as the balance between neutrino cooling, advection cooling and viscosity heating. After obtaining the emitting spectra of neutrinos and antineutrinos by solving the one dimensional Boltzmann equation of neutrino and antineutrino transport in the disk, we calculate the neutrino/antineutrino luminosity and their annihilation luminosity. We find that the total neutrino and antineutrino luminosity is about $10^{54}$ ergs/s and their annihilation luminosity is about $5\\times10^{51}$ ergs/s with an extreme accretion rate $10 M_{\\rm {sun}}$/s and an alpha viscosity $\\alpha=0.1$. In addition, we find that the annihilation luminosity is sensitive to the accretion rate and will not exceed $10^{50}$ ergs/s which is not sufficient to power the most fireball of GRBs, if the accretion rate is lower than $1 M_{\\rm {sun}}$/s. Therefore, the effects of the spin of black hole or/and the magnetic field in the accretion flow might be introduced to power the central engine of GRBs.

  3. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota EA-1943: Long Baseline Neutrino FacilityDeep Underground Neutrino...

  4. The United Families of Massive Neutrinos of a Different Nature

    E-Print Network [OSTI]

    Rasulkhozha S. Sharafiddinov

    2010-09-24T23:59:59.000Z

    At the availability of a nonzero mass, the same neutrino regardless of whether it refers to Dirac or Majorana fermions, must possess simultaneously each of the anapole and electric dipole moments. Their interaction with the field of emission can also lead to the elastic scattering of the longitudinal polarized neutrinos on a spinless nucleus. Using the cross section of a process, the united equation has been obtained between the anapole and electric dipole form factors of Dirac and Majorana neutrinos. It corresponds in nature to the coexistence of neutrinos of both types. As a consequence, each Dirac neutrino testifies in favor of the existence of a kind of Majorana neutrino. They constitute herewith the united families of massive neutrinos of a different nature. Therefore, any of the earlier measured properties of neutrinos may serve as a certain indication of the existence simultaneously of both Dirac and Majorana neutrinos. All findings are also confirmed by the comparatively new laboratory restrictions on the self-masses of these fermions. Thereby they state that electromagnetic gauge invariance must have a new structure, which depends on nature of the inertial mass and says that P-symmetry of a particle is basically violated at the expense of its rest mass.

  5. Volume 89 number 44 28 october 2008

    E-Print Network [OSTI]

    Mcdonough, William F.

    Volume 89 number 44 28 october 2008 pages 433­444 Eos, Vol. 89, No. 44, 28 October 2008 EOS, Tran.Mahoney Geoneutrino Measurements and Models Investigate Deep Earth PAGES 433­434 #12;Eos, Vol. 89, No. 44, 28 October 2008 uranium-238, thorium-232, and potassium- 40. Neutrinos and their antiparticles, anti- neutrinos

  6. Neutrino Decay and Solar Neutrino Seasonal Effect

    E-Print Network [OSTI]

    Picoreti, R; de Holanda, P C; Peres, O L G

    2015-01-01T23:59:59.000Z

    We consider the possibility of solar neutrino decay as a sub-leading effect on their propagation between production and detection. Using current oscillation data, we set a new lower bound to the $\

  7. Physics of Massive Neutrinos

    E-Print Network [OSTI]

    J. W. F. Valle

    2004-10-07T23:59:59.000Z

    I summarize the present status of global analyses of neutrino oscillations, including the most recent KamLAND and K2K data, as well as the latest solar and atmospheric neutrino fluxes. I give the allowed ranges of the three--flavour oscillation parameters from the current worlds' global neutrino data sample, their best fit values and discuss the small parameters DeltaM_solar/DeltaM_atm and sin^2 theta_13, which characterize the strength of CP violation in neutrino oscillations. I briefly discuss neutrinoless double beta decay and the LSND neutrino oscillation hint, as well as the robustness of the neutrino oscillation results in the presence of non-standard physics.

  8. Massive neutrinos and cosmology

    E-Print Network [OSTI]

    Julien Lesgourgues; Sergio Pastor

    2006-05-29T23:59:59.000Z

    The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.

  9. Solar neutrino detection

    E-Print Network [OSTI]

    Lino Miramonti

    2009-01-22T23:59:59.000Z

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  10. Spectroscopy of Solar Neutrinos

    E-Print Network [OSTI]

    Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Tobias Lachenmaier; Timo Lewke; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Christoph Traunsteiner; Juergen Winter

    2010-04-06T23:59:59.000Z

    In the last years, liquid-scintillator detectors have opened a new window for the observation of low-energetic astrophysical neutrino sources. In 2007, the solar neutrino experiment Borexino began its data-taking in the Gran Sasso underground laboratory. High energy resolution and excellent radioactive background conditions in the detector allow the first-time spectroscopic measurement of solar neutrinos in the sub-MeV energy regime. The experimental results of the Beryllium-7 neutrino flux measurements as well as the prospects for the detection of solar Boron-8, pep and CNO neutrinos are presented in the context of the currently discussed ambiguities in solar metallicity. In addition, the potential of the future SNO+ and LENA experiments for high-precision solar neutrino spectroscopy will be outlined.

  11. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-03-03T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-04-27T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  13. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Vogel, Petr; Zhang, Chao

    2015-01-01T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    F. Halzen; G. Jaczko

    1996-02-07T23:59:59.000Z

    We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

  15. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Kellog Radiation Lab.; Wen, L.J. [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-27T23:59:59.000Z

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  16. Measuring neutrino oscillation parameters using $\

    SciTech Connect (OSTI)

    Backhouse, Christopher James; /Oxford U.

    2011-02-01T23:59:59.000Z

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

  17. Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube

    E-Print Network [OSTI]

    Kamada, Ayuki

    2015-01-01T23:59:59.000Z

    The energy spectrum of high-energy neutrinos reported by the IceCube collaboration shows a dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the cosmic neutrino background through a $\\sim$ MeV mediator. Since the coherence length of PeV neutrinos is much larger than the cosmic distance that they travel from the source to the IceCube detector, the quantum coherent effect in neutrino propagation plays an important role in determining flavor components of the PeV neutrino flux at the IceCube detector. Taking the density matrix approach, we develop a formalism to include the coherent effect in calculating the neutrino flux. If the new interaction is not flavor-blind such as the gauged $L_{\\mu}-L_{\\tau}$ model we consider, the resonant collision may not suppress the PeV neutrino flux completely. The new force mediator may also contribute to the number of effectively massless degrees of freedom in the early universe, and change the diffusion time of neutrinos from ...

  18. Kinetics of Oscillating Neutrinos

    E-Print Network [OSTI]

    P. Strack

    2005-05-12T23:59:59.000Z

    In the context of core-collapse supernovae, Strack and Burrows (Phys. Rev. D 71, 093004 (2005)) have recently developed an extension of the classical Boltzmann kinetic formalism that retains all the standard neutrino oscillation phenomenology, including resonant flavor conversion (the MSW effect), neutrino self-interactions, and the interplay between neutrino-matter coupling and flavor oscillations. In this thesis, I extend the Strack & Burrows formalism to incorporate general relativity, spin degrees of freedom, and a possible neutrino magnetic-moment/magnetic-field interaction.

  19. Neutrino-nucleus interactions

    SciTech Connect (OSTI)

    Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

    2011-01-01T23:59:59.000Z

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  20. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  1. Composite Dirac Neutrinos

    E-Print Network [OSTI]

    Yuval Grossman; Dean J Robinson

    2011-01-25T23:59:59.000Z

    We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact $B-L$ symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.

  2. Non-linear evolution of the cosmic neutrino background

    SciTech Connect (OSTI)

    Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

    2013-03-01T23:59:59.000Z

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ?CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}?10{sup 15} h{sup ?1}M{sub s}un, over a redshift range z = 0?2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ? 10{sup 13.5}h{sup ?1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ? 200 h{sup ?1}kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations.

  3. Cosmological birefringence induced by neutrino current

    E-Print Network [OSTI]

    C. Q. Geng; S. H. Ho; J. N. Ng

    2007-11-29T23:59:59.000Z

    We review our recent work on the cosmological birefringence. We propose a new type of effective interactions in terms of the $CPT$-even dimension-six Chern-Simons-like term to generate the cosmological birefringence. We use the neutrino number asymmetry to induce a non-zero rotation polarization angle in the data of the cosmic microwave background radiation polarization.

  4. Fermi-Boltzmann statistics of neutrinos and relativistic effective degrees of freedom

    E-Print Network [OSTI]

    Jun Iizuka; Teruyuki Kitabayashi

    2014-11-22T23:59:59.000Z

    We investigate the effect of the presence of non-pure fermionic neutrinos on the relativistic effective degrees of freedom in the early universe. The statistics of neutrinos is transformed continuously from Fermi-Dirac to Maxwell-Boltzmann statistics. We find that the relativistic degrees of freedom decreases with the deviation from pure Fermi-Dirac statistics of neutrinos if there are constant and large lepton asymmetries. Additionally, we confirm that the change of the statistics of neutrinos from Fermi-Dirac to Maxwell-Boltzmann is not sufficient to cover the excess of the effective number of neutrinos.

  5. Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft

    E-Print Network [OSTI]

    Wallraff, Marius

    2014-01-01T23:59:59.000Z

    NuCraft (nucraft.hepforge.org) is an open-source Python project that calculates neutrino oscillation probabilities for neutrinos from cosmic-ray interactions in the atmosphere for their propagation through Earth. The solution is obtained by numerically solving the Schr\\"odinger equation. The code supports arbitrary numbers of neutrino flavors including additional sterile neutrinos, CP violation, arbitrary mass hierarchies, matter effects with a configurable Earth model, and takes into account the production height distribution of neutrinos in the Earth's atmosphere.

  6. Is there evidence for additional neutrino species from cosmology?

    SciTech Connect (OSTI)

    Feeney, Stephen M.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Verde, Licia, E-mail: stephen.feeney.09@ucl.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: liciaverde@icc.ub.edu [ICREA and ICC, Institut de Ciencies del Cosmos, Universitat de Barcelona (IEEC-UB), Marti i Franques 1, Barcelona 08028 (Spain)

    2013-04-01T23:59:59.000Z

    It has been suggested that recent cosmological and flavor-oscillation data favor the existence of additional neutrino species beyond the three predicted by the Standard Model of particle physics. We apply Bayesian model selection to determine whether there is indeed any evidence from current cosmological datasets for the standard cosmological model to be extended to include additional neutrino flavors. The datasets employed include cosmic microwave background temperature, polarization and lensing power spectra, and measurements of the baryon acoustic oscillation scale and the Hubble constant. We also consider other extensions to the standard neutrino model, such as massive neutrinos, and possible degeneracies with other cosmological parameters. The Bayesian evidence indicates that current cosmological data do not require any non-standard neutrino properties.

  7. Neutrino and anti-neutrino transport in accretion disks

    E-Print Network [OSTI]

    Zhen Pan; Ye-Fei Yuan

    2012-02-09T23:59:59.000Z

    We numerically solve the one dimensional Boltzmann equation of the neutrino and anti-neutrino transport in accretion disks and obtain the fully energy dependent and direction dependent neutrino and anti-neutrino emitting spectra, under condition that the distribution of the mass density,temperature and chemical components are given. Then, we apply the resulting neutrino and anti-neutrino emitting spectra to calculate the corresponding annihilation rate of neutrino pairs above the neutrino dominated accretion disk and find that the released energy resulting from the annihilation of neutrino pairs can not provide sufficient energy for the most energetic short gamma ray bursts whose isotropic luminosity can be as high as $10^{52}$ ergs/s unless the high temperature zone where the temperature is beyond 10 MeV can stretch over 200 km in the disk. We also compare the resulting luminosity of neutrinos and anti-neutrinos with the results from the two commonly used approximate treatment of the neutrino and anti-neutrino luminosity: the Fermi-Dirac black body limit and a simplified model of neutrino transport, i.e., the gray body model, and find that both of them overestimate the neutrino/anti-neutrino luminosity and their annihilation rate greatly. Additionally, as did in Sawyer (2003), we also check the validity of the two stream approximation, and find that it is a good approximation to high accuracy.

  8. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect (OSTI)

    Serpico, Pasquale D. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States)

    2007-04-27T23:59:59.000Z

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  9. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2007-01-01T23:59:59.000Z

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  10. Neutrinoless Double Beta Decay and Neutrino Masses

    E-Print Network [OSTI]

    Michael Duerr

    2012-06-04T23:59:59.000Z

    Neutrinoless double beta decay is a promising test for lepton number violating physics beyond the standard model of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between neutrinoless double beta decay and Majorana neutrino masses provided by the so-called Schechter--Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate neutrinoless double beta decay from unknown nuclear background using only one isotope, i.e., within one experiment.

  11. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27T23:59:59.000Z

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  12. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect (OSTI)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11T23:59:59.000Z

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  13. Neutrino oscillations: another physics?

    E-Print Network [OSTI]

    S. N. Vergeles

    2014-07-21T23:59:59.000Z

    It is shown that the neutrino oscillations phenomenon may be attributed to the Wilson fermion doubling phenomenon. The Wilson fermion doubling exists only on the lattices, both periodic and non-periodic (simplicial complexes). Just the last case plays a key role here. Thereby, the neutrino oscillations may show for the existence of a space-time granularity.

  14. Neutrino Oscillations and Cosmology

    E-Print Network [OSTI]

    A. D. Dolgov

    2000-04-04T23:59:59.000Z

    Phenomenology of neutrino oscillations in vacuum and in cosmological plasma is considered. Neutrino oscillations in vacuum are usually described in plane wave approximation. In this formalism there is an ambiguity if one should assume $\\delta p =0$ and correspondingly $\\delta E\

  15. Neutrino oscillations: another physics?

    E-Print Network [OSTI]

    Vergeles, S N

    2014-01-01T23:59:59.000Z

    It is shown that the neutrino oscillations phenomenon may be attributed to the Wilson fermion doubling phenomenon. The Wilson fermion doubling exists only on the lattices, both periodic and non-periodic (simplicial complexes). Just the last case plays a key role here. Thereby, the neutrino oscillations may show for the existence of a space-time granularity.

  16. The Sudbury Neutrino Observatory

    SciTech Connect (OSTI)

    Hime, A.

    1996-09-01T23:59:59.000Z

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  17. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06T23:59:59.000Z

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  18. Selected Topics in Majorana Neutrino Physics

    E-Print Network [OSTI]

    Maiani, Luciano

    2014-01-01T23:59:59.000Z

    Starting from the original Majorana's article of 1937, the see-saw mechanism is illustrated, first for one and later for three neutrino generations, and neutrinoless double beta decay is considered. Neutrino mixing and oscillations in three flavors are described. The Yukawa couplings to the Higgs field of quarks and leptons are considered, their transformation properties under the corresponding flavor groups are spelled and the principle of Minimal Flavor Violation is illustrated, in connection with possible new physics beyond the Standard Theory. The idea that the Yukawa couplings may be the vacuum expectation value of some new fields is introduced and natural extrema of potentials which are invariant under quark and lepton flavor groups are characterized. A recent result indicating large mixing of almost degenerate neutrinos is derived from the heavy lepton invariance under flavor ${\\cal O}(3)$.

  19. Supernova neutrino oscillations: A simple analytical approach

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

    2001-11-15T23:59:59.000Z

    Analyses of observable supernova neutrino oscillation effects require the calculation of the electron (anti)neutrino survival probability P_ee along a given supernova matter density profile. We propose a simple analytical prescription for P_ee, based on a double-exponential form for the crossing probability and on the concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical calculations for generic (realistic or power-law) profiles. The analytical approach is then generalized to cover three-flavor transitions with (direct or inverse) mass spectrum hierarchy, and to incorporate Earth matter effects. Compact analytical expressions, explicitly showing the symmetry properties of P_ee, are provided for practical calculations.

  20. Probing Exotic Physics With Supernova Neutrinos

    SciTech Connect (OSTI)

    Kelso, Chris; Hooper, Dan

    2010-09-01T23:59:59.000Z

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  1. Detection of low energy solar neutrinos with HPGermanium

    E-Print Network [OSTI]

    L. Baudis; H. V. Klapdor-Kleingrothaus

    1999-06-30T23:59:59.000Z

    The potential of the GENIUS proposal to measure the spectrum of low energy solar neutrinos in real time is studied. The detection reaction is elastic neutrino-electron scattering. The energy resolution for detecting the recoil electrons is about 0.3 %, the energy threshold is a few keV. The expected number of events for a target of one ton of natural germanium is 3.6 events/day for pp-neutrinos and 1.3 events/day for 7Be-neutrinos, calculated in the standard solar model (BP98). It should be feasible to achieve a background low enough to measure the low energy solar neutrino spectrum.

