Powered by Deep Web Technologies
Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Neutrino properties deduced from the study of lepton number violating processes at low and high energies  

SciTech Connect (OSTI)

There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

Stoica, Sabin [Horia Hulubei Foundation, P.O. Box MG-12, 077125 Magurele-Bucharest (Romania) and Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Magurele-Bucharest 077125 (Romania)

2012-11-20T23:59:59.000Z

2

Electromagnetic properties of neutrinos  

E-Print Network [OSTI]

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08T23:59:59.000Z

3

Electromagnetic properties of massive neutrinos  

SciTech Connect (OSTI)

The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

2013-10-15T23:59:59.000Z

4

Neutrino masses and the number of neutrino species from WMAP and 2dFGRS  

E-Print Network [OSTI]

We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of \\sum m_nu neutrinoless double beta decay reported by the Heidelberg-Moscow experiment. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, N_nu, that N_nu = 4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\

Steen Hannestad

2003-03-04T23:59:59.000Z

5

Neutrino Properties Before and After KamLAND  

E-Print Network [OSTI]

We review neutrino oscillation physics, including the determination of mass splittings and mixings from current solar, atmospheric, reactor and accelerator neutrino data. A brief discussion is given of cosmological and astrophysical implications. Non-oscillation phenomena such as neutrinoless double beta decay would, if discovered, probe the absolute scale of neutrino mass and also reveal their Majorana nature. Non-oscillation descriptions in terms of spin-flavor precession (SFP) and non-standard neutrino interactions (NSI) currently provide an excellent fit of the solar data. However they are at odds with the first results from the KamLAND experiment which imply that, despite their theoretical interest, non-standard mechanisms can only play a sub-leading role in the solar neutrino anomaly. Accepting the LMA-MSW solution, one can use the current solar neutrino data to place important restrictions on non-standard neutrino properties, such as neutrino magnetic moments. Both solar and atmospheric neutrino data can also be used to place constraints on neutrino instability as well as the more exotic possibility of $CPT$ and Lorentz Violation. Weillustrate the potential of future data from experiments such as KamLAND, Borexino and the upcoming neutrino factories in constraining non-standard neutrino properties.

S. Pakvasa; J. W. F. Valle

2003-02-05T23:59:59.000Z

6

Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino  

SciTech Connect (OSTI)

This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

Cooper, N.G. [ed.] [ed.

1997-12-31T23:59:59.000Z

7

Search for Lepton Number Violating Charged Current Processes with Neutrino Beams  

E-Print Network [OSTI]

We propose a new idea to test a class of loop-induced neutrino mass mechanisms by searching for lepton number violating charged current processes with incident of a neutrino beam. The expected rates of these processes are estimated based on some theoretical assumptions. They turn out to be sizable so that detection of such processes could be possible at near detectors in future highly intense neutrino-beam facilities.

Shinya Kanemura; Yoshitaka Kuno; Toshihiko Ota

2012-05-25T23:59:59.000Z

8

Neutrino mass, lepton number, and the origin of matter  

E-Print Network [OSTI]

antiparticles? And many other things% Do neutrinos violate CP? #12;Neutrinoless Double Beta Decay W. Rodejohann? #12;Neutrinoless Double Beta Decay 1 sigma W. Rodejohann, 1206.2560 #12;14 F. Iachello #12;15 Regions

9

CPT and lepton number violation in neutrino sector: Modified mass matrix and oscillation due to gravity  

E-Print Network [OSTI]

We study the consequences of CPT and lepton number violation in neutrino sector. For CPT violation we take gravity with which neutrino and antineutrino couple differently. Gravity mixes neutrino and antineutrino in an unequal ratio to give two mass eigenstates. Lepton number violation interaction together with CPT violation gives rise to neutrino-antineutrino oscillation. Subsequently, we study the neutrino flavor mixing and oscillation under the influence of gravity. It is found that gravity changes flavor oscillation significantly which influences the relative abundance of different flavors in present universe. We show that the neutrinoless double beta decay rate is modified due to presence of gravity- the origin of CPT violation, as the mass of the flavor state is modified.

Monika Sinha; Banibrata Mukhopadhyay

2007-11-21T23:59:59.000Z

10

Neutrinos at high energy accelerators  

E-Print Network [OSTI]

PREAMBLE, BRIEF HISTORY AND PRELIMINARIES, QUICK REVIEW OF BASIC NEUTRINO PROPERTIES, CHARGED CURRENT NEUTRINO PROCESSES, NEUTRAL CURRENT NEUTRINO PROCESSES, VERY HEAVY NEUTRINOS, CONCLUDING SUMMARY

Probir Roy

1993-08-02T23:59:59.000Z

11

A new map of neutrino cosmology - revised bounds on the number of neutrino species and the cosmological lepton asymmetry from WMAP data  

E-Print Network [OSTI]

We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of equivalent number of neutrino species, N_nu, that N_nu = 2.1+1.6-1.8 (95% conf.). This limit on relativistic energy density can be translated into a bound on the neutrino lepton asymmetry of |eta| 5% conf), assuming that the asymmetry is entirely in one flavour. When BBN constraints are added, the bound on N_nu is 2.5 +- 0.5 (95% conf), suggesting that N_nu could possibly be lower than the standard model value of 3. this can for instance be the case in models with very low reheating temperature and incomplete neutrino thermalization.

Hannestad, S

2003-01-01T23:59:59.000Z

12

Effects of Long-lived 10 MeV Scale Sterile Neutrino on Primordial Elemental Abundances and Effective Neutrino Number  

E-Print Network [OSTI]

The primordial lithium abundance inferred from observations of metal-poor stars is ~3 times smaller than the theoretical value in standard big bang nucleosynthesis (BBN) model. We assume a simple model including a sterile neutrino nu_H with mass of O(10) MeV which decays long after BBN. We then investigate cosmological effects of a sterile neutrino decay. We formulate the injection spectrum of nonthermal photons induced by electrons and positrons generated at the nu_H decay, as a function of the nu_H mass and the photon temperature. We then consistently solve (1) the cosmic thermal history, (2) nonthermal nucleosynthesis induced by the nonthermal photons, (3) the baryon-to-photon ratio eta, and (4) the effective neutrino number N_eff. Amounts of energy injection at the nu_H decay are constrained from limits on primordial D and 7Li abundances, the N_eff value, and the cosmic microwave background energy spectrum. We find that 7Be is photodisintegrated and the Li problem is partially solved for the lifetime 10^4-10^5 s and the mass >~ 14 MeV. 7Be destruction by more than a factor of 3 is not possible because of an associated D over-destruction. In the parameter region, the eta value is decreased slightly, while the N_eff value is increased by a factor of <~ 1. In this study, errors in photodisintegration cross sections of 7Be(g, a)3He and 7Li(g, a)3H that have propagated through literatures are corrected. It is then found that the new photodisintegration rates are 2.3 to 2.5 times smaller than the old rates, so that efficiencies of 7Be and 7Li photodisintegration are significantly smaller.

Hiroyuki Ishida; Motohiko Kusakabe; Hiroshi Okada

2014-08-11T23:59:59.000Z

13

Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection  

E-Print Network [OSTI]

Implications of optical properties of ocean, lake, and ice for ultrahigh-energy neutrino detection P. Buford Price The collecting power and imaging ability of planned ultrahigh-energy neutrino, and for deep seawater. The effective scattering coefficient is smallest for the clearest deep ocean sites

Price, P. Buford

14

Lepton number violating processes mediated by Majorana neutrinos at hadron colliders  

SciTech Connect (OSTI)

We study the lepton number violating like-sign dilepton processes h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}jjX and h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}W{sup {+-}}X, mediated by heavy GeV scale Majorana neutrinos. We focus on the resonantly enhanced contributions with a nearly on-mass-shell Majorana neutrino in the s channel. We study the constraints on like-sign dilepton production at the Tevatron and the LHC on the basis of the existing experimental limits on the masses of heavy neutrinos and their mixings U{sub {alpha}}{sub N} with {alpha}={nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}. Special attention is paid to the constraints from neutrinoless double beta decay. We note that searches for like-sign e{sup {+-}}e{sup {+-}} events at Tevatron and LHC may provide evidence of CP violation in the neutrino sector. We also discuss the conditions under which it is possible to extract individual constraints on the mixing matrix elements in a model independent way.

Kovalenko, Sergey; Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico, Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

2009-10-01T23:59:59.000Z

15

Neutrino Physics  

E-Print Network [OSTI]

The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

Gil-Botella, I

2013-01-01T23:59:59.000Z

16

The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit  

E-Print Network [OSTI]

In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

Boris V. Tarasov

2007-04-07T23:59:59.000Z

17

Neutrino oscillation experiments and limits on lepton-number and lepton-flavor violating processes  

E-Print Network [OSTI]

Using a three neutrino framework we investigate bounds for the effective Majorana neutrino mass matrix. The mass measured in neutrinoless double beta decay is its (11) element. Lepton-number and -flavor violating processes sensitive to each element are considered and limits on branching ratios or cross sections are given. Those processes include $\\mu^- e^+$ conversion, $K^+ \\to \\pi^- \\mu^+ \\mu^+$ or recently proposed high-energy scattering processes at HERA. Including all possible mass schemes, the three solar solutions and other allowed possibilities, there is a total of 80 mass matrices. The obtained indirect limits are up to 14 orders of magnitude more stringent than direct ones. It is investigated how neutrinoless double beta decay may judge between different mass and mixing schemes as well as solar solutions. Prospects for detecting processes depending on elements of the mass matrix are also discussed.

W. Rodejohann

2000-06-19T23:59:59.000Z

18

Neutrinos: in and out of the standard model  

SciTech Connect (OSTI)

The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

Parke, Stephen; /Fermilab

2006-07-01T23:59:59.000Z

19

Neutrino  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeam ExcitationNeutrino

20

Experimental Neutrino Physics: Final Report  

SciTech Connect (OSTI)

Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

Lane, Charles E.; Maricic, Jelena

2012-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:PhoneNumber | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to: navigation, searchRelatedTo JumpPhoneNumber

22

The Intermediate Neutrino Program  

E-Print Network [OSTI]

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

C. Adams; J. R. Alonso; A. M. Ankowski; J. A. Asaadi; J. Ashenfelter; S. N. Axani; K. Babu; C. Backhouse; H. R. Band; P. S. Barbeau; N. Barros; A. Bernstein; M. Betancourt; M. Bishai; E. Blucher; J. Bouffard; N. Bowden; S. Brice; C. Bryan; L. Camilleri; J. Cao; J. Carlson; R. E. Carr; A. Chatterjee; M. Chen; S. Chen; M. Chiu; E. D. Church; J. I. Collar; G. Collin; J. M. Conrad; M. R. Convery; R. L. Cooper; D. Cowen; H. Davoudiasl; A. De Gouvea; D. J. Dean; G. Deichert; F. Descamps; T. DeYoung; M. V. Diwan; Z. Djurcic; M. J. Dolinski; J. Dolph; B. Donnelly; D. A. Dwyer; S. Dytman; Y. Efremenko; L. L. Everett; A. Fava; E. Figueroa-Feliciano; B. Fleming; A. Friedland; B. K. Fujikawa; T. K. Gaisser; M. Galeazzi; D. C. Galehouse; A. Galindo-Uribarri; G. T. Garvey; S. Gautam; K. E. Gilje; M. Gonzalez-Garcia; M. C. Goodman; H. Gordon; E. Gramellini; M. P. Green; A. Guglielmi; R. W. Hackenburg; A. Hackenburg; F. Halzen; K. Han; S. Hans; D. Harris; K. M. Heeger; M. Herman; R. Hill; A. Holin; P. Huber; D. E. Jaffe; R. A. Johnson; J. Joshi; G. Karagiorgi; L. J. Kaufman; B. Kayser; S. H. Kettell; B. J. Kirby; J. R. Klein; Yu. G. Kolomensky; R. M. Kriske; C. E. Lane; T. J. Langford; A. Lankford; K. Lau; J. G. Learned; J. Ling; J. M. Link; D. Lissauer; L. Littenberg; B. R. Littlejohn; S. Lockwitz; M. Lokajicek; W. C. Louis; K. Luk; J. Lykken; W. J. Marciano; J. Maricic; D. M. Markoff; D. A. Martinez Caicedo; C. Mauger; K. Mavrokoridis; E. McCluskey; D. McKeen; R. McKeown; G. Mills; I. Mocioiu; B. Monreal; M. R. Mooney; J. G. Morfin; P. Mumm; J. Napolitano; R. Neilson; J. K. Nelson; M. Nessi; D. Norcini; F. Nova; D. R. Nygren; G. D. Orebi Gann; O. Palamara; Z. Parsa; R. Patterson; P. Paul; A. Pocar; X. Qian; J. L. Raaf; R. Rameika; G. Ranucci; H. Ray; D. Reyna; G. C. Rich; P. Rodrigues; E. Romero Romero; R. Rosero; S. D. Rountree; B. Rybolt; M. C. Sanchez; G. Santucci; D. Schmitz; K. Scholberg; D. Seckel; M. Shaevitz; R. Shrock; M. B. Smy; M. Soderberg; A. Sonzogni; A. B. Sousa; J. Spitz; J. M. St. John; J. Stewart; J. B. Strait; G. Sullivan; R. Svoboda; A. M. Szelc; R. Tayloe; M. A. Thomson; M. Toups; A. Vacheret; M. Vagins; R. G. Van de Water; R. B. Vogelaar; M. Weber; W. Weng; M. Wetstein; C. White; B. R. White; L. Whitehead; D. W. Whittington; M. J. Wilking; R. J. Wilson; P. Wilson; D. Winklehner; D. R. Winn; E. Worcester; L. Yang; M. Yeh; Z. W. Yokley; J. Yoo; B. Yu; J. Yu; C. Zhang

2015-04-01T23:59:59.000Z

23

The Intermediate Neutrino Program  

E-Print Network [OSTI]

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

2015-01-01T23:59:59.000Z

24

Neutrinos in Nuclear Physics  

E-Print Network [OSTI]

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

R. D. McKeown

2014-12-03T23:59:59.000Z

25

Neutrinos in Nuclear Physics  

E-Print Network [OSTI]

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

McKeown, R D

2014-01-01T23:59:59.000Z

26

Neutrino astrophysics : recent advances and open issues  

E-Print Network [OSTI]

We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

Volpe, Cristina

2015-01-01T23:59:59.000Z

27

FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS  

SciTech Connect (OSTI)

We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d'Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France)

2012-02-10T23:59:59.000Z

28

UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments  

E-Print Network [OSTI]

UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.

Littlejohn, Bryce; Wise, T; Gettrust, E; Lyman, M

2009-01-01T23:59:59.000Z

29

UV Degradation of the Optical Properties of Acrylic for Neutrino and Dark Matter Experiments  

E-Print Network [OSTI]

UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.

Bryce Littlejohn; K. M. Heeger; T. Wise; E. Gettrust; M. Lyman

2009-07-21T23:59:59.000Z

30

Acquiring information about neutrino parameters by detecting supernova neutrinos  

SciTech Connect (OSTI)

We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

Huang, Ming-Yang; Guo, Xin-Heng [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Young, Bing-Lin [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 5001 (United States); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2010-08-01T23:59:59.000Z

31

Property:NumberOfPrograms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, search This is a property

32

Solar Models: current epoch and time dependences, neutrinos, and helioseismological properties  

E-Print Network [OSTI]

We calculate accurate solar models and report the detailed time dependences of important solar quantities. We use helioseismology to constrain the luminosity evolution of the sun and report the discovery of semi-convection in evolved solar models that include diffusion. In addition, we compare the computed sound speeds with the results of p-mode observations by BiSON, GOLF, GONG, LOWL, and MDI instruments. We contrast the neutrino predictions from a set of eight standard-like solar models and four deviant (or deficient) solar models with the results of solar neutrino experiments. For solar neutrino and for helioseismological applications, we present present-epoch numerical tabulations of characteristics of the standard solar model as a function of solar radius, including the principal physical and composition variables, sound speeds, neutrino fluxes, and functions needed for calculating solar neutrino oscillations.

John N. Bahcall; M. H. Pinsonneault; Sarbani Basu

2001-03-13T23:59:59.000Z

33

LSND neutrino oscillation results  

SciTech Connect (OSTI)

In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say {bar {nu}}{sub {mu}}) spontaneously transforms into a neutrino of another type (say {bar {nu}}{sub e}). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with {bar {nu}}{sub {mu}} oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations.

Louis, W.C.

1996-06-01T23:59:59.000Z

34

Solar Neutrinos  

E-Print Network [OSTI]

Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

R. G. H. Robertson

2006-02-05T23:59:59.000Z

35

MINOS Sterile Neutrino Search  

SciTech Connect (OSTI)

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

Koskinen, David Jason; /University Coll. London

2009-09-01T23:59:59.000Z

36

Probing lepton number violation on three frontiers  

SciTech Connect (OSTI)

Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

2013-12-30T23:59:59.000Z

37

Neutrinos: Nature's Ghosts?  

ScienceCinema (OSTI)

Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

Lincoln, Don

2014-08-12T23:59:59.000Z

38

Advanced Neutrino Sources (Neutrino Factories and Beta Beams)  

E-Print Network [OSTI]

Advanced Neutrino Sources (Neutrino Factories and Beta Beams) · Design · R&D Status · Remaining R Meeting February, 2008 page 1 #12;· The stored beam properties & decay kinematics are well known uncertainties on neutrino flux & spectra are small PRECISION · Initial beams are flavor "pure" (BB) or "tagged

39

Electromagnetic neutrino: a short review  

E-Print Network [OSTI]

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09T23:59:59.000Z

40

Investigation of Neutrino Properties in Experiments at Nuclear Reactors: Present Status and Prospects  

E-Print Network [OSTI]

This paper was submitted in Russian edition of Journal Physics of Atomic Nuclei in 2001. The present status of experiments that are being performed at nuclear reactors in order to seek the neutrino masses, mixing, and magnetic moments, whose discovery would be a signal of the existence of physics beyond the Standard Model, is considered, along with their future prospects.

L. A. Mikaelyan

2002-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Supernova Neutrinos Detection On Earth  

E-Print Network [OSTI]

In this paper, we first discuss the detection of supernova neutrino on Earth. Then we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$ by detecting the ratio of the event numbers of different flavor supernova neutrinos. Such an sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-05-12T23:59:59.000Z

42

Neutrinos and Collider Physics  

E-Print Network [OSTI]

We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

Deppisch, Frank F; Pilaftsis, Apostolos

2015-01-01T23:59:59.000Z

43

The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment  

SciTech Connect (OSTI)

The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma I-00185 (Italy) and INFN - Sezione di Roma, Roma I-00185 (Italy)

2012-11-20T23:59:59.000Z

44

Property:NumberOfUsers | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, searchNumberOfUsers Jump

45

Property:NumberOfUtilityCompanies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, searchNumberOfUsers

46

Atmospheric Neutrinos  

E-Print Network [OSTI]

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

47

Property:NumberOfUnits | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to: navigation, search PropertyNumOfPlants

48

Property:NumberOfResourceAssessmentsEnergy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, search This is

49

Property:NumberOfResourceAssessmentsLand | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, search This

50

Property:NumberOfSolarResources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, search

51

Property:FERC License Docket Number | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMro Jump Property NameDocket

52

Property:ASHRAE 169 Climate Zone Number | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy Information onASHRAE 169 Climate Zone Number

53

Property:NEPA FundingNumber | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice JumpApplicationFundingNumber Jump

54

Property:NEPA SerialNumber | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOfficeApplicant MitigationSerialNumber

55

Property:NumberOfCompanies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells Jump to: navigation,SoldNumberOfCompanies Jump

56

Property:NumberOfDOELabPrograms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells Jump to: navigation,SoldNumberOfCompanies

57

Property:NumberOfEZFeedPolicies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells Jump to:NumberOfEZFeedPolicies Jump to:

58

Property:NumberOfEmployees | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells Jump to:NumberOfEZFeedPolicies Jump

59

Property:NumberOfIncentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells Jump to:NumberOfEZFeedPolicies

60

Property:NumberOfLowCarbonPrograms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWells JumpInformationNumberOfLowCarbonPrograms

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:NumberOfMeasuringStations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWellsInformationNumberOfMeasuringStations Jump

62

Property:NumberOfNonCorporateOrganizations | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 JumpNbrInjWellsInformationNumberOfMeasuringStations

63

Property:NumberOfResourceAssessments | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to: navigation, search This is a

64

WMAPping out Neutrino Masses  

E-Print Network [OSTI]

Recent data from from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND). We also note that the Heidelberg--Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

Aaron Pierce; Hitoshi Murayama

2003-10-28T23:59:59.000Z

65

Neutrino Mixing  

E-Print Network [OSTI]

In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

Carlo Giunti; Marco Laveder

2004-10-01T23:59:59.000Z

66

Neutrino Physics: A Selective Overview  

E-Print Network [OSTI]

Neutrinos in the Standard Model of particle physics are massless, neutral fermions that seemingly do little more than conserve 4-momentum, angular momentum, lepton number, and lepton flavour in weak interactions. In the last decade conclusive evidence has demonstrated that the Standard Model's description of neutrinos does not match reality. We now know that neutrinos undergo flavour oscillations, violating lepton flavour conservation and implying that neutrinos have non-zero mass. A rich oscillation phenomenology then becomes possible, including matter-enhanced oscillation and possibly CP violation in the neutrino sector. Extending the Standard Model to include neutrino masses requires the addition of new fields and mass terms, and possibly new methods of mass generation. In this review article I will discuss the evidence that has established the existence of neutrino oscillation, and then highlight unresolved issues in neutrino physics, such as the nature of three-generational mixing (including CP-violating effects), the origins of neutrino mass, the possible existence of light sterile neutrinos, and the difficult question of measuring the absolute mass scale of neutrinos.

Scott M. Oser

2006-04-11T23:59:59.000Z

67

Standard and non-standard primordial neutrinos  

E-Print Network [OSTI]

The standard cosmological model predicts the existence of a cosmic neutrino background with a present density of about 110 cm^{-3} per flavour, which affects big-bang nucleosynthesis, cosmic microwave background anisotropies, and the evolution of large scale structures. We report on a precision calculation of the cosmic neutrino background properties including the modification introduced by neutrino oscillations. The role of a possible neutrino-antineutrino asymmetry and the impact of non-standard neutrino-electron interactions on the relic neutrinos are also briefly discussed.

P. D. Serpico

2006-08-14T23:59:59.000Z

68

Neutrino factories: realization and physics potential  

SciTech Connect (OSTI)

Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

2006-12-01T23:59:59.000Z

69

The influence of Reynolds numbers on resistance properties of jet pumps  

SciTech Connect (OSTI)

Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

2014-01-29T23:59:59.000Z

70

Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND  

SciTech Connect (OSTI)

Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performance period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on the first 120 days of data is the second best but, when translated into a Majorana mass scale, it

Cabrera, Blas [Professor, Stanford University] [Professor, Stanford University; Gratta, Giorgio [Professor, Stanford University] [Professor, Stanford University

2013-08-30T23:59:59.000Z

71

Experimental Neutrino Physics  

ScienceCinema (OSTI)

In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties. I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions. I will particularly emphasizethe relationship between various experimental techniques.

Chris Walter

2010-01-08T23:59:59.000Z

72

Searching for sterile neutrinos in ice  

E-Print Network [OSTI]

Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass $\\sim 1$ eV and mixing with the active neutrinos $|U_{\\mu 0}|^2 \\sim (0.02 - 0.04)$. It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the $\

Soebur Razzaque; A. Yu. Smirnov

2011-07-04T23:59:59.000Z

73

Neutrinos from Hell: the Dawn of Neutrino Geophysics  

ScienceCinema (OSTI)

Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only.I will discuss the results of these new measurements and put them in the context of the Earth Sciences."

None

2011-10-06T23:59:59.000Z

74

Discovering Long Wavelength Neutrino Oscillations in the Distorted Neutrino Spectrum of Galactic Supernova Remnants  

E-Print Network [OSTI]

We investigate the muon neutrino event rate in km$^3$ neutrino telescopes due to a number of galactic supernova remnants expected on the basis of these objects' known $\\gamma$-ray signals. We evaluate the potential of these neutrino signals to exhibit evidence of the sub-dominant neutrino oscillations expected in various neutrino mixing schemes including pseudo-Dirac scenarios and the Exact Parity Model. With ten years' data, neutrino signals from Sgr A East should either discover or exclude neutrino oscillations governed by a $\\delta m^2$ parameter in the range $10^{-12}$ to $10^{-15}$ eV$^2$. Such a capability is not available to terrestrial or solar system neutrino experiments.

Roland M. Crocker; Fulvio Melia; Raymond R. Volkas

2001-06-06T23:59:59.000Z

75

Neutrino Physics with Thermal Detectors  

SciTech Connect (OSTI)

The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

2009-11-09T23:59:59.000Z

76

Neutrino Majorana Mass from Black Hole  

E-Print Network [OSTI]

We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

Yosuke Uehara

2002-05-25T23:59:59.000Z

77

Neutrino Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operators in the Lagrangian (Majorana mass terms), or both. The ongoing neutrinoless double-beta decay searches may be able to shine light on the matter. But the neutrino sector...

78

Neutrino masses, leptogenesis, and sterile neutrino dark matter  

E-Print Network [OSTI]

We analyze a scenario in which the lightest heavy neutrino $N_1$ is a dark matter candidate and the second- heaviest neutrino $N_2$ decays producing a lepton number. If $N_1$ were in thermal equilibrium, its energy density today would be much larger than that of the observed dark matter, so we consider energy injection by the decay of $N_2$. In this paper, we show the parameters of this scenario that give the correct abundances of dark matter and baryonic matter and also induce the observed neutrino masses. This model can explain a possible sterile neutrino dark matter signal of $M_1$=7 keV in the x-ray observation of x-ray multi-mirror mission.

Takanao Tsuyuki

2014-07-20T23:59:59.000Z

79

Neutrinoless double beta decay and direct searches for neutrino mass  

E-Print Network [OSTI]

Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.

Craig Aalseth; Henning Back; Loretta Dauwe; David Dean; Guido Drexlin; Yuri Efremenko; Hiro Ejiri; Steven Elliott; Jon Engel; Brian Fujikawa; Reyco Henning; G. W. Hoffmann; Karol Lang; Kevin Lesko; Tadafumi Kishimoto; Harry Miley; Rick Norman; Silvia Pascoli; Serguey Petcov; Andreas Piepke; Werner Rodejohann; David Saltzberg; Sean Sutton; Petr Vogel; Ray Warner; John Wilkerson; Lincoln Wolfenstein

2004-12-21T23:59:59.000Z

80

Solar Neutrinos and the Decaying Neutrino Hypothesis  

E-Print Network [OSTI]

We explore, mostly using data from solar neutrino experiments, the hypothesis that the neutrino mass eigenstates are unstable. We find that, by combining $^8$B solar neutrino data with those on $^7$Be and lower-energy solar neutrinos, one obtains a mostly model-independent bound on both the $\

Jeffrey M. Berryman; Andre de Gouvea; Daniel Hernandez

2014-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Colliding neutrino beams  

E-Print Network [OSTI]

From several neutrino oscillation experiments, we understand now that neutrinos have mass. However, we really don't know what mechanism is responsible for producing this neutrino mass. Current or planned neutrino experiments utilize neutrino beams and long-baseline detectors to explore flavor mixing but do not address the question of the origin of neutrino mass. In order to answer that question, neutrino interactions need to be explored at much higher energies. This paper outlines a program to explore neutrinos and their interactions with various particles through a series of experiments involving colliding neutrino beams.

Reinhard Schwienhorst

2007-11-08T23:59:59.000Z

82

Solar neutrino with Borexino: results and perspectives  

E-Print Network [OSTI]

Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.

O. Smirnov; G. Bellini; J. Benziger; D. Bick; G. Bonfini; D. Bravo; B. Caccianiga; F. Calaprice; A. Caminata; P. Cavalcante; A. Chavarria; A. Chepurnov; D. D'Angelo; S. Davini; A. Derbin; A. Empl; A. Etenko; K. Fomenko; D. Franco; G. Fiorentini; C. Galbiati; S. Gazzana; C. Ghiano; M. Giammarchi; M. Goeger-Neff; A. Goretti; C. Hagner; E. Hungerford; Aldo Ianni; Andrea Ianni; V. Kobychev; D. Korablev; G. Korga; D. Kryn; M. Laubenstein; B. Lehnert; T. Lewke; E. Litvinovich; F. Lombardi; P. Lombardi; L. Ludhova; G. Lukyanchenko; I. Machulin; S. Manecki; W. Maneschg; F. Mantovani; S. Marcocci; Q. Meindl; E. Meroni; M. Meyer; L. Miramonti; M. Misiaszek; P. Mosteiro; V. Muratova; L. Oberauer; M. Obolensky; F. Ortica; K. Otis; M. Pallavicini; L. Papp; L. Perasso; A. Pocar; G. Ranucci; A. Razeto; A. Re; B. Ricci; A. Romani; N. Rossi; R. Saldanha; C. Salvo; S. Schoenert; H. Simgen; M. Skorokhvatov; A. Sotnikov; S. Sukhotin; Y. Suvorov; R. Tartaglia; G. Testera; D. Vignaud; R. B. Vogelaar; F. von Feilitzsch; H. Wang; J. Winter; M. Wojcik; A. Wright; M. Wurm; O. Zaimidoroga; S. Zavatarelli; K. Zuber; G. Zuzel

2014-10-03T23:59:59.000Z

83

Neutrino oscillation studies and the neutrino cross section  

E-Print Network [OSTI]

The present uncertainties in the knowledge of the neutrino cross sections for E_nu \\sim 1 GeV, that is in the energy range most important for atmospheric and long baseline accelerator neutrinos, are large. These uncertainties do not play a significant role in the interpretation of existing data, however they could become a limiting factor in future studies that aim at a complete and accurate determination of the neutrino oscillation parameters. New data and theoretical understanding on nuclear effects and on the electromagnetic structure functions at low Q^2 and in the resonance production region are available, and can be valuable in reducing the present systematic uncertainties. The collaboration of physicists working in different subfields will be important to obtain the most from this available information. It is now also possible, with the facilities developed for long baseline beams, to produce high intensity and well controlled neutrino beams to measure the neutrino interaction properties with much better precision that what was done in the past. Several projects and ideas to fully exploit these possibilities are under active investigation. These topics have been the object of the first neutrino interaction (NUINT01) workshop.

Paolo Lipari

2002-07-14T23:59:59.000Z

84

Testing Radiative Neutrino Mass Models at the LHC  

E-Print Network [OSTI]

The Large Hadron Collider provides us new opportunities to search for the origin of neutrino mass. Beyond the minimal see-saw models a plethora of models exist which realise neutrino mass at tree- or loop-level, and it is important to be sure that these possibilities are satisfactorily covered by searches. The purpose of this paper is to advance a systematic approach to this problem. Majorana neutrino mass models can be organised by SM-gauge-invariant operators which violate lepton number by two units. In this paper we write down the minimal ultraviolet completions for all of the mass-dimension 7 operators. We predict vector-like quarks, vector-like leptons, scalar leptoquarks, a charged scalar, and a scalar doublet, whose properties are constrained by neutrino oscillation data. A detailed collider study is presented for $O_3=LLQ\\bar dH$ and $O_8 = L\\bar d\\bar e^\\dagger \\bar u^\\dagger H$ completions with a vector-like quark $\\chi\\sim(3, 2, -\\frac{5}{6})$ and a leptoquark $\\phi\\sim(\\bar 3,1,\\frac{1}{3})$. The existing LHC limits extracted from searches for vector-like fermions and sbottoms/stops are $m_\\chi \\gtrsim 620$ GeV and $m_\\phi\\gtrsim 600$ GeV.

Yi Cai; Jackson D. Clarke; Michael A. Schmidt; Raymond R. Volkas

2014-10-22T23:59:59.000Z

85

Testing Radiative Neutrino Mass Models at the LHC  

E-Print Network [OSTI]

The Large Hadron Collider provides us new opportunities to search for the origin of neutrino mass. Beyond the minimal see-saw models a plethora of models exist which realise neutrino mass at tree- or loop-level, and it is important to be sure that these possibilities are satisfactorily covered by searches. The purpose of this paper is to advance a systematic approach to this problem. Majorana neutrino mass models can be organised by SM-gauge-invariant operators which violate lepton number by two units. In this paper we write down the minimal ultraviolet completions for all of the mass-dimension 7 operators. We predict vector-like quarks, vector-like leptons, scalar leptoquarks, a charged scalar, and a scalar doublet, whose properties are constrained by neutrino oscillation data. A detailed collider study is presented for $O_3=LLQ\\bar dH$ and $O_8 = L\\bar d\\bar e^\\dagger \\bar u^\\dagger H$ completions with a vector-like quark $\\chi\\sim(3, 2, -\\frac{5}{6})$ and a leptoquark $\\phi\\sim(\\bar 3,1,\\frac{1}{3})$. The existing LHC limits extracted from searches for vector-like fermions and sbottoms/stops are $m_\\chi \\gtrsim 620$ GeV and $m_\\phi\\gtrsim 600$ GeV.

Yi Cai; Jackson D. Clarke; Michael A. Schmidt; Raymond R. Volkas

2015-02-07T23:59:59.000Z

86

Anomalous diffusion modifies solar neutrino fluxes  

E-Print Network [OSTI]

Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be u...

Kaniadakis, G; Lissia, M; Quarati, P

1998-01-01T23:59:59.000Z

87

Neutrino Factory Downstream Systems  

E-Print Network [OSTI]

Neutrino Factory Downstream Systems Michael S. Zisman*Factory accelerator systems downstream from the target andthe Neutrino Factory systems downstream of the target and

Zisman, Michael S.

2010-01-01T23:59:59.000Z

88

Neutrinos: Theory and Phenomenology  

SciTech Connect (OSTI)

The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

Parke, Stephen

2013-10-22T23:59:59.000Z

89

The Borexino Neutrino Borexino is a neutrino detector located deep underground in central Italy, under a thickness  

E-Print Network [OSTI]

charged particle also occurs via Cerenkov radiation. However, the number of Cerenkov photons detected probability of being mistaken for a neutrino interaction. Many naturally occurring radioactive isotopes

90

Anomalous diffusion modifies solar neutrino fluxes  

E-Print Network [OSTI]

Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.

G. Kaniadakis; A. Lavagno; M. Lissia; P. Quarati

1997-10-16T23:59:59.000Z

91

Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino  

E-Print Network [OSTI]

A super-light sterile neutrino was proposed to explain the absence of the expected upturn of the survival probability of low energy solar boron neutrinos. This is because this super-light sterile neutrino can oscillate efficiently with electron neutrino through a MSW resonance happened in Sun. One may naturally expect that a similar resonance should happen for neutrinos propagating in Earth matter. We study the flavor conversion of this super-light sterile neutrino with active neutrinos in Earth matter. We find that the scenario of the super-light sterile neutrino can easily pass through possible constraints from experiments which can test the Earth matter effect in oscillation of neutrinos. Interestinlgy, we find that this is because the naively expected resonant conversion disappears or is significantly suppressed due to the presence of a potential $V_n$ which arises from neutral current interaction of neutrino with neutrons in matter. In contrast, the neutron number density in the Sun is negligible and the effect of $V_n$ is effectively switched off. This enables the MSW resonance in Sun needed in oscillation of the super-light sterile neutrino with solar electron neutrinos. It's interesting to note that it is the different situation in the Sun and in the Earth that makes $V_n$ effectively turned off and turned on respectively. This observation makes the scenario of the super-light sterile neutrino quite interesting.

Wei Liao; Yuchen Luo; Xiao-Hong Wu

2014-03-11T23:59:59.000Z

92

Neutrino physics at accelerators  

E-Print Network [OSTI]

Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

Enrique Fernandez

2006-07-16T23:59:59.000Z

93

Muons and Neutrinos 2007  

E-Print Network [OSTI]

This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

Thomas K. Gaisser

2008-01-29T23:59:59.000Z

94

Low-energy neutrino factory design  

SciTech Connect (OSTI)

The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; /Jefferson Lab; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

2009-07-01T23:59:59.000Z

95

Constrains on Dark Matter sterile neutrino resonant production in the light of Planck  

E-Print Network [OSTI]

Few independent detections of a weak X-ray emission line at an energy of ~3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ~7.1 keV, then the cosmological observables should be consistent with its properties. We compute the radiation and matter perturbations including the full resonance sweep solution for active - sterile neutrino flavor conversion and place constraints on the cosmological parameters and sterile neutrino properties by using most of the present cosmological measurements. We find the sterile neutrino upper limits for mass and mixing angle of 7.86 keV (equivalent to 2.54 keV thermal mass) and 9.41 x 10^{-9} (at 95% CL) respectively, for a lepton number per flavor of 0.0042, that is significantly higher than that inferred in Abazajian (2014) from the linear large scale structure constraints. This reflects the sensitivity of the high precision CMB anisotropies to the helium ab...

Popa, L A; Tonoiu, D

2015-01-01T23:59:59.000Z

96

FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.  

SciTech Connect (OSTI)

The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

2001-06-30T23:59:59.000Z

97

Neutrino Physics at Fermilab  

ScienceCinema (OSTI)

Neutrino oscillations provide the first evidencefor physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments. NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

Niki Saoulidou

2010-01-08T23:59:59.000Z

98

Neutrino Induced Upward Going Muons from a Gamma Ray Burst in a Neutrino Telescope of Km^2 Area  

E-Print Network [OSTI]

The number of neutrino induced upward going muons from a single Gamma Ray Burst (GRB) expected to be detected by the proposed kilometer scale IceCube detector at the South Pole location has been calculated. The effects of the Lorentz factor, total energy of the GRB emitted in neutrinos and its distance from the observer (red shift) on the number of neutrino events from the GRB have been examined. The present investigation reveals that there is possibility of exploring the early Universe with the proposed kilometer scale IceCube neutrino telescope.

Nayantara Gupta

2002-04-17T23:59:59.000Z

99

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network [OSTI]

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

100

Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions  

E-Print Network [OSTI]

We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.

Christel J. Smith; George M. Fuller; Michael S. Smith

2008-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EuroGeo4 Paper number 203 ANALYSIS OF MECHANICAL AND PHYSICAL PROPERTIES ON GEOTEXTILES AFTER  

E-Print Network [OSTI]

of time, some level of UV degradation occurs. In this sense, variations in physical and mechanical properties may occur due to degradation by outdoor exposure. This paper presents results of mechanical: geotextile, weathering, laboratory tests. INTRODUCTION Geotextiles (GT) may be exposed to UV radiation

Zornberg, Jorge G.

102

Solar neutrinos - Eclipse effect  

E-Print Network [OSTI]

It is pointed out that the enhancement of the solar neutrino rate in a real time detector like Super-Kamioka, SNO or Borexino due to neutrino oscillations in the moon during a partial or total solar eclipse may be observable. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement if seen, can further help to determine the neutrino parameters.

Mohan Narayan; G. Rajasekaran; Rahul Sinha

1997-03-12T23:59:59.000Z

103

Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation  

E-Print Network [OSTI]

According to conventional wisdom, in the standard model (SM) of particle physics and cosmology the effective number of neutrinos is Neff=3 (more precisely, 3.046). In extensions of the standard model allowing for the presence of DeltaNnu equivalent neutrinos (or dark radiation), Neff is generally >3. The canonical results are reconsidered here, revealing that a measurement of Neff>3 can be consistent with DeltaNnu=0 (dark radiation without dark radiation). Conversely, a measurement consistent with Neff=3 is not inconsistent with the presence of dark radiation (DeltaNnu>0). In particular, if there is a light WIMP that annihilates to photons after the SM neutrinos have decoupled, the photons are heated beyond their usual heating from e+- annihilation, reducing the late time ratio of neutrino and photon temperatures (and number densities), leading to Neff3 even in the absence of equivalent neutrinos or dark radiation. A measurement of Neff>3 is thus no guarantee of the presence of equivalent neutrinos or dark radiation. In the presence of light WIMPs and/or equivalent neutrinos there are degeneracies among the light WIMP mass and its nature (fermion or boson, as well as its couplings to neutrinos or photons), the number and nature (fermion or boson) of the equivalent neutrinos, and their decoupling temperature (the strength of their interactions with the SM particles). There's more to a measurement of Neff than meets the eye.

Gary Steigman

2013-03-18T23:59:59.000Z

104

Neutrino Astronomy Scott Wilbur  

E-Print Network [OSTI]

V protons, which should be created with neutrinos, have been seen Can be used to observe possible dark Particle Physics Extremely long baseline for neutrino oscillation studies Dark Matter Searches Many dark Detector Picture from AMANDA II Web Site: http://www.amanda.uci.edu #12;Advantages of Neutrino Astronomy

Golwala, Sunil

105

Property:Geothermal/NumberOfArraProjectTypeTopic2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to: navigation, search

106

Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay  

E-Print Network [OSTI]

We investigate the possibility of producing neutrinoless double beta decay without having an electron neutrino with a mass in the vicinity of 1 eV. We do so by having a much lighter electron neutrino mix with a much heavier (m > 1 GeV) sterile neutrino. We study the constraints on the masses and mixings of such heavy sterile neutrinos from existing laboratory, astrophysical and cosmological information, and discuss the properties it would require in order to produce a detectable signal in current searches for neutrinoless double beta decay.

P. Bamert; C. P. Burgess; R. N. Mohapatra

1994-10-12T23:59:59.000Z

107

Introduction to direct neutrino mass measurements and KATRIN  

E-Print Network [OSTI]

The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of beta-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow beta spectroscopy close to the tritium endpoint at 18.6 keV with unprecedented precision.

Thomas Thmmler; for the KATRIN Collaboration

2010-12-10T23:59:59.000Z

108

Constraining Sterile Neutrinos Using Reactor Neutrino Experiments  

E-Print Network [OSTI]

Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle $\\sin^2 2 \\theta_{14} \\lesssim 0.06$ at 3$\\sigma$ confidence level for the mass-squared difference $\\Delta m^2_{41}$ in the range $(10^{-3},10^{-1}) \\, {\\rm eV^2}$. The latter bound can be improved by six years of running of the JUNO experiment, $\\sin^22\\theta_{14} \\lesssim 0.016$, although in the smaller mass range $ \\Delta m^2_{41} \\in (10^{-4} ,10^{-3}) \\, {\\rm eV}^2$. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters $\\theta_{13}$ and $\\Delta m^2_{31}$ (at Daya Bay and JUNO), $\\theta_{12}$ and $\\Delta m^2_{21}$ (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where $\\Delta m^2_{41}\\sim \\Delta m^2_{31}$, sterile states do not affect these measurements substantially.

Ivan Girardi; Davide Meloni; Tommy Ohlsson; He Zhang; Shun Zhou

2014-08-21T23:59:59.000Z

109

Flavor Mixing and CP Violation of Massive Neutrinos  

E-Print Network [OSTI]

We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.

Zhi-zhong Xing

2004-11-26T23:59:59.000Z

110

Geometric gravitational origin of neutrino oscillations and mass-energy  

E-Print Network [OSTI]

A mass-energy scale for neutrinos was calculated from the null cone curvature using geometric concepts. The scale is variable depending on the gravitational potential and the trajectory inclination with respect to the field direction. The proposed neutrino covariant equation provides the adequate curvature. The mass-energy at the Earth surface varies from a horizontal value 0.402 eV to a vertical value 0.569 eV. Earth spinor waves with winding numbers n show squared energy differences within ranges from 2.05 x 10*(-3) to 4.10 x 10*(-3) eV*2 for n=0,1 neutrinos and from 3.89 x 10*(-5) to 7.79 x 10*(-5) eV*2 for n=1,2 neutrinos. These waves interfere and the different phase velocities produce neutrino-like oscillations. The experimental results for atmospheric and solar neutrino oscillation mass parameters respectivelly fall within these theoretical ranges. Neutrinos in outer space, where interactions may be neglected, appear as particles travelling with zero mass on null geodesics. These gravitational curvature energies are consistent with neutrino oscillations, zero neutrino rest masses and Einstein's General Relativity and energy mass equivalence principle. When analyzing or averaging experimental neutrino mass-energy results of different experiments on the Earth it is of interest to consider the possible influence of the trajectory inclination angle.

Gustavo R. Gonzalez-Martin

2014-05-21T23:59:59.000Z

111

Property:NEPA LeadAgencyDocNumber | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to:ManagingFieldOffice JumpApplicationFundingNumber

112

Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)  

E-Print Network [OSTI]

Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.

I. Anghel; J. F. Beacom; M. Bergevin; G. Davies; F. Di Lodovico; A. Elagin; H. Frisch; R. Hill; G. Jocher; T. Katori; J. Learned; R. Northrop; C. Pilcher; E. Ramberg; M. C. Sanchez; M. Smy; H. Sobel; R. Svoboda; S. Usman; M. Vagins; G. Varner; R. Wagner; M. Wetstein; L. Winslow; M. Yeh

2014-02-26T23:59:59.000Z

113

Neutrino oscillation constraints on neutrinoless double beta decay  

E-Print Network [OSTI]

We have studied the constraints imposed by the results of neutrino oscillation experiments on the effective Majorana mass || that characterizes the contribution of Majorana neutrino masses to the matrix element of neutrinoless double-beta decay. We have shown that in a general scheme with three Majorana neutrinos and a hierarchy of neutrino masses (which can be explained by the see-saw mechanism), the results of neutrino oscillation experiments imply rather strong constraints on the parameter ||. From the results of the first reactor long-baseline experiment CHOOZ and the Bugey experiment it follows that || | > 10^{-1} eV would be a signal for a non-hierarchical neutrino mass spectrum and/or non-standard mechanisms of lepton number violation.

S. M. Bilenky; C. Giunti; C. W. Kim; M. Monteno

1997-11-20T23:59:59.000Z

114

Democratic Neutrino Theory  

E-Print Network [OSTI]

New theory of neutrino masses and mixing is introduced. This theory is based on a simple S_3 symmetric democratic neutrino mass matrix, and predicts the neutrino mass spectrum of normal ordering. Taking into account the matter effect and proper averaging of the oscillations, this theory agrees with the variety of atmospheric, solar and accelerator neutrino data. Moreover, the absolute scale of the neutrino masses m of 0.03 eV is determined in this theory, using the atmospheric neutrino oscillation data. In case of tiny perturbations in the democratic mass matrix only one this scale parameter m allows to explain the mentioned above neutrino results, and the theory has huge predictive power.

Dmitry Zhuridov

2014-05-21T23:59:59.000Z

115

Analysis of the SN1987A two-stage explosion hypothesis with account for the MSW neutrino flavour conversion  

E-Print Network [OSTI]

Detection of 5 events by the Liquid Scintillation Detector (LSD) on February, 23, 1987 was interpreted in the literature as the detection of neutrinos from the first stage of the two-stage supernova collapse. We pose rigid constraints on the properties of the first stage of the collapse, taking into account neutrino flavour conversion due to the MSW-effect and general properties of supernova neutrino emission. The constraints depend on the unknown neutrino mass hierarchy and mixing angle \\theta_{13}.

Lychkovskiy, Oleg

2007-01-01T23:59:59.000Z

116

Analysis of the SN1987A two-stage explosion hypothesis with account for the MSW neutrino flavour conversion  

E-Print Network [OSTI]

Detection of 5 events by the Liquid Scintillation Detector (LSD) on February, 23, 1987 was interpreted in the literature as the detection of neutrinos from the first stage of the two-stage supernova collapse. We pose rigid constraints on the properties of the first stage of the collapse, taking into account neutrino flavour conversion due to the MSW-effect and general properties of supernova neutrino emission. The constraints depend on the unknown neutrino mass hierarchy and mixing angle \\theta_{13}.

Oleg Lychkovskiy

2007-12-20T23:59:59.000Z

117

Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations  

E-Print Network [OSTI]

Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

Oliviero Cremonesi

2010-02-07T23:59:59.000Z

118

Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs  

E-Print Network [OSTI]

We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and cosmic microwave background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

Grohs, E; Kishimoto, C T; Paris, M W

2015-01-01T23:59:59.000Z

119

Collective neutrino oscillations in supernovae  

SciTech Connect (OSTI)

In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

2014-06-24T23:59:59.000Z

120

Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino  

E-Print Network [OSTI]

There is a general consensus that detection of a double-beta decay without any neutrino involved would mark physics beyond the Standard Model. This is because in such decay modes lepton number conservation would be violated and the neutrino would reveal itself as being its own antiparticle, thereby of Majorana type. So far, the experimental focus has mostly been on the double beta minus decay variant, where one attempts to measure the spectrum of the two emitted electrons. A discrete line at the endpoint energy marks the unique signature for a Majorana neutrino. Little attention has been given to alternative decay modes in double-beta decay. In this note we show that there is at least one case in the periodic table, where the parent in the neutrinoless double-electron capture process is nearly degenerate with an excited state in the daughter, leading to a possible enhancement of the decay rate by several orders of magnitude. It is the nucleus 74-Se, which has this unique property. Furthermore, there is an easy to detect 2 gamma-ray decay cascade in 74-Ge, which follows the zero-neutrino double electron capture, and which by its mere detection provides unique signature of the Majorana neutrino.

D. Frekers

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012  

SciTech Connect (OSTI)

The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

Meskhidze, Nicholas [NCSU] [NCSU

2013-10-21T23:59:59.000Z

122

Atmospheric neutrino oscillations and tau neutrinos in ice  

E-Print Network [OSTI]

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

Gerardo Giordano; Olga Mena; Irina Mocioiu

2010-04-20T23:59:59.000Z

123

Vertical Structure of Neutrino Dominated Accretion Disks and Neutrino Transport in the disks  

E-Print Network [OSTI]

We investigate the vertical structure of neutrino dominated accretion disks by self-consistently considering the detailed microphysics, such as the neutrino transport, vertical hydrostatic equilibrium, the conservation of lepton number, as well as the balance between neutrino cooling, advection cooling and viscosity heating. After obtaining the emitting spectra of neutrinos and antineutrinos by solving the one dimensional Boltzmann equation of neutrino and antineutrino transport in the disk, we calculate the neutrino/antineutrino luminosity and their annihilation luminosity. We find that the total neutrino and antineutrino luminosity is about $10^{54}$ ergs/s and their annihilation luminosity is about $5\\times10^{51}$ ergs/s with an extreme accretion rate $10 M_{\\rm {sun}}$/s and an alpha viscosity $\\alpha=0.1$. In addition, we find that the annihilation luminosity is sensitive to the accretion rate and will not exceed $10^{50}$ ergs/s which is not sufficient to power the most fireball of GRBs, if the accretion rate is lower than $1 M_{\\rm {sun}}$/s. Therefore, the effects of the spin of black hole or/and the magnetic field in the accretion flow might be introduced to power the central engine of GRBs.

Zhen Pan; Ye-Fei Yuan

2012-09-06T23:59:59.000Z

124

Solar neutrino detection  

E-Print Network [OSTI]

More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

Lino Miramonti

2009-01-22T23:59:59.000Z

125

Massive neutrinos and cosmology  

E-Print Network [OSTI]

The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.

Julien Lesgourgues; Sergio Pastor

2006-05-29T23:59:59.000Z

126

Physics of Massive Neutrinos  

E-Print Network [OSTI]

I summarize the present status of global analyses of neutrino oscillations, including the most recent KamLAND and K2K data, as well as the latest solar and atmospheric neutrino fluxes. I give the allowed ranges of the three--flavour oscillation parameters from the current worlds' global neutrino data sample, their best fit values and discuss the small parameters DeltaM_solar/DeltaM_atm and sin^2 theta_13, which characterize the strength of CP violation in neutrino oscillations. I briefly discuss neutrinoless double beta decay and the LSND neutrino oscillation hint, as well as the robustness of the neutrino oscillation results in the presence of non-standard physics.

J. W. F. Valle

2004-10-07T23:59:59.000Z

127

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07T23:59:59.000Z

128

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Petr Vogel; Liangjian Wen; Chao Zhang

2015-03-03T23:59:59.000Z

129

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Vogel, Petr; Zhang, Chao

2015-01-01T23:59:59.000Z

130

Majorana neutrino masses in the three-flavor Pauli model  

SciTech Connect (OSTI)

A special Majorana model for three neutrino flavors is developed on the basis of the Pauli transformation group. In this model, the neutrinos possess a partially conserved generalized lepton (Pauli) charge that makes it possible to discriminate between neutrinos of different type. It is shown that, within the model in question, a transition from the basic 'mass' representation, where the average value of this charge is zero, to the representation associated with physical neutrinos characterized by specific Pauli 'flavor' charges establishes a relation between the neutrino mixing angles {theta}{sub mix,12}, {theta}{sub mix,23}, and {theta}{sub mix,13} and an additional relation between the Majorana neutrino masses. The Lagrangian mass part, which includes a term invariant under Pauli transformations and a representation-dependent term, concurrently assumes a 'quasi-Dirac' form. With allowance for these relations, the existing set of experimental data on the features of neutrino oscillations makes it possible to obtain quantitative estimates for the absolute values of the neutrino masses and the 2{beta}-decay mass parameter m{sub {beta}{beta}} and a number of additional constraints on the neutrino mixing angles.

Gaponov, Yu. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-02-15T23:59:59.000Z

131

VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000 Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors  

E-Print Network [OSTI]

Oscillations at the Palo Verde Nuclear Reactors F. Boehm,3 J. Busenitz,1 B. Cook,3 G. Gratta,4 H. Henrikson,3 J the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium.30.Pt Nuclear reactors have been used as intense sources of ¯ne in experiments searching for neutrino

Gratta, Giorgio

132

Neutrino Oscillation Physics  

E-Print Network [OSTI]

To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

Boris Kayser

2013-12-25T23:59:59.000Z

133

Composite Dirac Neutrinos  

E-Print Network [OSTI]

We present a mechanism that naturally produces light Dirac neutrinos. The basic idea is that the right-handed neutrinos are composite. Any realistic composite model must involve `hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, one of them manifests itself at low energy as an exact $B-L$ symmetry. Dirac neutrinos are therefore produced. The neutrinos are naturally light due to compositeness. In general, sterile states are present in the model, some of them can naturally be warm dark matter candidates.

Yuval Grossman; Dean J Robinson

2011-01-25T23:59:59.000Z

134

Atmospheric Neutrino Fluxes  

E-Print Network [OSTI]

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

135

Measuring neutrino oscillation parameters using $\  

SciTech Connect (OSTI)

MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters ({Delta}m{sub atm}{sup 2} and sin{sup 2} 2{theta}{sub atm}). The oscillation signal consists of an energy-dependent deficit of {nu}{sub {mu}} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the {nu}{sub {mu}}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the {nu}{sub {mu}}-disappearance analysis, incorporating this new estimator were: {Delta}m{sup 2} = 2.32{sub -0.08}{sup +0.12} x 10{sup -3} eV{sup 2}, sin {sup 2} 2{theta} > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly {bar {nu}}{sub {mu}} beam, yielded somewhat different best-fit parameters {Delta}{bar m}{sup 2} = (3.36{sub -0.40}{sup +0.46}(stat.) {+-} 0.06(syst.)) x 10{sup -3}eV{sup 2}, sin{sup 2} 2{bar {theta}} = 0.86{sub -0.12}{sup _0.11}(stat.) {+-} 0.01(syst.). The tension between these results is intriguing, and additional antineutrino data is currently being taken in order to further investigate this apparent discrepancy.

Backhouse, Christopher James; /Oxford U.

2011-02-01T23:59:59.000Z

136

Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube  

E-Print Network [OSTI]

The energy spectrum of high-energy neutrinos reported by the IceCube collaboration shows a dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter with the cosmic neutrino background through a $\\sim$ MeV mediator. Since the coherence length of PeV neutrinos is much larger than the cosmic distance that they travel from the source to the IceCube detector, the quantum coherent effect in neutrino propagation plays an important role in determining flavor components of the PeV neutrino flux at the IceCube detector. Taking the density matrix approach, we develop a formalism to include the coherent effect in calculating the neutrino flux. If the new interaction is not flavor-blind such as the gauged $L_{\\mu}-L_{\\tau}$ model we consider, the resonant collision may not suppress the PeV neutrino flux completely. The new force mediator may also contribute to the number of effectively massless degrees of freedom in the early universe, and change the diffusion time of neutrinos from ...

Kamada, Ayuki

2015-01-01T23:59:59.000Z

137

Non-linear evolution of the cosmic neutrino background  

SciTech Connect (OSTI)

We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ?CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}?10{sup 15} h{sup ?1}M{sub s}un, over a redshift range z = 0?2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ? 10{sup 13.5}h{sup ?1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ? 200 h{sup ?1}kpc at z = 0, and are stable with respect to box-size and starting redshift of the simulation. Our findings are particularly important in view of upcoming large-scale structure surveys, like Euclid, that are expected to probe the non-linear regime at the percent level with lensing and clustering observations.

Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Pea-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Fsica Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

2013-03-01T23:59:59.000Z

138

Solar Neutrino Experiments Neutrinos are ghostlike particles that  

E-Print Network [OSTI]

experiments by sci- entists around the world, all working to con- firm the solar neutrino deficit. First came#12;Solar Neutrino Experiments Neutrinos are ghostlike particles that were postulated by Wolfgang to Davis's major triumph, which came in the early 1970s, when he successfully de- tected solar neutrinos

139

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

140

Neutrino Masses in Flipped SU(5)  

E-Print Network [OSTI]

We analyse the fermion masses and mixings in the flipped SU(5) model. The fermion mass matrices are evolved from the GUT scale down to $m_W$ by solving the renormalization group equations for the Yukawa couplings. The constraints imposed by the charged fermion data are then utilised to make predictions about the neutrino properties . It is found that the {\\it generalized } see-saw mechanism which occurs naturally in this model can provide {\\it i})a solution to the solar neutrino problem via the MSW mechanism and {\\it ii})a sufficiently large $\

Leontaris, George K

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fermi-Boltzmann statistics of neutrinos and relativistic effective degrees of freedom  

E-Print Network [OSTI]

We investigate the effect of the presence of non-pure fermionic neutrinos on the relativistic effective degrees of freedom in the early universe. The statistics of neutrinos is transformed continuously from Fermi-Dirac to Maxwell-Boltzmann statistics. We find that the relativistic degrees of freedom decreases with the deviation from pure Fermi-Dirac statistics of neutrinos if there are constant and large lepton asymmetries. Additionally, we confirm that the change of the statistics of neutrinos from Fermi-Dirac to Maxwell-Boltzmann is not sufficient to cover the excess of the effective number of neutrinos.

Jun Iizuka; Teruyuki Kitabayashi

2014-11-22T23:59:59.000Z

142

The Sudbury Neutrino Observatory  

SciTech Connect (OSTI)

A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

Hime, A.

1996-09-01T23:59:59.000Z

143

THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS  

SciTech Connect (OSTI)

Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

2000-05-11T23:59:59.000Z

144

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

145

Detection of low energy solar neutrinos with HPGermanium  

E-Print Network [OSTI]

The potential of the GENIUS proposal to measure the spectrum of low energy solar neutrinos in real time is studied. The detection reaction is elastic neutrino-electron scattering. The energy resolution for detecting the recoil electrons is about 0.3 %, the energy threshold is a few keV. The expected number of events for a target of one ton of natural germanium is 3.6 events/day for pp-neutrinos and 1.3 events/day for 7Be-neutrinos, calculated in the standard solar model (BP98). It should be feasible to achieve a background low enough to measure the low energy solar neutrino spectrum.

L. Baudis; H. V. Klapdor-Kleingrothaus

1999-06-30T23:59:59.000Z

146

Letter of Intent: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)  

E-Print Network [OSTI]

Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Wate...

Anghel, I; Bergevin, M; Blanco, C; Catano-Mur, E; Di Lodovico, F; Elagin, A; Frisch, H; Griskevich, J; Hill, R; Jocher, G; Katori, T; Krennrich, F; Learned, J; Malek, M; Northrop, R; Pilcher, C; Ramberg, E; Repond, J; Sacco, R; Sanchez, M C; Smy, M; Sobel, H; Svoboda, R; Usman, S M; Vagins, M; Varner, G; Wagner, R; Weinstein, A; Wetstein, M; Winslow, L; Xia, L; Yeh, M

2015-01-01T23:59:59.000Z

147

Neutrinoless Double Beta Decay and Neutrino Masses  

E-Print Network [OSTI]

Neutrinoless double beta decay is a promising test for lepton number violating physics beyond the standard model of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between neutrinoless double beta decay and Majorana neutrino masses provided by the so-called Schechter--Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate neutrinoless double beta decay from unknown nuclear background using only one isotope, i.e., within one experiment.

Michael Duerr

2012-06-04T23:59:59.000Z

148

Neutrinoless double beta decay and neutrino masses  

SciTech Connect (OSTI)

Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

2012-07-27T23:59:59.000Z

149

Detecting gravity modes in the solar $^8B$ neutrino flux  

E-Print Network [OSTI]

The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the $^{8}B$ neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order $2$, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than $5.8\\times 10^{-4}$. This study clearly shows that due to their high sensitivity to the temperature, the $^8B$ neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the $^{8}B$ neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

Ildio Lopes; Sylvaine Turck-Chize

2014-08-28T23:59:59.000Z

150

TANAMI counterparts to IceCube high-energy neutrino events  

E-Print Network [OSTI]

Since the discovery of a neutrino flux in excess of the atmospheric background by the IceCube Collaboration, searches for the astrophysical sources have been ongoing. Due to the steeply falling background towards higher energies, the PeV events detected in three years of IceCube data are the most likely ones to be of extraterrestrial origin. Even excluding the PeV events detected so far, the neutrino flux is well above the atmospheric background, so it is likely that a number of sub-PeV events originate from the same astrophysical sources that produce the PeV events. We study the high-energy properties of AGN that are positionally coincident with the neutrino events from three years of IceCube data and show the results for event number 4. IC 4 is a event with a low angular error (7.1$^\\circ$) and a large deposited energy of 165 TeV. We use multiwavelength data, including Fermi/LAT and X-ray data, to construct broadband spectra and present parametrizations of the broadband spectral energy distributions with lo...

Krau, Felicia; Baxter, Claire; Kadler, Matthias; Mannheim, Karl; Ojha, Roopesh; Grfe, Christina; Mller, Cornelia; Wilms, Joern; Carpenter, Bryce; Schulz, Robert; TANAMI, on behalf of the

2015-01-01T23:59:59.000Z

151

Absolute neutrino mass measurements  

SciTech Connect (OSTI)

The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

2011-10-06T23:59:59.000Z

152

Radiative emission of neutrino pair free of quantum electrodynamic backgrounds  

E-Print Network [OSTI]

A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.

M. Yoshimura; N. Sasao; M. Tanaka

2015-01-23T23:59:59.000Z

153

High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs  

E-Print Network [OSTI]

Observations suggest that $\\gamma$-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a relativistic fireball. We show that a large fraction, $\\ge 10%$, of the fireball energy is expected to be converted by photo-meson production to a burst of $\\sim10^{14} eV$ neutrinos. A km^2 neutrino detector would observe at least several tens of events per year correlated with GRBs, and test for neutrino properties (e.g. flavor oscillations, for which upward moving $\\tau$'s would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

Eli Waxman; John Bahcall

1997-01-30T23:59:59.000Z

154

Radiative emission of neutrino pair free of quantum electrodynamic backgrounds  

E-Print Network [OSTI]

A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.

Yoshimura, M; Tanaka, M

2015-01-01T23:59:59.000Z

155

Solar mass-varying neutrino oscillations  

E-Print Network [OSTI]

We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data...

Marfatia, Danny; Huber, P.; Barger, V.

2005-11-18T23:59:59.000Z

156

Neutrinos: Nature's Identity Thieves?  

ScienceCinema (OSTI)

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Dr. Don Lincoln

2013-07-22T23:59:59.000Z

157

Neutrinos: Nature's Identity Thieves?  

ScienceCinema (OSTI)

The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

Lincoln, Don

2014-08-07T23:59:59.000Z

158

Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences  

E-Print Network [OSTI]

Cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. Solutions to these small scale structure problems may indicate that simulations need to improve how they include feedback from baryonic matter, or may imply that dark matter properties differ from the standard cold, noninteracting scenario. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable, model with new interactions between neutrinos and dark matter. We show that addressing the small scale structure problems requires dark matter with a mass that is tens of MeV, and a present-day density determined by an initial particle-antiparticle asymmetry in the dark sector. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial $\\tau$ neutrino component, while the three nearly massless neutrinos are partly sterile. We provide the first discussion of how such dark matter-neutrino interactions affect neutrino (especially $\\tau$ neutrino) phenomenology. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. A feature in the neutrino energy spectrum and flavor content from a future nearby supernova would provide strong evidence of neutrino-dark matter interactions. Promising signatures include anomalous matter effects in neutrino oscillations due to nonstandard interactions and a component of the $\\tau$ neutrino with mass around 100 MeV.

Bridget Bertoni; Seyda Ipek; David McKeen; Ann E. Nelson

2014-12-09T23:59:59.000Z

159

Phenomenology of Neutrino Oscillations  

E-Print Network [OSTI]

The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

G. Rajasekaran

2000-04-17T23:59:59.000Z

160

Cosmological and supernova neutrinos  

SciTech Connect (OSTI)

The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GS, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

2014-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiochemical solar neutrino experiments  

E-Print Network [OSTI]

Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88 +/- 0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

V. N. Gavrin; B. T. Cleveland

2007-03-06T23:59:59.000Z

162

On the Oscillation of Neutrinos Produced by the Annihilation of Dark Matter inside the Sun  

E-Print Network [OSTI]

The annihilation of dark matter particles captured by the Sun can lead to a neutrino flux observable in neutrino detectors. Considering the fact that these dark matter particles are non-relativistic, if a pair of dark matter annihilates to a neutrino pair, the spectrum of neutrinos will be monochromatic. We show that in this case, even after averaging over production point inside the Sun, the oscillatory terms of the oscillation probability do not average to zero. This leads to interesting observable features in the annual variation of the number of muon track events. We show that smearing of the spectrum due to thermal distribution of dark matter inside the Sun is too small to wash out this variation. We point out the possibility of studying the initial flavor composition of neutrinos produced by the annihilation of dark matter particles via measuring the annual variation of the number of muon-track events in neutrino telescopes.

Arman Esmaili; Yasaman Farzan

2009-12-20T23:59:59.000Z

163

Realistic Earth matter effects and a method to acquire information about small ?_{13} in the detection of supernova neutrinos  

E-Print Network [OSTI]

In this paper, we first calculate the realistic Earth matter effects in the detection of type II supernova neutrinos at the Daya Bay reactor neutrino experiment which is currently under construction. It is found that the Earth matter effects depend on the neutrino incident angle $\\theta$, the neutrino mass hierarchy $\\Delta m_{31}^{2}$, the crossing probability at the high resonance region inside the supernova, $P_{H}$, the neutrino temperature, $T_{\\alpha}$, and the pinching parameter in the neutrino spectrum, $\\eta_{\\alpha}$. We also take into account the collective effects due to neutrino-neutrino interactions inside the supernova. With the expression for the dependence of $P_H$ on the neutrino mixing angle $\\theta_{13}$, we obtain the relations between $\\theta_{13}$ and the event numbers for various reaction channels of supernova neutrinos. Using these relations, we propose a possible method to acquire information about $\\theta_{13}$ smaller than $1.5^\\circ$. Such a sensitivity cannot yet be achieved by the Daya Bay reactor neutrino experiment which has a sensitivity of the order of $\\theta_{13}\\sim 3^\\circ$. Furthermore, we apply this method to other neutrino experiments, i.e. Super-K, SNO, KamLAND, LVD, MinBooNE, Borexino, and Double-Chooz. We also study the energy spectra of the differential event numbers, ${\\rm d}N/{\\rm d}E$.

Xin-Heng Guo; Ming-Yang Huang; Bing-Lin Young

2009-04-14T23:59:59.000Z

164

Solar neutrino physics: Sensitivity to light dark matter particles  

E-Print Network [OSTI]

Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radius of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely 8B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 x 10^{-37} cm^-2 produce a variation in the 8B neutrino fluxes that would be in conflict with current measurements.

Ilidio Lopes; Joseph Silk

2013-09-29T23:59:59.000Z

165

DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

2013-04-01T23:59:59.000Z

166

The Neutrino Eye: A Megaton Low Energy Neutrino  

E-Print Network [OSTI]

from WIMPS and gamma ray bursts, and upon real time counting of solar neutrinos, are all from sensi­ tivity, and conduct a watch for for neutrino correlates to sporadic phenomenon such as gamma ray bursts. The main thrust would be to detect actual muon neutrino appearance as well as disappearance

Learned, John

167

Particle physics implications of the WMAP neutrino mass bound  

E-Print Network [OSTI]

The recently published cosmological bound on the absolute neutrino masses obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) data has important consequences for neutrino experiments and models. Taken at face value, the new bound excludes the determination of the absolute neutrino mass in the KATRIN experiment and disfavors a neutrino oscillation interpretation of the LSND experiment. Combined with the KamLAND and Super-K data, the WMAP bound defines an accessible range for the neutrinoless double beta decay amplitude. The bound also impacts the Z-burst annihilation mechanism for resonant generation of extreme-energy cosmic rays on the cosmic neutrino background in two ways: it constrains the local overdensity of neutrino dark matter which is not helpful, but it also limits the resonant energy to a favorable range. In R-parity violating SUSY models neutrino masses are generated by trilinear and bilinear lepton number violating couplings. The WMAP result improves the constraints on these couplings over their existing values by an order of magnitude.

G. Bhattacharyya; H. Ps; L. Song; T. J. Weiler

2003-04-25T23:59:59.000Z

168

Neutrino dispersion in magnetized plasma  

E-Print Network [OSTI]

The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We have studied the plasma contribution into the additional energy of neutrino and obtained the simple expression for it. We consider in detail the neutrino self-energy under physical conditions of weak field, moderate field and strong field limits. It is shown that our result for neutrino dispersion in moderate magnetic field differ substantially from the previous one in the literature.

N. V. Mikheev; E. N. Narynskaya

2008-12-02T23:59:59.000Z

169

Solar Neutrino Matter Effects Redux  

E-Print Network [OSTI]

Following recent low-threshold analysis of the Sudbury Neutrino Observatory and asymmetry measurements of the BOREXINO Collaboration of the solar neutrino flux, we revisit the analysis of the matter effects in the Sun. We show that solar neutrino data constrains the mixing angle $\\theta_{13}$ poorly and that subdominant Standard Model effects can mimic the effects of the physics beyond the Standard Model.

A. B. Balantekin; A. Malkus

2011-12-19T23:59:59.000Z

170

Neutrino Oscillations Experiments at Fermilab  

E-Print Network [OSTI]

Neutrino oscillations provide an unique opportunity to probe physics beyond the Standard Model. Fermilab is constructing two new neutrino beams to provide a decicive test of two of the recent positive indications for neutrino oscillations: MiniBOONE experiment will settle the LSND controversy, MINOS will provide detailed studies of the region indicated by the SuperK results.

Adam Para

2000-05-01T23:59:59.000Z

171

2010 Sambamurti Lecture: ?Expecting the Unexpected: Neutrino Physics at MiniBooNE?  

ScienceCinema (OSTI)

For more than 50 years, neutrinos have surprised researchers, not only by their mere presence, but also by the recent revelation that these ghostlike particles can oscillate from one type to another. This discovery has opened up a host of new questions about neutrinos and their properties ? questions that scientists are currently in a global race to answer.

Geralyn ?Sam? Zeller

2010-09-01T23:59:59.000Z

172

Plasmon decay to a neutrino pair via neutrino electromagnetic moments in a strongly magnetized medium  

E-Print Network [OSTI]

We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.

A. V. Borisov; P. E. Sizin

2014-06-12T23:59:59.000Z

173

Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation  

E-Print Network [OSTI]

According to conventional wisdom, in the standard model (SM) of particle physics and cosmology the effective number of neutrinos is Neff=3 (more precisely, 3.046). In extensions of the standard model allowing for the presence of DeltaNnu equivalent neutrinos (or dark radiation), Neff is generally >3. The canonical results are reconsidered here, revealing that a measurement of Neff>3 can be consistent with DeltaNnu=0 (dark radiation without dark radiation). Conversely, a measurement consistent with Neff=3 is not inconsistent with the presence of dark radiation (DeltaNnu>0). In particular, if there is a light WIMP that annihilates to photons after the SM neutrinos have decoupled, the photons are heated beyond their usual heating from e+- annihilation, reducing the late time ratio of neutrino and photon temperatures (and number densities), leading to Neff3 even in the absence of equivalent neutrinos or dark radiation. A measurement of Neff>3 is thus no guarantee of the presence of equivalent neutrinos or dark ra...

Steigman, Gary

2013-01-01T23:59:59.000Z

174

Riddle of the Neutrino Mass  

E-Print Network [OSTI]

We discuss some known approaches and results as well as few new ideas concerning origins and nature of neutrino mass. The key issues include (i) connections of neutrino and charged fermions masses, relation between masses and mixing, energy scale of new physics behind neutrino mass where possibilities spread from the Planck and GUT masses down to a sub-eV scale. The data hint two different new physics involved in generation of neutrino mass. Determination of the CP phase as well as mass hierarchy can play important role in identification of new physics. It may happen that sterile neutrinos provide the key to resolve the riddle.

Smirnov, A Yu

2015-01-01T23:59:59.000Z

175

Are neutrinos their own antiparticles?  

SciTech Connect (OSTI)

We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

Kayser, Boris; /Fermilab

2009-03-01T23:59:59.000Z

176

New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos  

E-Print Network [OSTI]

Dark matter particles captured by the Sun through scattering may annihilate and produce neutrinos, which escape. Current searches are for the few high-energy neutrinos produced in the prompt decays of some final states. We show that interactions in the solar medium lead to a large number of pions for nearly all final states. Positive pions and muons decay at rest, producing low-energy neutrinos with known spectra, including nuebar through neutrino mixing. We demonstrate that Super-Kamiokande can thereby provide a new probe of the spin-dependent WIMP-proton cross section. Compared to other methods, the sensitivity is competitive and the uncertainties are complementary.

Carsten Rott; Jennifer Siegal-Gaskins; John F. Beacom

2013-09-05T23:59:59.000Z

177

Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model  

E-Print Network [OSTI]

We consider a simplifed model for self-induced flavor conversions of a dense neutrino gas in two dimensions, showing new solutions that spontaneously break the spatial symmetries of the initial conditions. As a result of the symmetry breaking induced by the neutrino-neutrino interactions, the coherent behavior of the neutrino gas becomes unstable. This instability produces large spatial variations in the flavor content of the ensemble. Furthermore, it also leads to the creation of domains of different net lepton number flux. The transition of the neutrino gas from a coherent to incoherent behavior shows an intriguing analogy with a streaming flow changing from laminar to turbulent regime. These finding would be relevant for the self-induced conversions of neutrinos streaming-off a supernova core.

Mirizzi, Alessandro; Saviano, Ninetta

2015-01-01T23:59:59.000Z

178

Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3-1 Model  

E-Print Network [OSTI]

In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

Alex G. Dias; A. Doff; C. A. de S. Pires; P. S. Rodrigues da Silva

2005-08-11T23:59:59.000Z

179

Neutrino decay and neutrinoless double beta decay in a 3-3-1 model  

SciTech Connect (OSTI)

In this work we show that the implementation of spontaneous breaking of the lepton number in the 3-3-1 model with right-handed neutrinos gives rise to fast neutrino decay with Majoron emission and generates a bunch of new contributions to the neutrinoless double beta decay.

Dias, Alex G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66.318, 05315-970, Sao Paulo-SP (Brazil); Doff, A. [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sao Paulo-SP (Brazil); Pires, C.A. de S; Rodrigues da Silva, P.S. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970, Joao Pessoa-PB (Brazil)

2005-08-01T23:59:59.000Z

180

Neutrinoless double beta decay and neutrino physics  

E-Print Network [OSTI]

The connection of neutrino physics with neutrinoless double beta decay is reviewed. After presenting the current status of the PMNS matrix and the theoretical background of neutrino mass and lepton mixing, we will summarize the various implications of neutrino physics for double beta decay. The influence of light sterile neutrinos and other exotic modifications of the three neutrino picture is also discussed.

Werner Rodejohann

2012-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nonstandard neutrino interactions and transition magnetic moments  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.

Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry

2013-06-01T23:59:59.000Z

182

Neutrino-electron scattering in a magnetic field with allowance for polarizations of electrons  

SciTech Connect (OSTI)

We present an analytic formula for differential cross section (DCS) of neutrino-electron scattering (NES) in a magnetic field (MF) with allowance for longitudinal polarizations of initial and final electrons (IAFE). The DCS of NES in a MF is sensitive to the spin variable of the IAFE and to the direction of the incident and scattered neutrinos (IASN) momenta. Spin asymmetries and field effects in NES in a MF enable us to use initial electrons having a left-hand circular polarization (LHCP) as polarized electron targets in detectors for detection of low-energy neutrinos or relic neutrinos and for distinguishing neutrino flavor (NF). In general, gas consisting of only electrons having a LHCP and gas consisting of only electrons having a right-hand circular polarization (RHCP) are heated by neutrinos asymmetrically. The asymmetry of heating (AH) is sensitive to NF, MF strength, energies (Landau quantum numbers and third components of the momenta) of IAFE, final electron chemical potential, the final temperature of gas consisting of only electrons having a LHCP (RHCP), polar angles of IASN momenta, the difference between the azimuthal angles of IASN momenta, the angle {phi}, and IASN energies. In the heating process of electrons by neutrinos the dominant role belongs to electron neutrinos compared with the contribution of muon (tauon) neutrinos. Electrons having a LHCP in NES in a MF are heated by {nu}{sub e} and {nu}{sub {mu}}({nu}{sub {tau}}) unequally when both the IASN fly along or against the MF direction. For magnetars and neutrinos of 1 MeV energy, within the considered kinematics, the AH in an electron neutrino-electron scattering is 2.23 times that in a muon neutrino-electron scattering or in a tauon neutrino-electron scattering.

Guseinov, V. A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Jafarov, I. G. [Department of Theoretical Physics and Astrophysics, Azerbaijan State Pedagogical University, Baku (Azerbaijan); Gasimova, R. E. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

2007-04-01T23:59:59.000Z

183

Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1  

SciTech Connect (OSTI)

The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

Stoner, K.J.

1999-11-05T23:59:59.000Z

184

New Neutrinos Algal Biofuels  

E-Print Network [OSTI]

New Neutrinos Algal Biofuels Charged-Particle Vision Primordial Soup LOS ALAMOS SCIENCE of Los Alamos and its top-secret laboratory was the mailing address--P. O. Box 1663, Santa Fe, New Mexico Seeing Green: Squeezing Power from Pond Scum OVERCOMING OBSTACLES TO IGNITE ALGAL FUELS THE (LIGHTWEIGHT

185

Neutrino and it's lepton  

E-Print Network [OSTI]

In this paper I cite p.p. 100-117 of book G. Quznetsov, Probabilistic Treatment of Gauge Theories, in series Contemporary Fundamental Physics,ed. V. Dvoeglazov, Nova Sci. Publ., NY (2007). There I research a bound between neutrino and it's lepton.

G. Quznetsov

2008-11-10T23:59:59.000Z

186

Neutrino Factory Mercury Vessel  

E-Print Network [OSTI]

Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Target · Separates functionality, provides double mercury containment, simplifies design and remote handling · Each

McDonald, Kirk

187

Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes  

E-Print Network [OSTI]

Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally-mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are $\\delta m^2 \\alt 10^{-12}$ eV$^2$; in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of $L/E$, mass-squared differences down to $\\delta m^2 \\sim 10^{-18}$ eV$^2$ can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

John F. Beacom; Nicole F. Bell; Dan Hooper; John G. Learned; Sandip Pakvasa; Thomas J. Weiler

2004-01-05T23:59:59.000Z

188

84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being  

E-Print Network [OSTI]

kilowatt- hour (1 kWh)? Problem 4 ­ How many ergs of energy are collected from a solar panel on a roof, if the sunlight provides a flux of 300 Joules/sec/meter 2 , the solar panels have an area of 27 square feet84Unit Conversions ­ Energy, Power, Flux Energy is measured in a number of ways depending on what

189

Double beta decay and neutrino mass models  

E-Print Network [OSTI]

Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.

Helo, J C; Ota, T; Santos, F A Pereira dos

2015-01-01T23:59:59.000Z

190

Low-energy solar anti-neutrinos  

E-Print Network [OSTI]

If neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the anti-\

V. B. Semikoz; S. Pastor; J. W. F. Valle

1998-08-13T23:59:59.000Z

191

Advancements in solar neutrino physics  

E-Print Network [OSTI]

We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

Vito Antonelli; Lino Miramonti

2013-04-23T23:59:59.000Z

192

Neutrino Masses and Flavor Mixing  

E-Print Network [OSTI]

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

Fritzsch, Harald

2015-01-01T23:59:59.000Z

193

Neutrino Masses and Flavor Mixing  

E-Print Network [OSTI]

We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

Harald Fritzsch

2015-03-06T23:59:59.000Z

194

A Dynamical Framework for KeV Dirac Neutrino Warm Dark Matter  

E-Print Network [OSTI]

If the source of the reported $3.5$ keV x-ray line is a sterile neutrino, comprising an $\\mathcal{O}(1)$ fraction of the dark matter (DM), then it exhibits the property that its mass times mixing angle is $\\sim \\mbox{few} \\times 10^{-2}$ eV, a plausible mass scale for the active neutrinos. This property is a common feature of Dirac neutrino mixing. We present a framework that dynamically produces light active and keV sterile Dirac neutrinos, with appropriate mixing angles to be the x-ray line source. The central idea is that the right-handed active neutrino is a composite state, while elementary sterile neutrinos gain keV masses similarly to the quarks in extended Technicolor. The entire framework is fixed by just two dynamical scales and may automatically exhibit a warm dark matter (WDM) production mechanism -- dilution of thermal relics from late decays of a heavy composite neutrino -- such that the keV neutrinos may comprise an $\\mathcal{O}(1)$ fraction of the DM. In this framework, the WDM is typically quite cool and within structure formation bounds, with temperature $\\sim \\mbox{few}\\times 10^{-2}~T_\

Dean J. Robinson; Yuhsin Tsai

2014-08-06T23:59:59.000Z

195

Supernova neutrinos and explosive nucleosynthesis  

SciTech Connect (OSTI)

Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

2014-05-09T23:59:59.000Z

196

Phenomenology of Absolute Neutrino Masses  

E-Print Network [OSTI]

The phenomenology of absolute neutrino masses is reviewed, focusing on tritium beta decay, cosmological measurements and neutrinoless double-beta decay.

Carlo Giunti

2004-12-11T23:59:59.000Z

197

Gravitational Correction in Neutrino Oscillations  

E-Print Network [OSTI]

We investigate the quantum mechanical oscillations of neutrinos propagating in weak gravitational field. The correction to the result in the flat space-time is derived.

Yasufumi Kojima

1996-12-17T23:59:59.000Z

198

Observables in Neutrino Mass Spectroscopy Using Atoms  

E-Print Network [OSTI]

The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

2012-09-21T23:59:59.000Z

199

Birth of Neutrino Astrophysics  

ScienceCinema (OSTI)

Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

None

2011-10-06T23:59:59.000Z

200

Neutrinos in the Electron  

E-Print Network [OSTI]

We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

E. L. Koschmieder

2006-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG  

E-Print Network [OSTI]

ON SOLAR NEUTRINO PROBLEM TIAN MA AND SHOUHONG WANG Abstract. The current neutrino oscillation an alternative resolution to the solar neutrino loss problem. Contents 1. Introduction 1 2. Discrepancy of Solar, there are three flavors of neutrinos: the electron neutrino e, the tau neutrino and the mu neutrino µ. The solar

202

Neutrino flavor ratios as diagnostic of solar WIMP annihilation  

E-Print Network [OSTI]

We consider the neutrino (and antineutrino) flavors arriving at Earth for neutrinos produced in the annihilation of weakly interacting massive particles (WIMPs) in the Sun's core. Solar-matter effects on the flavor propagation of the resulting $\\agt$ GeV neutrinos are studied analytically within a density-matrix formalism. Matter effects, including mass-state level-crossings, influence the flavor fluxes considerably. The exposition herein is somewhat pedagogical, in that it starts with adiabatic evolution of single flavors from the Sun's center, with $\\theta_{13}$ set to zero, and progresses to fully realistic processing of the flavor ratios expected in WIMP decay, from the Sun's core to the Earth. In the fully realistic calculation, non-adiabatic level-crossing is included, as are possible nonzero values for $\\theta_{13}$ and the CP-violating phase $\\delta$. Due to resonance enhancement in matter, nonzero values of $\\theta_{13}$ even smaller than a degree can noticeably affect flavor propagation. Both normal and inverted neutrino-mass hierarchies are considered. Our main conclusion is that measuring flavor ratios (in addition to energy spectra) of $\\agt$ GeV solar neutrinos can provide discrinination between WIMP models. In particular, we demonstrate the flavor differences at Earth for neutrinos from the two main classes of WIMP final states, namely $W^+ W^-$ and 95% $b \\bar{b}$ + 5% $\\tau^+\\tau^-$. Conversely, if WIMP properties were to be learned from production in future accelerators, then the flavor ratios of $\\agt$ GeV solar neutrinos might be useful for inferring $\\theta_{13}$ and the mass hierarchy.