  2. Letter of Intent: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    E-Print Network [OSTI]

    Anghel, I; Bergevin, M; Blanco, C; Catano-Mur, E; Di Lodovico, F; Elagin, A; Frisch, H; Griskevich, J; Hill, R; Jocher, G; Katori, T; Krennrich, F; Learned, J; Malek, M; Northrop, R; Pilcher, C; Ramberg, E; Repond, J; Sacco, R; Sanchez, M C; Smy, M; Sobel, H; Svoboda, R; Usman, S M; Vagins, M; Varner, G; Wagner, R; Weinstein, A; Wetstein, M; Winslow, L; Xia, L; Yeh, M

    2015-01-01T23:59:59.000Z

    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Wate...

  3. Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos

    E-Print Network [OSTI]

    Alexei Yu. Smirnov; Renata Zukanovich Funchal

    2006-06-14T23:59:59.000Z

    Mixing of active neutrinos with sterile ones generate ``induced'' contributions to the mass matrix of active neutrinos $\\sim m_S \\sin^2\\theta_{aS}$, where $m_S$ is the Majorana mass of the sterile neutrino and $\\theta_{aS}$ is the active-sterile mixing angle. We study possible effects of the induced matrix which can modify substantially the implications of neutrino oscillation results. We have identified the regions of $m_S$ and $\\sin^2\\theta_{aS}$ where the induced matrix (i) provides the dominant structures, (ii) gives the sub-dominant effects and (iii) where its effects can be neglected. The induced matrix can be responsible for peculiar properties of the lepton mixing and neutrino mass spectrum, in particular, it can generate the tri-bimaximal mixing. We update and discuss bounds on the induced masses from laboratory measurements, astrophysics and cosmology. We find that substantial impact of the induced matrix is possible if $m_S \\sim 0.1-1$ eV and $\\sin^2\\theta_{aS} \\sim 10^{-3} - 10^{-2}$ or $m_S \\geq 200$ MeV and $\\sin^2\\theta_{aS} \\leq 10^{-9}$. The bounds can be relaxed in cosmological scenarios with low reheating temperature, if sterile neutrinos decay sufficiently fast, or their masses change with time.

  4. Impact of Neutrino Oscillation Measurements on Theory

    E-Print Network [OSTI]

    Murayama, Hitoshi

    2009-01-01T23:59:59.000Z

    was an amazing year in neutrino physics. Before March, thetheorists have a very good track record in neutrino physics.results from neutrino oscillation physics had surprised

  5. Mass Hierarchy via Mossbauer and Reactor Neutrinos

    E-Print Network [OSTI]

    Stephen Parke; Hisakazu Minakata; Hiroshi Nunokawa; Renata Zukanovich Funchal

    2008-12-10T23:59:59.000Z

    We show how one could determine the neutrino mass hierarchy with Mossbauer neutrinos and also revisit the question of whether the hierarchy can be determined with reactor neutrinos.

  6. Mass Hierarchy via Mossbauer and Reactor Neutrinos

    E-Print Network [OSTI]

    Parke, Stephen; Nunokawa, Hiroshi; Funchal, Renata Zukanovich

    2008-01-01T23:59:59.000Z

    We show how one could determine the neutrino mass hierarchy with Mossbauer neutrinos and also revisit the question of whether the hierarchy can be determined with reactor neutrinos.

  7. Neutrino oscillations and dark matter

    E-Print Network [OSTI]

    K. Zuber

    1996-12-17T23:59:59.000Z

    The significance of light massive neutrinos as hot dark matter is outlined. The power of neutrino oscillation experiments with respect to detect such neutrinos in the eV-region is discussed. Present hints for neutrino oscillations in solar, atmospheric and LSND data are reviewed as well as future experiments and their potential.

  8. The ANTARES Neutrino Telescope

    E-Print Network [OSTI]

    Perrina, Chiara

    2015-01-01T23:59:59.000Z

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  9. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  10. Lepton number violation and W ? chiral couplings at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Tao; Lewis, Ian; Ruiz, Richard; Si, Zong-guo

    2013-02-01T23:59:59.000Z

    We study the observability for a heavy Majorana neutrino N along with a new charged gauge boson W' at the LHC. We emphasize the complementarity of these two particles in their production and decay to unambiguously determine their properties. We show that the Majorana nature of N can be verified by the lepton number violating like-sign dilepton process, and by polar and azimuthal angular distributions. The chirality of the W' coupling to leptons and to quarks can be determined by a polar angle distribution in the reconstructed frame and an azimuthal angle distribution.

  11. Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions

    SciTech Connect (OSTI)

    Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2011-11-23T23:59:59.000Z

    The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

  12. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs

    E-Print Network [OSTI]

    Eli Waxman; John Bahcall

    1997-01-30T23:59:59.000Z

    Observations suggest that $\\gamma$-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, $\\ge 10%$, of the fireball energy is expected to be converted by photo-meson production to a burst of $\\sim10^{14} eV$ neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving $\\tau$'s would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  13. Radiative emission of neutrino pair free of quantum electrodynamic backgrounds

    E-Print Network [OSTI]

    M. Yoshimura; N. Sasao; M. Tanaka

    2015-01-23T23:59:59.000Z

    A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.

  14. Absolute neutrino mass measurements

    SciTech Connect (OSTI)

    Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

    2011-10-06T23:59:59.000Z

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  15. Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences

    E-Print Network [OSTI]

    Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

    2014-12-09T23:59:59.000Z

    Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

  16. Neutrinos: Nature's Identity Thieves?

    SciTech Connect (OSTI)

    Lincoln, Don

    2013-07-11T23:59:59.000Z

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  17. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  18. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Dr. Don Lincoln

    2013-07-22T23:59:59.000Z

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  19. Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Jun Cao

    2007-12-06T23:59:59.000Z

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measurement are also briefed.

  20. Probing the Neutrino Mass Hierarchy with Super-Kamiokande

    E-Print Network [OSTI]

    Agarwalla, Sanjib Kumar

    2012-01-01T23:59:59.000Z

    We show that a superbeam with an average neutrino energy of ~ 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L \\simeq 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the numu \\rightarrow nue oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.

  1. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect (OSTI)

    Stoner, K.J.

    1999-11-05T23:59:59.000Z

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  2. Majorana neutrino superfluidity and stability of neutrino dark energy

    SciTech Connect (OSTI)

    Bhatt, Jitesh R.; Sarkar, Utpal [Physical Research Laboratory, Ahmedabad 380009 (India)

    2009-08-15T23:59:59.000Z

    We demonstrate that Majorana neutrinos can form Cooper pairs due to long-range attractive forces and show BCS superfluidity in a class of mass varying neutrino dark energy models. We describe the condensates for Majorana neutrinos and estimate the value of the gap, critical temperature, and Pippard coherence length for a simple neutrino dark energy model. In the strong coupling regime bosonic degree of freedom can become important, and Bose-Einstein condensate may govern the dynamics for the mass varying neutrino models. Formation of the condensates can significantly alter the instability scenario in the mass varying neutrino models.

  3. Neutrino Masses in Astroparticle Physics

    E-Print Network [OSTI]

    G. G. Raffelt

    2002-08-08T23:59:59.000Z

    The case for small neutrino mass differences from atmospheric and solar neutrino oscillation experiments has become compelling, but leaves the overall neutrino mass scale m_nu undetermined. The most restrictive limit of m_nu neutrinos. If solar neutrino oscillations indeed correspond to the favored large mixing angle MSW solution, then big-bang nucleosynthesis gives us a restrictive limit on all neutrino chemical potentials, removing the previous uncertainty of n_nu. Therefore, a possible future measurement of m_nu will directly establish the cosmic neutrino mass fraction Omega_nu. Cosmological neutrinos with sub-eV masses can play an interesting role for producing the highest-energy cosmic rays (Z-burst scenario). Sub-eV masses also relate naturally to leptogenesis scenarios of the cosmic baryon asymmetry. Unfortunately, the time-of-flight dispersion of a galactic or local-group supernova neutrino burst is not sensitive in the sub-eV range.

  4. Berry Phase in Neutrino Oscillations

    E-Print Network [OSTI]

    Xiao-Gang He; Xue-Qian Li; Bruce H. J. McKellar; Yue Zhang

    2005-05-18T23:59:59.000Z

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation if the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges which implies that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a non-zero Berry phase with just two generations.

  5. On the Oscillation of Neutrinos Produced by the Annihilation of Dark Matter inside the Sun

    E-Print Network [OSTI]

    Arman Esmaili; Yasaman Farzan

    2010-06-14T23:59:59.000Z

    The annihilation of dark matter particles captured by the Sun can lead to a neutrino flux observable in neutrino detectors. Considering the fact that these dark matter particles are non-relativistic, if a pair of dark matter annihilates to a neutrino pair, the spectrum of neutrinos will be monochromatic. We show that in this case, even after averaging over production point inside the Sun, the oscillatory terms of the oscillation probability do not average to zero. This leads to interesting observable features in the annual variation of the number of muon track events. We show that smearing of the spectrum due to thermal distribution of dark matter inside the Sun is too small to wash out this variation. We point out the possibility of studying the initial flavor composition of neutrinos produced by the annihilation of dark matter particles via measuring the annual variation of the number of muon-track events in neutrino telescopes.

  6. Neutrino oscillations refitted

    E-Print Network [OSTI]

    Forero, D V; Valle, J W F

    2014-01-01T23:59:59.000Z

    Here we update our previous global fit of neutrino oscillations by including the recent results which have appeared since the Neutrino-2012 conference. These include the measurements of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle $\\theta_{23}$ is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data.

  7. Two Questions About Neutrinos

    SciTech Connect (OSTI)

    Kayser, Boris

    2010-12-01T23:59:59.000Z

    We explain why the see-saw picture and leptogenesis make it particularly interesting to find out whether neutrinos are their own antiparticles, and whether their oscillations violate CP.

  8. Realistic Earth matter effects and a method to acquire information about small ?_{13} in the detection of supernova neutrinos

    E-Print Network [OSTI]

    Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

    2009-04-14T23:59:59.000Z

    In this paper, we first calculate the realistic Earth matter effects in the detection of type II supernova neutrinos at the Daya Bay reactor neutrino experiment which is currently under construction. It is found that the Earth matter effects depend on the neutrino incident angle $\\theta$, the neutrino mass hierarchy $\\Delta m_{31}^{2}$, the crossing probability at the high resonance region inside the supernova, $P_{H}$, the neutrino temperature, $T_{\\alpha}$, and the pinching parameter in the neutrino spectrum, $\\eta_{\\alpha}$. We also take into account the collective effects due to neutrino-neutrino interactions inside the supernova. With the expression for the dependence of $P_H$ on the neutrino mixing angle $\\theta_{13}$, we obtain the relations between $\\theta_{13}$ and the event numbers for various reaction channels of supernova neutrinos. Using these relations, we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$. Such a sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment which has a sensitivity of the order of $\\theta_{13}\\sim 3^\\circ$. Furthermore, we apply this method to other neutrino experiments, i.e. Super-K, SNO, KamLAND, LVD, MinBooNE, Borexino, and Double-Chooz. We also study the energy spectra of the differential event numbers, ${\\rm d}N/{\\rm d}E$.

  9. Pulsar kicks from neutrino oscillations

    E-Print Network [OSTI]

    Alexander Kusenko

    2004-09-27T23:59:59.000Z

    Neutrino oscillations in a core-collapse supernova may be responsible for the observed rapid motions of pulsars. Given the present bounds on the neutrino masses, the pulsar kicks require a sterile neutrino with mass 2-20 keV and a small mixing with active neutrinos. The same particle can be the cosmological dark matter. Its existence can be confirmed the by the X-ray telescopes if they detect a 1-10 keV photon line from the decays of the relic sterile neutrinos. In addition, one may be able to detect gravity waves from a pulsar being accelerated by neutrinos in the event of a nearby supernova.

  10. Radiochemical solar neutrino experiments

    E-Print Network [OSTI]

    V. N. Gavrin; B. T. Cleveland

    2007-03-06T23:59:59.000Z

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88 +/- 0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  11. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24T23:59:59.000Z

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  12. Neutrino Interactions with Nuclei

    SciTech Connect (OSTI)

    Leitner, T.; Buss, O.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Alvarez-Ruso, L. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC (Spain)

    2007-12-21T23:59:59.000Z

    We investigate neutrino-nucleus collisions at intermediate energies incorporating quasielastic scattering and the excitation of 13 resonances as elementary processes, taking into account medium effects such as Fermi motion, Pauli blocking, mean-field potentials and in-medium spectral functions. A coupled-channel treatment of final state interactions is achieved with the GiBUU transport model. Results for inclusive reactions, neutrino- and electron-induced, as well as for pion production and nucleon knockout are presented.

  13. Neutrino oscillations refitted

    E-Print Network [OSTI]

    D. V. Forero; M. Tortola; J. W. F. Valle

    2014-11-21T23:59:59.000Z

    Here we update our previous global fit of neutrino oscillations by including the recent results which have appeared since the Neutrino-2012 conference. These include the measurements of reactor anti-neutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle $\\theta_{23}$ is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the appendix we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  14. PHYSICAL REVIEW E 85, 026318 (2012) Effects of microstructure on flow properties of fibrous porous media at moderate Reynolds number

    E-Print Network [OSTI]

    Bahrami, Majid

    2012-01-01T23:59:59.000Z

    ]. In creeping flow regime, according to the Darcy equation, the relationship between volume-averaged velocity is the permeability. In higher Reynolds numbers, the relationship becomes nonlinear and a modified Darcy equation and fiber orientation. A comparison of the experimental and numerical results with the Ergun equation

  15. 84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being

    E-Print Network [OSTI]

    kilowatt- hour (1 kWh)? Problem 4 ­ How many ergs of energy are collected from a solar panel on a roof, if the sunlight provides a flux of 300 Joules/sec/meter 2 , the solar panels have an area of 27 square feet84Unit Conversions ­ Energy, Power, Flux Energy is measured in a number of ways depending on what

  16. Sterile Neutrino Fits to Short-Baseline Neutrino Oscillation Measurements

    E-Print Network [OSTI]

    Conrad, J. M.

    2013-01-01T23:59:59.000Z

    This paper reviews short-baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1?eV range. Appearance and ...

  17. GENIUS project, neutrino oscillations and Cosmology: neutrinos reveal their nature?

    E-Print Network [OSTI]

    M. Czakon; J. Studnik; M. Zralek; J. Gluza

    2000-05-17T23:59:59.000Z

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

  18. DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-04-01T23:59:59.000Z

    The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

  19. Aspects of Neutrino Oscillation in Alternative Gravity Theories

    E-Print Network [OSTI]

    Sumanta Chakraborty

    2015-06-08T23:59:59.000Z

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. This finally lends itself to non-zero probability of neutrino helicity flip. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to different gravity theories. These include dilaton field coupled to Maxwell field tensor, generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action and finally regular black hole solutions. In all these cases using the solar neutrino oscillation data we can put bounds on the parameters of these gravity theories. While for spin oscillation probability, we have considered two cases, Gauss-Bonnet term added to the Einstein-Hilbert action and the f(R) gravity theory. In both these cases we could impose bounds on the parameters which are consistent with previous considerations. Implications are also discussed.

  20. Solar neutrino physics: Sensitivity to light dark matter particles

    E-Print Network [OSTI]

    Ilidio Lopes; Joseph Silk

    2013-09-29T23:59:59.000Z

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radius of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely 8B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 x 10^{-37} cm^-2 produce a variation in the 8B neutrino fluxes that would be in conflict with current measurements.

  1. Particle physics implications of the WMAP neutrino mass bound

    E-Print Network [OSTI]

    G. Bhattacharyya; H. Päs; L. Song; T. J. Weiler

    2003-04-25T23:59:59.000Z

    The recently published cosmological bound on the absolute neutrino masses obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) data has important consequences for neutrino experiments and models. Taken at face value, the new bound excludes the determination of the absolute neutrino mass in the KATRIN experiment and disfavors a neutrino oscillation interpretation of the LSND experiment. Combined with the KamLAND and Super-K data, the WMAP bound defines an accessible range for the neutrinoless double beta decay amplitude. The bound also impacts the Z-burst annihilation mechanism for resonant generation of extreme-energy cosmic rays on the cosmic neutrino background in two ways: it constrains the local overdensity of neutrino dark matter which is not helpful, but it also limits the resonant energy to a favorable range. In R-parity violating SUSY models neutrino masses are generated by trilinear and bilinear lepton number violating couplings. The WMAP result improves the constraints on these couplings over their existing values by an order of magnitude.

  2. On Pulsar Velocities from Neutrino Oscillations

    E-Print Network [OSTI]

    Michael Birkel; Ramon Toldra

    1997-06-11T23:59:59.000Z

    It has been recently suggested that magnetically affected neutrino oscillations inside a cooling protoneutron star, created in a supernova explosion, could explain the large proper motion of pulsars. We investigate whether this hypothesis is in agreement with the observed properties of pulsars and find that present data disfavor the suggested mechanism. The relevance of our results for other models proposed to understand the origin of pulsar velocities is also discussed.

  3. The Neutrino Eye: A Megaton Low Energy Neutrino

    E-Print Network [OSTI]

    Learned, John

    from WIMPS and gamma ray bursts, and upon real time counting of solar neutrinos, are all from sensi­ tivity, and conduct a watch for for neutrino correlates to sporadic phenomenon such as gamma ray bursts. The main thrust would be to detect actual muon neutrino appearance as well as disappearance

  4. Neutrino oscillations beyond two flavours

    E-Print Network [OSTI]

    E. Kh. Akhmedov

    2002-07-29T23:59:59.000Z

    I review some theoretical aspects of neutrino oscillations in the case when more than two neutrino flavours are involved. These include: approximate analytic solutions for 3-flavour (3f) oscillations in matter; matter effects in nu_mu - nu_tau oscillations; 3f effects in oscillations of solar, atmospheric, reactor and supernova neutrinos and in accelerator long-baseline experiments; CP and T violation in neutrino oscillations in vacuum and in matter; the problem of U_{e3}; 4f oscillations.

  5. Neutrino dispersion in magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2008-12-02T23:59:59.000Z

    The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

  6. Determining the neutrino mass hierarchy

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2006-07-01T23:59:59.000Z

    In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

  7. Perspectives on neutrino telescopes 2009

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP

    2009-04-01T23:59:59.000Z

    Remarks at the roundtable on plans for the future at the XIII International Workshop on Neutrino Telescopes.

  8. 2010 Sambamurti Lecture: ?Expecting the Unexpected: Neutrino Physics at MiniBooNE?

    ScienceCinema (OSTI)

    Geralyn ?Sam? Zeller

    2010-09-01T23:59:59.000Z

    For more than 50 years, neutrinos have surprised researchers, not only by their mere presence, but also by the recent revelation that these ghostlike particles can oscillate from one type to another. This discovery has opened up a host of new questions about neutrinos and their properties ? questions that scientists are currently in a global race to answer.

  9. Neutrino oscillations: theory and phenomenology

    E-Print Network [OSTI]

    E. Kh. Akhmedov

    2006-10-05T23:59:59.000Z

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations and effective 2-flavour approximations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on \

  10. Solar Neutrino Matter Effects Redux

    E-Print Network [OSTI]

    A. B. Balantekin; A. Malkus

    2011-12-19T23:59:59.000Z

    Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

  11. Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra

    E-Print Network [OSTI]

    L. E. Ibanez; A. N. Schellekens; A. M. Uranga

    2007-04-25T23:59:59.000Z

    Recently it has been shown that string instanton effects may give rise to neutrino Majorana masses in certain classes of semi-realistic string compactifications. In this paper we make a systematic search for supersymmetric MSSM-like Type II Gepner orientifold constructions admitting boundary states associated with instantons giving rise to neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero mode structure of D-brane instantons on general type II orientifold compactifications, and show that only instantons with O(1) symmetry can have just the two zero modes required to contribute to the 4d superpotential. We however discuss how the addition of fluxes and/or possible non-perturbative extensions of the orientifold compactifications would allow also instantons with $Sp(2)$ and U(1) symmetries to generate such superpotentials. In the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1) instantons with just the required zero modes to generate a neutrino mass superpotential. On the other hand we find a number of models in one particular orientifold of the Gepner model $(2,4,22,22)$ with $Sp(2)$ instantons with a few extra uncharged non-chiral zero modes which could be easily lifted by the mentioned effects. A few more orientifold examples are also found under less stringent constraints on the zero modes. This class of $Sp(2)$ instantons have the interesting property that R-parity conservation is automatic and the flavour structure of the neutrino Majorana mass matrices has a simple factorized form.

  12. Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation

    E-Print Network [OSTI]

    Steigman, Gary

    2013-01-01T23:59:59.000Z

    According to conventional wisdom, in the standard model (SM) of particle physics and cosmology the effective number of neutrinos is Neff=3 (more precisely, 3.046). In extensions of the standard model allowing for the presence of DeltaNnu equivalent neutrinos (or dark radiation), Neff is generally >3. The canonical results are reconsidered here, revealing that a measurement of Neff>3 can be consistent with DeltaNnu=0 (dark radiation without dark radiation). Conversely, a measurement consistent with Neff=3 is not inconsistent with the presence of dark radiation (DeltaNnu>0). In particular, if there is a light WIMP that annihilates to photons after the SM neutrinos have decoupled, the photons are heated beyond their usual heating from e+- annihilation, reducing the late time ratio of neutrino and photon temperatures (and number densities), leading to Neff3 even in the absence of equivalent neutrinos or dark radiation. A measurement of Neff>3 is thus no guarantee of the presence of equivalent neutrinos or dark ra...

  13. Neutrino oscillations: brief history and present status

    E-Print Network [OSTI]

    Bilenky, S M

    2014-01-01T23:59:59.000Z

    A brief review of the problem of neutrino masses and oscillations is given. In the beginning we present an early history of neutrino masses, mixing and oscillations. Then we discuss all possibilities of neutrino masses and mixing (neutrino mass terms). The phenomenology of neutrino oscillations in vacuum is considered in some details. We present also the neutrino oscillation data and the seesaw mechanism of the neutrino mass generation.

  14. Optimisation of future long baseline neutrino experiments

    E-Print Network [OSTI]

    Olga Mena

    2008-09-28T23:59:59.000Z

    The aim of this talk is to review near and far future long baseline neutrino experiments as superbeams, beta-Beams and neutrino factories, comparing their sensitivities to the unknown parameters in the neutrino oscillation sector. We focus on the extraction of the neutrino mass hierarchy, exploring alternatives to the commonly used neutrino-antineutrino comparison. Special attention to a new concept of neutrino factory design, the low energy neutrino factory, is given.

  15. Neutrino oscillations and supernovae

    E-Print Network [OSTI]

    D. V. Ahluwalia-Khalilova

    2004-04-02T23:59:59.000Z

    In a 1996 JRO Fellowship Research Proposal (Los Alamos), the author suggested that neutrino oscillations may provide a powerful indirect energy transport mechanism to supernovae explosions. The principal aim of this addendum is to present the relevant unedited text of Section 1 of that proposal. We then briefly remind, (a) of an early suggestion of Mazurek on vacuum neutrino oscillations and their relevance to supernovae explosion, and (b) Wolfenstein's result on suppression of the effect by matter effects. We conclude that whether or not neutrino oscillations play a significant role in supernovae explosions shall depend if there are shells/regions of space in stellar collapse where matter effects play no essential role. Should such regions exist in actual astrophysical situations, the final outcome of neutrino oscillations on supernovae explosions shall depend, in part, on whether or not the LNSD signal is confirmed. Importantly, the reader is reminded that neutrino oscillations form a set of flavor-oscillation clocks and these clock suffer gravitational redshift which can be as large as 20 percent. This effect must be incorporated fully into any calculation of supernova explosion.

  16. Neutrino Oscillation Effects on Supernova Light Element Synthesis

    E-Print Network [OSTI]

    T. Yoshida; T. Kajino; H. Yokomakura; K. Kimura; A. Takamura; D. H. Hartmann

    2006-06-02T23:59:59.000Z

    Neutrino oscillations affect light element synthesis through the neutrino-process in supernova explosions. The 7Li and 11B yields produced in a supernova explosion of a 16.2 solar-mass star model increase by factors of 1.9 and 1.3 in the case of large mixing angle solution with normal mass hierarchy and sin^{2}2theta_{13} > 0.002 compared with those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. Neutrino oscillations raise the reaction rates of charged-current neutrino-process reactions in the region outside oxygen-rich layers. The number ratio of 7Li/11B could be a tracer of normal mass hierarchy and relatively large theta_{13}, still satisfying sin^{2}2theta_{13} < 0.1, through future precise observations in stars having strong supernova component.

  17. Crucial role of neutrinos in the electroweak symmetry breaking

    SciTech Connect (OSTI)

    Smetana, Adam [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00 Prague 2 (Czech Republic)

    2013-12-30T23:59:59.000Z

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  18. New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos

    E-Print Network [OSTI]

    Carsten Rott; Jennifer Siegal-Gaskins; John F. Beacom

    2013-09-05T23:59:59.000Z

    Dark matter particles captured by the Sun through scattering may annihilate and produce neutrinos, which escape. Current searches are for the few high-energy neutrinos produced in the prompt decays of some final states. We show that interactions in the solar medium lead to a large number of pions for nearly all final states. Positive pions and muons decay at rest, producing low-energy neutrinos with known spectra, including nuebar through neutrino mixing. We demonstrate that Super-Kamiokande can thereby provide a new probe of the spin-dependent WIMP-proton cross section. Compared to other methods, the sensitivity is competitive and the uncertainties are complementary.

  19. Plasmon decay to a neutrino pair via neutrino electromagnetic moments in a strongly magnetized medium

    E-Print Network [OSTI]

    A. V. Borisov; P. E. Sizin

    2014-06-12T23:59:59.000Z

    We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.

  20. Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3-1 Model

    E-Print Network [OSTI]

    Alex G. Dias; A. Doff; C. A. de S. Pires; P. S. Rodrigues da Silva

    2005-08-11T23:59:59.000Z

    In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

  1. Neutrino decay and neutrinoless double beta decay in a 3-3-1 model

    SciTech Connect (OSTI)

    Dias, Alex G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66.318, 05315-970, Sao Paulo-SP (Brazil); Doff, A. [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo-SP (Brazil); Pires, C.A. de S; Rodrigues da Silva, P.S. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970, Joao Pessoa-PB (Brazil)

    2005-08-01T23:59:59.000Z

    In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with Majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

  2. Entanglement in neutrino oscillations

    E-Print Network [OSTI]

    Massimo Blasone; Fabio Dell'Anno; Silvio De Siena; Fabrizio Illuminati

    2009-04-17T23:59:59.000Z

    Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks.

  3. Neutrino Oscillations and Blazars

    E-Print Network [OSTI]

    Karl Mannheim

    1999-01-25T23:59:59.000Z

    Three independent predictions follow from postulating the existence of protons co-accelerated with electrons in extragalactic jets (i) multi-TeV gamma ray emission from nearby blazars, (ii) extragalactic cosmic ray protons up to 10^20 eV, and (iii) extragalactic neutrinos up to 5 10^18 eV. Recent gamma ray observations of Mrk 421 and Mrk 501 employing the air-Cerenkov technique are consistent with the predicted gamma ray spectrum, if one corrects for pair attenuation on the infrared background. Prediction (ii) is consistent with cosmic ray data, if one requires that jets are responsible for at least a sizable fraction of the extragalactic gamma ray background. With kubic kilometer neutrino telescopes, it will be possible to test (iii), although the muon event rates are rather low. Neutrino oscillations can increase the event rate by inducing tau-cascades removing the Earth shadowing effect.

  4. Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model

    E-Print Network [OSTI]

    Mirizzi, Alessandro; Saviano, Ninetta

    2015-01-01T23:59:59.000Z

    We consider a simplifed model for self-induced flavor conversions of a dense neutrino gas in two dimensions, showing new solutions that spontaneously break the spatial symmetries of the initial conditions. As a result of the symmetry breaking induced by the neutrino-neutrino interactions, the coherent behavior of the neutrino gas becomes unstable. This instability produces large spatial variations in the flavor content of the ensemble. Furthermore, it also leads to the creation of domains of different net lepton number flux. The transition of the neutrino gas from a coherent to incoherent behavior shows an intriguing analogy with a streaming flow changing from laminar to turbulent regime. These finding would be relevant for the self-induced conversions of neutrinos streaming-off a supernova core.

  5. Short Baseline Neutrino Oscillation Experiments

    E-Print Network [OSTI]

    Katori, Teppei

    2014-01-01T23:59:59.000Z

    Series of short baseline neutrino oscillation experiments provided unexpected results, and now they are called short baseline anomalies, and all indicates an existence of sterile neutrinos with a mass scale around 1~eV. The signals of short baseline anomalies are reported from 4 different classes of experiments. However, at this moment, there is no convincing theoretical model to explain such sterile neutrinos, and a single experiment to confirm 1~eV sterile neutrinos may be challenging. In this short note, we describe classes of short baseline neutrino oscillation experiments and their goals.

  6. Riddle of the Neutrino Mass

    E-Print Network [OSTI]

    Smirnov, A Yu

    2015-01-01T23:59:59.000Z

    We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

  7. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01T23:59:59.000Z

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  8. Symmetries in collective neutrino oscillations

    E-Print Network [OSTI]

    Huaiyu Duan; George M. Fuller; Yong-Zhong Qian

    2009-07-31T23:59:59.000Z

    We discuss the relationship between a symmetry in the neutrino flavour evolution equations and neutrino flavour oscillations in the collective precession mode. This collective precession mode can give rise to spectral swaps (splits) when conditions can be approximated as homogeneous and isotropic. Multi-angle numerical simulations of supernova neutrino flavour transformation show that when this approximation breaks down, non-collective neutrino oscillation modes decohere kinematically, but the collective precession mode still is expected to stand out. We provide a criterion for significant flavour transformation to occur if neutrinos participate in a collective precession mode. This criterion can be used to understand the suppression of collective neutrino oscillations in anisotropic environments in the presence of a high matter density. This criterion is also useful in understanding the breakdown of the collective precession mode when neutrino densities are small.

  9. Real Oscillations of Virtual Neutrinos

    E-Print Network [OSTI]

    W. Grimus; P. Stockinger

    1996-03-28T23:59:59.000Z

    We study the conditions for neutrino oscillations in a field theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates $\\vec{x}_P$ and $\\vec{x}_D$, respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit $L=|\\vec{x}_D - \\vec{x}_P| \\rightarrow \\infty$ the virtual neutrinos become ``real'' and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities.

  10. Real oscillations of virtual neutrinos

    E-Print Network [OSTI]

    Grimus, Walter

    1996-01-01T23:59:59.000Z

    We study the conditions for neutrino oscillations in a field theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates \\vec{x}_P and \\vec{x}_D, respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|\\vec{x}_D - \\vec{x}_P| \\rightarrow \\infty the virtual neutrinos become ``real'' and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities.

  11. Neutrino Oscillation Search Neutrino Oscillation Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino crossN uEPS HEP

  12. Nonstandard neutrino interactions and transition magnetic moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry

    2013-06-01T23:59:59.000Z

    We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.

  13. Neutrinoless double beta decay and neutrino physics

    E-Print Network [OSTI]

    Werner Rodejohann

    2012-08-20T23:59:59.000Z

    The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

  14. Neutrino and it's lepton

    E-Print Network [OSTI]

    G. Quznetsov

    2008-11-10T23:59:59.000Z

    In this paper I cite p.p. 100-117 of book G. Quznetsov, Probabilistic Treatment of Gauge Theories, in series Contemporary Fundamental Physics,ed. V. Dvoeglazov, Nova Sci. Publ., NY (2007). There I research a bound between neutrino and it's lepton.

  15. Neutrino Factory Downstream Systems

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-23T23:59:59.000Z

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  16. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Target · Separates functionality, provides double mercury containment, simplifies design and remote handling · Each

  17. Double beta decay and neutrino mass models

    E-Print Network [OSTI]

    Helo, J C; Ota, T; Santos, F A Pereira dos

    2015-01-01T23:59:59.000Z

    Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

  18. Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes

    E-Print Network [OSTI]

    John F. Beacom; Nicole F. Bell; Dan Hooper; John G. Learned; Sandip Pakvasa; Thomas J. Weiler

    2004-01-05T23:59:59.000Z

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally-mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are $\\delta m^2 \\alt 10^{-12}$ eV$^2$; in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of $L/E$, mass-squared differences down to $\\delta m^2 \\sim 10^{-18}$ eV$^2$ can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  19. Physics Prospects with an Intense Neutrino Experiment

    E-Print Network [OSTI]

    N. Solomey

    2000-06-16T23:59:59.000Z

    With new forthcoming intense neutrino beams, for the study of neutrino oscillations, it is possible to consider other physics experiments that can be done with these extreme neutrino fluxes available close to the source.

  20. Solar mass-varying neutrino oscillations

    E-Print Network [OSTI]

    Marfatia, Danny; Huber, P.; Barger, V.

    2005-11-18T23:59:59.000Z

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric ...

  1. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    SciTech Connect (OSTI)

    Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10T23:59:59.000Z

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  2. The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments

    E-Print Network [OSTI]

    Kopp, Joachim

    2014-01-01T23:59:59.000Z

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson $A'$ couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than $\\sim 10$ times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small ($\\sin^2 \\theta_{24} \\lesssim 10^{-3}$). This rules out gauge forces large eno...

  3. High Rate Physics at Neutrino Factories

    E-Print Network [OSTI]

    Bruce J. King

    1999-11-06T23:59:59.000Z

    Both muon colliders and non-colliding muon storage rings using muon collider technology have the potential to become the first true ``neutrino factories'', with uniquely intense and precisely characterized neutrino beams that could usher in a new era of high rate and long baseline neutrino physics studies at accelerators. This paper gives an overview of the predicted capabilities of neutrino factories for high rate neutrino physics analyses that will use huge event samples collected with novel, high performance neutrino detectors.