Ralf Lehnert; Thomas J. Weiler

2007-08-08T23:59:59.000Z

203

Lepton textures and neutrino oscillations  

E-Print Network [OSTI]

Systematic analyses of the textures arising in lepton mass matrices have been carried out using unitary transformations and condition of naturalness for the Dirac and Majorana neutrino possibilities. It is observed that the recent three neutrino oscillation data together with the effective mass in neutrinoless double beta decay provide vital clues in predicting the general structures of these lepton mass matrices.

Verma, Rohit

2014-01-01T23:59:59.000Z

204

Off-shell OPERA neutrinos  

E-Print Network [OSTI]

In the OPERA experiment, superluminal propagation of neutrinos can occur if one of the neutrino masses is extremely small. However the effect only has appreciable amplitude at energies of order this mass and thus has negligible overlap with the multi-GeV scale of the experiment.

Tim R. Morris

2011-12-11T23:59:59.000Z

205

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

An Instrument for Neutrino Astronomy Francis Halzen 1 andAn Instrument for Neutrino Astronomy Francis Halzen 1 and94720 Abstract Neutrino astronomy beyond the Sun was first

Halzen, F.

2010-01-01T23:59:59.000Z

206

Cosmo MSW effect for mass varying neutrinos  

E-Print Network [OSTI]

We consider neutrinos with varying masses which arise in scenarios relating neutrino masses to the dark energy density in the universe. We point out that the neutrino mass variation can lead to level crossing and thus a cosmo MSW effect, having dramatic consequences for the flavor ratio of astrophysical neutrinos.

Pham Quang Hung; Heinrich Ps

2005-02-24T23:59:59.000Z

207

Solar Neutrinos and the Eclipse Effect  

E-Print Network [OSTI]

The solar neutrino counting rate in a real time detector like Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in the Moon during a partial or total solar eclipse. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement, if seen, can further help to determine the neutrino parameters.

Mohan Narayan; G. Rajasekaran; Rahul Sinha; C. P. Burgess

1999-09-01T23:59:59.000Z

208

Small entries of neutrino mass matrices  

E-Print Network [OSTI]

We consider phenomenologically allowed structures of the neutrino mass matrix in the case of three light neutrino species. Constraints from the solar, atmospheric and reactor neutrino experiments as well as those from the neutrinoless double beta decay are taken into account. Both hierarchical and quasi-degenerate neutrino mass cases are studied. Assuming maximal $\

E. Kh. Akhmedov

1999-09-15T23:59:59.000Z

209

Geo-neutrinos: recent developments  

E-Print Network [OSTI]

Radiogenic heating is a key component of the energy balance and thermal evolution of the Earth. It contributes to mantle convection, plate tectonics, volcanoes, and mountain building. Geo-neutrino observations estimate the present radiogenic power of our planet. This estimate depends on the quantity and distribution of heat-producing elements in various Earth reservoirs. Of particular geological importance is radiogenic heating in the mantle. This quantity informs the origin and thermal evolution of our planet. Here we present: currently reported geo-neutrino observations; estimates of the mantle geo-neutrino signal, mantle radiogenic heating, and mantle cooling; a comparison of chemical Earth model predictions of the mantle geo-neutrino signal and mantle radiogenic heating; a brief discussion of radiogenic heating in the core, including calculations of geo-neutrino signals per pW/kg; and finally a discussion of observational strategy.

Dye, Steve

2014-01-01T23:59:59.000Z

210

Constraints on Neutrino Velocities Revisited  

E-Print Network [OSTI]

With a minimally modified dispersion relation for neutrinos, we reconsider the constraints on superluminal neutrino velocities from bremsstrahlung effects in the laboratory frame. Employing both the direct calculation approach and the virtual Z-boson approach, we obtain the generic decay width and energy loss rate of a superluminal neutrino with general energy. The Cohen-Glashow's analytical results for neutrinos with a relatively low energy are confirmed in both approaches. We employ the survival probability instead of the terminal energy to assess whether a neutrino with a given energy is observable or not in the OPERA experiment. Moreover, using our general results we perform systematical analyses on the constraints arising from the Super-Kamiokande and IceCube experiments.

Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi

2012-01-27T23:59:59.000Z

211

Experimental Signature for Black Hole Production in Neutrino Air Showers  

E-Print Network [OSTI]

The existence of extra degrees of freedom beyond the electroweak scale may allow the formation of black holes in nearly horizontal neutrino air showers. In this paper we examine the average properties of the light descendants of these black holes. Our analysis indicates that black hole decay gives rise to deeply penetrating showers with an electromagnetic component which differs substantially from that in conventional neutrino interactions, allowing a good characterization of the phenomenon against background. Naturally occurring black holes in horizontal neutrino showers could be detected and studied with the Auger air shower array. Since the expected black hole production rate at Auger is $> 1$ event/year, this cosmic ray observatory could be potentially powerful in probing models with extra dimensions and TeV-scale gravity.

Luis Anchordoqui; Haim Goldberg

2001-10-15T23:59:59.000Z

212

Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics  

E-Print Network [OSTI]

We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass $M_{\

M. Shimon; N. J. Miller; C. T. Kishimoto; C. J. Smith; G. M. Fuller; B. G. Keating

2010-05-10T23:59:59.000Z

213

Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics  

E-Print Network [OSTI]

We present calculations showing that upcoming Cosmic Microwave Background (CMB) experiments will have the power to improve on current constraints on neutrino masses and provide new limits on neutrino degeneracy parameters. The latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the observationally-inferred primordial helium abundance. These conclusions derive from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full BBN nuclear reaction network. This provides a self-consistent treatment of the helium abundance, the baryon number, the three individual neutrino degeneracy parameters and other cosmological parameters. Our analysis focuses on the effects of gravitational lensing on CMB constraints on neutrino rest mass and degeneracy parameter. We find for the PLANCK experiment that total (summed) neutrino mass $M_{\

Shimon, M; Kishimoto, C T; Smith, C J; Fuller, G M; Keating, B G

2010-01-01T23:59:59.000Z

214

LSP Squark Decays at the LHC and the Neutrino Mass Hierarchy  

E-Print Network [OSTI]

The existence of R-parity in supersymmetric models can be naturally explained as being a discrete subgroup of gauged baryon minus lepton number (B-L). The most minimal supersymmetric B-L model triggers spontaneous R-parity violation, while remaining consistent with proton stability. This model is well-motivated by string theory and makes several interesting, testable predictions. Furthermore, R-parity violation contributes to neutrino masses, thereby connecting the neutrino sector to the decay of the lightest supersymmetric particle (LSP). This paper analyzes the decays of third generation squark LSPs into a quark and a lepton. In certain cases, the branching ratios into charged leptons reveal information about the neutrino mass hierarchy, a current goal of experimental neutrino physics, as well as the $\\theta_{23}$ neutrino mixing angle. Furthermore, optimization of leptoquark searches for this scenario is discussed. Using currently available data, the lower bounds on the third generation squarks are computed.

Zachary Marshall; Burt A. Ovrut; Austin Purves; Sogee Spinner

2014-08-05T23:59:59.000Z

215

ANTARES deep sea neutrino telescope results  

SciTech Connect (OSTI)

The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

Mangano, Salvatore [IFIC - Instituto de Fsica Corpuscular, Edificio Institutos de Investigatin, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

2014-06-24T23:59:59.000Z

216

High Energy Neutrino Astronomy: Towards Kilometer-Scale Detectors  

E-Print Network [OSTI]

Of all high-energy particles, only neutrinos can directly convey astronomical information from the edge of the universe---and from deep inside the most cataclysmic high-energy processes. Copiously produced in high-energy collisions, travelling at the velocity of light, and not deflected by magnetic fields, neutrinos meet the basic requirements for astronomy. Their unique advantage arises from a fundamental property: they are affected only by the weakest of nature's forces (but for gravity) and are therefore essentially unabsorbed as they travel cosmological distances between their origin and us. Many of the outstanding mysteries of astrophysics may be hidden from our sight at all wavelengths of the electromagnetic spectrum because of absorption by matter and radiation between us and the source. For example, the hot dense regions that form the central engines of stars and galaxies are opaque to photons. In other cases, such as supernova remnants, gamma ray bursters, and active galaxies, all of which may involve compact objects or black holes at their cores, the precise origin of the high-energy photons emerging from their surface regions is uncertain. Therefore, data obtained through a variety of observational windows---and especially through direct observations with neutrinos---may be of cardinal importance. In this talk, the scientific goals of high energy neutrino astronomy and the technical aspects of water and ice Cherenkov detectors are examined, and future experimental possibilities, including a kilometer-square deep ice neutrino telescope, are explored.

F. Halzen

2001-03-13T23:59:59.000Z

217

Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle  

E-Print Network [OSTI]

This brief report is an extension of a prediction of neutrino oscillation with a sterile neutrino using parameters of the sterile neutrino mass and mixing angle recently extracted from experiment.

Leonard S. Kisslinger

2014-10-10T23:59:59.000Z

218

Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment  

E-Print Network [OSTI]

An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\

Joao Pulido; Ana M. Mourao

1998-03-02T23:59:59.000Z

219

Small scales structures and neutrino masses  

E-Print Network [OSTI]

We review the impact of massive neutrinos on cosmological observables at the linear order. By means of N-body simulations we investigate the signatures left by neutrinos on the fully non-linear regime. We present the effects induced by massive neutrinos on the matter power spectrum, the halo mass function and on the halo-matter bias in massive neutrino cosmologies. We also investigate the clustering of cosmic neutrinos within galaxy clusters.

Villaescusa-Navarro, Francisco

2015-01-01T23:59:59.000Z

220

Macro-coherent two photon and radiative neutrino pair emission  

E-Print Network [OSTI]

We discuss a possibility of detecting a coherent photon pair emission and related radiative neutrino pair emission from excited atoms. It is shown that atoms of lambda- and ladder-type three level system placed in a pencil-like cylinder give a back to back emission of two photons of equal energy $\\Delta/2$, sharply peaked with a width $\\propto $ 1/(target size) and well collimated along the cylinder axis. This process has a measurable rate $\\propto$ (target number density) $^2 \\times$ target volume, while a broader spectral feature of one-photon distribution separated by (mass sum of a neutrino pair)$^2/(2\\Delta)$ from the two photon peak may arise from radiative neutrino pair emission, with a much smaller rate.

M. Yoshimura; C. Ohae; A. Fukumi; K. Nakajima; I. Nakano; H. Nanjo; N. Sasao

2008-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Big Bang Day: 5 Particles - 4. The Neutrino  

ScienceCinema (OSTI)

Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

None

2011-04-25T23:59:59.000Z

222

Neutrino Nucleon Elastic Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u F a c tNeutrino

223

Sterile Neutrino Oscillations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American Physical SocietySterile Neutrino

224

MSW mediated neutrino decay and the solar neutrino problem  

E-Print Network [OSTI]

We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global $\\chi^2$-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the $\\dm - \\tan^2\\theta$ plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.

Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami

2001-03-30T23:59:59.000Z

225

Current Direct Neutrino Mass Experiments  

E-Print Network [OSTI]

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). We then describe the Karlsruhe Tritium Neutrino (KATRIN) experiment which is currently under construction at Karlsruhe Institute of Technology. The large-scale setup will use the MAC-E-Filter principle pioneered earlier to push the sensitivity down to a value of 200 meV(90% C.L.). KATRIN faces many technological challenges that have to be resolved with regar...

Drexlin, G; Mertens, S; Weinheimer, C

2013-01-01T23:59:59.000Z

226

Phenomenology Of Sterile Neutrinos At Different Mass Scales: Neutrinoless Double Beta Decay And Neutrino Oscillations.  

E-Print Network [OSTI]

??The existence of neutrino oscillation is the first evidence of physics beyond the Standard Model. It proves that neutrinos are massive and motivates the study (more)

WONG, CHAN,FAI

2012-01-01T23:59:59.000Z

227

LSND neutrino oscillation results  

SciTech Connect (OSTI)

The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

Louis, W.C.; LSND Collaboration

1996-10-01T23:59:59.000Z

228

Hyper Space Complex Number  

E-Print Network [OSTI]

A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

Shanguang Tan

2007-04-23T23:59:59.000Z

229

Discriminating among the theoretical origins of new heavy Majorana neutrinos at the CERN LHC  

E-Print Network [OSTI]

A study on the possibility of distinguishing new heavy Majorana neutrino models at LHC energies is presented. The experimental confirmation of standard neutrinos with non-zero mass and the theoretical possibility of lepton number violation find a natural explanation when new heavy Majorana neutrinos exist. These new neutrinos appear in models with new right-handed singlets, in new doublets of some grand unified theories and left-right symmetrical models. It is expected that signals of new particles can be found at the CERN high-energy hadron collider (LHC). We present signatures and distributions that can indicate the theoretical origin of these new particles. The single and pair production of heavy Majorana neutrinos are calculated and the model dependence is discussed. Same-sign dileptons in the final state provide a clear signal for the Majorana nature of heavy neutrinos, since there is lepton number violation. Mass bounds on heavy Majorana neutrinos allowing model discrimination are estimated for three different LHC luminosities.

F. M. L. de Almeida Jr.; Y. A. Coutinho; J. A. Martins Simoes; A. J. Ramalho; S. Wulck; M. A. B. do Vale

2007-03-08T23:59:59.000Z

230

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice  

E-Print Network [OSTI]

We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.

Olga Mena; Irina Mocioiu; Soebur Razzaque

2008-10-21T23:59:59.000Z

231

On-shell renormalization of the mixing matrices in Majorana neutrino theories  

E-Print Network [OSTI]

We generalize a recently proposed on-shell approach to renormalize the Cabibbo-Kobayashi-Maskawa quark-mixing matrix to the case of an extended leptonic sector that includes Dirac and Majorana neutrinos in the framework of the seesaw mechanism. An important property of this formulation is the gauge independence of both the renormalized and bare lepton mixing matrices. Also, the texture zero in the neutrino mass matrix is preserved.

Andrea A. Almasy; Bernd A. Kniehl; Alberto Sirlin

2009-04-20T23:59:59.000Z

232

High-Energy Neutrino Astronomy  

E-Print Network [OSTI]

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.

F. Halzen

2004-02-03T23:59:59.000Z

233

High-Energy Neutrino Astronomy  

E-Print Network [OSTI]

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

F. Halzen

2005-01-26T23:59:59.000Z

234

Neutrino capital of the world  

E-Print Network [OSTI]

Neutrinos are ubiquitous particles, but they don't like to mingle. Each second, billions of them pass through our bodies, slicing imperceptibly through our delicate internal organs. They can barrel through the sun, stars, ...

Johnson, Carolyn Y., 1980-

2004-01-01T23:59:59.000Z

235

Neutrino Factories and Beta Beams  

E-Print Network [OSTI]

a Neutrino Factory Based on Muon Beams, Proc. 2001 ParticleMD. [19] C. Rubbia et al. , Beam Cooling with Ionisationthe required unstable ion beams has recently been suggested

Zisman, Michael S.

2006-01-01T23:59:59.000Z

236

Research in Neutrino Physics  

SciTech Connect (OSTI)

Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 0.041 (stat) 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancus group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalans Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become reinvolved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

Busenitz, Jerome [The University of Alabama

2014-09-30T23:59:59.000Z

237

High Energy Neutrino Telescopes  

E-Print Network [OSTI]

This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

K. D. Hoffman

2008-12-18T23:59:59.000Z

238

Exploring the Earth matter effect with atmospheric neutrinos in ice  

E-Print Network [OSTI]

We study the possibility to perform neutrino oscillation tomography and to determine the neutrino mass hierarchy in kilometer-scale ice Cerenkov detectors by means of the theta13-driven matter effects which occur during the propagation of atmospheric neutrinos deep through the Earth. We consider the ongoing IceCube/DeepCore neutrino observatory and future planned extensions, such as the PINGU detector, which has a lower energy threshold. Our simulations include the impact of marginalization over the neutrino oscillation parameters and a fully correlated systematic uncertainty on the total number of events. For the current best-fit value of the mixing angle theta13, the DeepCore detector, due to its relatively high-energy threshold, could only be sensitive to fluctuations on the normalization of the Earth's density of \\Delta\\rho \\simeq \\pm 10% at ~ 1.6 sigma CL after 10 years in the case of a true normal hierarchy. For the two PINGU configurations we consider, overall density fluctuations of \\Delta\\rho \\simeq \\pm 3% (\\pm 2%) could be measured at the 2 sigma CL after 10 years, also in the case of a normal mass hierarchy. We also compare the prospects to determine the neutrino mass hierarchy in these three configurations and find that this could be achieved at the 5 sigma CL, for both hierarchies, after 5 years in DeepCore and about 1 year in PINGU. This clearly shows the importance of lowering the energy threshold below 10 GeV so that detectors are fully sensitive to the resonant matter effects.

Sanjib Kumar Agarwalla; Tracey Li; Olga Mena; Sergio Palomares-Ruiz

2012-12-10T23:59:59.000Z

239

The concrete theory of numbers : New Mersenne conjectures. Simplicity and other wonderful properties of numbers $L(n) = 2^{2n}\\pm2^n\\pm1$  

E-Print Network [OSTI]

New Mersenne conjectures. The problems of simplicity, common prime divisors and free from squares of numbers $L(n) = 2^{2n}\\pm2^n\\pm1$ are investigated. Wonderful formulas $gcd $ for numbers $L (n) $ and numbers repunit are proved.

Boris V. Tarasov

2008-04-24T23:59:59.000Z

240

Solar Neutrinos: Models, Observations, and New Opportunities  

E-Print Network [OSTI]

I discuss the development and resolution of the solar neutrino problem, as well as opportunities now open to us to extend our knowledge of main-sequence stellar evolution and neutrino astrophysics.

W. C. Haxton

2007-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Neutrino mixing, flavor states and dark energy  

E-Print Network [OSTI]

We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

2007-11-06T23:59:59.000Z

242

How Uncertain Are Solar Neutrino Predictions?  

E-Print Network [OSTI]

Solar neutrino fluxes and sound speeds are calculated using a systematic reevaluation of nuclear fusion rates. The largest uncertainties are identified and their effects on the solar neutrino fluxes are estimated.

John N. Bahcall; Sarbani Basu; M. H. Pinsonneault

1998-05-24T23:59:59.000Z

243

Optical calibration hardware for the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.

B. A. Moffat; R. J. Ford; F. A. Duncan; K. Graham; A. L. Hallin; C. A. W. Hearns; J. Maneira; P. Skensved; D. R. Grant

2005-07-19T23:59:59.000Z

244

Oscillation dynamics of active-unsterile neutrino mixing in a 2+1-tilde mixing scheme  

SciTech Connect (OSTI)

We consider the possibility that sterile neutrinos exist and admit a description as unparticles; we call these unsterile neutrinos. We then examine the nature of neutrino oscillations in a model where an unsterile can mix with two active flavors with a very simple mass matrix of the seesaw type. Despite these simplifications, we find a number of remarkable features, all of which will occur generically when more realistic cases are considered. These include momentum dependent mixing angles, invisible decay widths for the unsterile-like mode, as well as the inheritance of a nonvanishing spectral density for the massive activelike modes. We also obtain the disappearance and appearance probabilities for the activelike neutrinos and find remarkable interference effects between the active and unsterile neutrinos as a consequence of threshold effects, yielding new oscillatory contributions with different oscillation lengths. These effects are only measurable on short baseline experiments because there both probabilities are suppressed as compared to mixing with a canonical sterile neutrino, thereby providing a diagnostics tool to discriminate unsterile from canonical sterile neutrinos. We conclude with a discussion of whether these new phenomena could aid in the reconciliation of the LSND and MiniBooNE results.

Boyanovsky, D. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Holman, R.; Hutasoit, Jimmy A. [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

2010-02-01T23:59:59.000Z

245

Earth Matter Effect on Democratic Neutrinos  

E-Print Network [OSTI]

The neutrino propagation through the Earth is investigated in the framework of the democratic neutrino theory. In this theory the neutrino mixing angle theta-1-3 is approximately determined, which allows one to make a well defined neutrino oscillogram driven by the 1-3 mixing in the matter of the Earth. Significant differences in this oscillogram from the case of models with relatively small theta-1-3 are discussed.

Dmitry Zhuridov

2014-08-30T23:59:59.000Z

246

European Strategy for Future Neutrino Physics  

ScienceCinema (OSTI)

A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

None

2011-10-06T23:59:59.000Z

247

Dark energy induced by neutrino mixing  

E-Print Network [OSTI]

The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

2006-12-11T23:59:59.000Z

248

Neutrino mass limit from tritium beta decay  

E-Print Network [OSTI]

The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m(\

E. W. Otten; C. Weinheimer

2009-09-11T23:59:59.000Z

249

Do the Kamiokande results need neutrino oscillations?  

E-Print Network [OSTI]

Neutrino oscillations are a delicate and important subject. One needs to be sure that every aspect of it is well understood. The recent results of the Kamiokande experiment [1], indicate the possibility of -- neutrino oscillations. The period of oscillation observed by Kamiokande is not compatible with what one may deduce from the solar neutrino experiments [2]. In this letter, we examine if another mechanism could fake neutrino oscillations and could be measurement dependent

Baillon, Paul

1999-01-01T23:59:59.000Z

250

Neutrino magnetic moment in a magnetized plasma  

E-Print Network [OSTI]

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

251

Geometry of Majorana neutrino and new symmetries  

E-Print Network [OSTI]

Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of binary Cartan--Killing--Lie symmetries/supersymmetries. As one of the very important applications of such new ternary symmetries could be related with explanation of the nature of the three families and three colour symmetry. The Majorana neutrino can directly indicate the existence of a new extra-dimensional geometry and thanks to new ternary space-time symmetries, could lead at high energies to the unextraordinary phenomenological consequences.

G. G. Volkov

2006-07-30T23:59:59.000Z

252

Nuclear effects in Neutrino Nuclear Cross-sections  

E-Print Network [OSTI]

Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a $\\Delta$ dominance model taking into account the renormalization of $\\Delta$ properties in the nuclear medium.

S. K. Singh; M. Sajjad Athar

2007-10-24T23:59:59.000Z

253

RNG: A Practitioner's Overview Random Number Generation  

E-Print Network [OSTI]

RNG: A Practitioner's Overview Random Number Generation A Practitioner's Overview Prof. Michael and Monte Carlo Methods Pseudorandom number generation Types of pseudorandom numbers Properties of these pseudorandom numbers Parallelization of pseudorandom number generators New directions for SPRNG Quasirandom

Mascagni, Michael

254

Phase Space Constraints on Neutrino Luminosities  

E-Print Network [OSTI]

While the importance of phase space constraints for gravitational clustering of neutrinos (which are fermions) is well recognized, the explicit use of such constraints to limit neutrino emission from ultra energetic sources has not been stressed. Special and general relativistic phase space constraints are shown to limit neutrino luminosities in compact sources in various situations.

C. Sivaram; Kenath Arun; Samartha C A

2007-06-29T23:59:59.000Z

255

Lectures on Neutrino Astronomy: Theory and Experiment  

E-Print Network [OSTI]

1. Overview of neutrino astronomy: multidisciplinary science. 2. Cosmic accelerators: the highest energy cosmic rays. 3. Neutrino beam dumps: supermassive black holes and gamma ray bursts. 4. Neutrino telescopes: water and ice. 5. Indirect dark matter detection. 6. Towards kilometer-scale detectors.

F. Halzen

1998-10-22T23:59:59.000Z

256

Improved Theory of Neutrino Oscillations in Matter  

E-Print Network [OSTI]

This is revision of the S-Matrix theory of neutrino oscillations used for many years. We evaluate the transition probability of a $\\mu$ to $e$ neutrino without an approximation used for many theoretical studies, and find important differences which could improve the extraction of neutrino parameters from experimental data in the future.

Leonard S. Kisslinger

2014-11-19T23:59:59.000Z

257

Neutrinos from Gamma Ray Bursts  

E-Print Network [OSTI]

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2000-10-18T23:59:59.000Z

258

Muon neutrino disappearance at MINOS  

SciTech Connect (OSTI)

A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

Armstrong, R.; /Indiana U.

2009-08-01T23:59:59.000Z

259

Detecting extra-galactic supernova neutrinos in the Antarctic ice  

E-Print Network [OSTI]

Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background, such as solar neutrinos. In particular, the suppression of spallation events induced by atmospheric muons poses a challenge that will need to be addressed. Assuming this background can be controlled, we find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 10 and 41 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to that of regular SNe. We find that the biggest technological challenge lies in the required number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity with a comparatively small construction effort and hence offers a route to future routine observations of SNe with neutrinos.

Sebastian Bser; Marek Kowalski; Lukas Schulte; Nora Linn Strotjohann; Markus Voge

2014-07-28T23:59:59.000Z

260

Low-density instability of multicomponent matter with trapped neutrinos  

SciTech Connect (OSTI)

The effect of neutrino trapping on the longitudinal dielectric function at low densities has been investigated by using different relativistic mean-field models. Parameter sets G2 of Furnstahl-Serot-Tang and Z271 of Horowitz-Piekarewicz, along with the adjusted parameter sets of both models, have been used in this study. The role of the isovector adjustment and the effect of the Coulomb interaction have also been studied. The effect of the isovector adjustment is found to be more significant in the Horowitz-Piekarewicz model, not only in neutrinoless matter but also in matter with neutrino trapping. Although almost independent to the variation of the leptonic fraction, the instability region of matter with neutrino trapping is found to be larger. The presence of more protons and electrons compared to the neutrinoless case is the reason behind this finding. For parameter sets with soft equations of state at low density, the appearance of a large and negative {epsilon}{sub L}(q,q{sub 0}=0) in some parts of the edge of the instability region in matter with neutrino trapping is understood as a consequence of the fact that the Coulomb interaction produced by electron and proton interaction is larger than the repulsive isovector interaction created by the asymmetry between the proton and neutron numbers.

Mart, T.; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

2008-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Late-time Entropy Production from Scalar Decay and Relic Neutrino Temperature  

E-Print Network [OSTI]

Entropy production from scalar decay in the era of low temperatures after neutrino decoupling will change the ratio of the relic neutrino temperature to the CMB temperature, and, hence, the value of N_eff, the effective number of neutrino species. Such scalar decay is relevant to reheating after thermal inflation, proposed to dilute massive particles, like the moduli and the gravitino, featuring in supersymmetric and string theories. The effect of such entropy production on the relic neutrino temperature ratio is calculated in a semi-analytic manner, and a recent lower bound on this ratio, obtained from the WMAP satellite and 2dF galaxy data, is used to set a lower bound of ~ 1.5 x 10^-23 Gev on the scalar decay constant, corresponding to a reheating temperature of about 3.3 Mev.

Paramita Adhya; D. Rai Chaudhuri; Steen Hannestad

2003-09-04T23:59:59.000Z

262

Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector  

SciTech Connect (OSTI)

The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

Dorman, Mark Edward; /University Coll. London

2008-04-01T23:59:59.000Z

263

Stimulated Neutrino Transformation Through Turbulence  

E-Print Network [OSTI]

We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. We also find a suppression of transitions due to the long wavelength modes when the ratio of their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function $J_0$.

Kelly M. Patton; James P. Kneller; Gail C. McLaughlin

2014-04-15T23:59:59.000Z

264

Neutrino Physics at DPF 2013  

E-Print Network [OSTI]

The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

Deborah A. Harris

2013-10-25T23:59:59.000Z

265

On solar neutrino fluxes in radiochemical experiments  

E-Print Network [OSTI]

We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

2005-12-08T23:59:59.000Z

266

Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)  

SciTech Connect (OSTI)

Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.

Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Lin, Huan; /Fermilab

2007-03-01T23:59:59.000Z

267

NEUTRINO OSCILLATION RESULTS FROM LSND  

SciTech Connect (OSTI)

The Liquid Scintillator Neutrino Detector took data during the years 1993 through 1998. The results of a final analysis of the data are reported here. In summary, the analysis resulted in a cleaner sample of decay-at-rest oscillation candidates and provided a strong constraint on beam related backgrounds. The oscillation probability is fitted to the correlated photon parameter in the inclusive electron sample. The fit yields an excess of 83.3 {+-} 21.2 events attributable to neutrino oscillations. This corresponds to an oscillation probability of (0.25 {+-} 0.06 {+-} 0.04)% for that detector and beam configuration.

Mills, G.B.

2000-10-01T23:59:59.000Z

268

Solar neutrinos and the sun  

E-Print Network [OSTI]

We present updated standard solar models (SSMs) that incorporate the latest results for nuclear fusion rates, recently published. We show helioseismic results for high and low metallicity compositions and also for an alternative set of solar abundance, derived from 3D model atmospheres, which give intermediate results. For the high and low metallicity models, we show that current solar neutrino data can not differentiate between models and that a measurement of the CNO fluxes is necessary to achieve that goal. A few additional implications of a hypothetical measurement of CNO neutrinos, both in terms of solar and stellar physics, are discussed.

Aldo Serenelli

2011-09-12T23:59:59.000Z

269

Probing Neutrino Hierarchy and Chirality via Wakes  

E-Print Network [OSTI]

The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and downstream of dark matter halos neutrino wakes are expected to develop. We propose a method of measuring the neutrino mass based on this mechanism. The neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys, e.g. the LSST and Euclid surveys with a low redshift galaxy survey or a 21cm intensity mapping survey which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make positive detection if the three neutrino masses are Quasi-Degenerate, and a future high precision 21cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right handed Dirac neutrinos may be detectable.

Hong-Ming Zhu; Ue-Li Pen; Xuelei Chen; Derek Inman

2014-12-04T23:59:59.000Z

270

Progress in the physics of massive neutrinos  

E-Print Network [OSTI]

The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of \

V. Barger; D. Marfatia; K. Whisnant

2003-09-16T23:59:59.000Z

271

Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

Slosar, A.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.; Kuo, C. -L.

2015-03-01T23:59:59.000Z

272

Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay  

E-Print Network [OSTI]

The study of the neutrinoless double beta ($0 \\beta\\beta$) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the $0 \\beta\\beta$ decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with di?erent methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date image on the present neutrino mass sensitivities associated with $0 \\beta\\beta$ measurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.

Sabin Stoica; Andrei Neacsu

2014-05-02T23:59:59.000Z

273

High energy neutrino emission from the earliest gamma-ray bursts  

SciTech Connect (OSTI)

We discuss the high energy neutrino emission from gamma-ray bursts resulting from the earliest generation (''population III'') stars forming in the Universe, whose core collapses into a black hole. These gamma-ray bursts are expected to produce a highly relativistic, magnetically dominated jet, where protons can be accelerated to ultrahigh energies. These interact with the photons produced by the jet, leading to ultrahigh energy photomeson neutrinos as well as secondary leptons and photons. The photon luminosity and the shock properties, and thus the neutrino spectrum, depend on the mass of the black holes as well as on the density of the surrounding external gas. We calculate the individual source neutrino spectral fluxes and the expected diffuse neutrino flux for various source parameters and evolution scenarios. Both the individual and diffuse signals appear detectable in the 1-300 PeV range with current and planned neutrino detectors such as IceCube and ARIANNA, provided the black hole mass is in excess of 30-100 solar masses. This provides a possible test for the debated mass of the progenitor stellar objects, as well as a probe for the early cosmological environment and the formation rate of the earliest structures.

Gao Shan; Toma, Kenji; Meszaros, Peter [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, 16802 (United States)

2011-05-15T23:59:59.000Z

274

TeV-PeV Neutrino Oscillation of Low-luminosity Gamma-ray Bursts  

E-Print Network [OSTI]

There is a sign that long-duration gamma-ray bursts (GRBs) originate from the core collapse of massive stars. During a jet puncturing through the progenitor envelope, high energy neutrinos can be produced by the reverse shock formed at the jet head. It is suggested that low-luminosity GRBs (LL-GRBs) are possible candidates of this high energy neutrino precursor up to $\\sim {\\rm PeV}$. Before leaving the progenitor, these high energy neutrinos must oscillate from one flavor to another with matter effect in the envelope. Under the assumption of a power-law stellar envelope density profile $\\rho \\propto r^{-\\alpha}$ with an index $\\alpha$, we study the properties of ${\\rm TeV-PeV}$ neutrino oscillation. We find that adiabatic conversion is violated for these neutrinos so we do certain calibration of level crossing effect. The resonance condition is reached for different energies at different radii. We notice that the effective mixing angles in matter for ${\\rm PeV}$ neutrinos are close to zero so the transition ...

Xiao, D

2015-01-01T23:59:59.000Z

275

Neutrino-2008: Where are we? Where are we going?  

E-Print Network [OSTI]

Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

Smirnov, Alexei Yu

2008-01-01T23:59:59.000Z

276

Neutrino-2008: Where are we? Where are we going?  

E-Print Network [OSTI]

Our present knowledge of neutrinos can be summarized in terms of the "standard neutrino scenario". Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

Alexei Yu. Smirnov

2008-10-15T23:59:59.000Z

277

Cross section dependence of event rates at neutrino telescopes  

E-Print Network [OSTI]

We examine the dependence of event rates at neutrino telescopes on the neutrino-nucleon cross section for neutrinos with energy above 1 PeV, and contrast the results with those for cosmic ray experiments. Scaling of the ...

Marfatia, Danny; Seckel, D.; McKay, D. W.; Hussain, S.

2006-10-20T23:59:59.000Z

278

Measuring the neutrino mass from future wide galaxy cluster catalogues  

SciTech Connect (OSTI)

We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ?CDM+? model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energy equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of ?(M{sub ?}) ? 0.9 eV, comparable with that derived from present Ly? forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ?CDM+? cosmology allows to place constraints on the total neutrino mass of ?(M{sub ?}) ? 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to ?(M{sub ?}) ? 0.034 eV, i.e. the minimum neutrino mass predicted by oscillation experiments would be detected in a ?CDM framework. We thus show that galaxy clusters from future wide galaxy surveys will be an excellent tool for studying cosmology and fundamental physics.

Carbone, Carmelita; Moscardini, Lauro; Cimatti, Andrea [Dipartimento di Astronomia, Alma Mater Studiorum-Universit di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Fedeli, Cosimo, E-mail: carmelita.carbone@unibo.it, E-mail: cosimo.fedeli@astro.ufl.edu, E-mail: lauro.moscardini@unibo.it, E-mail: a.cimatti@unibo.it [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

2012-03-01T23:59:59.000Z

279

The Power of Neutrino Mass Sum Rules for Neutrinoless Double Beta Decay Experiments  

E-Print Network [OSTI]

Neutrino mass sum rules relate the three neutrino masses within generic classes of flavour models, leading to restrictions on the effective mass parameter measured in experiments on neutrinoless double beta decay as a function of the lightest neutrino mass. We perform a comprehensive study of the implications of such neutrino mass sum rules, which provide a link between model building, phenomenology, and experiments. After a careful explanation of how to derive predictions from sum rules, we discuss a large number of examples both numerically, using all three global fits available for the neutrino oscillation data, and analytically wherever possible. In some cases, our results disagree with some of those in the literature for reasons that we explain. Finally we discuss the experimental prospects for many current and near-future experiments, with a particular focus on the uncertainties induced by the unknown nuclear physics involved. We find that, in many cases, the power of the neutrino mass sum rules is so strong as to allow certain classes of models to be tested by the next generation of neutrinoless double beta decay experiments. Our study can serve as both a guideline and a theoretical motivation for future experimental studies.

Stephen F. King; Alexander Merle; Alexander J. Stuart

2013-07-31T23:59:59.000Z

280

Effective Mass Matrix for Light Neutrinos Consistent with Solar and Atmospheric Neutrino Experiments  

E-Print Network [OSTI]

We propose an effective mass matrix for light neutrinos which is consistent with the mixing pattern indicated by solar and atmospheric neutrino experiments. Two scenarios for the mass eigenvalues are discussed and the connection with double beta decay is noted.

S. P. Rosen; Waikwok Kwong

1995-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory (SNO). By exploiting particle identification information obtained from the proportional counters installed ...

Formaggio, Joseph A.

282

MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY  

E-Print Network [OSTI]

MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY Monica me everything from the fine details of signal extraction, iii #12; Fortran and C++ to bird watching

Waltham, Chris

283

Neutrinos and nucleosynthesis in core-collapse supernovae  

SciTech Connect (OSTI)

Massive stars (M > 8-10 M{sub ?}) undergo core collapse at the end of their life and explode as supernova with ? 10{sup 51} erg of kinetic energy. While the detailed supernova explosion mechanism is still under investigation, reliable nucleosynthesis calculations based on successful explosions are needed to explain the observed abundances in metal-poor stars and to predict supernova yields for galactic chemical evolution studies. To predict nucleosynthesis yields for a large number of progenitor stars, computationally efficient explosion models are required. We model the core collapse, bounce and subsequent explosion of massive stars assuming spherical symmetry and using detailed microphysics and neutrino physics combined with a novel method to artificially trigger the explosion (PUSH). We discuss the role of neutrinos, the conditions in the ejecta, and the resulting nucleosynthesis.

Frhlich, C.; Casanova, J. [Department of Physics, North Carolina State University, Raleigh, NC, 27695 (United States); Hempel, M.; Liebendrfer, M. [Departement fr Physik, Universitt Basel, CH-4056 Basel (Switzerland); Melton, C. A. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Perego, A. [Institut fr Kernphysik, Technische Universitt Darmstadt, D-64289 Darmstadt (Germany)

2014-06-24T23:59:59.000Z

284

Ultra-low Q values for neutrino mass measurements  

SciTech Connect (OSTI)

We investigate weak nuclear decays with extremely small kinetic energy release (Q value) and thus extremely good sensitivity to the absolute neutrino mass scale. In particular, we consider decays into excited daughter states, and we show that partial ionization of the parent atom can help to tune Q values to << 1 keV. We discuss several candidate isotopes undergoing {beta}{sup {+-}}, bound state {beta}, or electron capture decay, and come to the conclusion that a neutrino mass measurement using low-Q decays might only be feasible if no ionization is required, and if future improvements in isotope production technology, nuclear mass spectroscopy, and atomic structure calculations are possible. Experiments using ions, however, are extremely challenging due to the large number of ions that must be stored. New precision data on nuclear excitation levels could help to identify further isotopes with low-Q decay modes and possibly less challenging requirements.

Kopp, Joachim; /Heidelberg, Max Planck Inst. /Fermilab; Merle, Alexander; /Heidelberg, Max Planck Inst.

2009-11-01T23:59:59.000Z

285

The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass  

E-Print Network [OSTI]

The Neutrinoless double beta Decay allows to determine the effectice Majorana electron neutrino mass. For this the following conditions have to be satisfied: (i) The neutrino must be a Majorana particle, i. e. identical to the antiparticle. (ii) The half life has to be measured. (iii)The transition matrix element must be reliably calculated. (iv) The leading mechanism must be the light Majorana neutrino exchange. The present contribution studies the accuracy with which one can calculate by different methods: (1) Quasi-Particle Random Phase Approach (QRPA), (2) the Shell Model (SM), (3) the (before the variation) angular momentum projected Hartree-Fock-Bogoliubov method (PHFB)and the (4) Interacting Boson Approach (IBA). In the second part we investigate how to determine experimentally the leading mechanism for the Neutrinoless Double Beta Decay. Is it (a) the light Majorana neutrino exchange as one assumes to determine the effective Majorana neutrino mass, ist it the heavy left (b) or right handed (c) Majorana neutrino exchange allowed by left-right symmetric Grand Unified Theories (GUT's). Is it a mechanism due to Supersymmetry e.g. with gluino exchange and R-parity and lepton number violating terms. At the end we assume, that Klapdor et al. have indeed measured the Neutrinoless Double Beta Decay(, although contested,)and that the light Majorana neutrino exchange is the leading mechanism. With our matrix elements we obtain then an effective Majorana neutrino mass of: = 0.24 [eV], exp (pm) 0.02; theor. (pm) 0.01 [eV

Amand Faessler

2012-03-16T23:59:59.000Z

286

Emission angle distribution and flavor transformation of supernova neutrinos  

E-Print Network [OSTI]

Using moment equations we analyze collective flavor transformation of supernova neutrinos. We study the convergence of moment equations and find that numerical results using a few moment converge quite fast. We study effects of emission angle distribution of neutrinos on neutrino sphere. We study scaling law of the amplitude of neutrino self-interaction Hamiltonian and find that it depends on model of emission angle distribution of neutrinos. Dependence of neutrino oscillation on different models of emission angle distribution is studied.

Wei Liao

2009-06-28T23:59:59.000Z

287

Towards the detection of cosmological relic neutrino with neutrino capture on a beta decaying nuclei  

E-Print Network [OSTI]

In this paper we report on recent results in the eld of the phenomenology of very low energy neutrino interactions. We briey describe the cross section calculation for Neutrino Capture on Beta decay nuclei (NCB). We show that the resulting cross section open the possibility to detect the cosmological relic neutrinos. With this achievement, the relic neutrino detection has been downscaled from a principle problem to a technological challenge. We also summarise the state of the art about possible detection techniques.

Messina, M; Mangano, G

2010-01-01T23:59:59.000Z

288

Looking for matter enhanced neutrino oscillations via day v. night asymmetries in the NCD phase of the Sudbury Neutrino Observatory  

E-Print Network [OSTI]

To measure the regeneration of electron neutrinos during passage through the Earth via the MSW effect, the difference in electron neutrino flux between day and night is measured at the Sudbury Neutrino Observatory (SNO). ...

Ott, Richard Anthony, III

2011-01-01T23:59:59.000Z

289

Neutrino-electron scattering and the choice between different MSW solutions of the solar neutrino problem  

SciTech Connect (OSTI)

We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs.

Rosen, S.P.; Gelb, J.M.

1987-01-01T23:59:59.000Z

290

Exotic Solutions to the Solar Neutrino Problem and Some Implications for Low Energy Solar Neutrino Experiments  

E-Print Network [OSTI]

In this talk, I review, from the phenomenological point of view, solutions to the solar neutrino problem, which are not provided by the conventional neutrino oscillation induced by mass and flavor mixing, and show that they can provide a good fit to the observed data. I also consider some simple implications for low energy solar neutrino experiments.

H. Nunokawa

2001-05-03T23:59:59.000Z

291

FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY  

E-Print Network [OSTI]

FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY for approaching problems that I found to be more generally useful. Godwin Mayers, Chuck Alexander, Jim Cook and with me. v #12; ABSTRACT FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY

Waltham, Chris

292

EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at...  

Broader source: Energy.gov (indexed) [DOE]

43: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois EA-1943: Proposed Long Baseline Neutrino Experiment (LBNE) at Fermilab, Batavia, Illinois...

293

amanda neutrino telescope: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under...

294

amanda neutrino telescopes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under...

295

Majorana Neutrino Masses from Neutrinoless Double Beta Decay and Cosmology  

E-Print Network [OSTI]

When three Majorana neutrinos describe the solar and atmospheric neutrino data via oscillations, a nonzero measurement of neutrinoless double beta ($0\

V. Barger; K. Whisnant

1999-04-08T23:59:59.000Z

296

Double Beta Decay, Majorana Neutrinos, and Neutrino Mass  

E-Print Network [OSTI]

The theoretical and experimental issues relevant to neutrinoless double-beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the non-observation of neutrinoless double-beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

Frank T. Avignone III; Steven R. Elliott; Jonathan Engel

2007-11-26T23:59:59.000Z

297

Double beta decay, Majorana neutrinos, and neutrino mass  

SciTech Connect (OSTI)

The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

Avignone, Frank T. III; Elliott, Steven R.; Engel, Jonathan [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)

2008-04-15T23:59:59.000Z

298

SEARCH FOR MUON NEUTRINOS FROM GAMMA-RAY BURSTS WITH THE IceCube NEUTRINO TELESCOPE  

SciTech Connect (OSTI)

We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3 hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 x 10{sup -3} erg cm{sup -2} (72 TeV-6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10{sup -3} erg cm{sup -2} (2.2-55 TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 x 10{sup -3} erg cm{sup -2} (3 TeV-2.8 PeV) assuming an E {sup -2} flux.

Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Bazo Alba, J. L.; Benabderrahmane, M. L.; Berdermann, J. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Universite Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Becker, J. K. [Department of Physics, TU Dortmund University, D-44221 Dortmund (Germany)

2010-02-10T23:59:59.000Z

299

On the Electric Charge of the Neutrino  

E-Print Network [OSTI]

Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.

Rasulkhozha S. Sarafiddinov

2010-12-09T23:59:59.000Z

300

Nuclear correction factors from neutrino DIS  

E-Print Network [OSTI]

Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions and we use this framework to analyze the consistency of neutrino DIS data with other nuclear data.

K. Kovarik

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pion condensation in a dense neutrino gas  

E-Print Network [OSTI]

We argue that using an equilibrated gas of neutrinos it is possible to probe the phase diagram of QCD for finite isospin and small baryon chemical potentials. We discuss this region of the phase diagram in detail and demonstrate that for large enough neutrino densities a Bose-Einstein condensate of positively charged pions arises. Moreover, we show that for nonzero neutrino density the degeneracy in the lifetimes and masses of the charged pions is lifted.

Hiroaki Abuki; Tomas Brauner; Harmen J. Warringa

2009-08-26T23:59:59.000Z

302

Photomultiplier Tubes: Calibration and Neutrino Physics  

SciTech Connect (OSTI)

Photomultiplier Tubes are devices designed to amplify very small light signals, on the order of single photons, to levels that are detectable by conventional electronics. Such a high level of amplification, however, comes with a quite a few potential problems, as the relationship between a light signal in and the current out- the response of the system- can be difficult to determine, meaning that photomultiplier tubes' use in scientific research requires a great deal of sensitive calibration. Once calibrated, the photomultiplier tube is a tool that can be used on a number of interesting problems, including the field of neutrino physics. This work deals with the use of photomultiplier tubes' use in the upcoming Double Chooz experiment to determine the mixing angle theta{sub 13}, between different neutrino mass eigenstates. Calibration of the tubes requires measurement of the charge characteristics, most notably, the gain, pedestal, and the dark rate of a tube. Moreover, for all modern tubes, there is an additional feature which can be used to calibrate the system, the single photo electron peak, which describes the response of the tube to a single photon. Some theories predict higher order effects, in addition to the single photoelectron peak, including things like incomplete multiplication of a single photon electron, features which are theoretically able to be determined by a detailed examination of the single photoelectron peak. This paper goes through the methods of calibrating a phototubes both with and without a single photoelectron peak, and is unable to determine conclusively whether or not partial multiplication is able to explain certain features of photomultiplier tubes with a single photoelectron peak.

Damon, Edward; Maricic, Jelena [Drexel University, Philadelphia, PA 19104 (United States)

2010-03-30T23:59:59.000Z

303

Non-standard Neutrino Oscillations at Icecube  

E-Print Network [OSTI]

In this talk I review the potential of Icecube for revealing physics beyond the standard model in the oscillation of atmospheric neutrinos.

M. C. Gonzalez-Garcia

2006-12-19T23:59:59.000Z

304

Testing nuclear models via neutrino scattering  

E-Print Network [OSTI]

Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

Barbaro, M B; Amaro, J E; Antonov, A N; Caballero, J A; Donnelly, T W; Gonzalez-Jimenez, R; Ivanov, M V; de Guerra, E Moya; Megias, G D; Simo, I Ruiz; Udias, J M

2014-01-01T23:59:59.000Z

305

Testing nuclear models via neutrino scattering  

E-Print Network [OSTI]

Recent progresses on the relativistic modeling of neutrino-nucleus reactions are presented and the results are compared with high precision experimental data in a wide energy range.

M. B. Barbaro; C. Albertus; J. E. Amaro; A. N. Antonov; J. A. Caballero; T. W. Donnelly; R. Gonzalez-Jimenez; M. V. Ivanov; E. Moya de Guerra; G. D. Megias; I. Ruiz Simo; J. M. Udias

2014-11-21T23:59:59.000Z

306

Non-Oscillation Probes of Neutrino Masses  

SciTech Connect (OSTI)

The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

2010-03-30T23:59:59.000Z

307

Non-oscillation probes of neutrino masses  

E-Print Network [OSTI]

The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of order 100 meV are being set up or commissioned.

C. Weinheimer

2009-12-23T23:59:59.000Z

308

Gamma Ray Burst Neutrinos Probing Quantum Gravity  

E-Print Network [OSTI]

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

309

Scintillator yields glimpse of elusive solar neutrinos  

SciTech Connect (OSTI)

The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Suns energy.

Smart, Ashley G.

2014-11-01T23:59:59.000Z

310

Neutrino physics with an intense \  

E-Print Network [OSTI]

We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

R. Henning

2010-11-16T23:59:59.000Z

311

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under constructi on, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m ...

Halzen, F; Halzen, Francis; Hooper, Dan

2004-01-01T23:59:59.000Z

312

IceCube-Plus: An Ultra-High Energy Neutrino Telescope  

E-Print Network [OSTI]

While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.

Francis Halzen; Dan Hooper

2003-12-22T23:59:59.000Z

313

Study of electron and neutrino interactions  

SciTech Connect (OSTI)

This is the final report for the DOE-sponsored experimental particle physics program at Virginia Tech to study the properties of the Standard Model of strong and electroweak interactions. This contract (DE-AS05-80ER10713) covers the period from August 1, 1980 to January 31, 1993. Task B of this contract, headed by Professor Alexander Abashian, is described in this final report. This program has been pursued on many fronts by the researchers-in a search for axions at SLAC, in electron-positron collisions in the AMY experiment at the TRISTAN collider in Japan, in measurements of muon decay properties in the MEGA and RHO experiments at the LAMPF accelerator, in a detailed analysis of scattering effects in the purported observation of a 17 keV neutrino at Oxford, in a search for a disoriented chiral condensate with the MiniMax experiment at Fermilab, and in an R&D program on resistive plate counters that could find use in low-cost high-quality charged particle detection at low rates.

Abashian, A.

1997-03-18T23:59:59.000Z

314

Constraints on the Sum of Neutrino Masses from Cosmology and their impact on world neutrino data  

E-Print Network [OSTI]

We derive upper limits on the sum of neutrino masses from an updated combination of data from Cosmic Microwave Background experiments and Galaxy Redshifts Surveys. The results are discussed in the context of three-flavor neutrino mixing and compared with neutrino oscillation data, with upper limits on the effective neutrino mass in Tritium beta decay from the Mainz and Troitsk experiments and with the claimed lower bound on the effective Majorana neutrino mass in neutrinoless double beta decay from the Heidelberg-Moscow experiment.

A. Melchiorri; G. L. Fogli; E. Lisi; A. Marrone; A. Palazzo; P. Serra; J. I. Silk

2005-01-25T23:59:59.000Z

315

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope  

SciTech Connect (OSTI)

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeVPeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

NONE

2013-03-01T23:59:59.000Z

316

Acoustic detection of astrophysical neutrinos in South Pole ice  

E-Print Network [OSTI]

When high-energy particles interact in dense media to produce a particle shower, most of the shower energy is deposited in the medium as heat. This causes the medium to expand locally and emit a shock wave with a medium-dependent peak frequency on the order of 10 kHz. In South Pole ice in particular, the elastic properties of the medium have been theorized to provide good coupling of particle energy to acoustic energy. The acoustic attenuation length has been theorized to be several km, which could enable a sparsely instrumented large-volume detector to search for rare signals from high-energy astrophysical neutrinos. We simulated a hybrid optical/radio/acoustic extension to the IceCube array, specifically intended to detect cosmogenic (GZK) neutrinos with multiple methods simultaneously in order to achieve high confidence in a discovered signal and to measure angular, temporal, and spectral distributions of GZK neutrinos. This work motivated the design, deployment, and operation of the South Pole Acoustic Te...

Vandenbroucke, Justin

2012-01-01T23:59:59.000Z

317

RELATIVISTIC GLOBAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS  

SciTech Connect (OSTI)

Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes are plausible candidates for the central engines of gamma-ray bursts (GRBs). We investigate one-dimensional global solutions of NDAFs, taking into account general relativity in the Kerr metric, neutrino physics, and nucleosynthesis more precisely than previous works. We calculate 16 solutions with different characterized accretion rates and black hole spins to exhibit the radial distributions of various physical properties in NDAFs. We confirm that the electron degeneracy has important effects in NDAFs and we find that the electron fraction is about 0.46 in the outer region for all 16 solutions. From the perspective of the mass fraction, free nucleons, {sup 4}He, and {sup 5}6Fe dominate in the inner, middle, and outer regions, respectively. The influence of neutrino trapping on the annihilation is of importance for the superhigh accretion ( M-dot =10 M{sub sun} s{sup -1}) and most of the 16 solutions have an adequate annihilation luminosity for GRBs.

Xue Li; Liu Tong; Gu Weimin; Lu Jufu, E-mail: tongliu@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2013-08-15T23:59:59.000Z

318

Non-standard Neutrino Interactions  

E-Print Network [OSTI]

Theories beyond the Standard Model must respect its gauge symmetry. This implies strict constraints on the possible models of Non-Standard Neutrino Interactions (NSIs). We review here the present status of NSIs from the point of view of effective field theory. Our recent work on the restrictions implied by Standard Model gauge invariance is provided along with some examples of possible gauge invariant models featuring non-standard interactions.

D. Hernandez

2009-11-25T23:59:59.000Z

319

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

320

Graphene, neutrino mass and oscillation  

E-Print Network [OSTI]

A resolution of the Abraham-Minkowski dilemma is presented that other constant velocities can play the role of c in the theory of relativity. For example, in 2005 electrons of graphene were discovered to behave as if the coefficient is a Fermi velocity. Then we propose a conjecture for neutrinos to avoid the contradiction among two-component theory, negative rest mass-square and oscillation.

Z. Y. Wang

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Neutrino telescopes in the World  

SciTech Connect (OSTI)

Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

Ernenwein, J.-P. [GRPHE, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse cedex (France)

2007-01-12T23:59:59.000Z

322

Firewall Phenomenology with Astrophysical Neutrinos  

E-Print Network [OSTI]

One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, firewalls have been proposed as an alternative to black hole event horizons. In this letter, we explore the phenomenological implications of black holes possessing a surface or firewall. We predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. We further show that, independent of the generation mechanism, IceCube data can be explained (at $1\\sigma$ confidence level) by conversion of accretion on...

Afshordi, Niayesh

2015-01-01T23:59:59.000Z

323

Probing thermonuclear supernova explosions with neutrinos  

E-Print Network [OSTI]

Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

A. Odrzywolek; T. Plewa

2011-03-27T23:59:59.000Z

324

Neutrinos and the synthesis of heavy elements: the role of gravity  

E-Print Network [OSTI]

The synthesis of heavy elements in the Universe presents several challenges. From one side the astrophysical site is still undetermined and on other hand the input from nuclear physics requires the knowledge of properties of exotic nuclei, some of them perhaps accessible in ion beam facilities. Black hole accretion disks have been proposed as possible r-process sites. Analogously to Supernovae these objects emit huge amounts of neutrinos. We discuss the neutrino emission from black hole accretion disks. In particular we show the influence that the black hole strong gravitational field has on changing the electron fraction relevant to the synthesis of elements.

O. L. Caballero; R. Surman; G. C. McLaughlin

2014-10-28T23:59:59.000Z

325

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

S. Bevan; S. Danaher; J. Perkin; S. Ralph; C. Rhodes; L. Thompson; T. Sloan; D. Waters

2007-04-08T23:59:59.000Z

326

Simulation of Ultra High Energy Neutrino Interactions in Ice and Water  

E-Print Network [OSTI]

The CORSIKA program, usually used to simulate extensive cosmic ray air showers, has been adapted to work in a water or ice medium. The adapted CORSIKA code was used to simulate hadronic showers produced by neutrino interactions. The simulated showers have been used to study the spatial distribution of the deposited energy in the showers. This allows a more precise determination of the acoustic signals produced by ultra high energy neutrinos than has been possible previously. The properties of the acoustic signals generated by such showers are described.

Bevan, S; Perkin, J; Ralph, S; Rhodes, C; Thompson, L; Sloan, T; Waters, D

2007-01-01T23:59:59.000Z

327

TANAMI Blazars in the IceCube PeV Neutrino Fields  

E-Print Network [OSTI]

The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to the steeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We present the multiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to {\\gamma}-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is large enough to explain the two detected PeV events.

F. Krau; M. Kadler; K. Mannheim; R. Schulz; J Trstedt; J. Wilms; R. Ojha; E. Ros; G. Anton; W. Baumgartner; T. Beuchert; J. Blanchard; C. Brkel; B. Carpenter; T. Eberl; P. G. Edwards; D. Eisenacher; D. Elssser; K. Fehn; U. Fritsch; N. Gehrels; C. Grfe; C. Groberger; H. Hase; S. Horiuchi; C. James; A. Kappes; U. Katz; A. Kreikenbohm; I. Kreykenbohm; M. Langejahn; K. Leiter; E. Litzinger; J. E. J. Lovell; C. Mller; C. Phillips; C. Pltz; J. Quick; T. Steinbring; J. Stevens; D. J. Thompson; A. K. Tzioumis

2014-06-03T23:59:59.000Z

328

Dark energy, cosmological constant and neutrino mixing  

E-Print Network [OSTI]

The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.