  4. Neutrino Oscillations and the Early Universe

    E-Print Network [OSTI]

    D. P. Kirilova

    2003-12-21T23:59:59.000Z

    The observational and theoretical status of neutrino oscillations in connection with solar and atmospheric neutrino anomalies is presented in brief. The effect of neutrino oscillations on the early Universe evolution is discussed in detail. A short review is given of the standard Big Bang Nucleosynthesis and the influence of resonant and nonresonant neutrino oscillations on active neutrinos and on primordial nucleosynthesis of He-4. BBN cosmological constraints on neutrino oscillation parameters are discussed.

  5. Measuring the Neutrino Mass Hierarchy with Atmospheric Neutrinos

    E-Print Network [OSTI]

    D. F. Cowen; T. DeYoung; D. Grant; D. A. Dwyer; S. R. Klein; K. B. Luk; D. R. Williams; for the IceCube/PINGU Collaboration

    2014-09-24T23:59:59.000Z

    The proposed PINGU experiment to measure the neutrino mass hierarchy is presented, in the context of long-range planning by the U.S. nuclear physics community.

  6. Non-unitary neutrino propagation from neutrino decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-03-01T23:59:59.000Z

    Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  7. A Dynamical Framework for KeV Dirac Neutrino Warm Dark Matter

    E-Print Network [OSTI]

    Dean J. Robinson; Yuhsin Tsai

    2014-08-06T23:59:59.000Z

    If the source of the reported $3.5$ keV x-ray line is a sterile neutrino, comprising an $\\mathcal{O}(1)$ fraction of the dark matter (DM), then it exhibits the property that its mass times mixing angle is $\\sim \\mbox{few} \\times 10^{-2}$ eV, a plausible mass scale for the active neutrinos. This property is a common feature of Dirac neutrino mixing. We present a framework that dynamically produces light active and keV sterile Dirac neutrinos, with appropriate mixing angles to be the x-ray line source. The central idea is that the right-handed active neutrino is a composite state, while elementary sterile neutrinos gain keV masses similarly to the quarks in extended Technicolor. The entire framework is fixed by just two dynamical scales and may automatically exhibit a warm dark matter (WDM) production mechanism -- dilution of thermal relics from late decays of a heavy composite neutrino -- such that the keV neutrinos may comprise an $\\mathcal{O}(1)$ fraction of the DM. In this framework, the WDM is typically quite cool and within structure formation bounds, with temperature $\\sim \\mbox{few}\\times 10^{-2}~T_\

  8. Gauge Trimming of Neutrino Masses

    SciTech Connect (OSTI)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01T23:59:59.000Z

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  9. Compromise between neutrino masses and collider signatures in the type-II seesaw model

    SciTech Connect (OSTI)

    Chao Wei; Luo Shu; Xing Zhizhong; Zhou Shun [Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, Beijing 100049 (China)

    2008-01-01T23:59:59.000Z

    A natural extension of the standard SU(2){sub L}xU(1){sub Y} gauge model to accommodate massive neutrinos is to introduce one Higgs triplet and three right-handed Majorana neutrinos, leading to a 6x6 neutrino mass matrix which contains three 3x3 submatrices, M{sub L}, M{sub D} and M{sub R}. We show that three light Majorana neutrinos (i.e., the mass eigenstates of {nu}{sub e}, {nu}{sub {mu}}, and {nu}{sub {tau}}) are exactly massless in this model, if and only if M{sub L}=M{sub D}M{sub R}{sup -1}M{sub D}{sup T} exactly holds. This no-go theorem implies that small but nonvanishing neutrino masses may result from a significant but incomplete cancellation between M{sub L} and M{sub D}M{sub R}{sup -1}M{sub D}{sup T} terms in the Type-II seesaw formula, provided three right-handed Majorana neutrinos are of O(1) TeV and experimentally detectable at the LHC. We propose three simple Type-II seesaw scenarios with the A{sub 4}xU(1){sub X} flavor symmetry and its explicit breaking to interpret the observed neutrino mass spectrum and neutrino mixing pattern. Such a TeV-scale neutrino model can be tested in two complementary ways: (1) searching for possible collider signatures of lepton number violation induced by the right-handed Majorana neutrinos and doubly-charged Higgs particles; and (2) searching for possible consequences of unitarity violation of the 3x3 neutrino mixing matrix in the future long-baseline neutrino oscillation experiments.

  10. The Baikal Neutrino Telescope: Selected Physics Results

    E-Print Network [OSTI]

    R. Wischnewski; for the BAIKAL Collaboration

    2007-10-16T23:59:59.000Z

    We present results on searches for exotic particles (relativistic magnetic monopoles and WIMPs) and for UHE neutrinos, obtained with the Baikal neutrino telescope NT200.

  11. Low-energy solar anti-neutrinos

    E-Print Network [OSTI]

    V. B. Semikoz; S. Pastor; J. W. F. Valle

    1998-08-13T23:59:59.000Z

    If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

  12. Hyper Space Complex Number

    E-Print Network [OSTI]

    Shanguang Tan

    2007-04-23T23:59:59.000Z

    A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

  13. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Fritzsch, Harald

    2015-01-01T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  14. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Harald Fritzsch

    2015-03-06T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  15. High energy neutrino cross sections

    E-Print Network [OSTI]

    M. H. Reno

    2004-10-07T23:59:59.000Z

    The theoretical status of the neutrino-nucleon cross section is reviewed for incident neutrino energies up to E_nu=10^12 GeV, including different approaches to high energy extrapolations. Nonstandard model physics may play a role at ultrahigh energies. The cases of mini-black hole production and electroweak instanton contributions are discussed as examples in the context of ultrahigh energy neutrino scattering.

  16. Advancements in solar neutrino physics

    E-Print Network [OSTI]

    Vito Antonelli; Lino Miramonti

    2013-04-23T23:59:59.000Z

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  17. Neutrino Physics: Status and Prospects

    E-Print Network [OSTI]

    K. Scholberg

    2003-08-05T23:59:59.000Z

    This pedagogical overview will cover the current status of neutrino physics from an experimentalist's point of view, focusing primarily on oscillation studies. The evidence for neutrino oscillations will be presented, along with the prospects for further refinement of observations in each of the indicated regions of two-flavor oscillation parameter space. The next steps in oscillation physics will then be covered (under the assumption of three-flavor mixing): the quest for $\\theta_{13}$, mass hierarchy and, eventually, leptonic CP violation. Prospects for non-oscillation aspects of neutrino physics, such as kinematic tests for absolute neutrino mass and double beta decay searches, will also be discussed briefly.

  18. Lorentz Invariance of Neutrino Oscillations

    E-Print Network [OSTI]

    C. Giunti

    2003-05-29T23:59:59.000Z

    It is shown that, in spite of the appearances, the standard expression for the oscillation probability of ultrarelativistic neutrinos is Lorentz invariant.

  19. Gravitational Correction in Neutrino Oscillations

    E-Print Network [OSTI]

    Yasufumi Kojima

    1996-12-17T23:59:59.000Z

    We investigate the quantum mechanical oscillations of neutrinos propagating in weak gravitational field. The correction to the result in the flat space-time is derived.

  20. Proton and Neutrino Extragalactic Astronomy

    E-Print Network [OSTI]

    Paolo Lipari

    2008-08-04T23:59:59.000Z

    The study of extragalactic sources of high energy radiation via the direct measurement of the proton and neutrino fluxes that they are likely to emit is one of the main goals for the future observations of the recently developed air showers detectors and neutrino telescopes. In this work we discuss the relation between the inclusive proton and neutrino signals from the ensemble of all sources in the universe, and the resolved signals from the closest and brightest objects. We also compare the sensitivities of proton and neutrino telescopes and comment on the relation between these two new astronomies.

  1. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09T23:59:59.000Z

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  2. Curvature and Tachibana numbers

    SciTech Connect (OSTI)

    Stepanov, Sergey E [Finance Academy under the Government of the Russian Federation, Moscow (Russian Federation)

    2011-07-31T23:59:59.000Z

    The aim of this paper is to define the rth Tachibana number t{sub r} of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,...,n-1. We also describe properties of these numbers, by analogy with properties of the Betti numbers b{sub r} of a compact oriented Riemannian manifold. Bibliography: 25 titles.

  3. Birth of Neutrino Astrophysics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  4. Neutrinos in the Electron

    E-Print Network [OSTI]

    E. L. Koschmieder

    2006-09-26T23:59:59.000Z

    We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

  5. Sterile Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope Calculator EstimatesSterile Neutrino

  6. Neutrino self-energy operator and neutrino magnetic moment

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: elenan@uniyar.ac.ru; Mikheev, N. V.; Narynskaya, E. N. [Yaroslavl State University (Russian Federation)] [Yaroslavl State University (Russian Federation)

    2013-11-15T23:59:59.000Z

    A simple method for calculating the magnetic moment of a massive neutrino on the basis of its self-energy operator is presented. An expression for the magnetic moment of a massive neutrino in an external electromagnetic field is obtained in the R{sub {xi}} gauge for the case of an arbitrary ratio of the lepton and W-boson masses.

  7. ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG

    E-Print Network [OSTI]

    ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

  8. Neutrino diffusion in the pasta phase matter within the Thomas-Fermi approach

    E-Print Network [OSTI]

    Furtado, U J; Marinelli, J R; Martarello, W; Providência, C

    2015-01-01T23:59:59.000Z

    The behavior and properties of neutrinos in non-uniform nuclear matter, surrounded by electrons and other neutrinos are studied. The nuclear matter itself is modeled by the non-linear Walecka model, where the so-called nuclear pasta phase is described using the Thomas-Fermi approximation, solved in a Wigner-Seitz cell. We obtain the total cross-section and mean-free path for the neutrinos, taking into account scattering and neutrino absorption, and compare the final results for two known kind of model parametrizations: one in which non-linear effects in the strong sector are explicitly written in the model Lagrangian and another one in which the coupling constants are density dependent. The solution for this problem is important for the understanding of neutrino diffusion in a newly born neutron star after a supernova explosion.

  9. DNP / DPF / DAP / DPB JOINT STUDY ON THE FUTURE OF NEUTRINO PHYSICS The Neutrino Matrix

    E-Print Network [OSTI]

    DNP / DPF / DAP / DPB JOINT STUDY ON THE FUTURE OF NEUTRINO PHYSICS The Neutrino Matrix #12;#12;THE The Neutrino Matrix * Please see Appendices A and B · APS American Physical Society · DNP Division of Nuclear MATRIX Contents #12;NEUTRINOS AND THE UNEXPECTED : Neutrino physics has been marked by "anomalous

  10. ccsd-00016511,version1-5Jan2006 Neutrino Physics/Physique des neutrinos

    E-Print Network [OSTI]

    Boyer, Edmond

    ccsd-00016511,version1-5Jan2006 Neutrino Physics/Physique des neutrinos Reactor Neutrinos Thierry the possibility of doing "neutrino physics". This opened the door to the use of neutrinos as a sensitive probe of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575, USA

  11. Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande

    E-Print Network [OSTI]

    Tokyo, University of

    Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande analysis carried out with Super- Kamiokande atmospheric neutrino data in order to obtain information-neutrino enriched event samples from the Super-Kamiokande atmospheric neutrino data. Super-Kamiokande is a 50 kton

  12. Double beta decays and solar neutrinos with 100 MOON(Mo Observatory Of Neutrinos)

    E-Print Network [OSTI]

    Washington at Seattle, University of

    nuclear laboratory for spectroscopic studies of neutrinos Neutrinos are key particles for new frontiers) are sensitive and realistic experiments for studying the Majorana nature of the neutrino and the absolute massDouble beta decays and solar neutrinos with 100 Mo ­MOON(Mo Observatory Of Neutrinos)­ May 24, 2005

  13. The concrete theory of numbers : New Mersenne conjectures. Simplicity and other wonderful properties of numbers $L(n) = 2^{2n}\\pm2^n\\pm1$

    E-Print Network [OSTI]

    Boris V. Tarasov

    2008-04-24T23:59:59.000Z

    New Mersenne conjectures. The problems of simplicity, common prime divisors and free from squares of numbers $L(n) = 2^{2n}\\pm2^n\\pm1$ are investigated. Wonderful formulas $gcd $ for numbers $L (n) $ and numbers repunit are proved.

  14. Reactor Neutrino Physics -- An Update

    E-Print Network [OSTI]

    Felix Boehm

    1999-06-18T23:59:59.000Z

    We review the status and the results of reactor neutrino experiments. Long baseline oscillation experiments at Palo Verde and Chooz have provided limits for the oscillation parameters while the recently proposed Kamland experiment at a baseline of more than 100km is now in the planning stage. We also describe the status of neutrino magnetic moment experiments at reactors.

  15. The Phase of Neutrino Oscillations

    E-Print Network [OSTI]

    C. Giunti

    2002-02-07T23:59:59.000Z

    Using an analogy with the well-known double-slit experiment, we show that the standard phase of neutrino oscillations is correct, refuting recent claims of a factor of two correction. We also improve the wave packet treatment of neutrino oscillations taking into account explicitly the finite coherence time of the detection process.

  16. Lepton textures and neutrino oscillations

    E-Print Network [OSTI]

    Verma, Rohit

    2014-01-01T23:59:59.000Z

    Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

  17. Pulsar kicks from neutrino oscillations

    E-Print Network [OSTI]

    Alexander Kusenko; Gino Segre

    1998-11-10T23:59:59.000Z

    Neutrino oscillations can explain the observed motion of pulsars. We show that two different models of neutrino emission from a cooling neutron star are in good quantitative agreement and predict the same order of magnitude for the pulsar kick velocity, consistent with the data.

  18. Off-shell OPERA neutrinos

    E-Print Network [OSTI]

    Tim R. Morris

    2011-12-11T23:59:59.000Z

    In the OPERA experiment, superluminal propagation of neutrinos can occur if one of the neutrino masses is extremely small. However the effect only has appreciable amplitude at energies of order this mass and thus has negligible overlap with the multi-GeV scale of the experiment.

  19. Lepton textures and neutrino oscillations

    E-Print Network [OSTI]

    Rohit Verma

    2014-06-03T23:59:59.000Z

    Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

  20. LSP Squark Decays at the LHC and the Neutrino Mass Hierarchy

    E-Print Network [OSTI]

    Zachary Marshall; Burt A. Ovrut; Austin Purves; Sogee Spinner

    2014-08-05T23:59:59.000Z

    The existence of R-parity in supersymmetric models can be naturally explained as being a discrete subgroup of gauged baryon minus lepton number (B-L). The most minimal supersymmetric B-L model triggers spontaneous R-parity violation, while remaining consistent with proton stability. This model is well-motivated by string theory and makes several interesting, testable predictions. Furthermore, R-parity violation contributes to neutrino masses, thereby connecting the neutrino sector to the decay of the lightest supersymmetric particle (LSP). This paper analyzes the decays of third generation squark LSPs into a quark and a lepton. In certain cases, the branching ratios into charged leptons reveal information about the neutrino mass hierarchy, a current goal of experimental neutrino physics, as well as the $\\theta_{23}$ neutrino mixing angle. Furthermore, optimization of leptoquark searches for this scenario is discussed. Using currently available data, the lower bounds on the third generation squarks are computed.

  1. Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics

    E-Print Network [OSTI]

    M. Shimon; N. J. Miller; C. T. Kishimoto; C. J. Smith; G. M. Fuller; B. G. Keating

    2010-05-10T23:59:59.000Z

    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass $M_{\

  2. Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics

    E-Print Network [OSTI]

    Shimon, M; Kishimoto, C T; Smith, C J; Fuller, G M; Keating, B G

    2010-01-01T23:59:59.000Z

    We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass $M_{\

  3. A cost-Effective Design for a Neutrino Factory

    E-Print Network [OSTI]

    Berg, J.S.

    2008-01-01T23:59:59.000Z

    experiments. The physics case for a Neutrino Factory willsurprises, the physics case for a Neutrino Factory willAstrophysics, Physics of Beams (2004). [6] The Neutrino

  4. Neutrino flavor transformation in core-collapse supernovae

    E-Print Network [OSTI]

    Cherry, John F.; Cherry, John F.

    2012-01-01T23:59:59.000Z

    unconstrained sectors of neutrino physics. Likewise, shouldinsight into fundamental neutrino physics. We have chosen tostill fundamental neutrino mixing physics unknowns, e.g. ,

  5. Falling through spacetime : four studies in neutrino astrophysics

    E-Print Network [OSTI]

    Kishimoto, Chad T.

    2009-01-01T23:59:59.000Z

    1.1 Neutrino Physics . . . . . . . . . . . . . . . . . 1.1.1Experimental neutrino physics and observational cosmologyExperiments in neutrino physics have not only discerned that

  6. IceCube: An Instrument for Neutrino Astronomy

    E-Print Network [OSTI]

    Halzen, F.

    2010-01-01T23:59:59.000Z

    numerous discussions on neutrino physics. We thank Evelyncollapse and of neutrino physics, including the possibleof new physics, a measurement of the neutrino cross-section

  7. Five Years of Neutrino Physics with Super-Kamiokande

    E-Print Network [OSTI]

    M. B. Smy

    2002-06-07T23:59:59.000Z

    Using data from both solar and atmospheric neutrinos, Super-Kamiokande has provided fundamental information on neutrino flavor mixing and neutrino mass square differences.

  8. Neutrino flavor transformation in core-collapse supernovae

    E-Print Network [OSTI]

    Cherry, John F.; Cherry, John F.

    2012-01-01T23:59:59.000Z

    the corresponding Neutrino Bulb (1 %) safety criteria fromof the neutrino- bulb halo neutrino Hamiltonian, | H |+|H |, to the contribution from bulb the neutrinosphere | H

  9. Neutrino Physics and Astronomy with MACRO

    E-Print Network [OSTI]

    P. Bernardini

    2002-09-16T23:59:59.000Z

    MACRO experiment operated in the Gran Sasso underground laboratory. Neutrino events collected by this detector are used in order to study the atmospheric neutrino flux. Different measurements in different energy samples are in full agreement and show evidence of neutrino oscillation phenomenon. Also the search for neutrino astrophysical sources is reported.

  10. Neutrinos in physics, astrophysics, and cosmology

    E-Print Network [OSTI]

    A. D. Dolgov

    2000-06-12T23:59:59.000Z

    A brief review of neutrino anomalies in particle physics and of the role played by neutrinos in cosmology and astrophysics is presented. The main part of the talk is dedicated to the impact of neutrinos and in particular of neutrino oscillations on BBN and to a possible spatial variation of primordial abundances.

  11. Small entries of neutrino mass matrices

    E-Print Network [OSTI]

    E. Kh. Akhmedov

    1999-09-15T23:59:59.000Z

    We consider phenomenologically allowed structures of the neutrino mass matrix in the case of three light neutrino species. Constraints from the solar, atmospheric and reactor neutrino experiments as well as those from the neutrinoless double beta decay are taken into account. Both hierarchical and quasi-degenerate neutrino mass cases are studied. Assuming maximal $\

  12. Solar Neutrinos and the Eclipse Effect

    E-Print Network [OSTI]

    Mohan Narayan; G. Rajasekaran; Rahul Sinha; C. P. Burgess

    1999-09-01T23:59:59.000Z

    The solar neutrino counting rate in a real time detector like Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in the Moon during a partial or total solar eclipse. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement, if seen, can further help to determine the neutrino parameters.

  13. Oscillations of solar atmosphere neutrinos

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Mirizzi; D. Montanino; P. D. Serpico

    2006-11-10T23:59:59.000Z

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).

  14. Constraints on Neutrino Velocities Revisited

    E-Print Network [OSTI]

    Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi

    2012-01-27T23:59:59.000Z

    With a minimally modified dispersion relation for neutrinos, we reconsider the constraints on superluminal neutrino velocities from bremsstrahlung effects in the laboratory frame. Employing both the direct calculation approach and the virtual Z-boson approach, we obtain the generic decay width and energy loss rate of a superluminal neutrino with general energy. The Cohen-Glashow's analytical results for neutrinos with a relatively low energy are confirmed in both approaches. We employ the survival probability instead of the terminal energy to assess whether a neutrino with a given energy is observable or not in the OPERA experiment. Moreover, using our general results we perform systematical analyses on the constraints arising from the Super-Kamiokande and IceCube experiments.

  15. Deep-inelastic photon-neutrino scattering

    SciTech Connect (OSTI)

    Huq, M.

    1984-02-01T23:59:59.000Z

    The moments of the structure functions scrF/sub T//sup( N/), scrF/sub 3//sup( N/), and scrF/sub L//sup( N/) in deep-inelastic photon-neutrino scattering have been calculated. Exactly calculable leading-order QCD corrections to the box-diagram contributions are large for scrF/sub T//sup( N/) and scrF/sub 3//sup( N/) increasing with N. For scrF/sub L//sup( N/) the corrections are very small except for small N. Dependence of the results on the number of flavors of quarks is very small.

  16. Collisional production of sterile neutrinos via secret interactions and cosmological implications

    E-Print Network [OSTI]

    Alessandro Mirizzi; Gianpiero Mangano; Ofelia Pisanti; Ninetta Saviano

    2014-12-16T23:59:59.000Z

    Secret interactions among sterile neutrinos have been recently proposed as an escape-route to reconcile eV sterile neutrino hints from short-baseline anomalies with cosmological observations. In particular models with coupling g_X \\gtrsim 10^{-2} and gauge boson mediators $X$ with $M_X \\lesssim 10$ MeV lead to large matter potential suppressing the sterile neutrino production before the neutrino decoupling. With this choice of parameter ranges, big bang nucleosynthesis is left unchanged and gives no bound on the model. However, we show that at lower temperatures when active-sterile oscillations are no longer matter suppressed, sterile neutrinos are still in a collisional regime, due to their secret self-interactions. The interplay between vacuum oscillations and collisions leads to a scattering-induced decoherent production of sterile neutrinos with a fast rate. This process is responsible for a flavor equilibration among the different neutrino species. We explore the effect of this large sterile neutrino population on cosmological observables. We find that a signature of strong secret interactions would be a reduction of the effective number of neutrinos $N_{\\rm eff}$ at matter radiation equality down to 2.7. Moreover, for $M_X \\gtrsim g_X$ MeV sterile neutrinos would be free-streaming before becoming non-relativistic and they would affect the large-scale structure power spectrum. As a consequence, for this range of parameters we find a tension of a eV mass sterile state with cosmological neutrino mass bounds.

  17. High Energy Neutrino Astronomy: Towards Kilometer-Scale Detectors

    E-Print Network [OSTI]

    F. Halzen

    2001-03-13T23:59:59.000Z

    Of all high-energy particles, only neutrinos can directly convey astronomical information from the edge of the universe---and from deep inside the most cataclysmic high-energy processes. Copiously produced in high-energy collisions, travelling at the velocity of light, and not deflected by magnetic fields, neutrinos meet the basic requirements for astronomy. Their unique advantage arises from a fundamental property: they are affected only by the weakest of nature's forces (but for gravity) and are therefore essentially unabsorbed as they travel cosmological distances between their origin and us. Many of the outstanding mysteries of astrophysics may be hidden from our sight at all wavelengths of the electromagnetic spectrum because of absorption by matter and radiation between us and the source. For example, the hot dense regions that form the central engines of stars and galaxies are opaque to photons. In other cases, such as supernova remnants, gamma ray bursters, and active galaxies, all of which may involve compact objects or black holes at their cores, the precise origin of the high-energy photons emerging from their surface regions is uncertain. Therefore, data obtained through a variety of observational windows---and especially through direct observations with neutrinos---may be of cardinal importance. In this talk, the scientific goals of high energy neutrino astronomy and the technical aspects of water and ice Cherenkov detectors are examined, and future experimental possibilities, including a kilometer-square deep ice neutrino telescope, are explored.

  18. Neutrino-driven wind simulations and nucleosynthesis of heavy elements

    E-Print Network [OSTI]

    A. Arcones; F. -K. Thielemann

    2012-07-11T23:59:59.000Z

    Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear astrophysics problem that requires understanding advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons against forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested to be a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations point already to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.

  19. Using Quasi-elastic Events to Measure Neutrino Oscillations with MINOS Detectors in the NuMI Neutrino Beam 

    E-Print Network [OSTI]

    Watabe, Masaki

    2010-07-14T23:59:59.000Z

    neutrino is massive and a Majorana particle. Neutrinoless double beta decay is one of the nuclear processes that violates the total lepton number and related to Majorana nature of neutrinos. Details are discussed in Ref. [12, 15, 16, 17, 18, 19, 20, 21... be measured in two distinct ways. First, the experimental search for neutrinoless double beta decays is one of the possible ways to measure the "absolute" mass scale. The SM predicts the double beta decay and the process is experimentally con rmed by Elliot...

  20. Using Quasi-elastic Events to Measure Neutrino Oscillations with MINOS Detectors in the NuMI Neutrino Beam

    E-Print Network [OSTI]

    Watabe, Masaki

    2010-07-14T23:59:59.000Z

    neutrino is massive and a Majorana particle. Neutrinoless double beta decay is one of the nuclear processes that violates the total lepton number and related to Majorana nature of neutrinos. Details are discussed in Ref. [12, 15, 16, 17, 18, 19, 20, 21... be measured in two distinct ways. First, the experimental search for neutrinoless double beta decays is one of the possible ways to measure the "absolute" mass scale. The SM predicts the double beta decay and the process is experimentally con rmed by Elliot...

  1. 2004 TASI Lectures on Neutrino Physics

    E-Print Network [OSTI]

    Andre de Gouvea

    2004-11-20T23:59:59.000Z

    I discuss, in a semi-pedagogical way, our current understanding of neutrino physics. I present a brief history of how the neutrino came to be ``invented'' and observed, and discuss the evidence that led to the recent discovery that neutrinos change flavor. I then spend some time presenting mass-induced neutrino flavor change (neutrino oscillation), and how it pieces all the neutrino puzzles except for the LSND anomaly, which is also briefly discussed. I conclude by highlighting the importance of determining the nature of the neutrinos, i.e., are they Dirac or Majorana fermions.

  2. ANTARES deep sea neutrino telescope results

    SciTech Connect (OSTI)

    Mangano, Salvatore [IFIC - Instituto de Física Corpuscular, Edificio Institutos de Investigatión, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

    2014-01-01T23:59:59.000Z

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  3. Big Bang Day: 5 Particles - 4. The Neutrino

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  4. Macro-coherent two photon and radiative neutrino pair emission

    E-Print Network [OSTI]

    M. Yoshimura; C. Ohae; A. Fukumi; K. Nakajima; I. Nakano; H. Nanjo; N. Sasao

    2008-05-14T23:59:59.000Z

    We discuss a possibility of detecting a coherent photon pair emission and related radiative neutrino pair emission from excited atoms. It is shown that atoms of lambda- and ladder-type three level system placed in a pencil-like cylinder give a back to back emission of two photons of equal energy $\\Delta/2$, sharply peaked with a width $\\propto $ 1/(target size) and well collimated along the cylinder axis. This process has a measurable rate $\\propto$ (target number density) $^2 \\times$ target volume, while a broader spectral feature of one-photon distribution separated by (mass sum of a neutrino pair)$^2/(2\\Delta)$ from the two photon peak may arise from radiative neutrino pair emission, with a much smaller rate.

  5. Leptogenesis and low energy CP phases with two heavy neutrinos

    SciTech Connect (OSTI)

    Bhattacharya, Kaushik; Sahu, Narendra; Sarkar, Utpal; Singh, Santosh K. [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India)

    2006-11-01T23:59:59.000Z

    An attractive explanation for nonzero neutrino masses and small matter antimatter asymmetry of the present Universe lies in 'leptogenesis'. At present the size of the lepton asymmetry is precisely known, while the sign is not known yet. In this work we determine the sign of this asymmetry in the framework of two right-handed neutrino models by relating the leptogenesis phase(s) with the low energy CP violating phases appearing in the leptonic mixing matrix. It is shown that the knowledge of low energy lepton number violating rephasing invariants can indeed determine the sign of the present matter antimatter asymmetry of the Universe and hence indirectly probing the light physical neutrinos to be Majorana type.

  6. Breaking the symmetries of the bulb model in two-dimensional self-induced supernova neutrino flavor conversions

    E-Print Network [OSTI]

    Mirizzi, Alessandro

    2015-01-01T23:59:59.000Z

    Self-induced flavor conversions of supernova (SN) neutrinos have been characterized in the spherically symmetric "bulb model", reducing the neutrino evolution to a one dimensional problem along a radial direction. We lift this assumption, presenting a two-dimensional model where neutrinos are launched from a spherical neutrino-sphere with many zenithal angles and two azimuthal angles. We also assume that self-induced conversions are not suppressed by large matter effects. In this situation we find that self-interacting neutrinos spontaneously break axial and spherical symmetries. As a result the flavor content and the lepton number of the neutrino gas would acquire seizable direction-dependent variations, breaking the coherent behavior found in the spherically symmetric case. This finding would suggest that the previous results of the self-induced flavor evolution obtained in one-dimensional models should be critically re-examined.

  7. Collective neutrino oscillations in turbulent backgrounds

    SciTech Connect (OSTI)

    Reid, Giles; Adams, Jenni; Seunarine, Suruj [University of Canterbury, Christchurch (New Zealand); University of the West Indies, Bridgetown (Barbados)

    2011-10-15T23:59:59.000Z

    Using a Kolmogorov turbulence model, we investigate the effects of fluctuations in matter and neutrino density in the region near a supernova core on the flavor oscillations of neutrinos emitted in the core collapse in a single-angle, two-flavor approximation. Deviation from a smooth background neutrino density causes significant alterations in the final flavor state of the neutrino ensemble after 400 km, but even very large fluctuations in the matter density do not strongly affect the state of the neutrinos after the collective phase. In both cases, there is a strong effect on the neutrino flavor evolution at intermediate radii, with the flavor evolution becoming much more chaotic. The effect of fluctuations also depends strongly on the initial neutrino spectra. We conclude that the true neutrino fluxes arriving at Earth from core-collapse supernova could differ considerably from predictions of neutrino fluxes based on approximate models with smoothly decreasing matter and neutrino densities.

  8. Correlation between the structural and cathodoluminescence properties in InGaN/GaN multiple quantum wells with large number of quantum wells

    SciTech Connect (OSTI)

    Yang, Jing; Zhao, Degang, E-mail: dgzhao@red.semi.ac.cn; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO BOX 912, Beijing 100083 (China); Wang, Hui; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Jahn, Uwe [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)

    2014-09-01T23:59:59.000Z

    Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.

  9. Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle

    E-Print Network [OSTI]

    Leonard S. Kisslinger

    2014-10-10T23:59:59.000Z

    This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

  10. Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle

    E-Print Network [OSTI]

    Kisslinger, Leonard S

    2014-01-01T23:59:59.000Z

    This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

  11. Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment

    E-Print Network [OSTI]

    Joao Pulido; Ana M. Mourao

    1998-03-02T23:59:59.000Z

    An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

  12. Field-theoretical treatment of neutrino oscillations

    E-Print Network [OSTI]

    Grimus, Walter; Stockinger, P

    2000-01-01T23:59:59.000Z

    We discuss the field-theoretical approach to neutrino oscillations. This approach includes the neutrino source and detector processes and allows to obtain the neutrino transition or survival probabilities as cross sections derived from the Feynman diagram of the combined source -- detection process. In this context, the neutrinos which are supposed to oscillate appear as propagators of the neutrino mass eigenfields, connecting the source and detection processes.

  13. Field-theoretical treatment of neutrino oscillations

    E-Print Network [OSTI]

    W. Grimus; S. Mohanty; P. Stockinger

    1999-04-15T23:59:59.000Z

    We discuss the field-theoretical approach to neutrino oscillations. This approach includes the neutrino source and detector processes and allows to obtain the neutrino transition or survival probabilities as cross sections derived from the Feynman diagram of the combined source -- detection process. In this context, the neutrinos which are supposed to oscillate appear as propagators of the neutrino mass eigenfields, connecting the source and detection processes.

  14. Neutrinos and duality

    SciTech Connect (OSTI)

    Lalakulich, O.; Leitner, T.; Buss, O.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen, Giessen (Germany); Praet, Ch.; Jachowicz, N.; Ryckebusch, J. [Department of Subatomic and Radiation Physics, Ghent University, Ghent (Belgium)

    2009-11-25T23:59:59.000Z

    A phenomenological study of Bloom-Gilman duality is performed in electron and neutrino scattering on nuclei. In the resonance region the structure functions are calculated within the phenomenological models of Ghent and Giessen groups, where only the resonance contribution is taken into account, and the background one is neglected. Structure functions F{sub 2} in the resonance region are compared with the DIS ones, extracted directly from the experimental data. The results show, that within the models considered the Bloom-Gilman duality does not work well for nuclei: the integrated strength in the resonance region is considerably lower than in the DIS one.

  15. Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino cross

  16. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino crossN u F a

  17. Neutrino Nucleon Elastic Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino crossN u F

  18. Neutrino Scattering Results from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30Neutrino crossN/SΒ ν

  19. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolarAbout Neutrinos General Informationclose

  20. Short Baseline Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldon Datz,ShiftNeutrino

  1. On the question of the magnitude of day-night asymmetry for solar neutrinos

    SciTech Connect (OSTI)

    Aleshin, S. S., E-mail: aless2001@mail.ru; Lobanov, A. E., E-mail: lobanov@phys.msu.ru; Kharlanov, O. G., E-mail: okharl@mail.ru [Moscow State University, Department of Theoretical Physics, Faculty of Physics (Russian Federation)

    2013-09-15T23:59:59.000Z

    The effect of flavor day-night asymmetry is considered for solar neutrinos of energy about 1 MeV under the assumption that the electron-density distribution within the Earth is approximately piecewise continuous on the scale of the neutrino-oscillation length. In this approximation, the resulting asymmetry factor for beryllium neutrinos does not depend on the structure of the inner Earth's layers or on the properties of the detector used. Its numerical estimate is on the order of -4 Multiplication-Sign 10{sup -4}, which is far beyond the reach of present-day experiments.

  2. Discriminating among the theoretical origins of new heavy Majorana neutrinos at the CERN LHC

    E-Print Network [OSTI]

    F. M. L. de Almeida Jr.; Y. A. Coutinho; J. A. Martins Simoes; A. J. Ramalho; S. Wulck; M. A. B. do Vale

    2007-03-08T23:59:59.000Z

    A study on the possibility of distinguishing new heavy Majorana neutrino models at LHC energies is presented. The experimental confirmation of standard neutrinos with non-zero mass and the theoretical possibility of lepton number violation find a natural explanation when new heavy Majorana neutrinos exist. These new neutrinos appear in models with new right-handed singlets, in new doublets of some grand unified theories and left-right symmetrical models. It is expected that signals of new particles can be found at the CERN high-energy hadron collider (LHC). We present signatures and distributions that can indicate the theoretical origin of these new particles. The single and pair production of heavy Majorana neutrinos are calculated and the model dependence is discussed. Same-sign dileptons in the final state provide a clear signal for the Majorana nature of heavy neutrinos, since there is lepton number violation. Mass bounds on heavy Majorana neutrinos allowing model discrimination are estimated for three different LHC luminosities.

  3. Quasivacuum solar neutrino oscillations

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; D. Montanino; A. Palazzo

    2000-09-19T23:59:59.000Z

    We discuss in detail solar neutrino oscillations with \\delta m^2/E in the range [10^-10,10^-7] eV^2/MeV. In this range, which interpolates smoothly between the so-called ``just-so'' and ``Mikheyev-Smirnov-Wolfenstein'' oscillation regimes, neutrino flavor transitions are increasingly affected by matter effects as \\delta m^2/E increases. As a consequence, the usual vacuum approximation has to be improved through the matter-induced corrections, leading to a ``quasi-vacuum'' oscillation regime. We perform accurate numerical calculations of such corrections, using both the true solar density profile and its exponential approximation. Matter effects are shown to be somewhat overestimated in the latter case. We also discuss the role of Earth crossing and of energy smearing. Prescriptions are given to implement the leading corrections in the quasi-vacuum oscillation range. Finally, the results are applied to a global analysis of solar nu data in a three-flavor framework.

  4. LSND neutrino oscillation results

    SciTech Connect (OSTI)

    Louis, W.C.; LSND Collaboration

    1996-10-01T23:59:59.000Z

    The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

  5. On-shell renormalization of the mixing matrices in Majorana neutrino theories

    E-Print Network [OSTI]

    Andrea A. Almasy; Bernd A. Kniehl; Alberto Sirlin

    2009-04-20T23:59:59.000Z

    We generalize a recently proposed on-shell approach to renormalize the Cabibbo-Kobayashi-Maskawa quark-mixing matrix to the case of an extended leptonic sector that includes Dirac and Majorana neutrinos in the framework of the seesaw mechanism. An important property of this formulation is the gauge independence of both the renormalized and bare lepton mixing matrices. Also, the texture zero in the neutrino mass matrix is preserved.

  6. Textures for neutrino mass matrices

    SciTech Connect (OSTI)

    Leontaris, G.K.; Lola, S.; Scheich, C.; Vergados, J.D. [Theoretical Physics Division, Ioannina University, GR-45110 Ioannina (Greece)] [Theoretical Physics Division, Ioannina University, GR-45110 Ioannina (Greece); [Institut fuer Theoretische Physik, Univerisitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, 28049, Madrid (Spain); [Department of Natural Sciences, University of Cyprus, Nicosia (Cyprus)

    1996-06-01T23:59:59.000Z

    We give a classification of heavy Majorana neutrino mass matrices with up to three texture zeros, assuming the Dirac masses of the neutrinos to be of the same form as the ones of the up quarks in the five texture zero solutions for the quark matrices. This is the case for many unified and partially unified models. We find that it is possible to have solutions which account for the solar and atmospheric neutrino problems as well as the COBE observations simultaneously, and we motivate the existence of such solutions from symmetries. {copyright} {ital 1996 The American Physical Society.}

  7. A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background

    E-Print Network [OSTI]

    Follin, Brent; Millea, Marius; Pan, Zhen

    2015-01-01T23:59:59.000Z

    The freestreaming of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the Cosmic Microwave Background (CMB) temperature power spectrum. The magnitude of the shift is proportional to the fraction of the total radiation density in neutrinos. Parameterizing the shift via an effective number of neutrino species we find $1.9 < N_\

  8. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)

    SciTech Connect (OSTI)

    Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Lin, Huan; /Fermilab

    2007-03-01T23:59:59.000Z

    Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.

  9. Registration of atmospheric neutrinos with the Baikal neutrino telescope

    E-Print Network [OSTI]

    Baikal Collaboration; V. A. Balkanov et al

    1999-03-23T23:59:59.000Z

    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.

  10. Hypercritical accretion phase and neutrino expectation in the evolution of Cassiopeia A

    E-Print Network [OSTI]

    Fraija, Nissim

    2015-01-01T23:59:59.000Z

    Cassiopeia A the youngest supernova remnant known in the Milky Way is one of the brightest radio sources in the sky and a unique laboratory for supernova physics. Although its compact remnant was discovered in 1999 by the Chandra X-Ray Observatory, nowadays it is widely accepted that a neutron star lies in the center of this supernova remnant. In addition, new observations suggest that such neutron star with a low magnetic field and evidence of a carbon atmosphere could have suffered a hypercritical accretion phase seconds after the explosion. Considering this hypercritical accretion episode, we compute the neutrino cooling effect, the number of events and neutrino flavor ratios expected on Hyper-Kamiokande Experiment. The neutrino cooling effect (the emissivity and luminosity of neutrinos) is obtained through numerical simulations performed in a customized version of the FLASH code. Based on these simulations, we forecast that the number of events expected on the Hyper-Kamiokande Experiment is around 3195. S...

  11. MULTI-DIMENSIONAL FEATURES OF NEUTRINO TRANSFER IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect (OSTI)

    Sumiyoshi, K. [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Takiwaki, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Matsufuru, H. [Computing Research Center, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamada, S., E-mail: sumi@numazu-ct.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: hideo.matsufuru@kek.jp, E-mail: shoichi@heap.phys.waseda.ac.jp [Science and Engineering and Advanced Research Institute for Science and Engineering, Waseda University, Okubo, 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2015-01-01T23:59:59.000Z

    We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six-dimensional phase space. Adopting representative snapshots of the post-bounce core from other supernova simulations in three dimensions, we solve the temporal evolution to stationary states of neutrino distribution functions using our Boltzmann solver. Taking advantage of the multi-angle and multi-energy feature realized by the S {sub n} method in our code, we reveal the genuine characteristics of spatially three-dimensional neutrino transfer, such as nonradial fluxes and nondiagonal Eddington tensors. In addition, we assess the ray-by-ray approximation, turning off the lateral-transport terms in our code. We demonstrate that the ray-by-ray approximation tends to propagate fluctuations in thermodynamical states around the neutrino sphere along each radial ray and overestimate the variations between the neutrino distributions on different radial rays. We find that the difference in the densities and fluxes of neutrinos between the ray-by-ray approximation and the full Boltzmann transport becomes ?20%, which is also the case for the local heating rate, whereas the volume-integrated heating rate in the Boltzmann transport is found to be only slightly larger (?2%) than the counterpart in the ray-by-ray approximation due to cancellation among different rays. These results suggest that we should carefully assess the possible influences of various approximations in the neutrino transfer employed in current simulations of supernova dynamics. Detailed information on the angle and energy moments of neutrino distribution functions will be profitable for the future development of numerical methods in neutrino-radiation hydrodynamics.

  12. Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

    E-Print Network [OSTI]

    Olga Mena; Irina Mocioiu; Soebur Razzaque

    2008-10-21T23:59:59.000Z

    We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

  13. Quantum Mechanics of Neutrino Oscillations

    E-Print Network [OSTI]

    C. Giunti; C. W. Kim

    2000-11-06T23:59:59.000Z

    We present a simple but general treatment of neutrino oscillations in the framework of quantum mechanics using plane waves and intuitive wave packet principles when necessary. We attempt to clarify some confusing statements that have recently appeared in the literature.

  14. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2004-02-03T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.

  15. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2005-01-26T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

  16. Neutrino capital of the world

    E-Print Network [OSTI]

    Johnson, Carolyn Y., 1980-

    2004-01-01T23:59:59.000Z

    Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

  17. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome [The University of Alabama

    2014-09-30T23:59:59.000Z

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  18. A New Spin on Neutrino Quantum Kinetics

    E-Print Network [OSTI]

    Vincenzo Cirigliano; George M. Fuller; Alexey Vlasenko

    2015-05-05T23:59:59.000Z

    Recent studies have demonstrated that in anisotropic environments a coherent spin-flip term arises in the Quantum Kinetic Equations (QKEs) which govern the evolution of neutrino flavor and spin in hot and dense media. This term can mediate neutrino-antineutrino transformation for Majorana neutrinos and active-sterile transformation for Dirac neutrinos. We discuss the physical origin of the coherent spin-flip term and provide explicit expressions for the QKEs in a two-flavor model with spherical geometry. In this context, we demonstrate that coherent neutrino spin transformation depends on the absolute neutrino mass and Majorana phases.

  19. Solar mass-varying neutrino oscillations

    E-Print Network [OSTI]

    V. Barger; Patrick Huber; Danny Marfatia

    2005-09-30T23:59:59.000Z

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  20. Variations on Four-Neutrino Oscillations

    E-Print Network [OSTI]

    V. Barger; S. Pakvasa; T. J. Weiler; K. Whisnant

    1998-06-09T23:59:59.000Z

    We make a model-independent analysis of all available data that indicate neutrino oscillations. Using probability diagrams, we confirm that a mass spectrum with two nearly degenerate pairs of neutrinos separated by a mass gap of $\\simeq1$ eV is preferred over a spectrum with one mass eigenstate separated from the others. We derive some new relations among the four-neutrino mixing matrix elements. We design four-neutrino mass matrices with three active neutrinos and one sterile neutrino that naturally incorporate maximal oscillations of atmospheric $\

  1. Probing supernova physics with neutrino oscillations

    E-Print Network [OSTI]

    H. Minakata; H. Nunokawa; R. Tomas; J. W. F. Valle

    2002-07-26T23:59:59.000Z

    We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing bar{nu}_{e} from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons.

  2. Are solar neutrino oscillations robust?

    E-Print Network [OSTI]

    O. G. Miranda; M. A. Tortola; J. W. F. Valle

    2006-09-07T23:59:59.000Z

    The robustness of the large mixing angle (LMA) oscillation (OSC) interpretation of the solar neutrino data is considered in a more general framework where non-standard neutrino interactions (NSI) are present. Such interactions may be regarded as a generic feature of models of neutrino mass. The 766.3 ton-yr data sample of the KamLAND collaboration are included in the analysis, paying attention to the background from the reaction ^13C(\\alpha,n) ^16O. Similarly, the latest solar neutrino fluxes from the SNO collaboration are included. In addition to the solution which holds in the absence of NSI (LMA-I) there is a 'dark-side' solution (LMA-D) with sin^2 theta_Sol = 0.70, essentially degenerate with the former, and another light-side solution (LMA-0) allowed only at 97% CL. More precise KamLAND reactor measurements will not resolve the ambiguity in the determination of the solar neutrino mixing angle theta_Sol, as they are expected to constrain mainly Delta m^2. We comment on the complementary role of atmospheric, laboratory (e.g. CHARM) and future solar neutrino experiments in lifting the degeneracy between the LMA-I and LMA-D solutions. In particular, we show how the LMA-D solution induced by the simplest NSI between neutrinos and down-type-quarks-only is in conflict with the combination of current atmospheric data and data of the CHARM experiment. We also mention that establishing the issue of robustness of the oscillation picture in the most general case will require further experiments, such as those involving low energy solar neutrinos.

  3. Exploring the Earth matter effect with atmospheric neutrinos in ice

    E-Print Network [OSTI]

    Sanjib Kumar Agarwalla; Tracey Li; Olga Mena; Sergio Palomares-Ruiz

    2012-12-10T23:59:59.000Z

    We study the possibility to perform neutrino oscillation tomography and to determine the neutrino mass hierarchy in kilometer-scale ice Cerenkov detectors by means of the theta13-driven matter effects which occur during the propagation of atmospheric neutrinos deep through the Earth. We consider the ongoing IceCube/DeepCore neutrino observatory and future planned extensions, such as the PINGU detector, which has a lower energy threshold. Our simulations include the impact of marginalization over the neutrino oscillation parameters and a fully correlated systematic uncertainty on the total number of events. For the current best-fit value of the mixing angle theta13, the DeepCore detector, due to its relatively high-energy threshold, could only be sensitive to fluctuations on the normalization of the Earth's density of \\Delta\\rho \\simeq \\pm 10% at ~ 1.6 sigma CL after 10 years in the case of a true normal hierarchy. For the two PINGU configurations we consider, overall density fluctuations of \\Delta\\rho \\simeq \\pm 3% (\\pm 2%) could be measured at the 2 sigma CL after 10 years, also in the case of a normal mass hierarchy. We also compare the prospects to determine the neutrino mass hierarchy in these three configurations and find that this could be achieved at the 5 sigma CL, for both hierarchies, after 5 years in DeepCore and about 1 year in PINGU. This clearly shows the importance of lowering the energy threshold below 10 GeV so that detectors are fully sensitive to the resonant matter effects.

  4. High Energy Neutrino Telescopes

    E-Print Network [OSTI]

    K. D. Hoffman

    2008-12-18T23:59:59.000Z

    This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

  5. Long-lived PeV-EeV Neutrinos from GRB Blastwave

    E-Print Network [OSTI]

    Soebur Razzaque

    2013-10-22T23:59:59.000Z

    Long duration gamma-ray bursts are powerful sources that can accelerate particles to ultra-high energies. Acceleration of protons in the forward shock of the highly relativistic GRB blastwave allows PeV--EeV neutrino production by photopion interactions of ultra-high energy protons with X-ray to optical photons of the GRB afterglow emission. Four different blastwave evolution scenarios are considered: adiabatic and fully radiative blastwaves in a constant density circumburst medium and in a wind environment with the particle density in the wind decreasing inversley proportional to the square of the radius from the center of the burst. The duration of the neutrino flux depends on the evolution of the blastwave, and can last up to a day in the case of an adibatic blastwave in a constant density medium. Neutrino fluxes from the three other blastwave evolution scenarios are also calculated. Diffuse neutrino fluxes calculated using the observed rate of long-duration GRBs are consistent with the recent IceCube upper limit on the prompt GRB neutrino flux below PeV. The diffuse neutrino flux needed to explain the two neutrino events at PeV energies recently detected by IceCube can partially come from the presented GRB blastwave diffuse fluxes. Future observations by IceCube and upcoming huge radio Askaryan experiments will be able to probe the flux models presented here or constrain the GRB blastwave properties.

  6. Optical calibration hardware for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    B. A. Moffat; R. J. Ford; F. A. Duncan; K. Graham; A. L. Hallin; C. A. W. Hearns; J. Maneira; P. Skensved; D. R. Grant

    2005-07-19T23:59:59.000Z

    The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.

  7. Neutrino Physics Neutrinos rarely interact despite their vast abundance in nature. To give a sense of

    E-Print Network [OSTI]

    Chapter 1 Neutrino Physics Neutrinos rarely interact despite their vast abundance in nature later in 1933, Enrico Fermi devised a theory for beta decays which 1 #12;Chapter 1: Neutrino Physics 2 indicated oscillations [6]. This chapter will describe neutrino physics and some of the experiments

  8. 45. Neutrino Cross Section Measurements 1 45. Neutrino Cross Section Measurements

    E-Print Network [OSTI]

    for such information in the interpretation of neutrino oscillation data. Scattering results on both charged current (CC, analysis techniques, and detector technologies. With the advent of intense neutrino sources for oscillation45. Neutrino Cross Section Measurements 1 45. Neutrino Cross Section Measurements Written in April

  9. Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models

    E-Print Network [OSTI]

    Tokyo, University of

    Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models microform." Signature Date #12;University of Washington Abstract Super-Kamiokande Atmospheric Neutrino of the matter a neutrino passes through. Using the data from Super-Kamiokande-I, µ - oscillation models whose

  10. Oscillation dynamics of active-unsterile neutrino mixing in a 2+1-tilde mixing scheme

    SciTech Connect (OSTI)

    Boyanovsky, D. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Holman, R.; Hutasoit, Jimmy A. [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2010-02-01T23:59:59.000Z

    We consider the possibility that sterile neutrinos exist and admit a description as unparticles; we call these unsterile neutrinos. We then examine the nature of neutrino oscillations in a model where an unsterile can mix with two active flavors with a very simple mass matrix of the seesaw type. Despite these simplifications, we find a number of remarkable features, all of which will occur generically when more realistic cases are considered. These include momentum dependent mixing angles, invisible decay widths for the unsterile-like mode, as well as the inheritance of a nonvanishing spectral density for the massive activelike modes. We also obtain the disappearance and appearance probabilities for the activelike neutrinos and find remarkable interference effects between the active and unsterile neutrinos as a consequence of threshold effects, yielding new oscillatory contributions with different oscillation lengths. These effects are only measurable on short baseline experiments because there both probabilities are suppressed as compared to mixing with a canonical sterile neutrino, thereby providing a diagnostics tool to discriminate unsterile from canonical sterile neutrinos. We conclude with a discussion of whether these new phenomena could aid in the reconciliation of the LSND and MiniBooNE results.

  11. Nuclear effects in Neutrino Nuclear Cross-sections

    E-Print Network [OSTI]

    S. K. Singh; M. Sajjad Athar

    2007-10-24T23:59:59.000Z

    Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a $\\Delta$ dominance model taking into account the renormalization of $\\Delta$ properties in the nuclear medium.

  12. Geometry of Majorana neutrino and new symmetries

    E-Print Network [OSTI]

    G. G. Volkov

    2006-07-30T23:59:59.000Z

    Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of binary Cartan--Killing--Lie symmetries/supersymmetries. As one of the very important applications of such new ternary symmetries could be related with explanation of the nature of the three families and three colour symmetry. The Majorana neutrino can directly indicate the existence of a new extra-dimensional geometry and thanks to new ternary space-time symmetries, could lead at high energies to the unextraordinary phenomenological consequences.

  13. How Uncertain Are Solar Neutrino Predictions?

    E-Print Network [OSTI]

    John N. Bahcall; Sarbani Basu; M. H. Pinsonneault

    1998-05-24T23:59:59.000Z

    Solar neutrino fluxes and sound speeds are calculated using a systematic reevaluation of nuclear fusion rates. The largest uncertainties are identified and their effects on the solar neutrino fluxes are estimated.

  14. Massless neutrino oscillations via quantum tunneling

    E-Print Network [OSTI]

    Zhao, Hai-Long

    2015-01-01T23:59:59.000Z

    In order for different kinds of neutrino to transform into each other, the eigenvalues of energy of neutrino must be different. In the present theory of neutrino oscillations, this is guaranteed by the mass differences between the different eigenstates of neutrino. Thus neutrino cannot oscillate if it is massless. We suggest an explanation for neutrino oscillations by analogy with the oscillation of quantum two-state system, where the flipping of one state into the other may be regarded as a process of quantum tunneling and the required energy difference between the two eigenstates comes from the barrier potential energy. So neutrino with vanishing mass can also oscillate. One of the advantages of the explanation is that neutrino can still be described with Weyl equation within the framework of standard model.

  15. Massless neutrino oscillations via quantum tunneling

    E-Print Network [OSTI]

    Hai-Long Zhao

    2015-02-03T23:59:59.000Z

    In order for different kinds of neutrino to transform into each other, the eigenvalues of energy of neutrino must be different. In the present theory of neutrino oscillations, this is guaranteed by the mass differences between the different eigenstates of neutrino. Thus neutrino cannot oscillate if it is massless. We suggest an explanation for neutrino oscillations by analogy with the oscillation of quantum two-state system, where the flipping of one state into the other may be regarded as a process of quantum tunneling and the required energy difference between the two eigenstates comes from the barrier potential energy. So neutrino with vanishing mass can also oscillate. One of the advantages of the explanation is that neutrino can still be described with Weyl equation within the framework of standard model.

  16. Four-Neutrino Oscillations at SNO

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia; C. Peña-Garay

    2001-03-20T23:59:59.000Z

    We discuss the potential of SNO to constraint the four-neutrino mixing schemes favoured by the results of all neutrino oscillations experiments. These schemes allow simultaneous transitions of solar $\

  17. Solar Neutrinos: Models, Observations, and New Opportunities

    E-Print Network [OSTI]

    W. C. Haxton

    2007-10-11T23:59:59.000Z

    I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

  18. Super Kamiokande results: atmospheric and solar neutrinos

    E-Print Network [OSTI]

    M. Ishitsuka; for the Super-Kamiokande Collaboration

    2004-06-28T23:59:59.000Z

    Atmospheric neutrino and solar neutrino data from the first phase of Super-Kamiokande (SK-I) are presented. The observed data are used to study atmospheric and solar neutrino oscillations. Zenith angle distributions from various atmospheric neutrino data samples are used to estimate the neutrino oscillation parameter region. In addition, a new result of the $L/E$ measurement is presented. A dip in the $L/E$ distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The energy spectrum and the time variation such as day/night and seasonal differences of solar neutrino flux are measured in Super-Kamiokande. The neutrino oscillation parameters are strongly constrained from those measurements.

  19. Annual modulation of cosmic relic neutrinos

    E-Print Network [OSTI]

    Safdi, Benjamin R.

    The cosmic neutrino background (C?B), produced about one second after the big bang, permeates the Universe today. New technological advancements make neutrino capture on beta-decaying nuclei (NCB) a clear path forward ...

  20. Neutrino mixing, flavor states and dark energy

    E-Print Network [OSTI]

    M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

    2007-11-06T23:59:59.000Z

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

  1. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2008-06-01T23:59:59.000Z

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  2. Probing the absolute mass scale of neutrinos

    E-Print Network [OSTI]

    Formaggio, Joseph A.

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is the next generation tritium beta decay experiment with sub-eV sensitivity to make a direct, model independent measurement of the neutrino mass. The principle of the ...

  3. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    E-Print Network [OSTI]

    Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique

    2014-01-01T23:59:59.000Z

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...

  4. Running of Radiative Neutrino Masses: The Scotogenic Model

    E-Print Network [OSTI]

    Romain Bouchand; Alexander Merle

    2012-04-30T23:59:59.000Z

    We study the renormalization group equations of Ma's scotogenic model, which generates an active neutrino mass at 1-loop level. In addition to other benefits, the main advantage of the mechanism exploited in this model is to lead to a natural loop-suppression of the neutrino mass, and therefore to an explanation for its smallness. However, since the structure of the neutrino mass matrix is altered compared to the ordinary type I seesaw case, the corresponding running is altered as well. We have derived the full set of renormalization group equations for the scotogenic model which, to our knowledge, had not been presented previously in the literature. This set of equations reflects some interesting structural properties of the model, and it is an illustrative example for how the running of neutrino parameters in radiative models is modified compared to models with tree-level mass generation. We also study a simplified numerical example to illustrate some general tendencies of the running. Interestingly, the structure of the RGEs can be exploited such that a bimaximal leptonic mixing pattern at the high-energy scale is translated into a valid mixing pattern at low energies, featuring a large value of \\theta_{13}. This suggests very interesting connections to flavour symmetries.

  5. Sensitivity of Core-Collapse Supernovae to Neutrino Luminosity in Cases of Anisotropic Neutrino Radiation

    E-Print Network [OSTI]

    Yuko Motizuki; Hideki Madokoro; Tetsuya Shimizu

    2003-12-25T23:59:59.000Z

    We demonstrate the importance of anisotropic neutrino radiation in the mechanism of core-collapse supernova explosions. Through a new parameter study with a fixed radiation field of neutrinos, we show that global anisotropy of the neutrino radiation is the most effective mechanism of increasing the explosion energy when the total neutrino luminosity is given. We discuss the reason why, and demonstrate how sensitively the success of a supernova explosion depends on the neutrino luminosity.

  6. Do the Kamiokande results need neutrino oscillations?

    E-Print Network [OSTI]

    Baillon, Paul

    1999-01-01T23:59:59.000Z

    Neutrino oscillations are a delicate and important subject. One needs to be sure that every aspect of it is well understood. The recent results of the Kamiokande experiment [1], indicate the possibility of -- neutrino oscillations. The period of oscillation observed by Kamiokande is not compatible with what one may deduce from the solar neutrino experiments [2]. In this letter, we examine if another mechanism could fake neutrino oscillations and could be measurement dependent

  7. Bimetric Relativity and the Opera Neutrino Experiment

    E-Print Network [OSTI]

    Moffat, J W

    2011-01-01T23:59:59.000Z

    We investigate the possibility of explaining the propagation of neutrinos measured by the OPERA experiment with $\\delta v_\

  8. Earth Matter Effect on Democratic Neutrinos

    E-Print Network [OSTI]

    Dmitry Zhuridov

    2014-08-30T23:59:59.000Z

    The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

  9. A New Spin on Neutrino Quantum Kinetics

    E-Print Network [OSTI]

    Vincenzo Cirigliano; George M. Fuller; Alexey Vlasenko

    2014-06-20T23:59:59.000Z

    We present and discuss the quantum kinetic equations (QKEs) which govern neutrino flavor and spin evolution in hot, dense, and anisotropic media. A novel feature of these QKEs is the presence of a coherent spin-flip term which can mediate neutrino-antineutrino transformation for Majorana neutrinos and active-sterile transformation for Dirac neutrinos. We provide an alternative derivation of this term based on a standard effective Hamiltonian.

  10. Atmospheric neutrino flux at INO site

    SciTech Connect (OSTI)

    Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

    2011-11-23T23:59:59.000Z

    To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

  11. Neutrino magnetic moment in a magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2010-11-08T23:59:59.000Z

    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

  12. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  13. Mass hierarchies and the seesaw neutrino mixing

    SciTech Connect (OSTI)

    Kuo, T. K. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Wu, Guo-Hong [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)] [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States); Mansour, Sadek W. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2000-06-01T23:59:59.000Z

    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem. (c) 2000 The American Physical Society.

  14. Solar Neutrinos with Super-Kamiokande

    E-Print Network [OSTI]

    Michael B Smy

    1999-03-16T23:59:59.000Z

    The discrepancy of the measured solar neutrino flux compared to the predictions of the standard solar model may be explained by the neutrino flavor oscillation hypothesis. A more direct and less model-dependent test of this hypothesis is a measurement of the distortion of the shape of the solar neutrino energy spectrum. Super-Kamiokande studies the energy spectrum of recoil electrons from solar neutrino scattering in water above 5.5 MeV.

  15. The Gran Sasso Laboratory and Neutrinos

    SciTech Connect (OSTI)

    Bettini, Alessandro [University of Padua-G. Galilei Physics Department- and INFN. Via Marzolo 8 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc. Canfranc, Huesca (Spain)

    2008-01-24T23:59:59.000Z

    After a brief survey of the experimental programme of the INFN Gran Sasso National Laboratory, I summarize the status of neutrino physics. I then focus on two frontier challenges. 1. The possible solution of the mass spectrum hierarchy problem with the observation of neutrinos from a supernova explosion; 2. The establishment of the nature of neutrinos, whether they are Dirac or Majorana particles, with neutrino-less double-beta decay.

  16. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01T23:59:59.000Z

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  17. Dark energy induced by neutrino mixing

    E-Print Network [OSTI]

    Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

    2006-12-11T23:59:59.000Z

    The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

  18. Neutrino mass limit from tritium beta decay

    E-Print Network [OSTI]

    E. W. Otten; C. Weinheimer

    2009-09-11T23:59:59.000Z

    The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m(\

  19. Improved Theory of Neutrino Oscillations in Matter

    E-Print Network [OSTI]

    Leonard S. Kisslinger

    2014-11-19T23:59:59.000Z

    This is revision of the S-Matrix theory of neutrino oscillations used for many years. We evaluate the transition probability of a $\\mu$ to $e$ neutrino without an approximation used for many theoretical studies, and find important differences which could improve the extraction of neutrino parameters from experimental data in the future.

  20. Multipole expansion method for supernova neutrino oscillations

    E-Print Network [OSTI]

    Duan, Huaiyu

    2014-01-01T23:59:59.000Z

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  1. SOME ASPECTS OF NEUTRINO MIXING AND OSCILLATIONS

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    SOME ASPECTS OF NEUTRINO MIXING AND OSCILLATIONS THESIS SUBMITTED TO THE UNIVERSITY OF CALCUTTA into the fascinating world of neutrinos and for being an excellent teacher and a perfect guide. I convey my regards everything I know about neutrino phenomenology, I owe to him. I consider myself very fortunate to have him

  2. Improved Theory of Neutrino Oscillations in Matter

    E-Print Network [OSTI]

    Kisslinger, Leonard S

    2014-01-01T23:59:59.000Z

    This is revision of the S-Matrix theory of neutrino oscillations used for many years. We evaluate the transition probability of a $\\mu$ to $e$ neutrino without an approximation used for many theoretical studies, and find important differences which could improve the extraction of neutrino parameters from experimental data in the future.

  3. Multipole expansion method for supernova neutrino oscillations

    E-Print Network [OSTI]

    Huaiyu Duan; Shashank Shalgar

    2014-12-24T23:59:59.000Z

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  4. Lectures on Neutrino Astronomy: Theory and Experiment

    E-Print Network [OSTI]

    F. Halzen

    1998-10-22T23:59:59.000Z

    1. Overview of neutrino astronomy: multidisciplinary science. 2. Cosmic accelerators: the highest energy cosmic rays. 3. Neutrino beam dumps: supermassive black holes and gamma ray bursts. 4. Neutrino telescopes: water and ice. 5. Indirect dark matter detection. 6. Towards kilometer-scale detectors.

  5. Phase Space Constraints on Neutrino Luminosities

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun; Samartha C A

    2007-06-29T23:59:59.000Z

    While the importance of phase space constraints for gravitational clustering of neutrinos (which are fermions) is well recognized, the explicit use of such constraints to limit neutrino emission from ultra energetic sources has not been stressed. Special and general relativistic phase space constraints are shown to limit neutrino luminosities in compact sources in various situations.

  6. Neutrino oscillations: Current status and prospects

    E-Print Network [OSTI]

    Thomas Schwetz

    2005-10-25T23:59:59.000Z

    I summarize the status of neutrino oscillations from world neutrino oscillation data with date of October 2005. The results of a global analysis within the three-flavour framework are presented. Furthermore, a prospect on where we could stand in neutrino oscillations in ten years from now is given, based on a simulation of upcoming long-baseline accelerator and reactor experiments.

  7. Neutrino oscillations: present status and outlook

    E-Print Network [OSTI]

    Thomas Schwetz

    2007-10-26T23:59:59.000Z

    I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

  8. Detecting extra-galactic supernova neutrinos in the Antarctic ice

    E-Print Network [OSTI]

    Sebastian Böser; Marek Kowalski; Lukas Schulte; Nora Linn Strotjohann; Markus Voge

    2014-07-28T23:59:59.000Z

    Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background, such as solar neutrinos. In particular, the suppression of spallation events induced by atmospheric muons poses a challenge that will need to be addressed. Assuming this background can be controlled, we find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 10 and 41 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to that of regular SNe. We find that the biggest technological challenge lies in the required number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity with a comparatively small construction effort and hence offers a route to future routine observations of SNe with neutrinos.

  9. S3 x Z2 model for neutrino mass matrices

    E-Print Network [OSTI]

    W. Grimus; L. Lavoura

    2005-08-02T23:59:59.000Z

    We propose a model for lepton mass matrices based on the seesaw mechanism, a complex scalar gauge singlet and a horizontal symmetry $S_3 \\times \\mathbbm{Z}_2$. In a suitable weak basis, the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal, but the vacuum expectation value of the scalar gauge singlet renders the Majorana mass matrix of the right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the symmetry $S_3$ is not broken in the scalar potential, the effective light-neutrino Majorana mass matrix enjoys $\\mu$--$\\tau$ interchange symmetry, thus predicting maximal atmospheric neutrino mixing together with $U_{e3} = 0$. A partial and less predictive form of $\\mu$--$\\tau$ interchange symmetry is obtained when the symmetry $S_3$ is softly broken in the scalar potential. Enlarging the symmetry group $S_3 \\times \\mathbbm{Z}_2$ by an additional discrete electron-number symmetry $\\mathbbm{Z}_2^{(e)}$, a more predicitive model is obtained, which is in practice indistinguishable from a previous one based on the group $D_4$.

  10. Muon neutrino disappearance at MINOS

    SciTech Connect (OSTI)

    Armstrong, R.; /Indiana U.

    2009-08-01T23:59:59.000Z

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

  11. Neutrinos from Gamma Ray Bursts

    E-Print Network [OSTI]

    Karl Mannheim

    2000-10-18T23:59:59.000Z

    The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

  12. Tribimaximal mixing in neutrino mass matrices with texture zeros or vanishing minors

    E-Print Network [OSTI]

    Dev, S; Gautam, Radha Raman

    2010-01-01T23:59:59.000Z

    We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with $\\mu\\tau$ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors in the right-handed Majorana mass matrix having $\\mu\\tau$ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with $\\mu\\tau$ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass $M_{ee}$, the absolute mass scale and the Majorana-type CP violating phases.

  13. Tribimaximal mixing in neutrino mass matrices with texture zeros or vanishing minors

    E-Print Network [OSTI]

    S. Dev; Shivani Gupta; Radha Raman Gautam

    2010-11-25T23:59:59.000Z

    We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with $\\mu\\tau$ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors in the right-handed Majorana mass matrix having $\\mu\\tau$ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with $\\mu\\tau$ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass $M_{ee}$, the absolute mass scale and the Majorana-type CP violating phases.

  14. Late-time Entropy Production from Scalar Decay and Relic Neutrino Temperature

    E-Print Network [OSTI]

    Paramita Adhya; D. Rai Chaudhuri; Steen Hannestad

    2003-09-04T23:59:59.000Z

    Entropy production from scalar decay in the era of low temperatures after neutrino decoupling will change the ratio of the relic neutrino temperature to the CMB temperature, and, hence, the value of N_eff, the effective number of neutrino species. Such scalar decay is relevant to reheating after thermal inflation, proposed to dilute massive particles, like the moduli and the gravitino, featuring in supersymmetric and string theories. The effect of such entropy production on the relic neutrino temperature ratio is calculated in a semi-analytic manner, and a recent lower bound on this ratio, obtained from the WMAP satellite and 2dF galaxy data, is used to set a lower bound of ~ 1.5 x 10^-23 Gev on the scalar decay constant, corresponding to a reheating temperature of about 3.3 Mev.

  15. Supernova relic neutrinos and observational implications for neutrino oscillation

    E-Print Network [OSTI]

    Shin'ichiro Ando; Katsuhiko Sato

    2003-03-06T23:59:59.000Z

    We investigate the flux of supernova relic neutrinos (SRN) for several neutrino oscillation models with parameters inferred from recent experimental results. In the calculation, we adopt the realistic {\\it time-dependent} supernova density profile, which is very different from the static progenitor profile owing to shock propagation. The Earth matter effect is also included appropriately using realistic density profile of the Earth. As a result, these two effects are found to induce the flux difference by a few % in the detection energy range ($E_\

  16. Neutrino Oscillations in Noisy Media

    E-Print Network [OSTI]

    F. N. Loreti; A. B. Balantekin

    1994-06-02T23:59:59.000Z

    We develop the Redfield equation for delta-correlated gaussian noise and apply it to the case of two neutrino flavor or spin precession in the presence of a noisy matter density or magnetic field, respectively. The criteria under which physical fluctuations can be well approximated by the delta-correlated gaussian noise for the above cases are examined. Current limits on the possible neutrino magnetic moment and solar magnetic field suggest that a reasonably noisy solar magnetic field would not appreciably affect the solar electron neutrino flux. However, if the solar electron density has fluctuations of a few percent of the local density and a small enough correlation length, the MSW effect is suppressed for a range of parameters.

  17. Naturalness and the neutrino matrix

    SciTech Connect (OSTI)

    Sayre, J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Wiesenfeldt, S. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Institut fur Theoretische Teilchenphysik, Universitaet Karlsruhe, 76128 Karlsruhe (Germany)

    2008-03-01T23:59:59.000Z

    The observed pattern of neutrino mass splittings and mixing angles indicates that their family structure is significantly different from that of the charged fermions. We investigate the implications of these data for the fermion mass matrices in grand-unified theories with a type-I seesaw mechanism. We show that, with simple assumptions, naturalness leads to a strongly hierarchical Majorana mass matrix for heavy right-handed neutrinos and a partially cascade form for the Dirac neutrino matrix. We consider various model building scenarios which could alter this conclusion, and discuss their consequences for the construction of a natural model. We find that including partially lopsided matrices can aid us in generating a satisfying model.

  18. The Unruh effect and oscillating neutrinos

    E-Print Network [OSTI]

    Dharam Vir Ahluwalia; Lance Labun; Giorgio Torrieri

    2015-05-15T23:59:59.000Z

    We point out that neutrino oscillations imply an ambiguity in the definition of the vacuum and the coupling to gravity, with experimentally observable consequences due to the Unruh effect. In an accelerating frame, the detector should see a bath of mass Eigenstates neutrinos. In inertial processes, neutrinos are produced and absorbed as charge Eigenstates. The two cannot be reconciled by a spacetime coordinate transformation. This makes manifestations of the Unruh effect in neutrino physics a promising probe of both neutrinos and fundamental quantum field theory. In this respect, we suggest $p\\rightarrow n +\\ell^+ + {\

  19. On solar neutrino fluxes in radiochemical experiments

    E-Print Network [OSTI]

    R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

    2005-12-08T23:59:59.000Z

    We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

  20. Neutrino mass matrices with a democratic texture

    SciTech Connect (OSTI)

    Kleppe, A. [Dep. of Mathematical Physics, LTH, Box 118, 22100 Lund (Sweden)

    1997-06-15T23:59:59.000Z

    The structure of the neutrino mass matrices is investigated, in a scheme where the minimal three-family Standard Model is extended by including right-handed neutrinos. No assumption is made about the presence of a large mass scale, like in the see-saw scheme. Certain peculiar features of the usual democratic mass matrix are investigated, and used to define matrices with a 'democratic texture'. By demanding that the neutrino mass matrices have a specific form with such a democratic texture, Majorana mass spectra with three massless (light) neutrinos and either two or three massive neutrinos, are obtained.

  1. The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters

    E-Print Network [OSTI]

    Kaur, Daljeet; Kumar, Sanjeev

    2014-01-01T23:59:59.000Z

    The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL) detector that will be able to detect muon tracks and hadron showers produced by Charged-Current muon neutrino interactions in the detector. The ICAL experiment will be able to determine the precision of atmospheric neutrino mixing parameters and neutrino mass hierarchy using atmospheric muon neutrinos through earth matter effect. In this paper, we report on the sensitivity for the atmospheric neutrino mixing parameters ($\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$) for the ICAL detector using the reconstructed neutrino energy and muon direction as observables. We apply realistic resolutions and efficiencies obtained by the ICAL collaboration with a GEANT4-based simulation to reconstruct neutrino energy and muon direction. Our study shows that using neutrino energy and muon direction as observables for a $\\chi^{2}$ analysis, ICAL detector can measure $\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$ with 13% and 4%...

  2. NEUTRINO OSCILLATION RESULTS FROM LSND

    SciTech Connect (OSTI)

    Mills, G.B.

    2000-10-01T23:59:59.000Z

    The Liquid Scintillator Neutrino Detector took data during the years 1993 through 1998. The results of a final analysis of the data are reported here. In summary, the analysis resulted in a cleaner sample of decay-at-rest oscillation candidates and provided a strong constraint on beam related backgrounds. The oscillation probability is fitted to the correlated photon parameter in the inclusive electron sample. The fit yields an excess of 83.3 {+-} 21.2 events attributable to neutrino oscillations. This corresponds to an oscillation probability of (0.25 {+-} 0.06 {+-} 0.04)% for that detector and beam configuration.

  3. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Kaplan, Daniel M

    2014-01-01T23:59:59.000Z

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  5. Collective neutrino oscillations and spontaneous symmetry breaking

    E-Print Network [OSTI]

    Duan, Huaiyu

    2015-01-01T23:59:59.000Z

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  6. Progress in the physics of massive neutrinos

    E-Print Network [OSTI]

    V. Barger; D. Marfatia; K. Whisnant

    2003-09-16T23:59:59.000Z

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

  7. Probing Neutrino Hierarchy and Chirality via Wakes

    E-Print Network [OSTI]

    Hong-Ming Zhu; Ue-Li Pen; Xuelei Chen; Derek Inman

    2014-12-04T23:59:59.000Z

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and downstream of dark matter halos neutrino wakes are expected to develop. We propose a method of measuring the neutrino mass based on this mechanism. The neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys, e.g. the LSST and Euclid surveys with a low redshift galaxy survey or a 21cm intensity mapping survey which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make positive detection if the three neutrino masses are Quasi-Degenerate, and a future high precision 21cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right handed Dirac neutrinos may be detectable.

  8. Status and Prospects of Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Kim, Soo-Bong

    2015-01-01T23:59:59.000Z

    New generation of three reactor neutrino experiments have made definitive measurements of the smallest neutrino mixing angle theta13 in 2012, based on the disappearance of electron antineutrinos. More precise measurements of the mixing angle have been made as well as the squared mass difference between electron neutrinos. A rather large value of theta13 has opened a new window to find the CP violation phase and to determine the neutrino mass hierarchy. Future reactor experiments, JUNO and RENO50, are proposed to determine the neutrino mass hierarchy and to make highly precise measurements of theta12, the squared mass difference between neutrino masses 2 and 1, and the squared mass difference between electron neutrinos.

  9. Review of Reactor Neutrino Oscillation Experiments

    E-Print Network [OSTI]

    C. Mariani

    2012-02-05T23:59:59.000Z

    In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the $\\theta_{13}$ neutrino mixing angle. The neutrino mixing angle $\\theta_{13}$ is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, \\textsc{Double Chooz}, \\textsc{Daya Bay} and \\textsc{Reno} and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of $\\theta_{13}$ is given, along with a discussion of the sensitivities that these experiments can reach in the near future.

  10. INDIA-BASED NEUTRINO OBSERVATORY INO/2005/01

    E-Print Network [OSTI]

    Udgaonkar, Jayant B.

    important developments have occurred recently in neutrino physics and neutrino astronomy. OscillationsINDIA-BASED NEUTRINO OBSERVATORY INO/2005/01 Interim Project Report Volume I I N O #12;#12;The INO of neutrinos and the inferred discovery that neutrinos have mass are likely to have far-reaching consequences

  11. PHYSICAL REVIEW B VOLUME 52, NUMBER 23 15 DECEMBER 1995-I Properties of the yellow luminescence in undoped GaN epitaxial layers

    E-Print Network [OSTI]

    Nabben, Reinhard

    Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten masks: A method to map the free-carrier concentration of thick GaN samples A. Kaschner,a) A. Hoffmann properties of two epitaxial-laterally overgrown GaN structures with tungsten masks in 1100 and 1120 direction

  12. Lepton number violation and W ? chiral couplings at the LHC

    SciTech Connect (OSTI)

    Han, Tao; Lewis, Ian; Ruiz, Richard; Si, Zong-guo

    2013-02-01T23:59:59.000Z

    We study the observability for a heavy Majorana neutrino N along with a new charged gauge boson W' at the LHC. We emphasize the complementarity of these two particles in their production and decay to unambiguously determine their properties. We show that the Majorana nature of N can be verified by the lepton number violating like-sign dilepton process, and by polar and azimuthal angular distributions. The chirality of the W' coupling to leptons and to quarks can be determined by a polar angle distribution in the reconstructed frame and an azimuthal angle distribution.

  13. TeV-PeV Neutrino Oscillation of Low-luminosity Gamma-ray Bursts

    E-Print Network [OSTI]

    Xiao, D

    2015-01-01T23:59:59.000Z

    There is a sign that long-duration gamma-ray bursts (GRBs) originate from the core collapse of massive stars. During a jet puncturing through the progenitor envelope, high energy neutrinos can be produced by the reverse shock formed at the jet head. It is suggested that low-luminosity GRBs (LL-GRBs) are possible candidates of this high energy neutrino precursor up to $\\sim {\\rm PeV}$. Before leaving the progenitor, these high energy neutrinos must oscillate from one flavor to another with matter effect in the envelope. Under the assumption of a power-law stellar envelope density profile $\\rho \\propto r^{-\\alpha}$ with an index $\\alpha$, we study the properties of ${\\rm TeV-PeV}$ neutrino oscillation. We find that adiabatic conversion is violated for these neutrinos so we do certain calibration of level crossing effect. The resonance condition is reached for different energies at different radii. We notice that the effective mixing angles in matter for ${\\rm PeV}$ neutrinos are close to zero so the transition ...

  14. High energy neutrino emission from the earliest gamma-ray bursts

    SciTech Connect (OSTI)

    Gao Shan; Toma, Kenji; Meszaros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, 16802 (United States)

    2011-05-15T23:59:59.000Z

    We discuss the high energy neutrino emission from gamma-ray bursts resulting from the earliest generation (''population III'') stars forming in the Universe, whose core collapses into a black hole. These gamma-ray bursts are expected to produce a highly relativistic, magnetically dominated jet, where protons can be accelerated to ultrahigh energies. These interact with the photons produced by the jet, leading to ultrahigh energy photomeson neutrinos as well as secondary leptons and photons. The photon luminosity and the shock properties, and thus the neutrino spectrum, depend on the mass of the black holes as well as on the density of the surrounding external gas. We calculate the individual source neutrino spectral fluxes and the expected diffuse neutrino flux for various source parameters and evolution scenarios. Both the individual and diffuse signals appear detectable in the 1-300 PeV range with current and planned neutrino detectors such as IceCube and ARIANNA, provided the black hole mass is in excess of 30-100 solar masses. This provides a possible test for the debated mass of the progenitor stellar objects, as well as a probe for the early cosmological environment and the formation rate of the earliest structures.

  15. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slosar, A.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.; Kuo, C. -L.

    2015-03-01T23:59:59.000Z

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  16. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slosar, A.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2015-03-01T23:59:59.000Z

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020.more »Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  17. Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay

    E-Print Network [OSTI]

    Sabin Stoica; Andrei Neacsu

    2014-05-02T23:59:59.000Z

    The study of the neutrinoless double beta ($0 \\beta\\beta$) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the $0 \\beta\\beta$ decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with di?erent methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date image on the present neutrino mass sensitivities associated with $0 \\beta\\beta$ measurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.

  18. Measuring the neutrino mass from future wide galaxy cluster catalogues

    SciTech Connect (OSTI)

    Carbone, Carmelita; Moscardini, Lauro; Cimatti, Andrea [Dipartimento di Astronomia, Alma Mater Studiorum-Università di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Fedeli, Cosimo, E-mail: carmelita.carbone@unibo.it, E-mail: cosimo.fedeli@astro.ufl.edu, E-mail: lauro.moscardini@unibo.it, E-mail: a.cimatti@unibo.it [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2012-03-01T23:59:59.000Z

    We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ?CDM+? model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energy equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of ?(M{sub ?}) ? 0.9 eV, comparable with that derived from present Ly? forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ?CDM+? cosmology allows to place constraints on the total neutrino mass of ?(M{sub ?}) ? 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to ?(M{sub ?}) ? 0.034 eV, i.e. the minimum neutrino mass predicted by oscillation experiments would be detected in a ?CDM framework. We thus show that galaxy clusters from future wide galaxy surveys will be an excellent tool for studying cosmology and fundamental physics.

  19. The Power of Neutrino Mass Sum Rules for Neutrinoless Double Beta Decay Experiments

    E-Print Network [OSTI]

    Stephen F. King; Alexander Merle; Alexander J. Stuart

    2013-07-31T23:59:59.000Z

    Neutrino mass sum rules relate the three neutrino masses within generic classes of flavour models, leading to restrictions on the effective mass parameter measured in experiments on neutrinoless double beta decay as a function of the lightest neutrino mass. We perform a comprehensive study of the implications of such neutrino mass sum rules, which provide a link between model building, phenomenology, and experiments. After a careful explanation of how to derive predictions from sum rules, we discuss a large number of examples both numerically, using all three global fits available for the neutrino oscillation data, and analytically wherever possible. In some cases, our results disagree with some of those in the literature for reasons that we explain. Finally we discuss the experimental prospects for many current and near-future experiments, with a particular focus on the uncertainties induced by the unknown nuclear physics involved. We find that, in many cases, the power of the neutrino mass sum rules is so strong as to allow certain classes of models to be tested by the next generation of neutrinoless double beta decay experiments. Our study can serve as both a guideline and a theoretical motivation for future experimental studies.

  20. Neutrinos and nucleosynthesis in core-collapse supernovae

    SciTech Connect (OSTI)

    Fröhlich, C.; Casanova, J. [Department of Physics, North Carolina State University, Raleigh, NC, 27695 (United States); Hempel, M.; Liebendörfer, M. [Departement für Physik, Universität Basel, CH-4056 Basel (Switzerland); Melton, C. A. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Perego, A. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany)

    2014-01-01T23:59:59.000Z

    Massive stars (M > 8-10 M{sub ?}) undergo core collapse at the end of their life and explode as supernova with ~ 10?¹ erg of kinetic energy. While the detailed supernova explosion mechanism is still under investigation, reliable nucleosynthesis calculations based on successful explosions are needed to explain the observed abundances in metal-poor stars and to predict supernova yields for galactic chemical evolution studies. To predict nucleosynthesis yields for a large number of progenitor stars, computationally efficient explosion models are required. We model the core collapse, bounce and subsequent explosion of massive stars assuming spherical symmetry and using detailed microphysics and neutrino physics combined with a novel method to artificially trigger the explosion (PUSH). We discuss the role of neutrinos, the conditions in the ejecta, and the resulting nucleosynthesis.