A. Capolupo; S. Capozziello; G. Vitiello

2007-05-02T23:59:59.000Z

329

MSW Implications of Solar Neutrino Experiments  

E-Print Network [OSTI]

I discuss the implications for future solar neutrino experiments of the most recent gallium data in the context of the MSW mechanism. At the low energy end of the solar neutrino spectrum we need to measure the $^7$Be component directly; and at the high energy end, we need precise measurements of the shape of the spectrum.

S. P. Rosen

1992-10-01T23:59:59.000Z

330

Neutrino oscillations and neutrinoless double beta decay  

E-Print Network [OSTI]

The relation between neutrino oscillation parameters and neutrinoless double beta decay is studied, assuming normal and inverse hierarchies for Majorana neutrino masses. For normal hierarchy the crucial dependence on U_{e3} is explored. The link with tritium beta decay is also briefly discussed.

D. Falcone; F. Tramontano

2001-03-16T23:59:59.000Z

331

Neutrino optics and oscillations in gravitational fields  

E-Print Network [OSTI]

We study the propagation of neutrinos in gravitational fields using wave functions that are exact to first order in the metric deviation. For illustrative purposes, the geometrical background is represented by the Lense-Thirring metric. We derive explicit expressions for neutrino deflection, helicity transitions, flavor oscillations and oscillation Hamiltonian.

G. Lambiase; G. Papini; R. Punzi; G. Scarpetta

2005-03-07T23:59:59.000Z

332

Solar opacity, neutrino signals and helioseismology  

E-Print Network [OSTI]

In connection with the recent suggestion by Tsytovich et al. that opacity in the solar core could be overestimated, we consider the following questions: i) What would a 10\\% opacity reduction imply for the solar neutrino puzzle? ii) Is there any hope of solving the solar neutrino puzzle by changing opacity? iii) Is a 10\\% opacity reduction testable with helioseismological data?

B. Ricci

1996-05-24T23:59:59.000Z

333

Neutrino SuperBeams at Fermilab  

SciTech Connect (OSTI)

In this talk I will give a brief description of long baseline neutrino physics, the LBNE experiment and Project X at Fermilab. A brief outline of the physics of long baseline neutrino experiments, LBNE and Project X at Fermilab is given in this talk.

Parke, Stephen J.; /Fermilab

2011-08-23T23:59:59.000Z

334

Consistency of 8B neutrino spectra  

E-Print Network [OSTI]

We identify and quantify systematic effects not accounted for in two previous measurements of the alpha-alpha relative-energy distribution in the beta decay of 8B, which can explain the apparent disagreement with respect to two newer measurements. This settles a current dispute concerning the shape of the 8B neutrino spectrum of importance to solar-neutrino studies.

Oliver S. Kirsebom; Hans O. U. Fynbo; Riccardo Raabe; Karsten Riisager; Thomas Roger

2014-08-05T23:59:59.000Z

335

Neutrino Balls and Gamma-Ray Bursts  

E-Print Network [OSTI]

We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

B. Holdom; R. A. Malaney

1993-06-17T23:59:59.000Z

336

Neutrino mixing and oscillations in astrophysical environments  

SciTech Connect (OSTI)

A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

2014-05-02T23:59:59.000Z

337

Permanent Home Number: Residential Number  

E-Print Network [OSTI]

Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

Viglas, Anastasios

338

Strong Upper Limits on Sterile Neutrino Warm Dark Matter  

SciTech Connect (OSTI)

Sterile neutrinos are attractive dark matter candidates. Their parameter space of mass and mixing angle has not yet been fully tested despite intensive efforts that exploit their gravitational clustering properties and radiative decays. We use the limits on gamma-ray line emission from the Galactic center region obtained with the SPI spectrometer on the INTEGRAL satellite to set new constraints, which improve on the earlier bounds on mixing by more than 2 orders of magnitude, and thus strongly restrict a wide and interesting range of models.

Yueksel, Hasan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Beacom, John F. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Astronomy, Ohio State University, Columbus, Ohio 43210 (United States); Watson, Casey R. [Department of Physics and Astronomy, Millikin University, Decatur, Illinois 62522 (United States)

2008-09-19T23:59:59.000Z

339

E-Print Network 3.0 - approximative neutrino transport Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neutrino transport Page: << < 1 2 3 4 5 > >> 1 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Summary: neutrino emission by its approximate dependence upon the...

340

The Effect of Sterile States on the Magnetic Moments of Neutrinos  

E-Print Network [OSTI]

We briefly review recent work exploring the effect of light sterile neutrino states on the neutrino magnetic moment as explored by the reactor and solar neutrino experiments.

A. B. Balantekin; N. Vassh

2014-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar neutrino measurements in Super-Kamiokande-I  

E-Print Network [OSTI]

The details of Super--Kamiokande--I's solar neutrino analysis are given. Solar neutrino measurement in Super--Kamiokande is a high statistics collection of $^8$B solar neutrinos via neutrino-electron scattering. The analysis method and results of the 1496 day data sample are presented. The final oscillation results for the data are also presented.

Super-Kamiokande Collaboration

2005-09-26T23:59:59.000Z

342

Mixed MSW and Vacuum Solutions of Solar Neutrino Problem  

E-Print Network [OSTI]

Assuming three flavour neutrino mixing takes place in vacuum, we investigate the possibility that the solar $\

Qiu-Yu Liu

1997-08-11T23:59:59.000Z

343

Detectors for Neutrino Physics at the First Muon Collider  

E-Print Network [OSTI]

We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop'' scale is also discussed.

Deborah A. Harris; Kevin S. McFarland

1998-04-20T23:59:59.000Z

344

Double Beta Decay and the Absolute Neutrino Mass Scale  

E-Print Network [OSTI]

After a short review of the current status of three-neutrino mixing, the implications for the values of neutrino masses are discussed. The bounds on the absolute scale of neutrino masses from Tritium beta-decay and cosmological data are reviewed. Finally, we discuss the implications of three-neutrino mixing for neutrinoless double-beta decay.

Carlo Giunti

2003-08-20T23:59:59.000Z

345

Solar neutrinos and the solar composition problem  

E-Print Network [OSTI]

Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

Carlos Pena-Garay; Aldo Serenelli

2008-11-16T23:59:59.000Z

346

The MSW effect and Solar Neutrinos  

E-Print Network [OSTI]

The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the effect of transformation of one neutrino species (flavor) into another one in a medium with varying density. Three basic elements of the effect include: the refraction of neutrinos in matter, the resonance (level crossing) and the adiabaticity. The key notion is {\\it the neutrino eigenstates} in matter. Physical picture of the effect is described in terms of the flavors and the relative phases of eigenstates and the transitions between eigenstates. Features of the large mixing realization of the MSW effect are discussed. The large mixing MSW effect (LMA) provides the solution of the solar neutrino problem. We show in details how this mechanism works. Physics beyond the LMA solution is discussed. The lower $Ar$-production rate (in comparison with the LMA prediction) and absence of significant "turn up" of the spectrum at low energies can be due to an additional effect of the light sterile neutrino with very small mixing.

A. Yu. Smirnov

2003-05-09T23:59:59.000Z

347

Neutrinoless double beta decay in four-neutrino models  

E-Print Network [OSTI]

The most stringent constraint on the so-called effective electron neutrino mass from the present neutrinoless double beta decay experiments is |M_{ee}| < 0.2 eV, while the planned next generation experiment GENIUS is anticipated to reach a considerably more stringent limit |M_{ee}|< 0.001 eV. We investigate the constraints these bounds set on the neutrino masses and mixings of neutrinos in four-neutrino models where there exists a sterile neutrino along with the three ordinary neutrinos. We find that the GENIUS experiment would be sensitive to the electron neutrino masses down to the limit m_{\

Anna Kalliomaki; Jukka Maalampi

2000-03-29T23:59:59.000Z

348

La Thuile 2014: Theoretical premises to neutrino round table  

E-Print Network [OSTI]

This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

Francesco Vissani

2014-05-25T23:59:59.000Z

349

La Thuile 2014: Theoretical premises to neutrino round table  

E-Print Network [OSTI]

This talk, dedicated to the memory of G. Giacomelli, introduced the round table on neutrinos held in February 2014. The topics selected for the discussion are: 1) the neutrinoless double beta decay rate (interpretation in terms of light neutrinos, nuclear uncertainties); 2) the physics in the gigantic water Cherenkov detectors (proton decay, atmospheric neutrinos); 3) the study of neutrino oscillations (mass hierarchy and CP violation; other neutrino states); 4) the neutrino astronomy at low and high energies (solar, supernova, cosmic neutrinos). The importance of an active interplay between theory and experiment is highlighted.

Vissani, Francesco

2014-01-01T23:59:59.000Z

350

Many-Body Interactions of Neutrinos with Nuclei - Observables  

E-Print Network [OSTI]

Background: The total inclusive cross sections obtained for quasielastic (QE) scattering in the Mini Booster Neutrino Experiment (MiniBooNE) are significantly larger than those calculated by all models based on the impulse approximation and using the world average value for the axial mass of $M_A \\approx 1 \\GeV$. This discrepancy has led to various, quite different explanations in terms of increased axial masses, changes in the functional form of the axial form factor, increased vector strength in nuclei, and initial two-particle interactions. This is disconcerting since the neutrino energy reconstruction depends on the reaction mechanism. Purpose: We investigate whether exclusive observables, such as nucleon knock-out, can be used to distinguish between the various proposed reaction mechanisms. We determine the influence of 2p-2h excitations on the energy reconstruction. Method: We use the Giessen Boltzmann--Uehling--Uhlenbeck (GiBUU) model to predict numbers and spectra of knock-out nucleons. The model is extended by incorporating a simple, but realistic treatment of initial 2p-2h excitations. Results: We show numbers and spectra of knock-out nucleons and show their sensitivity to the presence of 2p-2h initial excitations. We also discuss the influence of 2p-2h excitations on the neutrino energy reconstruction. Conclusions: 2p-2h excitations do lead to an increase in the number $n$ of knock-out nucleons for $n \\ge 2$ while only the $n=1$ knock-out remains a clean signal of true QE scattering. The spectra of knock-out nucleons do also change, but their qualitative shape remains as before. In the energy reconstruction 2p-2h interactions lead to a downward shift of the reconstructed energy; this effect of 2p-2h excitations disappears at higher energies because the 2p-2h influence is spread out over a wider energy range.

O. Lalakulich; K. Gallmeister; U. Mosel

2014-09-24T23:59:59.000Z

351

SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

SAGE Collaboration

352

Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background  

E-Print Network [OSTI]

We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.

George M. Fuller; Chad T. Kishimoto; Alexander Kusenko

2011-10-28T23:59:59.000Z

353

Influence of flavor oscillations on neutrino beam instabilities  

SciTech Connect (OSTI)

We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

Mendona, J. T., E-mail: titomend@ist.utl.pt [Instituto de Fsica, Universidade de So Paulo, 05508-090 So Paulo SP (Brazil); Haas, F. [Instituto de Fsica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

2014-09-15T23:59:59.000Z

354

Stimulated neutrino transformation through turbulence on a changing density profile and application to supernovae  

E-Print Network [OSTI]

We apply the model of stimulated neutrino transitions to neutrinos traveling through turbulence on a non-constant density profile. We describe a method to predict the location of large amplitude transitions and demonstrate the effectiveness of this method by comparing to numerical calculations using a model supernova (SN) profile. The important wavelength scales of turbulence, both those that stimulate neutrino transformations and those that suppress them, are presented and discussed. We then examine the effects of changing the parameters of the turbulent spectrum, specifically the root-mean-square amplitude and cutoff wavelength, and show how the stimulated transitions model offers an explanation for the increase in both the amplitude and number of transitions with large amplitude turbulence, as well as a suppression or absence of transitions for long cutoff wavelengths. The method can also be used to predict the location of transitions between antineutrino states which, in the normal hierarchy we are using, will not undergo Mikheev-Smirnov-Wolfenstein (MSW) transitions. Finally, the stimulated neutrino transitions method is applied to the turbulence derived found in a 2D supernova simulation and explains the minimal observed effect on neutrino oscillations in the simulation as as being due to excessive long wavelength modes suppressing transitions and the absence of modes that fulfill the parametric resonance condition.

Kelly M. Patton; James P. Kneller; Gail C. McLaughlin

2015-01-07T23:59:59.000Z

355

An atmospheric muon neutrino disappearance measurement with the MINOS far detector  

SciTech Connect (OSTI)

It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 {+-} 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin{sup 2} 2{theta}{sub 23} = 0.95{sub -0.32} and {Delta}m{sub 23}{sup 2} = 0.93{sub -0.44}{sup +3.94} x 10{sup -3} eV{sup 2}. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

Gogos, Jeremy Peter; /Minnesota U.; ,

2007-12-01T23:59:59.000Z

356

Search for Ultra High-Energy Neutrinos with AMANDA-II  

SciTech Connect (OSTI)

A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

IceCube Collaboration; Klein, Spencer; Ackermann, M.

2007-11-19T23:59:59.000Z

357

Neutrino oscillation studies at LAMPF  

SciTech Connect (OSTI)

A search for {anti v}{sub {mu}} {yields} {anti v}{sub e} oscillations has been made by the Liquid Scintillator Neutrino Detector experiment at LAMPF after an initial month and a half run. The experiment observes eight events consistent with the reaction {anti v}{sub e}p {yields} e{sup +}n followed by np {yields} d{gamma} (2.2 MeV). The total estimated background is 0.9{plus_minus}0.2 events.

Louis, W.C.; LSND Collaboration

1994-09-01T23:59:59.000Z

358

A Toroidal Magnetised Iron Neutrino Detector (MIND) for a Neutrino Factory  

E-Print Network [OSTI]

A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

A. Bross; R. Wands; R. Bayes; A. Laing; F. J. P. Soler; A. Cervera Villanueva; T. Ghosh; J. J. Gmez Cadenas; P. Hernndez; J. Martn-Albo; J. Burguet-Castell

2013-08-06T23:59:59.000Z

359

Solar Neutrino Results from Super-Kamiokande  

E-Print Network [OSTI]

Super-Kamiokande-IV (SK-IV) data taking began in September of 2008, after upgrading the electronics and data acquisition system. Due to these upgrades and improvements to water system dynamics, calibration and analysis techniques, a solar neutrino signal could be extracted at recoil electron kinetic energies as low as 3.5 MeV. When the SK-IV data is combined with the previous three SK phases, the SK extracted solar neutrino flux is found to be $[2.37\\pm0.015\\mbox{(stat.)}\\pm0.04\\mbox{(syst.)}]\\times10^6$/(cm$^{2}$sec). The combination of the SK recoil electron energy spectra slightly favors distortions due to a changing electron flavor content. Such distortions are predicted when assuming standard solar neutrino oscillation solutions. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate results in a day-night asymmetry of $[-3.2\\pm1.1$(stat.)$\\pm0.5$(syst.)]$\\%$. A solar neutrino global oscillation analysis including all current solar neutrino data, as well as KamLAND reactor antineutrino data, measures the solar mixing angle as $\\sin^2\\theta_{12}=0.305\\pm0.013$, the solar neutrino mass squared splitting as $\\Delta m^2_{21}=7.49^{+0.19}_{-0.17}\\times10^{-5}$eV$^2$ and $\\sin^2\\theta_{13}=0.026^{+0.017}_{-0.012}$.

Andrew Renshaw

2014-03-18T23:59:59.000Z

360

Mass Varying Neutrinos in the Sun  

E-Print Network [OSTI]

In this work we study the phenomenological consequences of the dependence of mass varying neutrinos on the neutrino density in the Sun, which we precisely compute in each point along the neutrino trajectory. We find that a generic characteristic of these scenarios is that they establish a connection between the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This does not lead to any new allowed region in the oscillation parameter space. On the contrary, due to this effect, the description of solar neutrino data worsens for large absolute mass. As a consequence a lower bound on the level of degeneracy can be derived from the combined analysis of the solar and KamLAND data. In particular this implies that the analysis favours normal over inverted mass orderings. These results, in combination with a positive independent determination of the absolute neutrino mass, can be used as a test of these scenarios together with a precise determination of the energy dependence of the survival probability of solar neutrinos, in particular for low energies.

Marco Cirelli; M. C. Gonzalez-Garcia; Carlos Pena-Garay

2005-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Can Neutrinos be Degenerate in Mass?  

E-Print Network [OSTI]

We reconsider the possibility that the masses of the three light neutrinos of the Standard Model might be almost degenerate and close to the present upper limits from Tritium beta decay and cosmology. In such a scenario, the cancellations required by the latest upper limit on neutrinoless double-beta decay enforce near-maximal mixing that may be compatible only with the vacuum-oscillation scenario for solar neutrinos. We argue that the mixing angles yielded by degenerate neutrino mass-matrix textures are not in general stable under small perturbations. We evaluate within the MSSM the generation-dependent one-loop renormalization of neutrino mass-matrix textures that yielded degenerate masses and large mixing at the tree level. We find that m_{nu_e} > m_{nu_mu} > m_{nu_tau} after renormalization, excluding MSW effects on solar neutrinos. We verify that bimaximal mixing is not stable, and show that the renormalized masses and mixing angles are not compatible with all the experimental constraints, even for tanbeta as low as unity. These results hold whether the neutrino masses are generated by a see-saw mechanism with heavy neutrinos weighing approx. 10^{13} GeV or by non-renormalizable interactions at a scale approx. 10^5 GeV. We also comment on the corresponding renormalization effects in the minimal Standard Model, in which m_{nu_e} < m_{nu_mu} < m_{nu_tau}. Although a solar MSW effect is now possible, the perturbed neutrino masses and mixings are still not compatible with atmospheric- and solar-neutrino data.

John Ellis; Smaragda Lola

1999-04-13T23:59:59.000Z

362

Precision Measurement of Neutrino Oscillation Parameters with KamLAND  

SciTech Connect (OSTI)

This dissertation describes a measurement of the neutrino oscillation parameters #1;{Delta}m{sup 2}{sub 21}, θ{sub 12} and constraints on θ{sub 13} based on a study of reactor antineutrinos at a baseline of ∼ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ? 0.07 ? 10{sup 32} proton-years. For this exposure we expect 2140 ? 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350?88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (N{sub Obs} − N{sub Bkg})/N{sub Exp} = 0.59 ? 0.02(stat) ? 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.19}?10{sup −5}eV{sup 2}, θ{sub 12} = 32.5 ? 2.9 degrees and sin{sup 2} θ{sub 13} = 0.025{sup +0.035}{sub −0.035}, the 95% confidence-level upper limit on sin{sup 2} θ{sub 13} is sin{sup 2} θ{sub 13} < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: #1;{Delta}m{sup 2}{sub 21} = 7.60{sup +0.20}{sub −0.20} ? 10{sup −5}eV{sup 2}, θ{sub 12} = 33.5{sup +1.0}{sub −1.1} degrees, and sin{sup 2} θ{sub 13} = 0.013 ? 0.028 or sin{sup 2} θ{sub 13} < 0.06 at the 95% confidence level.

KamLAND,; O'Donnell, Thomas

2011-12-12T23:59:59.000Z

363

A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment  

SciTech Connect (OSTI)

Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

Coleman, Stephen James; /William-Mary Coll.

2011-01-01T23:59:59.000Z

364

Gravitational Phase Transition of Heavy Neutrino Matter  

E-Print Network [OSTI]

We study the phase transition of a system of self-gravitating neutrinos in the presence of a large radiation density background in the framework of the Thomas-Fermi model. We show that, by cooling a non-degenerate gas of massive neutrinos below some critical temperature, a condensed phase emerges, consisting of quasi-degenerate supermassive neutrino stars. These compact dark objects could play an important role in structure formation in this universe, as they might in fact provide the seeds for galactic nuclei and quasi-stellar objects.

Neven Bilic; Raoul D. Viollier

1996-07-16T23:59:59.000Z

365

Accelerator Design Concept for Future Neutrino Facilities  

SciTech Connect (OSTI)

This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

2008-02-03T23:59:59.000Z

366

On the 17-keV neutrino  

SciTech Connect (OSTI)

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in {beta} decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

367

On the 17-keV neutrino  

SciTech Connect (OSTI)

A brief review on the status of the 17-keV neutrino is presented. Several different experiments found spectral distortions which were consistently interpreted as evidence for a heavy neutrino admixture in [beta] decay. Recent experiments, however, rule out the existence of a 17-keV neutrino as well as escaping criticisms of earlier null results. Moreover, the majority of positive results have been reinterpreted in terms of instrumental effects, despite the need for a different explanation in each case. Anomalies persist in the low energy region of the tritium spectrum which deserve further investigation.

Hime, A.

1993-04-01T23:59:59.000Z

368

Fourth generation neutrinos and neutrino induced hadron production in the resonance region.  

E-Print Network [OSTI]

??We investigate two aspects in neutrino physics. First, we consider the extension of the standard model by a fourth fermion generation. Allowing finite mixing of (more)

Schalla, Dario

2013-01-01T23:59:59.000Z

369

On the MSW $?_e \\to ?_s$ transition solution of the solar neutrino problem  

E-Print Network [OSTI]

We study the stability of the two--neutrino MSW solution of the solar neutrino problem, corresponding to solar $\

P. I. Krastev; S. T. Petcov; L. Qiuyu

1996-02-16T23:59:59.000Z

370

A study of the appearance of tau neutrinos from a gamma ray burst by detecting their horizontal electromagnetic showers  

E-Print Network [OSTI]

We explore the possibilty of detecting horizontal electromagnetic showers of tau neutrinos from individual gamma ray bursts, in large scale detectors like HiRes and Telescope Array. We study the role of the parameters of a gamma ray burst in determining the expected number of tau events from that burst. The horizontal beam of tau leptons produce visible signals in the atmosphere. We find that there is a slim chance of observing tau lepton appearances from GRBs with Telescope Array. The number of signals is strongly dependent on the Lorentz factor $\\Gamma$, redshift $z$ of a GRB, energy emitted in muon neutrinos and antineutrinos $E_{\

Nayantara Gupta

2003-07-22T23:59:59.000Z

371

Light Dark Matter Detection Prospects at Neutrino Experiments  

E-Print Network [OSTI]

We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find in particular that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus anti-neutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or anti-neutrinos ($R_{\\mu}$ and $R_{\\bar \\mu}$) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to n...

Kumar, Jason; Smith, Stefanie

2009-01-01T23:59:59.000Z

372

CERN Neutrinos to Gran Sasso (CNGS) First Beam  

E-Print Network [OSTI]

The CNGS, CERN Neutrinos to Gran Sasso project, aims at directly detecting muon-neutrino to tau-neutrino oscillations. An intense muon-neutrino beam (10 to the 17 muon neutrinos)is generated at CERN per day and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. In LNGS large and complex detectors will allow to detect, in particular, the rare tau-neutrinos created by ??oscillation' from muon-neutrinos on their way between CERN and LNGS. On average around three tau-neutrino events are predicted per year in each of the ~2000 ton detectors. The construction of the CNGS beam facility started in September 2000, and the first neutrino beam has been produced in July 2006. In the presently approved physics programme, it is foreseen to run the facility for five years.

Gschwendtner, E

2006-01-01T23:59:59.000Z

373

The LMA MSW Solution of the Solar Neutrino Problem, Inverted Neutrino Mass Hierarchy and Reactor Neutrino Experiments  

E-Print Network [OSTI]

In the context of three-neutrino oscillations, we study the possibility of using antineutrinos from nuclear reactors to explore the 10^{-4} {\\rm eV^2} MSW solution of the solar neutrino problem and measure $\\ms$ with high precision. The KamLAND experiment is not expected to determine $\\ms$ if the latter happens to lie in the indicated region. By analysing both the total event rate suppression and the energy spectrum distortion caused by \\bar{\

S. T. Petcov; M. Piai

2002-03-18T23:59:59.000Z

374

Optimizing the Determination of the Neutrino Mixing Angle $?_{13}$ from Reactor Data  

E-Print Network [OSTI]

The technical breakthroughs of multiple detectors developed by Daya Bay and RENO collaborations have gotten great attention. Yet the optimal determination of neutrino mixing parameters from reactor data depends on the statistical method and demands equal attention. We find that a straightforward method using a minimal parameters will generally outperform a multi-parameter method by delivering more reliable values with sharper resolution. We review standard confidence levels and statistical penalties for models using extra parameters, and apply those rules to our analysis. We find that the methods used in recent work of the Daya Bay and RENO collaborations have several undesirable properties. The existing work also uses non-standard measures of significance which we are unable to explain. A central element of the current methods consists of variationally fitting many more parameters than data points. As a result the experimental resolution of $\\sin ^{2}(2\\theta _{13})$ is degraded. The results also become extremely sensitive to certain model parameters that can be adjusted arbitrarily. The number of parameters to include in evaluating significance is an important issue that has generally been overlooked. The measures of significance applied previously would be consistent if and only if all parameters but one were considered to have no physical relevance for the experiment's hypothesis test. Simpler, more transparent methods can improve the determination of the mixing angle $\\theta _{13}$ from reactor data, and exploit the advantages from superb hardware technique of the experiments. We anticipate that future experimental analysis will fully exploit those advantages.

Amir N. Khan; Douglas W. McKay; John P. Ralston

2014-01-17T23:59:59.000Z

375

Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts  

E-Print Network [OSTI]

Gamma-ray bursts (GRBs) are sources of energetic, highly variable fluxes of gamma rays, which demonstrates that they are powerful particle accelerators. Besides relativistic electrons, GRBs should also accelerate high-energy hadrons, some of which could escape cooling to produce ultra-high energy cosmic rays (UHECRs). Acceleration of high-energy hadrons in GRB blast waves will be established if high-energy neutrinos produced through photopion interactions in the blast wave are detected from GRBs. Limitations on the energy in nonthermal hadrons and the number of expected neutrinos are imposed by the fluxes from pair-photon cascades initiated in the same processes that produce neutrinos. Only the most powerful bursts at fluence levels >~ 3e-4 erg/cm^2 offer a realistic prospect for detection of >> TeV neutrinos. Detection of high-energy neutrinos is likely if GRB blast waves have large baryon loads and Doppler factors <~ 200. Cascade gamma rays will accompany neutrino production and might already have been detected as anomalous emission components in the spectra of some GRBs. Prospects for detection of GRBs in the Milky Way are also considered.

Charles D. Dermer; Armen Atoyan

2006-06-26T23:59:59.000Z

376

Neutrino Oscillation Experiments at Nuclear Reactors  

E-Print Network [OSTI]

In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

Giorgio Gratta

1999-05-06T23:59:59.000Z

377

Helioseismology, MSW and the Solar Neutrino Problem  

E-Print Network [OSTI]

In this talk I summarize recent work done in collaboration with Cliff Burgess and Denis Michaud, in which we performed a detailed investigation of how solar neutrinos propagate through helioseismic waves. We find that the MSW solar neutrino spectrum is not modified at all in the presence of seismic waves. This finding differs from earlier estimates mainly because most helioseismic waves are too weak in the vicinity of the MSW resonance to be of relevance for neutrino propagation. A special class of waves may however by subject to an instability and potentially have very large amplitudes. These waves do have long wavelengths, a situation for which the formalism employed in earlier analyses does not apply. Our numerical simulation significantly reduces their influence on neutrino propagation.

P. Bamert

1997-08-03T23:59:59.000Z

378

Test of Lorentz invariance with atmospheric neutrinos  

E-Print Network [OSTI]

A search for neutrino oscillations induced by Lorentz violation has been performed using 4,438 live-days of Super-Kamiokande atmospheric neutrino data. The Lorentz violation is included in addition to standard three-flavor oscillations using the non-perturbative Standard Model Extension (SME), allowing the use of the full range of neutrino path lengths, ranging from 15 to 12,800 km, and energies ranging from 100 MeV to more than 100 TeV in the search. No evidence of Lorentz violation was observed, so limits are set on the renormalizable isotropic SME coefficients in the $e\\mu$, $\\mu\\tau$, and $e\\tau$ sectors, improving the existing limits by up to seven orders of magnitude and setting limits for the first time in the neutrino $\\mu\\tau$ sector of the SME.

The Super-Kamiokande Collaboration; :; K. Abe; Y. Haga; Y. Hayato; M. Ikeda; K. Iyogi; J. Kameda; Y. Kishimoto; M. Miura; S. Moriyama; M. Nakahata; Y. Nakano; S. Nakayama; H. Sekiya; M. Shiozawa; Y. Suzuki; A. Takeda; H. Tanaka; T. Tomura; K. Ueno; R. A. Wendell; T. Yokozawa; T. Irvine; T. Kajita; I. Kametani; K. Kaneyuki; K. P. Lee; T. McLachlan; Y. Nishimura; E. Richard; K. Okumura; L. Labarga; P. Fernandez; J. Gustafson; E. Kearns; J. L. Raaf; S. Berkman; H. A. Tanaka; S. Tobayama; J. L. Stone; L. R. Sulak; M. Goldhaber; G. Carminati; W. R. Kropp; S. Mine; P. Weatherly; A. Renshaw; M. B. Smy; H. W. Sobel; V. Takhistov; K. S. Ganezer; B. L. Hartfiel; J. Hill; W. E. Keig; N. Hong; J. Y. Kim; I. T. Lim; T. Akiri; A. Himmel; K. Scholberg; C. W. Walter; T. Wongjirad; T. Ishizuka; S. Tasaka; J. S. Jang; J. G. Learned; S. Matsuno; S. N. Smith; T. Hasegawa; T. Ishida; T. Ishii; T. Kobayashi; T. Nakadaira; K. Nakamura; Y. Oyama; K. Sakashita; T. Sekiguchi; T. Tsukamoto; A. T. Suzuki; Y. Takeuchi; C. Bronner; S. Hirota; K. Huang; K. Ieki; T. Kikawa; A. Minamino; A. Murakami; T. Nakaya; K. Suzuki; S. Takahashi; K. Tateishi; Y. Fukuda; K. Choi; Y. Itow; G. Mitsuka; P. Mijakowski; J. Hignight; J. Imber; C. K. Jung; C. Yanagisawa; H. Ishino; A. Kibayashi; Y. Koshio; T. Mori; M. Sakuda; R. Yamaguchi; T. Yano; Y. Kuno; R. Tacik; S. B. Kim; H. Okazawa; Y. Choi; K. Nishijima; M. Koshiba; Y. Suda; Y. Totsuka; M. Yokoyama; K. Martens; Ll. Marti; M. R. Vagins; J. F. Martin; P. de Perio; A. Konaka; M. J. Wilking; S. Chen; Y. Zhang; K. Connolly; R. J. Wilkes

2015-03-17T23:59:59.000Z

379

Coherent neutrino scattering in dark matter detectors  

E-Print Network [OSTI]

Coherent elastic neutrino-nucleus and weakly interacting massive particle-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next-generation ton-scale dark matter detector could ...

Anderson, Alexander John

380

Geo-neutrinos and Earth's interior  

E-Print Network [OSTI]

The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earth's crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respect, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and K40 decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field.

Gianni Fiorentini; Marcello Lissia; Fabio Mantovani

2007-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Spectrometry of the Earth using Neutrino Oscillations  

E-Print Network [OSTI]

The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth's inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth's electron density. The Earth's chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth's matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject outer core models with large hydrogen content and thereby demonstrate the potential of this novel method. In the future, dedicated instruments could be capable of distin...

Rott, Carsten; Bose, Debanjan

2015-01-01T23:59:59.000Z

382

The Superluminal Neutrinos from Deformed Lorentz Invariance  

E-Print Network [OSTI]

We study two superluminal neutrino scenarios where \\delta v\\equiv (v-c)/c is a constant. To be consistent with the OPERA, Borexino, and ICARUS experiments and with the SN1987a observations, we assume that \\delta v_{\

Yunjie Huo; Tianjun Li; Yi Liao; Dimitri V. Nanopoulos; Yonghui Qi; Fei Wang

2012-11-14T23:59:59.000Z

383

Constraints on Energy Independent Solutions of the Solar Neutrino Problem  

E-Print Network [OSTI]

We analyze the latest published solar neutrino data assuming an arbitrary neutrino oscillation/conversion mechanism suppresses the electron neutrino flux from the Sun independent of energy. For oscillations/transitions into active (sterile) neutrinos such mechanisms are ruled out at 99.96 (99.9997) % C.L. assuming the standard solar model by Bahcall and Pinnsoneault '95 correctly predicts all solar neutrino fluxes within their estimated uncertainties. Even if one allows for $^8{\\rm B}$ and $^7{\\rm Be}$ solar neutrino fluxes that are vastly different from the ones in contemporary standard solar models these mechanisms are strongly disfavored by the data.

P. I. Krastev; S. T. Petcov

1996-12-04T23:59:59.000Z

384

KeV Warm Dark Matter and Composite Neutrinos  

E-Print Network [OSTI]

Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.

Dean J Robinson; Yuhsin Tsai

2012-09-25T23:59:59.000Z

385

Combining CPT-conjugate Neutrino channels at Fermilab  

E-Print Network [OSTI]

We explore an alternative strategy to determine the neutrino mass hierarchy by making use of possible future neutrino facilities at Fermilab. Here, we use CPT-conjugate neutrino channels, exploiting a nu_mu beam from the NuMI beamline and a barnu_e beam from a betabeam experimental setup. Both experiments are performed at approximately the same E/L. We present different possible accelerator scenarios for the betabeam neutrino setup and fluxes. This CPT-conjugate neutrino channel scenario can extract the neutrino mass hierarchy down to sin^2 (2 theta_13) \\approx 0.02.

Andreas Jansson; Olga Mena; Stephen Parke; Niki Saoulidou

2007-11-07T23:59:59.000Z

386

Megaton Water Cerenkov Detectors and Astrophysical Neutrinos  

E-Print Network [OSTI]

Although formal proposals have not yet been made, the UNO and Hyper-Kamiokande projects are being developed to follow-up the tremendously successful program at Super-Kamiokande using a detector that is 20-50 times larger. The potential of such a detector to continue the study of astrophysical neutrinos is considered and contrasted with the program for cubic kilometer neutrino observatories.

Maury Goodman

2005-01-21T23:59:59.000Z

387

Alternative Detection Methods for Highest Energy Neutrinos  

E-Print Network [OSTI]

Several experimental techniques are currently under development, to measure the expected tiny fluxes of highest energy neutrinos above 10**18 eV. Projects in different stages of realisation are discussed here, which are based on optical and radio as well as acoustic detectors. For the detection of neutrino events in this energy range a combination of different detector concepts in one experiment seems to be most promising.

Rolf Nahnhauer

2004-11-26T23:59:59.000Z

388

Theory of Neutrinos: a White Paper  

SciTech Connect (OSTI)

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser,; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma

2006-01-11T23:59:59.000Z

389

Theory of neutrinos: A White paper  

SciTech Connect (OSTI)

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser,; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma

2005-10-01T23:59:59.000Z

390

Solar neutrino analysis of Super-Kamiokande  

E-Print Network [OSTI]

Super-Kamiokande-IV data taking began in September of 2008, and with upgraded electronics and improvements to water system dynamics, calibration and analysis techniques, a clear solar neutrino signal could be extracted at recoil electron kinetic energies as low as 3.5 MeV. The SK-IV extracted solar neutrino flux between 3.5 and 19.5 MeV is found to be (2.36$\\pm$0.02(stat.)$\\pm$0.04(syst.))$\\times 10^6$ /(cm$^2$sec). The SK combined recoil electron energy spectrum favors distortions predicted by standard neutrino flavour oscillation parameters over a flat suppression at 1$\\sigma$ level. A maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the elastic neutrino-electron scattering rate in SK, results in a day/night asymmetry of $-3.2\\pm1.1$(stat.)$\\pm$0.5(syst.)$%$. The 2.7 $\\sigma$ significance of non-zero asymmetry is the first indication of the regeneration of electron type solar neutrinos as they travel through Earth's matter. A fit to all solar neutrino data and KamLAND yields $\\sin^2 \\theta_{12} = 0.304 \\pm 0.013$, $\\sin^2 \\theta_{13} = 0.031^{+0.017}_{-0.015}$ and $\\Delta m^2_{21} = 7.45^{+0.20}_{-0.19} \\times 10^{-5} {\\rm eV}^2$.

Hiroyuki Sekiya; for the Super-Kamiokande Collaboration

2013-07-14T23:59:59.000Z

391

Current status of the LBNE neutrino beam  

E-Print Network [OSTI]

The Long Baseline Neutrino Experiment (LBNE) will utilize a neutrino beamline facility located at Fermilab. The facility is designed to aim a beam of neutrinos toward a detector placed in South Dakota. The neutrinos are produced in a three-step process. First, protons from the Main Injector hit a solid target and produce mesons. Then, the charged mesons are focused by a set of focusing horns into the decay pipe, towards the far detector. Finally, the mesons that enter the decay pipe decay into neutrinos. The parameters of the facility were determined by an amalgam of the physics goals, the Monte Carlo modeling of the facility, and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~700 kW, however some of the parameters were chosen to be able to deal with a beam power of 2.3 MW. The LBNE Neutrino Beam has made significant changes to the initial design through consideration of numerous Value Engineering proposals and the current design is described.

Moore, Craig Damon; Crowley, Cory Francis; Hurh, Patrick; Hylen, James; Lundberg, Byron; Marchionni, Alberto; McGee, Mike; Mokhov, Nikolai V; Papadimitriou, Vaia; Plunkett, Rob; Reitzner, Sarah Diane; Stefanik, Andrew M; Velev, Gueorgui; Williams, Karlton; Zwaska, Robert Miles

2015-01-01T23:59:59.000Z

392

Theory of Neutrinos: A White Paper  

E-Print Network [OSTI]

During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ``The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

R. N. Mohapatra; S. Antusch; K. S. Babu; G. Barenboim; M. -C. Chen; S. Davidson; A. de Gouvea; P. de Holanda; B. Dutta; Y. Grossman; A. Joshipura; B. Kayser; J. Kersten; Y. Y. Keum; S. F. King; P. Langacker; M. Lindner; W. Loinaz; I. Masina; I. Mocioiu; S. Mohanty; H. Murayama; S. Pascoli; S. T. Petcov; A. Pilaftsis; P. Ramond; M. Ratz; W. Rodejohann; R. Shrock; T. Takeuchi; T. Underwood; L. Wolfenstein

2005-12-02T23:59:59.000Z

393

Is Cosmology Compatible with Sterile Neutrinos?  

SciTech Connect (OSTI)

By combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to m{sub s}<0.26 eV (0.44 eV) at 95% (99.9%) C.L., which excludes at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We generalize the analysis to account for active neutrino masses and the possibility that the sterile abundance is not thermal. In the latter case, the contraints in the (mass,density) plane are nontrivial. For a mass of >1 or <0.05 eV, the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}}<0.003 at 95% C.L., but for a mass of {approx}0.25 eV, {omega}{sub {nu}} can be as large as 0.01.

Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze [Particle Astrophysics Center, FERMILAB, Batavia, Illinois 60510-0500 (United States); Physics Department and Sezione INFN, University of Rome 'La Sapienza', Ple Aldo Moro 2, 00185 Rome (Italy); Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana (Slovenia)

2006-07-28T23:59:59.000Z

394

Accelerator-based neutrino oscillation experiments  

SciTech Connect (OSTI)

Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

Harris, Deborah A.; /Fermilab

2007-12-01T23:59:59.000Z

395

Neutrino induced events in the MINOS detectors  

SciTech Connect (OSTI)

The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is f{sub s} = 0.07{sup +0.32} at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

Litchfield, Reuben Phillip; /Oxford U.

2008-03-01T23:59:59.000Z

396

High intensity neutrino oscillation facilities in Europe  

E-Print Network [OSTI]

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chanc, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gmez; Hernndez, P; Martn-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernndez; Maltoni, M; Menndez, J; Giunti, C; Garca, M C Gonzlez; Salvado, J; Coloma, P; Huber, P; Li, T; Lpez-Pavn, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

2013-01-01T23:59:59.000Z

397

Characterization of positronium properties in doped liquid scintillators  

E-Print Network [OSTI]

Ortho-positronium (o-Ps) formation and decay can replace the annihilation process, when positron interacts in liquid scintillator media. The delay induced by the positronium decay represents either a potential signature for anti-neutrino detection, via inverse beta decay, or to identify and suppress positron background, as recently demonstrated by the Borexino experiment. The formation probability and decay time of o-Ps depend strongly on the surrounding material. In this paper, we characterize the o-Ps properties in liquid scintillators as function of concentrations of gadolinium, lithium, neodymium, and tellurium, dopers used by present and future neutrino experiments. In particular, gadolinium and lithium are high neutron cross section isotopes, widely used in reactor anti-neutrino experiments, while neodymium and tellurium are double beta decay emitters, employed to investigates the Majorana neutrino nature. Future neutrino experiments may profit from the performed measurements to tune the preparation of ...

Consolati, G; Hans, S; Jollet, C; Meregaglia, A; Perasso, S; Tonazzo, A; Yeh, M

2013-01-01T23:59:59.000Z

398

Earthquake Forecast via Neutrino Tomography  

E-Print Network [OSTI]

We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

Bin Wang; Ya-Zheng Chen; Xue-Qian Li

2011-03-29T23:59:59.000Z

399

Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos-  

E-Print Network [OSTI]

Spectroscopy of low energy solar neutrinos by MOON -Mo Observatory Of Neutrinos- R. Hazamaa , P Be solar 's. The present status of MOON for the low energy solar experiment is briefly discussed the pp solar flux with good accuracy. 1. INTRODUCTION Realtime studies of the high-energy component of 8

Washington at Seattle, University of

400

Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor  

E-Print Network [OSTI]

Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions the neutrino floor can still be surpassed using timing information, though certain velocity streams may prove problematic.

Jonathan H. Davis

2014-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

I. Introduction A. Neutrino oscillation results from solar and atmospheric neutrino data.  

E-Print Network [OSTI]

V. This scenario is motivated in part by the need for an admixture (20{40%) of hot dark matter|roughly 7 eV worth oscillations in the matter of the Sun, and that the e and the neutrino type into which it oscillates, possibly and IMB imaging water Cherenkov detectors suggest that the observed disappearance of muon type neutrinos

McDonald, Kirk

402

Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor  

E-Print Network [OSTI]

Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions the neutrino floor can still be surpassed using timing information, though certain velocity streams may prove problematic.

Jonathan H. Davis

2015-03-09T23:59:59.000Z

403

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad  

E-Print Network [OSTI]

The Neutrino Factory and Muon Collider Collaboration From a Neutrino Factory to Carlsbad BNL FNAL KEK CERN Carlsbad Kirk T. McDonald Princeton U. mcdonald@puphep.princeton.edu Workshop on the Next Generation U.S. Underground Science Facility Carlsbad, NM, June 13, 2000 http://puhep1.princeton

McDonald, Kirk

404

Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates  

E-Print Network [OSTI]

solar neutrino sources with standard energy spectra, and for laboratory sources of 51 Cr and 37 Ar; the calculations include, where appropriate, the thermal energy of fusing solar ions and use improved nuclear the energy spectrum of solar neutrinos. Theoretical uncertainties are estimated for cross sections

Bahcall, John

405

Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS  

E-Print Network [OSTI]

BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

Borexino Collaboration; G. Alimonti

2000-12-11T23:59:59.000Z

406

Neutrinos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007Transmission toBeamN u F

407

argon based neutrino: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the relevant energy range from 8B and hep solar neutrinos as well as from low energy atmospheric neutrino fluxes. Depending on the theoretical prediction for the SRN flux...

408

SNO: solving the mystery of the missing neutrinos  

E-Print Network [OSTI]

Chen in 1985, of using heavy water (D 2 O) to detect theneutrino deficit. In heavy water neutrinos of all types canday using 1000 tonnes of heavy water. Neutrino interactions

Jelley, Nick; Poon, Alan

2007-01-01T23:59:59.000Z

409

Analytical Theory of Neutrino Oscillations in Matter with CP violation  

E-Print Network [OSTI]

We develop an exact analytical formulation of neutrino oscillations in matter within the framework of the Standard Neutrino Model assuming 3 Dirac Neutrinos. Our Hamiltonian formulation, which includes CP violation, leads to expressions for the partial oscillation probabilities that are linear combinations of spherical Bessel functions in the eigenvalue differences. The coefficients of these Bessel functions are polynomials in the neutrino CKM matrix elements, the neutrino mass differences squared, the strength of the neutrino interaction with matter, and the neutrino mass eigenvalues in matter. We give exact closed-form expressions for all partial oscillation probabilities in terms of these basic quantities. Adopting the Standard Neutrino Model, we then examine how the exact expressions for the partial oscillation probabilities might simplify by expanding in one of the small parameters {\\alpha} and sin{\\theta}13 of this model. We show explicitly that for small {\\alpha} and sin{\\theta}13 there are branch poin...

Johnson, Mikkel B; Kisslinger, Leonard S

2015-01-01T23:59:59.000Z

410

Neutrinoless double beta decay, solar neutrinos and mass scales  

E-Print Network [OSTI]

We obtain bounds for the neutrino masses by combining atmospheric and solar neutrino data with the phenomenology of neutrinoless double beta decay where hypothetical values of || are envisaged from future 0\

Per Osland; Geir Vigdel

2001-09-13T23:59:59.000Z

411

Light right-handed neutrinos: + an incursion in cosmology  

E-Print Network [OSTI]

Light right-handed neutrinos: why not? + an incursion in cosmology R. Barbieri "Neutrinos in Venice? " The typical lifetime of a new trend in high energy physics and cosmology nowadays is about 5 to 10 years

Abbondandolo, Alberto

412

Improving constraints on the neutrino mass using sufficient statistics  

E-Print Network [OSTI]

We use the "Dark Energy and Massive Neutrino Universe" (DEMNUni) simulations to compare the constraining power of "sufficient statistics" with the standard matter power spectrum on the sum of neutrino masses, $M_\

Wolk, M; Bel, J; Carbone, C; Carron, J

2015-01-01T23:59:59.000Z

413

Supernova Bounds on keV-mass Sterile Neutrinos  

E-Print Network [OSTI]

Sterile neutrinos of keV masses are one of the most promising candidates for the warm dark matter, which could solve the small-scale problems encountered in the scenario of cold dark matter. We present a detailed study of the production of such sterile neutrinos in a supernova core, and derive stringent bounds on the active-sterile neutrino mixing angles and sterile neutrino masses based on the standard energy-loss argument.

Zhou, Shun

2015-01-01T23:59:59.000Z

414

W&M, JLab Host International Neutrino Workshop (William & Mary...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wm.edunewsstories2012william--mary-hosts-international-neutrino-workshop123.php Submitted: Wednesday, July 18...

415

Physics Reach of Electron-Capture Neutrino Beams  

E-Print Network [OSTI]

To complete the picture of neutrino oscillations two fundamental parameters need to be measured, theta13 and delta. The next generation of long baseline neutrino oscillation experiments -superbeams, betabeams and neutrino factories- indeed take aim at measuring them. Here we explore the physics reach of a new candidate: an electron-capture neutrino beam. Emphasis is made on its feasibility thanks to the recent discovery of nuclei that decay fast through electron capture, and on the interplay with a betabeam (its closest relative).

J. Bernabeu; J. Burguet-Castell; C. Espinoza; M. Lindroos

2005-10-21T23:59:59.000Z

416

Neutrino mass matrix solutions and neutrinoless double beta decay  

E-Print Network [OSTI]

We present a determination of the neutrino mass matrix which holds for values of the neutrinoless double beta decay effective mass m_{ee} larger than the neutrino mass differences. We find eight possible solutions and discuss for each one the corresponding neutrino mass eigenvalues and zero texture. A minimal structure of the perturbations to add to these zero textures to recover the full mass matrix is also determined. Implications for neutrino hot dark matter are discussed for each solution.

Thomas Hambye

2002-01-31T23:59:59.000Z

417

A Sterile Neutrino Search with Kaon Decay-at-rest  

E-Print Network [OSTI]

Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.

Spitz, J

2012-01-01T23:59:59.000Z

418

A Sterile Neutrino Search with Kaon Decay-at-rest  

E-Print Network [OSTI]

Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.

J. Spitz

2012-05-16T23:59:59.000Z

419

Sterile Neutrino Search Using China Advanced Research Reactor  

E-Print Network [OSTI]

We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

Gang Guo; Fang Han; Xiangdong Ji; Jianglai Liu; Zhaoxu Xi; Huanqiao Zhang

2013-06-18T23:59:59.000Z

420

Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos  

E-Print Network [OSTI]

The experimental rate of neutrinoless double beta decay can be saturated by the exchange of virtual sterile neutrinos, that mix with the ordinary neutrinos and are heavier than 200 MeV. Interestingly, this hypothesis is subject only to marginal experimental constraints, because of the new nuclear matrix elements. This possibility is analyzed in the context of the Type I seesaw model, performing also exploratory investigations of the implications for heavy neutrino mass spectra, rare decays of mesons as well as neutrino-decay search, LHC, and lepton flavor violation. The heavy sterile neutrinos can saturate the rate only when their masses are below some 10 TeV, but in this case, the suppression of the light-neutrino masses has to be more than the ratio of the electroweak scale and the heavy-neutrino scale; i.e., more suppressed than the naive seesaw expectation. We classify the cases when this condition holds true in the minimal version of the seesaw model, showing its compatibility (1) with neutrinoless double beta rate being dominated by heavy neutrinos and (2) with any light neutrino mass spectra. The absence of excessive fine-tunings and the radiative stability of light neutrino mass matrices, together with a saturating sterile neutrino contribution, imply an upper bound on the heavy neutrino masses of about 10 GeV. We extend our analysis to the Extended seesaw scenario, where the light and the heavy sterile neutrino contributions are completely decoupled, allowing the sterile neutrinos to saturate the present experimental bound on neutrinoless double beta decay. In the models analyzed, the rate of this process is not strictly connected with the values of the light neutrino masses, and a fast transition rate is compatible with neutrinos lighter than 100 meV.

Manimala Mitra; Goran Senjanovic; Francesco Vissani

2011-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Everything Under the Sun: A Review of Solar Neutrino  

E-Print Network [OSTI]

Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

Gann, G D Orebi

2015-01-01T23:59:59.000Z

422

Neutrino conversions in cosmological gamma-ray burst fireballs  

E-Print Network [OSTI]

We study neutrino conversions in a recently envisaged source of high-energy neutrinos (E \\geq 10^6 GeV), that is, in the vicinity of cosmological Gamma-Ray Burst fireballs (GRB). We consider the effects of flavor and spin-flavor conversions and point out that in both situations, a some what higher than estimated high energy tau neutrino flux from GRBs is expected in new km^2 surface area under water/ice neutrino telescopes.

H. Athar

2000-04-20T23:59:59.000Z

423

Discovering the New Standard Model: Fundamental Symmetries and Neutrinos  

E-Print Network [OSTI]

This White Paper describes recent progress and future opportunities in the area of fundamental symmetries and neutrinos.

V. Cianciolo; A. B. Balantekin; A. Bernstein; V. Cirigliano; M. D. Cooper; D. J. Dean; S. R. Elliott; B. W. Filippone; S. J. Freedman; G. L. Greene; K. M. Heeger; D. W. Hertzog; B. R. Holstein; P. Huffman; T. Ito; K. Kumar; Z. -T. Lu; J. S. Nico; G. D. Orebi Gann; K. Paschke; A. Piepke; B. Plaster; D. Pocanic; A. W. P. Poon; D. C. Radford; M. J. Ramsey-Musolf; R. G. H. Robertson; G. Savard; K. Scholberg; Y. Semertzidis; J. F. Wilkerson

2012-12-20T23:59:59.000Z

424

Discovering the New Standard Model: Fundamental Symmetries and Neutrinos  

E-Print Network [OSTI]

This White Paper describes recent progress and future opportunities in the area of fundamental symmetries and neutrinos.

Cianciolo, V; Bernstein, A; Cirigliano, V; Cooper, M D; Dean, D J; Elliott, S R; Filippone, B W; Freedman, S J; Greene, G L; Heeger, K M; Hertzog, D W; Holstein, B R; Huffman, P; Ito, T; Kumar, K; Lu, Z -T; Nico, J S; Gann, G D Orebi; Paschke, K; Piepke, A; Plaster, B; Pocanic, D; Poon, A W P; Radford, D C; Ramsey-Musolf, M J; Robertson, R G H; Savard, G; Scholberg, K; Semertzidis, Y; Wilkerson, J F

2012-01-01T23:59:59.000Z

425

THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT  

SciTech Connect (OSTI)

After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must be upgraded to 0.2 s to reach the required repetition rate of 2.5 Hz. The required upgrade of the AGS power supply, the rf system, and other rate dependent accelerator issues is discussed. The design of the target/horn configuration is shown. The material selected for the proton target is a Carbon-Carbon composite. It is a 3-dimensional woven material that exhibits extremely low thermal expansion for temperatures up to 1000 C; for higher temperatures it responds like graphite. This property is important for greatly reducing the thermo-elastic stresses induced by the beam, thereby extending the life of the target. The target consists of a 80 cm long cylindrical rod of 12 mm diameter. The target intercepts a 2 mm rms proton beam of 10{sup 14} protons/pulse. The total energy deposited as heat in the target is 7.3 kJ with peak temperature rise of about 280 C. Heat will be removed from the target through forced convection of helium gas across its outside surface. The extracted proton beam uses an existing beamline at the AGS, but is then directed to a target station atop a constructed earthen hill. The target is followed by a downward slopping pion decay channel. This vertical arrangement keeps the target and decay pipe well above the water table in this area. The 11.3 degrees slope aims the neutrino beam at a water Cerenkov neutrino detector to be located in the Homestake mine at Lead, South Dakota. A 3-dimensional view of the beam transport line, target station, and decay tunnel is provided.

WENG,W.T.; DIWAN,M.; RAPARIA,D.

2004-10-08T23:59:59.000Z

426

Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay  

E-Print Network [OSTI]

The study of the neutrinoless double beta ($0 \\beta\\beta$) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the $0 \\beta\\beta$ decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with di?erent methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date ...

Stoica, Sabin

2014-01-01T23:59:59.000Z

427

Neutrinos: an Open Window on Fundamental Physics and the Evolution of the Universe  

SciTech Connect (OSTI)

In the past ten years, a series of experiments has confirmed that neutrinos can oscillate between different types ('flavors') and have mass. These results are the first solid evidence for physics beyond the Standard Model of Particle Physics, with profound implications for the Universe and the laws that govern it. Thanks to a broad experimental program, including accelerator- and reactor-based experiments such as MINOS, MiniBooNE, T2K, Double-CHOOZ, Daya Bay, NOvA, LBNE, and searches for neutrinoless double beta decay, we have just entered the 'precision era' in neutrino physics. I will review the status of experimental results, their implications for our understanding of neutrino properties, and the questions that must be addressed. I will give an overview of the exciting experimental program that is underway and I will discuss how neutrino physics will help in opening a new window on the fundamental laws of Nature, its fundamental constituents, and the evolution of the Universe.

Pascoli, Silvia (IPPP, Durham University) [IPPP, Durham University

2010-08-18T23:59:59.000Z

428

Standard and non-standard neutrino-nucleus reactions cross sections and event rates to neutrino detection experiments  

E-Print Network [OSTI]

Open neutrino physics issues require precision studies, both theoretical and experimental ones, and towards this aim coherent neutral current neutrino-nucleus scattering events are expected to be observed soon. In this work, we explore $\

Papoulias, D K

2015-01-01T23:59:59.000Z

429

Standard and non-standard neutrino-nucleus reactions cross sections and event rates to neutrino detection experiments  

E-Print Network [OSTI]

Open neutrino physics issues require precision studies, both theoretical and experimental ones, and towards this aim coherent neutral current neutrino-nucleus scattering events are expected to be observed soon. In this work, we explore $\

D. K. Papoulias; T. S. Kosmas

2015-02-10T23:59:59.000Z

430

\\EVIDENCE FOR ELECTRON NEUTRINO FLAVOR CHANGE THROUGH MEASUREMENT OF THE 8 B SOLAR NEUTRINO FLUX AT THE SUDBURY  

E-Print Network [OSTI]

\\EVIDENCE FOR ELECTRON NEUTRINO FLAVOR CHANGE THROUGH MEASUREMENT OF THE 8 B SOLAR NEUTRINO FLUX have had in Sudbury. Godwin Mayers, Ron Pearce, and Jim Cook for the wonderful job they have done

431

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

2008-08-06T23:59:59.000Z

432

A New Lorentz-Violating Model of Neutrino Oscillations  

E-Print Network [OSTI]

A new model for neutrino oscillations is introduced, in which mass-like behavior is seen at high energies, but various behavior can be predicted at low energies. The model employs no neutrino masses, but instead relies on the Lorentz-violating parameters a and c. Oscillations into antineutrinos and sterile neutrinos are also considered.

Kevin Labe

2010-07-31T23:59:59.000Z

433

Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall  

E-Print Network [OSTI]

? What have we learned in the first 30 years of solar neutrino research? For the next decade, whatChapter 10 Solar Neutrinos: Solved and Unsolved Problems John N. Bahcall Institute for Advanced study solar neutrinos? What does the combined standard model (solar plus electroweak) predict for solar

Bahcall, John

434

Indirect Search for Dark Matter with the ANTARES Neutrino Telescope  

E-Print Network [OSTI]

significant high energy neutrino fluxes. Indirect search for Dark Matter looking at such neutrino fluxes for the Cherenkov light induced by high energy muons during their travel in the sea water throughout the detectorIndirect Search for Dark Matter with the ANTARES Neutrino Telescope V. Bertin1 on behalf

Paris-Sud XI, Université de

435

Calibration of SNO for the Detection of 8 B Neutrinos  

E-Print Network [OSTI]

Calibration of SNO for the Detection of 8 B Neutrinos by Richard James Ford A thesis submitted and energy spectrum of solar electron neutrinos, and will measure the avour-blind ux of neutrinos. i #12; Co-authorship The work, results and conclusions presented in this thesis are original except

436

Last CPT-Invariant Hope for LSND Neutrino Oscillations  

E-Print Network [OSTI]

It is shown that the 99% confidence limits from the analyses of the data of cosmological and neutrino experiments imply a small marginally allowed region in the space of the neutrino oscillation parameters of 3+1 four-neutrino mixing schemes. This region can be confirmed or falsified by experiments in the near future.

C. Giunti

2003-02-21T23:59:59.000Z

437

Minimal Schemes for Large Neutrino Mixings with Inverted Hierarchy  

E-Print Network [OSTI]

Existing oscillation data point to nonzero neutrino masses with large mixings. We analyze the generic features of the neutrino Majorana mass matrix with inverted hierarchy and construct realistic {\\it minimal schemes} for the neutrino mass matrix that can explain the large (but not maximal) \

Duane A. Dicus; Hong-Jian He; John N. Ng

2002-05-17T23:59:59.000Z

438

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Murata, Tomoya

2015-01-01T23:59:59.000Z

439

Extraction of Neutrino Flux from the Inclusive Muon Cross Section  

E-Print Network [OSTI]

We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

Tomoya Murata; Toru Sato

2015-01-23T23:59:59.000Z

440

High-Energy Neutrinos from Cosmic Rays  

E-Print Network [OSTI]

We introduce neutrino astronomy from the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. We review the facts as well as the speculations about the sources. Among these gamma ray bursts and active galaxies represent well-motivated speculations because these are also the sources of the highest energy gamma rays, with emission observed up to 20 TeV, possibly higher. We discuss why cosmic accelerators are also expected to be cosmic beam dumps producing high-energy neutrino beams associated with the highest energy cosmic rays. Cosmic ray sources may produce neutrinos from MeV to EeV energy by a variety of mechanisms. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. The technology for commissioning such instruments exists.

F. Halzen

2002-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Relativistic equilibrium velocity distribution, nuclear fusion reaction rate and the solar neutrino problem  

E-Print Network [OSTI]

In solar interior, it is the equilibrium velocity distribution of few high-energy protons and nuclei that participates in determining nuclear fusion reaction rates. So, it is inappropriate to use the Maxwellian velocity distribution to calculate the rates of solar nuclear fusion reactions. We have to use the relativistic equilibrium velocity distribution for the purpose. The nuclear fusion reaction rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution. The reduction factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions, in other words, it varies with the sort of neutrinos. Substituting the relativistic equilibrium velocity distribution for the Maxwellian distribution is not important for the calculation of solar sound speeds. The relativistic equilibrium velocity distribution, if adopted in standard solar models, will lower solar neutrino fluxes and change solar neutrino energy spectra but maintain solar sound speeds. This velocity distribution is possibly a solution to the solar neutrino problem.

Jian-Miin Liu

2003-07-07T23:59:59.000Z

442

Spontaneous R-Parity Breaking, Stop LSP Decays and the Neutrino Mass Hierarchy  

E-Print Network [OSTI]

The MSSM with right-handed neutrino supermultiplets, gauged B-L symmetry and a non-vanishing sneutrino expectation value is the minimal theory that spontaneously breaks R-parity and is consistent with the bounds on proton stability and lepton number violation. This minimal B-L MSSM can have a colored/charged LSP, of which a stop LSP is the most amenable to observation at the LHC. We study the R-parity violating decays of a stop LSP into a bottom quark and charged leptons--the dominant modes for a generic "admixture" stop. A numerical analysis of the relative branching ratios of these decay channels is given using a wide scan over the parameter space. The fact that R-parity is violated in this theory by a vacuum expectation value of a sneutrino links these branching ratios directly to the neutrino mass hierarchy. It is shown how a discovery of bottom-charged lepton events at the LHC can potentially determine whether the neutrino masses are in a normal or inverted hierarchy, as well as determining the theta_23 neutrino mixing angle. Finally, present LHC bounds on these leptoquark signatures are used to put lower bounds on the stop mass.

Zachary Marshall; Burt A. Ovrut; Austin Purves; Sogee Spinner

2014-06-03T23:59:59.000Z

443

Probing long-range leptonic forces with solar and reactor neutrinos  

E-Print Network [OSTI]

In this work we study the phenomenological consequences of the existence of long-range forces coupled to lepton flavour numbers in solar neutrino oscillations. We study electronic forces mediated by scalar, vector or tensor neutral bosons and analyze their effect on the propagation of solar neutrinos as a function of the force strength and range. Under the assumption of one mass scale dominance, we perform a global analysis of solar and KamLAND neutrino data which depends on the two standard oscillation parameters, \\Delta m^2_{21} and \\tan^2\\theta_{12}, the force coupling constant, its range and, for the case of scalar-mediated interactions, on the neutrino mass scale as well. We find that, generically, the inclusion of the new interaction does not lead to a very statistically significant improvement on the description of the data in the most favored MSW LMA (or LMA-I) region. It does, however, substantially improve the fit in the high-\\Delta m^2 LMA (or LMA-II) region which can be allowed for vector and scal...

Gonzlez-Garci, M C; Mass, E; Zukanovich-Funchal, R

2007-01-01T23:59:59.000Z

444

If sterile neutrinos exist, how can one determine the total solar neutrino fluxes? John N. Bahcall,1,  

E-Print Network [OSTI]

the center of the Sun. This flavor change was seen directly by the comparison of the Sudbury Neutrino measurements made with the KamLAND reactor experiment and with the SNO CC solar neutrino experiment, provided determine the total solar neutrino fluxes (8 B,7 Be, and pp) for comparison with solar model predic- tions

Bahcall, John

445

Nuclear Instruments and Methods in Physics Research A 503 (2003) 276278 Neutrino studies in nuclei and intense neutrino sources  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 503 (2003) 276­278 Neutrino studies in nuclei interactions. Nuclear responses for neutrinos are crucial for neutrino studies in nuclei. The responses, which are mainly nuclear spin isospin responses, are studied indirectly by charge exchange hadronic reactions

Washington at Seattle, University of

446

SEARCH FOR HIGH-ENERGY MUON NEUTRINOS FROM THE 'NAKED-EYE' GRB 080319B WITH THE IceCube NEUTRINO TELESCOPE  

SciTech Connect (OSTI)

We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, no excess was found above background. The 90% CL upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.5 x 10{sup -3} erg cm{sup -2} in the energy range between 120 TeV and 2.2 PeV, which contains 90% of the expected events.

Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Universite Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Becker, J. K. [Department of Physics, TU Dortmund University, D-44221 Dortmund (Germany)], E-mail: kappes@icecube.wisc.edu (and others)

2009-08-20T23:59:59.000Z

447

Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball  

E-Print Network [OSTI]

The neutrino self-energy is calculated in a weakly magnetized plasma consists of electrons, protons, neutrons and their anti-particles and using this we have calculated the neutrino effective potential up to order $M^{-4}_W$. In the absence of magnetic field it reduces to the known result. We have also calculated explicitly the effective potentials for different backgrounds which may be helpful in different environments. By considering the mixing of three active neutrinos in the medium with the magnetic field we have derived the survival and conversion probabilities of neutrinos from one flavor to another and also the resonance condition is derived. As an application of the above, we considered the dense and relativistic plasma of the Gamma-Ray Bursts fireball through which neutrinos of 5-30 MeV can propagate and depending on the fireball parameters they may oscillate resonantly or non-resonantly from one flavor to another. These MeV neutrinos are produced due to stellar collapse or merger events which trigger the Gamma-Ray Burst. The fireball itself also produces MeV neutrinos due to electron positron annihilation, inverse beta decay and nucleonic bremsstrahlung. Using the three neutrino mixing and considering the best fit values of the neutrino parameters, we found that electron neutrinos are hard to oscillate to another flavors. On the other hand, the muon neutrinos and the tau neutrinos oscillate with equal probability to one another, which depends on the neutrino energy, temperature and size of the fireball. Comparison of oscillation probabilities with and without magnetic field shows that, they depend on the neutrino energy and also on the size of the fireball. By using the resonance condition, we have also estimated the resonance length of the propagating neutrinos as well as the baryon content of the fireball.

Sarira Sahu; Nissim Fraija; Yong-Yeon Keum

2009-11-10T23:59:59.000Z

448

Solar Neutrino Measurement at SK-III  

E-Print Network [OSTI]

The full Super-Kamiokande-III data-taking period, which ran from August of 2006 through August of 2008, yielded 298 live days worth of solar neutrino data with a lower total energy threshold of 4.5 MeV. During this period we made many improvements to the experiment's hardware and software, with particular emphasis on its water purification system and Monte Carlo simulations. As a result of these efforts, we have significantly reduced the low energy backgrounds as compared to earlier periods of detector operation, cut the systematic errors by nearly a factor of two, and achieved a 4.5 MeV energy threshold for the solar neutrino analysis. In this presentation, I will present the preliminary SK-III solar neutrino measurement results.

The Super-Kamiokande Collaboration; :; B. S. Yang

2009-10-17T23:59:59.000Z

449

Optimizing Medium Baseline Reactor Neutrino Experiments  

E-Print Network [OSTI]

10 years from now medium baseline reactor neutrino experiments will attempt to determine the neutrino mass hierarchy from the observed antineutrino spectra. In this letter we present the results of more than four million detailed simulations of such experiments, studying the dependence of the probability of successfully determining the hierarchy upon the analysis method, the neutrino mass matrix parameters, reactor flux models and, in particular, combinations of baselines. We show that the strong dependence of the hierarchy determination upon mass differences and flux models found by Qian et al. results from a spurious dependence of the Fourier analysis upon the high energy tail of the reactor spectrum which can be removed by using a weighted Fourier transform. Such experiments necessarily use flux from multiple reactors at distinct baselines, smearing the oscillation signal and thus impeding the determination of the hierarchy. Using the results of our simulations, we determine the optimal baselines and corre...

Ciuffoli, Emilio; Zhang, Xinmin

2013-01-01T23:59:59.000Z

450

Earth Matter Effects in Detection of Supernova Neutrinos  

E-Print Network [OSTI]

We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability P_H inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93^\\circ. In the reaction channel \\bar{\

X. -H. Guo; Bing-Lin Young

2006-05-11T23:59:59.000Z

451

Weak interaction processes in nuclei involving neutrinos and CDM candidates  

SciTech Connect (OSTI)

In this work, we concentrate on the nuclear physics aspects of low-energy neutrinos and in particular on problems related to neutrino detection by terrestrial experiments, neutrino astrophysics and neutrino-nucleus interactions. The detection of low-flux neutrinos, feasible by measuring the energy recoil of the recoiling nucleus with gaseous-detectors having very-low threshold-energy, is carried out in conjunction with direct-detection of cold dark matter events and nonstandard physics searches like the neutrinoless double beta decay.

Kosmas, T. S.; Tsakstara, V. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece); Divari, P. C. [Department of Physical Sciences, Hellenic Army Academy, Vari 16673, Attica (Greece); Sinatkas, J. [Department of Informatics and Computer Technology, TEI of Western Macedonia, GR-52100 Kastoria (Greece)

2009-11-09T23:59:59.000Z

452

Report of the Solar and Atmospheric Neutrino Working Group  

SciTech Connect (OSTI)

The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a magnetized detector with flavor and antiflavor sensitivity. Additional priorities are nuclear physics measurements which will reduce the uncertainties in the predictions of the Standard Solar Model, and similar supporting measurements for atmospheric neutrinos (cosmic ray fluxes, magnetic fields, etc.). We note as well that the detectors for both solar and atmospheric neutrino measurements can serve as multipurpose detectors, with capabilities of discovering dark matter, relic supernova neutrinos, proton decay, or as targets for long baseline accelerator neutrino experiments.

Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

2004-10-22T23:59:59.000Z

453

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: Neutrino Astronomy and Kilometer-Scale Detectors. High-Energy Neutrino Telescopes: Methodologies of Neutrino Detection. IceCube Hardware. High-Energy Neutrino Telescopes: Beyond Astronomy. Future Projects

Francis Halzen; Spencer R. Klein

2010-07-07T23:59:59.000Z

454

Absolute Values of Neutrino Masses: Status and Prospects  

E-Print Network [OSTI]

Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of beta-decay neutrino mass measurements and neutrinoless double-beta decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-beta decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection.

S. M. Bilenky; C. Giunti; J. A. Grifols; E. Masso

2003-03-27T23:59:59.000Z

455

Neutrino Event Rates from Gamma Ray Bursts  

E-Print Network [OSTI]

We recalculate the diffuse flux of high energy neutrinos produced by Gamma Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that the average single burst produces only ~10^{-2} high energy neutrino events in a detector with 1 km^2 effective area, i.e. about 10 events per year, we show that the observed rate is dominated by burst-to-burst fluctuations which are very large. We find event rates that are expected to be larger by one order of magnitude, likely more, which are dominated by a few very bright bursts. This greatly simplifies their detection.

F. Halzen; D. W. Hooper

1999-10-08T23:59:59.000Z

456

Neutrino oscillations: Quantum mechanics vs. quantum field theory  

SciTech Connect (OSTI)

A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

Akhmedov, Evgeny Kh.; Kopp, Joachim; ,

2010-01-01T23:59:59.000Z

457

A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande  

E-Print Network [OSTI]

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex

Hyper-Kamiokande Working Group; :; K. Abe; H. Aihara; C. Andreopoulos; I. Anghel; A. Ariga; T. Ariga; R. Asfandiyarov; M. Askins; J. J. Back; P. Ballett; M. Barbi; G. J. Barker; G. Barr; F. Bay; P. Beltrame; V. Berardi; M. Bergevin; S. Berkman; T. Berry; S. Bhadra; F. d. M. Blaszczyk; A. Blondel; S. Bolognesi; S. B. Boyd; A. Bravar; C. Bronner; F. S. Cafagna; G. Carminati; S. L. Cartwright; M. G. Catanesi; K. Choi; J. H. Choi; G. Collazuol; G. Cowan; L. Cremonesi; G. Davies; G. De Rosa; C. Densham; J. Detwiler; D. Dewhurst; F. Di Lodovico; S. Di Luise; O. Drapier; S. Emery; A. Ereditato; P. Fernandez; T. Feusels; A. Finch; M. Fitton; M. Friend; Y. Fujii; Y. Fukuda; D. Fukuda; V. Galymov; K. Ganezer; M. Gonin; P. Gumplinger; D. R. Hadley; L. Haegel; A. Haesler; Y. Haga; B. Hartfiel; M. Hartz; Y. Hayato; M. Hierholzer; J. Hill; A. Himmel; S. Hirota; S. Horiuchi; K. Huang; A. K. Ichikawa; T. Iijima; M. Ikeda; J. Imber; K. Inoue; J. Insler; R. A. Intonti; T. Irvine; T. Ishida; H. Ishino; M. Ishitsuka; Y. Itow; A. Izmaylov; B. Jamieson; H. I. Jang; M. Jiang; K. K. Joo; C. K. Jung; A. Kaboth; T. Kajita; J. Kameda; Y. Karadhzov; T. Katori; E. Kearns; M. Khabibullin; A. Khotjantsev; J. Y. Kim; S. B. Kim; Y. Kishimoto; T. Kobayashi; M. Koga; A. Konaka; L. L. Kormos; A. Korzenev; Y. Koshio; W. R. Kropp; Y. Kudenko; T. Kutter; M. Kuze; L. Labarga; J. Lagoda; M. Laveder; M. Lawe; J. G. Learned; I. T. Lim; T. Lindner; A. Longhin; L. Ludovici; W. Ma; L. Magaletti; K. Mahn; M. Malek; C. Mariani; L. Marti; J. F. Martin; C. Martin; P. P. J. Martins; E. Mazzucato; N. McCauley; K. S. McFarland; C. McGrew; M. Mezzetto; H. Minakata; A. Minamino; S. Mine; O. Mineev; M. Miura; J. Monroe; T. Mori; S. Moriyama; T. Mueller; F. Muheim; M. Nakahata; K. Nakamura; T. Nakaya; S. Nakayama; M. Needham; T. Nicholls; M. Nirkko; Y. Nishimura; E. Noah; J. Nowak; H. Nunokawa; H. M. O'Keeffe; Y. Okajima; K. Okumura; S. M. Oser; E. O'Sullivan; R. A. Owen; Y. Oyama; J. Perez; M. Y. Pac; V. Palladino; J. L. Palomino; V. Paolone; D. Payne; O. Perevozchikov; J. D. Perkin; C. Pistillo; S. Playfer; M. Posiadala-Zezula; J. -M. Poutissou; B. Quilain; M. Quinto; E. Radicioni; P. N. Ratoff; M. Ravonel; M. Rayner; A. Redij; F. Retiere; C. Riccio; E. Richard; E. Rondio; H. J. Rose; M. Ross-Lonergan; C. Rott; S. D. Rountree; A. Rubbia; R. Sacco; M. Sakuda; M. C. Sanchez; E. Scantamburlo; K. Scholberg; M. Scott; Y. Seiya; T. Sekiguchi; H. Sekiya; A. Shaikhiev; I. Shimizu; M. Shiozawa; S. Short; G. Sinnis; M. B. Smy; J. Sobczyk; H. W. Sobel; T. Stewart; J. L. Stone; Y. Suda; Y. Suzuki; A. T. Suzuki; R. Svoboda; R. Tacik; A. Takeda; A. Taketa; Y. Takeuchi; H. A. Tanaka; H. K. M. Tanaka; H. Tanaka; R. Terri; L. F. Thompson; M. Thorpe; S. Tobayama; N. Tolich; T. Tomura; C. Touramanis; T. Tsukamoto; M. Tzanov; Y. Uchida; M. R. Vagins; G. Vasseur; R. B. Vogelaar; C. W. Walter; D. Wark; M. O. Wascko; A. Weber; R. Wendell; R. J. Wilkes; M. J. Wilking; J. R. Wilson; T. Xin; K. Yamamoto; C. Yanagisawa; T. Yano; S. Yen; N. Yershov; M. Yokoyama; M. Zito

2015-01-18T23:59:59.000Z

458

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network [OSTI]

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

459

Neutrino condensates at center of galaxies as background for the MSW mechanism  

E-Print Network [OSTI]

The possibility is explored that neutrino condensates, possible candidates for the explanation of very massive objects in galactic centers, could act as background for the Mikheyev-Smirnov-Wolfeinstein mechanism responsible of neutrino oscillations. Assuming a simple neutrino star model with constant density, the lower limit of the mass squared difference of neutrino oscillations is inferred. Consequences on neutrino asymmetry are discussed.

S. Capozziello; G. Iovane; G. Lambiase

2003-04-01T23:59:59.000Z

460

Conservative Moment Equations for Neutrino Radiation Transport with Limited Relativity  

E-Print Network [OSTI]

We derive conservative, multidimensional, energy-dependent moment equations for neutrino transport in core-collapse supernovae and related astrophysical systems, with particular attention to the consistency of conservative four-momentum and lepton number transport equations. After taking angular moments of conservative formulations of the general relativistic Boltzmann equation, we specialize to a conformally flat spacetime, which also serves as the basis for four further limits. Two of these---the multidimensional special relativistic case, and a conformally flat formulation of the spherically symmetric general relativistic case---are given in appendices for the sake of comparison with extant literature. The third limit is a weak-field, `pseudo-Newtonian' approach \\citep{kim_etal_2009,kim_etal_2012} in which the source of the gravitational potential includes the trace of the stress-energy tensor (rather than just the mass density), and all orders in fluid velocity $v$ are retained. Our primary interest here ...

Endeve, Eirik; Mezzacappa, Anthony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Observations of high energy neutrinos with water/ice neutrino telescopes  

E-Print Network [OSTI]

The search for high energy neutrinos of astrophysical origin is being conducted today with two water/ice Cherenkov experiments. New instruments of higher performance are now in construction and more are in the R&D phase. No sources have been found to date. Upper limits on neutrino fluxes are approaching model predictions. Results are reported on the search for point sources, diffuse fluxes, gamma ray bursts, dark matter and other sources.

Karle, A

2006-01-01T23:59:59.000Z

462

Observations of high energy neutrinos with water/ice neutrino telescopes  

E-Print Network [OSTI]

The search for high energy neutrinos of astrophysical origin is being conducted today with two water/ice Cherenkov experiments. New instruments of higher performance are now in construction and more are in the R&D phase. No sources have been found to date. Upper limits on neutrino fluxes are approaching model predictions. Results are reported on the search for point sources, diffuse fluxes, gamma ray bursts, dark matter and other sources.

Albrecht Karle

2006-02-01T23:59:59.000Z

463

Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data  

E-Print Network [OSTI]

In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.

G. L. Fogli; E. Lisi; A. Marrone; A. Melchiorri; A. Palazzo; P. Serra; J. Silk

2004-11-17T23:59:59.000Z

464

Majorana Neutrinos, Neutrino Mass Spectrum and the || ~ 0.001 eV Frontier in Neutrinoless Double Beta Decay  

E-Print Network [OSTI]

If future neutrino oscillation experiments show that the neutrino mass spectrum is with normal ordering, m1 | > 0.01 eV give negative results, the next frontier in the quest for neutrinoless double beta-decay will correspond to || ~ 0.001 eV. Assuming that massive neutrinos are Majorana particles and their exchange is the dominant mechanism generating neutrinoless double beta-decay, we analise the conditions under which ||, in the case of three neutrino mixing and neutrino mass spectrum with normal ordering, would satisfy || > 0.001 eV. We consider the specific cases of i) normal hierarchical neutrino mass spectrum, ii) of relatively small value of the CHOOZ angle theta13 as well as iii) the general case of spectrum with normal ordering, partial hierarchy and a value of theta13 close to the existing upper limit. We study the ranges of the lightest neutrino mass m1 and/or of sin^2 theta13, for which ||> 0.001 eV and discuss the phenomenological implications of such scenarios. We provide also an estimate of || when the three neutrino masses and the neutrino mixing originate from neutrino mass term of Majorana type for the (left-handed) flavour neutrinos and m1 Ue1^2 + m2 U_e2^2 + m3 Ue3^2 =0, but there does not exist a symmetry which forbids the neutrinoless double beta-decay.

S. Pascoli; S. T. Petcov

2007-11-30T23:59:59.000Z

465

Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background  

E-Print Network [OSTI]

We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanie...

Fuller, George M; Kusenko, Alexander

2011-01-01T23:59:59.000Z

466

Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor  

E-Print Network [OSTI]

Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments will run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder ...

Davis, Jonathan H

2014-01-01T23:59:59.000Z

467

Radiatively broken symmetries of nonhierarchical neutrinos  

E-Print Network [OSTI]

Symmetry-based ideas, such as the quark-lepton complementarity (QLC) principle and the tri-bimaximal mixing (TBM) scheme, have been proposed to explain the observed mixing pattern of neutrinos. We argue that such symmetry relations need to be imposed at a high scale $\\Lambda \\sim 10^{12}$ GeV characterizing the large masses of right-handed neutrinos required to implement the seesaw mechanism. For nonhierarchical neutrinos, renormalisation group evolution down to a laboratory energy scale $\\lambda \\sim 10^3$ GeV tends to radiatively break these symmetries at a significant level and spoil the mixing pattern predicted by them. However, for Majorana neutrinos, suitable constraints on the extra phases $\\alpha_{2,3}$ enable the retention of those high scale mixing patterns at laboratory energies. We examine this issue within the Minimal Supersymmetric Standard Model (MSSM) and demonstrate the fact posited above for two versions of QLC and two versions of TBM. The appropriate constraints are worked out for all these...

Dighe, Amol; Roy, Probir

2007-01-01T23:59:59.000Z

468

Neutrino Mixing and CP Phase Correlations  

E-Print Network [OSTI]

A special form of the $3 \\times 3$ Majorana neutrino mass matrix derivable from $\\mu - \\tau$ interchange symmetry accompanied by a generalized $CP$ transformation was obtained many years ago. It predicts $\\theta_{23} = \\pi/4$ as well as $\\delta_{CP} = \\pm \\pi/2$, with $\\theta_{13} \

Ma, Ernest; Popov, Oleg

2015-01-01T23:59:59.000Z

469

A select overview of neutrino experiments  

SciTech Connect (OSTI)

The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

Stefanski, Raymond J.

2004-11-01T23:59:59.000Z

470

NOvA: Exploring Neutrino Mysteries  

ScienceCinema (OSTI)

Neutrinos are a mystery to physicists. They exist in three different flavors and mass states and may be able to give hints about the origins of the matter-dominated universe. A new long-baseline experiment led by Fermilab called NOvA may provide some answers.

Vahle, Tricia; Messier, Mark

2014-08-12T23:59:59.000Z

471

Quasi-energy-independent solar neutrino transitions  

E-Print Network [OSTI]

Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.

G. L. Fogli; E. Lisi; A. Palazzo

2002-02-06T23:59:59.000Z

472

Determination of neutrino masses, present and future  

E-Print Network [OSTI]

Oscillation experiments show that neutrinos have masses. They however only determine the neutrinop mass differences. Information on the absolute masses can be obtained by studying the kinematics in weak decays, or by searching for neutrinoless double beta decay. Recent results are reviewed, as well as future projects.

Jean-Luc Vuilleumier

2003-06-04T23:59:59.000Z

473

Reactor monitoring with Neutrinos Michel Cribier  

E-Print Network [OSTI]

it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable, but also book keeping of the fuel element composition before and after their use in the nuclear powerReactor monitoring with Neutrinos Michel Cribier Astroparticule & Cosmologie 10, rue Alice Domon et

Paris-Sud XI, Université de

474

Absorption of solar radiation by solar neutrinos  

E-Print Network [OSTI]

We calculate the absorption probability of photons radiated from the surface of the Sun by a left-handed neutrino with definite mass and a typical momentum for which we choose |p_1|=0.2 MeV, producing a heavier right-handed antineutrino. Considering two transitions the \

G. Duplancic; P. Minkowski; J. Trampetic

2004-03-22T23:59:59.000Z

475

Target Options for a Neutrino Factory  

E-Print Network [OSTI]

;Fluidised tungsten powder: broadly compatible with baseline 1 2 3 4 Rig contains 100 kg Tungsten IncreasingDriverPressure #12;Schematic of implementation as a Neutrino Factory target Tungsten powder hopper configurations possible #12;Pion+muon production for variable length 50% material fraction W vs 100% Hg rbeam

McDonald, Kirk

476

SOME PROPERTIES OF THE HADRONIC SYSTEM IN NEUTRINO INTERACTIONS  

E-Print Network [OSTI]

does not exclude the U"pir combination (563 events in plot;interact and the choice of pir is not excluded for the posig(DP->- u~PK+) o(yp-- u~Pir ) m in this energy range. The

Lynch, G.R.

2011-01-01T23:59:59.000Z

477

Scientific Opportunities with the Long-Baseline Neutrino Experiment  

SciTech Connect (OSTI)

In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

Adams, C.; et al.,

2013-07-28T23:59:59.000Z

478

Light Dark Matter Detection Prospects at Neutrino Experiments  

E-Print Network [OSTI]

We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find in particular that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus anti-neutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or anti-neutrinos ($R_{\\mu}$ and $R_{\\bar \\mu}$) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

Jason Kumar; John G. Learned; Stefanie Smith

2010-04-13T23:59:59.000Z

479

Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam  

E-Print Network [OSTI]

We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction ...

Conrad, Janet

480

Sterile neutrino searches in MiniBooNE and MicroBooNE  

E-Print Network [OSTI]

Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This ...

Ignarra, Christina M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "neutrino properties number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes  

E-Print Network [OSTI]

Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativisti