National Library of Energy BETA

Sample records for neutrino astrophysics division

  1. Birth of Neutrino Astrophysics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  2. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  3. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  4. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.

    1996-02-01

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  5. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    SciTech Connect (OSTI)

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.

  6. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  7. Particle Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Astrophysics Particle Astrophysics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Particle Astrophysics Stars offer unique laboratories for particle physics. They can be sensitive to minute interactions of neutrinos, as well as to other, hypothetical weakly interacting particles. The origin of this sensitivity lies in the mechanism of stellar evolution: it can be sped up, or even

  8. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect (OSTI)

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  9. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  10. Masatoshi Koshiba and Cosmic Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Masatoshi Koshiba and Cosmic Neutrinos Resources with Additional Information Masatoshi Koshiba Courtesy of Sebastian Brandt 'The 2002 Nobel Prize in Physics has been awarded to ... Masatoshi Koshiba of the International Center for Elementary Particle Physics at the University of Tokyo in Japan, ... "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos." ... Neutrinos are important in astrophysics since they might have played a considerable

  11. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  12. ANTARES deep sea neutrino telescope results

    SciTech Connect (OSTI)

    Mangano, Salvatore [IFIC - Instituto de Fsica Corpuscular, Edificio Institutos de Investigatin, 46071 Valencia (Spain); Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  13. Booster Neutrino Experiment - About Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Neutrinos General Information Neutrinos Matter A colorful booklet presenting a general introduction to neutrinos, neutrino mass, and neutrino oscillations. Describes theory in a comprehensible way using graphs and diagrams. Neutrino Physics at Fermilab An introduction to the search for neutrino mass and the discovery of the tau neutrino produced by the Public Affairs office at Fermilab; also describes the neutrino experiments at Fermilab. Beam Line: Special Neutrino Issue A special issue

  14. Fermilab | Inquiring Minds | Neutrino | Discovery | Particles and Forces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics at Fermilab main page | accelerators | collider experiments | neutrino physics | technology computing | theory | astrophysics | discoveries at Fermilab Discoveries at Fermilab - The Tau Neutrino Neutrino Symbol An international collaboration of scientists at the Department of Energy's Fermi National Accelerator Laboratory announced on July 21, 2000 the first direct evidence for the subatomic particle called the tau neutrino, the third kind of neutrino known to particle physicists. They

  15. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Astrophysics NIF experiments support studies relevant to the entire lifecycle of a star, from its formation from cold gas in molecular clouds, through its subsequent slow evolution, and on to what might be a rapid, explosive death. To determine a star's structure throughout the various stages of its life, astrophysicists need NIF's ability to mimic the temperatures (10 to 30 million kelvins or 18 to 54 million degrees Fahrenheit) found in stars' cores. One astrophysics project at NIF is

  16. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Theory Neutrino Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Neutrino Theory solar neutrino Figure 1: Impact of the solar neutrino mass splitting on collective oscillations of supernova neutrinos. Notice that while the strictly vanishing splitting gives the two-flavor result, even a tiny nonzero value qualitatively changes the answer. From [1]. Neutrino physics underwent

  17. neutrinos matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nu0001 PDF full text version nu0001 HTML full text version nu0002 Credits nu0003 Contents nu0004 Introduction nu0005 Neutrinos are Everywhere nu0006 What are neutrinos? nu0007 A new particle? nu0008 Origins nu0009 Making neutrinos nu0010 Seeing neutrinos nu0011 Big detector nu0012 Neutrinos are there nu0013 Loners of the universe nu0014 The neutrino family nu0015 Neutrino tracks nu0016 Do they have mass? nu0017 What if they do? nu0018 Oscillations nu0019 Seeing the invisible nu0020 Neutrinos

  18. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Astrophysics One of the great scientific challenges is understanding how elements form. This process, called nucleosynthesis, occurs at extreme stellar temperatures and pressures, making it difficult to simulate in the laboratory. The conditions produced by NIF experiments, however, are well matched to the conditions that exist in stars in several phases of their evolution. As a result, NIF is a powerful tool for exploring nuclear physics. Elements heavier than iron are formed either

  19. Neutrino Physics

    DOE R&D Accomplishments [OSTI]

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  20. Neutrino Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions, Phys.Lett. B 594, 347 (2004). A. Friedland and C. Lunardini, A Test of tau neutrino interactions with atmospheric neutrinos and K2K, Phys.Rev. D 72, 053009...

  1. Weak interaction processes in nuclei involving neutrinos and CDM candidates

    SciTech Connect (OSTI)

    Kosmas, T. S.; Tsakstara, V. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece); Divari, P. C. [Department of Physical Sciences, Hellenic Army Academy, Vari 16673, Attica (Greece); Sinatkas, J. [Department of Informatics and Computer Technology, TEI of Western Macedonia, GR-52100 Kastoria (Greece)

    2009-11-09

    In this work, we concentrate on the nuclear physics aspects of low-energy neutrinos and in particular on problems related to neutrino detection by terrestrial experiments, neutrino astrophysics and neutrino-nucleus interactions. The detection of low-flux neutrinos, feasible by measuring the energy recoil of the recoiling nucleus with gaseous-detectors having very-low threshold-energy, is carried out in conjunction with direct-detection of cold dark matter events and nonstandard physics searches like the neutrinoless double beta decay.

  2. Neutrino factory

    SciTech Connect (OSTI)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfn, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  3. Neutrino factory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  4. Solar Neutrinos

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  5. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  6. Double beta decay, Majorana neutrinos, and neutrino mass

    SciTech Connect (OSTI)

    Avignone, Frank T. III; Elliott, Steven R.; Engel, Jonathan [Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (United States)

    2008-04-15

    The theoretical and experimental issues relevant to neutrinoless double beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics, and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the nonobservation of neutrinoless double beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.

  7. Theoretical Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics and Solid Mechanics Physics of Condensed Matter and Complex Systems Applied Mathematics and Plasma Physics Theoretical Biology and Biophysics Contacts Division Leader...

  8. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    SciTech Connect (OSTI)

    Aeikens, Elke; Päs, Heinrich; Pakvasa, Sandip; Sicking, Philipp

    2015-10-02

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  9. Nuclear Astrophysics Animations from the Nuclear Astrophysics Group at Clemson University

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Meyer, Bradley; The, Lih-Sin

    The animations are organized into three sections. The r-Process Movies demonstrate r-Process network calculations from the paper "Neutrino Capture and the R-Process" Meyer, McLaughlin, and Fuller, Phys. Rev. C, 58, 3696-3710 (1998). The Alpha-Rich Freezeout Movies are related to the reference: Standard alpha-rich freezeout calculation from The, Clayton, Jin, and Meyer 1998, Astrophysical Journal, "Reaction Rates Governing the Synthesis of 44Ti" At the current writing, the category for Low Metallicity s-Process Movies has only one item called n, p, 13C, 14N, 54Fe, and 88Sr Time evolution in convective zone.

  10. Astrophysics at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The image above is snapshot of a movie from The Center for Astrophysical Thermonuclear Flashes at the University of Chicago; DOE SciDAC ProgramBrad Gallagher, George...

  11. Physics Division activities report, 1986--1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  12. Neutrino telescopes in the World

    SciTech Connect (OSTI)

    Ernenwein, J.-P.

    2007-01-12

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  13. Lamp Divisions

    Office of Legacy Management (LM)

    --- /A;; i :' r%i;in~house ilEc;' i:Z3:~cra:ion Lamp Divisions , _.. (I +i. 0 :,,,rg. . I . . -= i?e p/q! qe)-' &se pw E.rcale?l iev, Je!sey 07m March 20, 1 gs? ::r . J. A. Jones I ti. 5. Muclear Regulatory Commission .> = ..- haterials Licensing Branch -s - ,.I, - - Division of Fuel Cycle and hateri al Safety LY. , $2 - _ . ' -' . 3 _- - Yeshington, C. C. 2@555 - :_ :--, =-- -- .-?J -.: y...., : :- 7 Dear Mr. Jones : y-- --, ? . *I 2=15 2 r; X -P The following is our final report of the

  14. Why study neutrinos?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why study neutrinos? Neutrinos are by far the most abundant particles in the universe. About 100 trillion neutrinos pass through your body every second without interacting with any of the particles in your body. You never notice them. The combination of that ghostly presence and the important role neutrinos play in the universe captivates physicists. Neutrinos play a role in many fundamental aspects of our lives; they are produced in nuclear fusion processes that power the sun and stars, they

  15. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  16. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE ADEPS Physics Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS ...

  17. Experimental Neutrino Physics: Final Report

    SciTech Connect (OSTI)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  18. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some neutrino interactions produce the neutrino's namesake lepton (electron, muon, or tau); this allows the type of neutrino to be tagged. Since neutrino oscillation searches...

  20. Solar Neutrino Problem

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  1. Short Baseline Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decay region is followed by an absorber and 450 m of dirt, beyond which only the neutrino component of the beam survives. e ? The MiniBooNE Neutrino Beam March 10, 2003...

  2. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  3. Probing Late Neutrino Mass Properties With SupernovaNeutrinos (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Probing Late Neutrino Mass Properties With SupernovaNeutrinos Citation Details In-Document Search Title: Probing Late Neutrino Mass Properties With SupernovaNeutrinos Models of late-time neutrino mass generation contain new interactions of the cosmic background neutrinos with supernova relic neutrinos (SRNs). Exchange of an on-shell light scalar may lead to significant modification of the differential SRN flux observed at earth. We consider an

  4. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  5. Environmental Assessment for Conducting Astrophysics and Other...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2000. Neutrino: Detectors & Beams web page, dated August 10, 2000, Neutrino Detector Array web page, dated March 24, 2000,

  6. Collective neutrino oscillations in supernovae

    SciTech Connect (OSTI)

    Duan, Huaiyu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  7. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    SciTech Connect (OSTI)

    Auffenberg, Jan; Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ?{sub ?} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  8. MINOS Sterile Neutrino Search

    SciTech Connect (OSTI)

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  9. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    SciTech Connect (OSTI)

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  10. A prototype station for ARIANNA: a detector for cosmic neutrinos

    SciTech Connect (OSTI)

    Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J.; Nichol, R.

    2010-05-27

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.

  11. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos General Information Neutrinos Matter A colorful booklet presenting a general introduction to neutrinos, neutrino mass, and neutrino oscillations. Describes theory in a comprehensible way using graphs and diagrams. Neutrino Physics at Fermilab An introduction to the search for neutrino mass and the discovery of the tau neutrino produced by the Public Affairs office at Fermilab; also describes the neutrino experiments at Fermilab. Beam Line: Special Neutrino Issue A special issue of

  13. Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ν2006 1 Neutrino Cross Section Measurements with MiniBooNE Outline: - overview - neutrino reaction channels and event totals - CC channels, preliminary results - NC channels, (new) preliminary results - antineutrino running R. Tayloe, Indiana U. ν2006 2 Neutrino Cross Sections - The main goal of MiniBooNE (MB) is a ν µ → ν e search (B. Fleming, next session) - High rates and good particle ID also allow accurate cross section measurements. - Important for MB and other oscillation

  14. Neutrinos: Nature's Ghosts?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  15. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  16. Supernova Neutrinos, LSND

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for neutrino oscillations * At last scattering surface, e 's are on average less energetic than 's and 's: - e - , Flux at neutrinosphere...

  17. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close The MiniBooNE Experiment next The Oscillating Neutrino The first phase of the Booster Neutrino Experiment (BooNE) at the Fermi National Accelerator Laboratory is a smaller version of the final planned experiment, and has been dubbed "MiniBooNE." The physicists working on MiniBooNE are trying to find out more about the fundamental properties of neutrinos. But, what exactly is a neutrino? To answer that question, we need to look at what's called the Standard Model of particles and

  18. Low Energy Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Energy Neutrino Oscillations Žarko Pavlović Los Alamos National Laboratory APS April Meeting, May 1 2011 Standard Model & Neutrino Oscillations ● 3 neutrinos ● Initially assumed massless ● Mixing matrix: ● Oscillation Probability:   e      =  U e1 U e2 U e3 U 1 U 2 U 3 U  1 U  2 U  3    1  2  3  Neutrino Oscillations ● Lot of experimental evidence ● L/E dependence ● Precise measurement of atmospheric and solar

  19. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  1. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  2. Multi-year search for a diffuse flxu of muon neutrinos with AMANDA-II

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.; Collaboration, IceCube

    2008-04-13

    A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E{sup 2}{Phi}{sub 90%C.L.} < 7.4 x 10{sup -8} GeV cm{sup -2} s{sup -1} sr{sup -1} is placed on the diffuse flux of muon neutrinos with a {Phi} {proportional_to} E{sup -2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive {Phi} {proportional_to} E{sup -2} diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different than {Phi} {proportional_to} E{sup -2}.

  3. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  4. DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX

    SciTech Connect (OSTI)

    Lopes, Ildio; Turck-Chize, Sylvaine E-mail: ilopes@uevora.pt

    2014-09-10

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 10{sup 4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  5. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Dr. Don Lincoln

    2013-07-22

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  6. Neutrinos: Nature's Identity Thieves?

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  7. Divisions & Departments | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Financial Officer Home CFO Organization Chart Financial Systems Accounting Services ... Theoretical and Computational Physics Center Theory Center Engineering Division ...

  8. Fusion reactions in nuclear astrophysics: The MUSIC approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactions in nuclear astrophysics: The MUSIC approach The MUSIC approach Sergio Almaraz-Calderon Sergio Almaraz-Calderon Physics Division Argonne National Laboratory 2014 ATLAS USER'S MEETING 05/15/2014 Carbon burning reactions in the stars Carbon burning in massive stars Ignition phase of Type Ia supernovae X-ray binaries NASA/CXC/PSU/L University of Chicago Flash Center S. Almaraz-Calderon ATLAS user's meeting 05/15/2014 H. Schatz X-Ray Bursts and Superbursts ● H and He burning (rp-process)

  9. Exploring Plasma Science Advances from Fusion Findings to Astrophysical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievements | Princeton Plasma Physics Lab Exploring Plasma Science Advances from Fusion Findings to Astrophysical Achievements By John Greenwald December 4, 2012 Tweet Widget Google Plus One Share on Facebook The latest advances in plasma physics were the focus of more than 1,000 scientists from around the world who gathered in Providence, R.I., from Oct. 29 through Nov. 2 for the 54th Annual Meeting of the American Physical Society's Division of Plasma Physics (APS-DPP). Papers, posters

  10. Neutrino Data from IceCube and its Predecessor at the South Pole, the Antarctic Muon and Neutrino Detector Array (AMANDA)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Abbasi, R.

    IceCube is a neutrino observatory for astrophysics with parts buried below the surface of the ice at the South Pole and an air-shower detector array exposed above. The international group of sponsors, led by the National Science Foundation (NSF), that designed and implemented the experiment intends for IceCube to operate and provide data for 20 years. IceCube records the interactions produced by astrophysical neutrinos with energies above 100 GeV, observing the Cherenkov radiation from charged particles produced in neutrino interactions. Its goal is to discover the sources of high-energy cosmic rays. These sources may be active galactic nuclei (AGNs) or massive, collapsed stars where black holes have formed.[Taken from http://www.icecube.wisc.edu/] The data from IceCube's predecessor experiment and detector, AMANDA, IceCubes predecessor detector and experiment is also available at this website. AMANDA pioneered neutrino detection in ice. Over a period of years in the 1990s, detecting strings were buried and activated and by 2000, AMANDA was successfully recording an average of 1,000 neutrino events per year. This site also makes available many images and video from the two experiments.

  11. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  12. Neutrino_Lectures_1and2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lectures on Neutrino Physics Lake Louise School February, 2002 Mike Shaevitz Lecture 1: Neutrino Interactions Example: NuTeV sin 2 θ W Measurement Direct Neutrino Mass Measurements Neutrino Oscillation Phenomenology Solar Neutrinos (part 1) Lecture 2: Solar Neutrinos (part 2) Atmospheric and Longbaseline Exps. LSND Region Experiments Summary and Conclusions 2 Introduction to Neutrino Interactions 3 Neutrino Interactions * W exchange gives Charged-Current (CC) events and Z exchange gives

  13. Booster Neutrino Experiment - Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back The MiniBooNE Experiment next The Oscillating Neutrino Normal matter is made of atoms. Atoms are also composite objects, made up in turn of protons and neutrons (in the...

  14. Cosmological and supernova neutrinos

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GS, Department of Physics, ?i?li, ?stanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on ?{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Time Ordered Astrophysics Scalable Tools

    Energy Science and Technology Software Center (OSTI)

    2011-12-14

    This software package provides tools for astrophysical experiments which record data in the form of individual time streams from discrete detectors. TOAST provides tools from meta-data manipulation and job set up, I/O operation, telescope pointing reconstruction, and map-making. It also provides tools for constructing simulated observations.

  16. No-neutrino double beta decay: more than one neutrino

    SciTech Connect (OSTI)

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  17. Perspectives on neutrino telescopes 2009

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP

    2009-04-01

    Remarks at the roundtable on plans for the future at the XIII International Workshop on Neutrino Telescopes.

  18. Frederick Reines and the Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frederick Reines and the Detection of the Neutrino Resources with Additional Information '[Frederick] Reines - known among scientists as the "father of neutrino physics" - won the Nobel Prize for physics in 1995 ["for the detection of the neutrino"], nearly 40 years after his neutrino experiments changed the world of physics and set in motion a new way of looking at the universe. ... Frederick Reines Courtesy University of California Irvine Until Reines's discovery,

  19. Nucleosynthesis Woosley, Stan 79 ASTRONOMY AND ASTROPHYSICS SciDAC...

    Office of Scientific and Technical Information (OSTI)

    SciDAC 2, Computational Astrophysics Consortium, Supernovae, Computations Final project report for UCSC's participation in the Computational Astrophysics Consortium -...

  20. Genomics Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the most primitive soil microbe represent a watershed opportunity for biology. The Genomics Division is taking advantage of this wealth of new information. While it is well...

  1. OPAL Opacities for astrophysical applications

    SciTech Connect (OSTI)

    Iglesias, C.A.; Rogers, F.J.

    1991-05-01

    The OPAL opacity code developed at LLNL has been applied to astrophysical problems. The computed Rosseland mean opacities show significant differences when compared to the Los Alamos results. These differences have been traced to both atomic and equation of state improvements in the OPAL code. Furthermore, preliminary work suggest that the OPAL calculations considerably improve the agreement between observations and stellar models. 24 refs., 4 figs.

  2. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    SciTech Connect (OSTI)

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  3. Are neutrinos their own antiparticles?

    SciTech Connect (OSTI)

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  4. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  5. Physics Division annual report 2004.

    SciTech Connect (OSTI)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  6. Neutrino Factory Downstream Systems

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-23

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R&D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  7. Microsoft Word - Nuclear_Astrophysics_Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astrophysics Working Group Report Convenors: J. A. Clark (ANL) and C. M. Deibel (LSU) The nuclear astrophysics session consisted of six invited talks and one contributed talk, which spanned a fairly large range of astrophysical processes from those involving nuclei close to or at stability to those far from stability over a variety of masses:  A. A. Chen (McMaster University): Classical Novae, Type I X-ray Bursts and ATLAS  S. Almaraz-Calderon (ANL): Fusion Reactions in Nuclear

  8. Dark matter annihilation or unresolved astrophysical sources...

    Office of Scientific and Technical Information (OSTI)

    origin of the cosmic gamma-ray background Citation Details In-Document Search Title: Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin ...

  9. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Physics, Astrophysics, and Cosmology Providing scientific and technical leadership in fundamental and applied theoretical research on nuclear, particle, ...

  10. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect (OSTI)

    Crsico, A.H.; Althaus, L.G.; Garca-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (?{sub ?}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of ?{sub ?}?<10{sup -11}?{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  11. On the Detection of the Free Neutrino

    DOE R&D Accomplishments [OSTI]

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  13. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Engineering Division HEP Accelerator Dipole 10152014 Joseph V. Minervini 58 * Large Hadron Collider (LHC) at CERN uses NbTi dipoles and quadrupoles operating at 8 T, 2 K ...

  14. Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems

    Office of Scientific and Technical Information (OSTI)

    discrepancy. While at Brookhaven, Ray Davis conducted research and experiments in solar neutrinos at Homestake Gold Mine in South Dakota. This research was funded by the...

  15. Raymond Davis Jr., Solar Neutrinos, and the Solar Neutrino Problems

    Office of Scientific and Technical Information (OSTI)

    While at Brookhaven, Ray Davis conducted research and experiments in solar neutrinos at Homestake Gold Mine in South Dakota. This research was funded by the Atomic Energy ...

  16. Divisions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions Argonne's Energy and Global Security directorate comprises four research divisions-Nuclear Engineering, Global Security Sciences, Energy Systems and Intelligence Analysis; three centers-the Risk and Infrastructure Science Center, the Center for Transportation Research and the Center for Integrated Resiliency Analyses; and three user facilities-the Transportation Research and Analysis Computing Center, Intermediate Voltage Electron Microscopy- Tandem Facility and the National Security

  17. Solar neutrino experiments: An update

    SciTech Connect (OSTI)

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  18. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  19. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  20. Fermilab | Science | Particle Physics | Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos photo Our universe is permeated with neutrinos - nearly massless, neutral particles that interact so rarely with other matter that trillions of them pass through our bodies each second without leaving a trace. These tiny particles, studied in world-leading Fermilab experiments, could be key to a deeper understanding of our universe. Neutrinos, first discovered in 1956, have some mysterious characteristics. They have puzzlingly low masses, compared to other elementary particles, and

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Nutshell BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam into the MiniBooNE detector and looking for electron neutrinos. This experiment is motivated by the oscillation results reported by the LSND experiment at Los Alamos. By changing the muon neutrino beam into a muon anti-neutrino beam, BooNE can explore oscillations from muon anti-neutrinos to electron

  2. Cosmic Neutrinos Scott Dodelson Fermilab/UChicago

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matter particles with the smallest mass, neutrinos, are also the most abundant in the Universe. Large cosmic surveys can not only detect these neutrinos, produced when the Universe...

  3. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  4. Frederick Reines and the Neutrino

    Office of Scientific and Technical Information (OSTI)

    of California Irvine Until Reines's discovery, physicists had only theorized the existence of the neutrino - and physicists believed the tiny particles would never be...

  5. zeller-neutrino08.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino 08 1 Low Energy ν Cross Sections Sam Zeller LANL Neutrino 08 May 28, 2008 * review of experimental programs at K2K, MiniBooNE, SciBooNE, and MINERνA Sam Zeller, Neutrino 08 2 Neutrino Cross Sections * over the past ~5 years, renewed interest in low energy ν cross sections for two reasons: * advent of new high intensity ν sources has brought with it a host of new ν cross section measurement opportunities - taking a giant leap forward (both in terms of precision & sample sizes) -

  6. Experimental Neutrino Physics

    ScienceCinema (OSTI)

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  7. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-02-01 08:06:52

  8. Divisions & Departments | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brochures Divisions & Departments BROCHURES JLab General Brochure JLab Brochure 12GeV Upgrade Brochure

  9. Studying Nuclear Astrophysics at NIF

    SciTech Connect (OSTI)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on measurements of some of the nuclear reaction probabilities that are important to nuclear astrophysics, the field that relates energy production and nucleosynthesis from nuclear reactions in stars and in the Big Bang to the environments in which those nuclear reactions occur. NIF, unlike previous nuclear-physics facilities, will enable measurements of nuclear reactions at the temperatures, densities, and ionization states similar to those that occur in stars.

  10. Prospects for Relic Neutrino Detection at PTOLEMY: Princeton...

    Office of Environmental Management (EM)

    Prospects for Relic Neutrino Detection at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield Prospects for Relic Neutrino Detection at...

  11. Neutrino physics (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Neutrino physics Citation Details In-Document Search Title: Neutrino physics The basic concepts of neutrino physics are presented at a level appropriate for integration into ...

  12. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  13. Two LANL laboratory astrophysics experiments

    SciTech Connect (OSTI)

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  14. Recent Neutrino Interaction Measurements Mike Wilking TRIUMF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Interaction Measurements Mike Wilking TRIUMF PIC Conference, 3-Sept-2010 Neutrinos: more than just missing E T ... ! Interactions and Oscillations * Neutrino oscillation experiments have now moved into the realm of precision physics * Cross section uncertainties are now becoming an important factor in interpreting oscillation data * The next generation of accelerator-based neutrino experiments all take place at the ~1 GeV neutrino energy scale * In the last few years, several new cross

  15. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  16. Neutrino physics from the cosmic microwave background and large scale structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?m?)(?m?) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  17. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect (OSTI)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L.K.; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve ? (?mv) = 16 meV and ? (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero ?m??m?, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  18. Plasma astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to RSS - Plasma astrophysics A field of physics that is growing in interest ... McComas named vice president for the Princeton Plasma Physics Laboratory David McComas, an ...

  19. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Nuclear and Particle Physics, Astrophysics, and Cosmology Providing scientific and technical leadership in fundamental and applied theoretical research on nuclear, particle, astrophysics, and cosmology theory and simulations Leadership Group Leader Joe Carlson Email Deputy Group Leader Gerry Hale Email Contact Us Administrator Kay Grady Email Administrator Karla Jackson Email Dark sky Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of

  20. Plasma Astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Astrophysics One of the most common but least understood phenomena in the universe is an explosive process called magnetic reconnection. PPPL's Magnetic Reconnection Experiment (MRX) studies this process, which gives rise to astrophysical events that include auroras, solar flares and geomagnetic storms. The process occurs when the magnetic field lines in plasmas break and violently reconnect. Generating and studying reconnection under controlled laboratory conditions can yield insights

  1. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In memoriam: Michael Welcome 1957 - 2014 RIP Almgren CCSE Low Mach Number Models in Computational Astrophysics Ann Almgren Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory NUG 2014: NERSC@40 February 4, 2014 Collaborators: John Bell, Chris Malone, Andy Nonaka, Stan Woosley, Michael Zingale Almgren CCSE Introduction We often associate astrophysics with explosive phenomena: novae supernovae gamma-ray bursts X-ray bursts Type Ia Supernovae Largest

  2. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  3. Division Student Liaisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student Liaisons 2015 OFFICE Division Student Liaison Work # Email MailStop DIRECTOR'S OFFICE Principal Associate Directors PADSTE, PADWP, PADGS, PADOPS, PADCAP Associate Directors ADCLES, ADE, ADEPS, ADTSC --- PADSTE ADPSM, ADW, ADX --- PADWP ADTIR ---PADGS ADBI, ADESH, ADNHHO, ADSS --- PADOPS ADEP, ADPM --- PADCAP Audits & Ethics (EA-DO) Tonie V. Baros 665-3104 barost@lanl.gov A249 Chief Prime Contracts (PCM-DO) None Comm. & Public. Affairs (CGA-DO) CPA-CAS: Comm. Arts & Services

  4. JBEI Deconstruction Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deconstruction Division - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGFA Proposal AGFA - Argonne Gas Filled Analyzer AGFA, the Argonne Gas-filled Fragment Analyzer is a state-of-the art gas-filled separator at ATLAS, which is being developed in collaboration among the Argonne Physics Division, Hebrew University, Jerusalem, University of Massachusetts, Lowell, University of Maryland, University of Edinburgh, Lawrence Berkeley National Laboratory and Oregon State University. This separator will be used for a wide range of studies, e.g. 1) in conjunction with

  6. National Electricity Delivery Division

    Office of Environmental Management (EM)

    (DOE) Office of Electricity Delivery and Energy Reliability (OE) National Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian Trust Responsibility is a legal obligation under which the United States has charged itself with moral obligations of the highest responsibility and trust toward American Indian tribes. (Seminole Nation v. United States, 1942; Cherokee Nation v. Georgia, 1831). "When the trust responsibility is acknowledged and upheld by the

  7. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  8. The Fermilab neutrino beam program

    SciTech Connect (OSTI)

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  9. Physics division annual report 1999

    SciTech Connect (OSTI)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

  10. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  11. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  12. IT Division | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology At Jefferson Lab High-performance computing is essential to the success of the experimental program at Jefferson Lab. A D D I T I O N A L L I N K S: IT Home Help Desk Scientific Computing MIS Contacts JLab Library top-right bottom-left-corner bottom-right-corner Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the

  13. Guidance Systems Division ,

    Office of Legacy Management (LM)

    Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES NUCLEAll I-IEOULATOIJY COMMISSION REGION i 631 PARK A"LH"I KIN0 OF PR"ISIA. PCNNIVLVANIA ID40' Gentlemen: Subject: Inspectfon 81-15 _ "-- .,; .z .;; Thts refers to the closeout safety \nspectlon conducted by Ms. M. Campbell of this office on August 27, 1961, of activities formerly authorized by NRC

  14. Environmental Protection Division (ENV)

    National Nuclear Security Administration (NNSA)

    e~Alamos NATIONAL LABORATORY - - l :il . l! IIJ - - Environmental Protection Division (ENV) Environmental Stewardship (ENV-ES) P.O. Box 1663, Mail Stop J978 Los Alamos, New Mexico 87545 (505) 665-8855/FAX: (505) 667-0731 Mr. George Rael Assistant Manager for Enviromnental Operations National Nuclear Security Administration Los Alamos Site Office, MS A316 Date : October 28, 2010 Refer To: ENV-ES: 10-211 SUBJECT: 2008 SITE-WIDE ENVIRONMENTAL IMP ACT STATEMENT MITIGATION ACTION PLAN ANNUAL REPORT

  15. Procurement Division | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement Division Procurement Division Introduction Travel and Conference Services Careers Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library...

  16. Procurement Division Introduction | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Business Operations Procurement Division Procurement Division Introduction Travel and Conference Services Careers Human Resources Directory Environment,...

  17. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect (OSTI)

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  18. Nonequilibrium neutrino statistical mechanics in the expanding...

    Office of Scientific and Technical Information (OSTI)

    We study neutrino decoupling in the early Universe (ital tsimilar tosec,ital Tsimilar toMeV) by integrating the Boltzmann equations that govern the neutrino phase-space ...

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  20. Jack Steinberger and the Muon-Neutrino

    Office of Scientific and Technical Information (OSTI)

    High-energy Neutrino Beams; Review of Modern Physics, Vol. 61, Issue 3: 533 - 545; July 1989 Top Additional Web Pages: Discovery of the Muon-Neutrino, 1988 The 1988 Nobel Prize in...

  1. Particle physics confronts the solar neutrino problem

    SciTech Connect (OSTI)

    Pal, P.B.

    1991-06-01

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.

  2. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments [OSTI]

    Cooper, N. G. [ed.

    1997-00-00

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect (OSTI)

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. From Neutrino Factory to Muon Collider

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-01-01

    Both Muon Colliders and Neutrino Factories require a muon source capable of producing and capturing {Omicron}(10{sup 21}) muons/year. This paper reviews the similarities and differences between Neutrino Factory and Muon Collider accelerator complexes, the ongoing R&D needed for a Muon Collider that goes beyond Neutrino Factory R&D, and some thoughts about how a Neutrino Factory on the CERN site might eventually be upgraded to a Muon Collider.

  5. European Strategy for Future Neutrino Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    A workshop to discuss the possibilities for future neutrino investigations in Europe and the links to CERN.

  6. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect (OSTI)

    Duan, Huaiyu; Shalgar, Shashank, E-mail: duan@unm.edu, E-mail: shashankshalgar@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  7. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have questions or comments regarding any of our research and development activities, how to work with ORNL and the Computational Sciences and Engineering (CSE) Division, or the content of this website please contact one of the following people: If you have questions regarding CSE technologies and capabilities, job opportunities, working with ORNL and the CSE Division, intellectual property, etc., contact, Shaun S. Gleason, Ph.D. Division Director, Computational Sciences and Engineering

  8. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Computational Sciences and Engineering Division is a major research division at the Department of Energy's Oak Ridge National Laboratory. CSED develops and applies creative information technology and modeling and simulation research solutions for National Security and National Energy Infrastructure needs. The mission of the Computational Sciences and Engineering Division is to enhance the country's capabilities in achieving important objectives in the areas of national defense, homeland

  9. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mission, the APS Engineering Support Division provides: Highly reliable, state-of-the-art computer infrastructure to meet the needs of the APS. Leading-edge information...

  10. Information Management Division (HC-14)

    Broader source: Energy.gov [DOE]

    This division provides operational support and consultative advice to the Chief Human Capital Officer and Departmental Senior Management on matters pertaining to the acquisition, deployment and...

  11. Employment Solutions Division (HC-13)

    Broader source: Energy.gov [DOE]

    This division develops and implements innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent...

  12. Operations Division at Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cmte. Safety Walkaround Checklist Jun 2015 Emergency Action Guide JHA Ergo Awareness Lessons Learned Safety Tips Safety Concerns Box DivisionsDepartments Suggestions Search:...

  13. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Train Your Bacterium Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and his researchers are using the bacterium Moorella thermoacetica to perform...

  14. CHRONOLOGY OF EVENTS IN DIVISION ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Division; in 1953 became the Health and Safety Laboratory.) Formulation of a cancer research program including provision of beds for selected cancer patients in hospitals...

  15. Research Divisions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Analysis Computing Center, Intermediate Voltage Electron Microscopy- Tandem Facility and the National Security Facility. The Energy Systems (ES) division conducts...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Neutrinos The Booster Neutrino Experiment starts by producing a beam of neutrinos. In a multi-stage process, protons from one of the Fermilab proton accelerators -- the Booster -- are used to generate muon neutrinos, one of the three types of neutrinos presently known. In the first stage of the production, a pre-accelerator speeds hydrogen ions up to an energy of 750,000 electron volts. The ions then enter a linear accelerator; this device gives the particles even more energy before

  17. Lightning Talks 2015: Theoretical Division

    SciTech Connect (OSTI)

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  18. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  19. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics /science-innovation/_assets/images/icon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. Physics» Nuclear physics: scientist ion the Cave looking at experimewntal data projected on walls Researchers investigate details of an astronomical simulation in the CAVE at the Los Alamos SuperComputing Center. CAVE stands

  20. Everything under the sun: A review of solar neutrinos (Journal...

    Office of Scientific and Technical Information (OSTI)

    Everything under the sun: A review of solar neutrinos Citation Details In-Document Search Title: Everything under the sun: A review of solar neutrinos Solar neutrinos offer a...

  1. Oregon Public Health Division | Open Energy Information

    Open Energy Info (EERE)

    Division Jump to: navigation, search Name: Oregon Public Health Division Address: 800 NE Oregon Street, Suite 930 Place: Portland, Oregon Zip: 97232 Phone Number: 971-673-1222...

  2. Nevada Division of Minerals | Open Energy Information

    Open Energy Info (EERE)

    Logo: Nevada Division of Minerals Name: Nevada Division of Minerals Address: 400 W. King St. 106 Place: Carson City, Nevada Zip: 89703 Website: minerals.state.nv.us...

  3. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) » A Nobel for Neutrinos: Sudbury Neutrino Observatory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » 10.01.15 A Nobel for Neutrinos: Sudbury Neutrino Observatory

  4. A Nobel for Neutrinos: Sudbury Neutrino Observatory | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) A Nobel for Neutrinos: Sudbury Neutrino Observatory Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 10.01.15 A Nobel for Neutrinos: Sudbury Neutrino

  5. Division 1137 property control system

    SciTech Connect (OSTI)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  6. Jack Steinberger and the Muon-Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jack Steinberger and the Muon-Neutrino Resources with Additional Information Jack Steinberger Photograph by Harry Sticker, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection In an interview, Jack Steinberger spoke about his 1988 Nobel Prize winning research. He states "I did an experiment, together with several other people at Brookhaven National Laboratory ... which showed that there is a second kind of neutrino. The neutrino has elementary particles. Elementary particles

  7. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The ...

  8. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino ...

  9. Neutrino flux predictions for cross section measurements (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; BEAM LUMINOSITY; BEAM MONITORING; CROSS SECTIONS; NEUTRINO BEAMS; NEUTRINO REACTIONS; ...

  10. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details In-Document Search Title: Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors ...

  11. Charm Production by Neutrinos (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Charm Production by Neutrinos Citation Details In-Document Search Title: Charm Production by Neutrinos You are accessing a document from the Department of...

  12. From super beams to neutrino factories

    SciTech Connect (OSTI)

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  13. Scintillator yields glimpse of elusive solar neutrinos

    SciTech Connect (OSTI)

    Smart, Ashley G.

    2014-11-01

    The low-energy neutrinos are byproducts of the first reaction in a chain that generates 99% of the Suns energy.

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are...

  15. Non-Oscillation Probes of Neutrino Masses

    SciTech Connect (OSTI)

    Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster Institut fuer Kernphysik, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany)

    2010-03-30

    The absolute scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing statements on the neutrino mass from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double beta decay and the direct neutrino mass search. For both methods currently experiments with a sensitivity of O(100) meV are being set up or commissioned.

  16. MicroBooNE First Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino event reconstruction identified. The images are below. collection plane: induction plane 1: induction plane 2: collection plane: induction plane 1: induction plane 2:...

  17. Search for Neutrinos from the Sun

    DOE R&D Accomplishments [OSTI]

    Davis, Raymond Jr.

    1968-09-01

    A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary goal of The inside of the MiniBooNE tank is covered with 1280 photomultiplier tubes. (Courtesy: Fermilab Visual Media Services) this experiment is: To test for neutrino mass by searching for neutrino oscillations. Neutrino mass is important because it may lead us to physics beyond the Standard Model. Masses in the range accessible to MiniBooNE will expand our understanding of how the universe has evolved. The BooNE project began in 1997. The first beam induced neutrino events were

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost...

  20. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect (OSTI)

    NONE

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeVPeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  1. Evidence for neutrino mass: A decade of discovery

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  2. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and

    Office of Scientific and Technical Information (OSTI)

    Nucleosynthesis (Technical Report) | SciTech Connect Technical Report: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Citation Details In-Document Search Title: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is

  3. Dark matter annihilation or unresolved astrophysical sources? Anisotropy

    Office of Scientific and Technical Information (OSTI)

    probe of the origin of the cosmic gamma-ray background (Journal Article) | SciTech Connect Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of the cosmic gamma-ray background Citation Details In-Document Search Title: Dark matter annihilation or unresolved astrophysical sources? Anisotropy probe of the origin of the cosmic gamma-ray background The origin of the cosmic gamma-ray background (CGB) is a longstanding mystery in high-energy astrophysics.

  4. Final Report: SciDAC Computational Astrophysics Consortium (at Princeton

    Office of Scientific and Technical Information (OSTI)

    University) (Technical Report) | SciTech Connect Technical Report: Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University) Citation Details In-Document Search Title: Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University) Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the

  5. Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays Citation Details In-Document Search Title: Astrophysical Accelerators of Ultrahigh Energy Cosmic Rays We discuss the origin of ultra-high energy cosmic rays in light of the latest observational results from the Pierre Auger Observatory, highlighting potential astrophysical sources such as active galactic nuclei, gamma-ray bursts, and clusters of galaxies. Key issues include their energy budget, the

  6. Final Report: SciDAC Computational Astrophysics Consortium (at Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University) (Technical Report) | SciTech Connect Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University) Citation Details In-Document Search Title: Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University) Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic

  7. Final Report: SciDAC Computational Astrophysics Consortium (at...

    Office of Scientific and Technical Information (OSTI)

    supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related...

  8. RFP Workshops - Center for Plasma in the Laboratory and Astrophysics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory -...

  9. Sunfall: a collaborative visual analytics system for astrophysics...

    Office of Scientific and Technical Information (OSTI)

    introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume...

  10. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  11. Final Report: SciDAC Computational Astrophysics Consortium (at...

    Office of Scientific and Technical Information (OSTI)

    Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related ...

  12. DEAP and CLEAN Detectors for Low Energy Particle Astrophysics...

    Office of Scientific and Technical Information (OSTI)

    DEAP and CLEAN Detectors for Low Energy Particle Astrophysics Citation Details In-Document ... FIELDS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ARGON; ...

  13. SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSIC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Aysto, A. Saastamoinen, M. A. Bentley, D. Jenkins, T. Davinson, and P. J. Woods Breakup of sd-shell proton-rich nuclei for nuclear astrophysics......

  14. The neutrino portal to new physics

    SciTech Connect (OSTI)

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  15. Variations in the Solar Neutrino Flux

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

    1987-08-02

    Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

  16. Investigation of Neutrino Properties with Bolometric Detectors

    SciTech Connect (OSTI)

    Heeger, Karsten M

    2014-11-01

    Neutrino mass and mixing are amongst the major discoveries of the past decade. The particle nature of neutrinos and the hierarchy of mass eigenstates, however, are unknown. Neutrinoless double beta-decay (0νββ) is the only known mechanism to test whether neutrinos are their own antiparticles. The observation of 0νββ would imply lepton number violation and show that neutrinos have Majorana mass. This report describes research activities performed at the University of Wisconsin in 2011-2014 aimed at the search for 0νββ with CUORE-0 and CUORE with the goal of exploring the inverted mass hierarchy region and probing an effective neutrino mass of ~40- 120 meV.

  17. Light sterile neutrinos in the early universe

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2014-06-24

    Cosmological and terrestrial data suggests the number of light neutrinos may be greater than 3, motivating a careful reexamination of cosmological bounds on extra light species. Big bang nucleosynthesis constrains the number of relativistic neutrino species present during nucleosynthesis, N{sub eff}{sup BBN}, while measurements of the cosmic microwave background (CMB) angular power spectrum constrain the effective energy density in relativistic neutrinos at the time of matter-radiation equality, N{sub eff}{sup CMB}. We review a scenario with two sterile neutrinos and explore whether partial thermalization of the sterile states can ease the tension between cosmological constraints on N{sub eff}{sup BBN} and terrestrial data. We conclude that, still, two additional light sterile neutrinos species cannot fit all the data at the 95% confidence level.

  18. Dirac neutrino in warped extra dimensions

    SciTech Connect (OSTI)

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2009-12-01

    We implement Dirac neutrinos in the minimal custodial Randall-Sundrum setting via the Krauss-Wilczek mechanism. We demonstrate by giving explicit lepton mass matrices that with neutrinos in the normal hierarchy, lepton mass and mixing patterns can be naturally reproduced at the scale set by the constraints from electroweak precision measurements, and at the same time without violating bounds set by lepton flavor violations. Our scenario generically predicts a nonzero neutrino mixing angle {theta}{sub 13}, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which partner the right-handed standard model charged leptons. These relatively light KK neutrinos may be searched for at the LHC.

  19. Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}...

    Office of Scientific and Technical Information (OSTI)

    Tau neutrinos underground: Signals of nusub muyieldsnusub tau oscillations with extragalactic neutrinos Citation Details In-Document Search Title: Tau neutrinos...

  20. Detecting Neutrinos with the NOvA Detectors (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    PARTICLES AND FIELDS NOVA; NEUTRINO; NEUTRINO DETECTOR; DETECTOR; COSMIC RAY; NEUTRINO INTERACTION Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia...

  1. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  2. Astrophysical black holes in screened modified gravity

    SciTech Connect (OSTI)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  3. Studies of High Energy Particle Astrophysics

    SciTech Connect (OSTI)

    Nitz, David F; Fick, Brian E

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  4. Influence of flavor oscillations on neutrino beam instabilities

    SciTech Connect (OSTI)

    Mendona, J. T.; Haas, F.; Bret, A.

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  5. Researchers Discover a New Kind of Neutrino Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Discover a New Kind of Neutrino Transformation Researchers Discover a New Kind of Neutrino Transformation NERSC, ESnet and computational scientists help researchers discover how neutrinos flavor-shift as they travel at near light-speed March 8, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Daya Bay Neutrino Facility in China. Photo by: Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Neutrinos, the wispy particles that flooded the universe in the earliest moments after the Big

  6. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Office of Science (SC) Website

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F:

  7. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron

    Office of Science (SC) Website

    Neutrinos Turn into Muon Neutrinos | U.S. DOE Office of Science (SC) The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  8. Phenomenological relations for neutrino masses and mixing parameters

    SciTech Connect (OSTI)

    Khruschov, V. V.

    2013-11-15

    Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

  9. Nuclear Data for Astrophysics: Collections at NucAstroData.org

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In May of 2003, Dr. Michael Smith, Physics Division, ORNL, published a paper announcing the launch of the new website NucAstroData.org and the rationale behind it. An excerpt from the abstract of that paper, found in volume 718, pages 339-346, of ScienceDirect - Nuclear Physics A, explains: "In order to address important astrophysics problems such as the origin of the chemical elements, the inner workings of our Sun, and the evolution of stars, crucial nuclear datasets are needed. Recent evaluation and dissemination efforts have produced a number of such datasets, many of which are online and readily available to the research community. Current international efforts in this field are, unfortunately, insufficient to keep pace with the latest nuclear physics measurements and model calculations. A dedicated effort is required to update and expand existing datasets. I discuss several strategies and new initiatives that would ensure a more effective utilization of nuclear data in astrophysics. These include launching a new web site, www.nucastrodata.org, to aid in locating available nuclear data sets, and an interactive online plotting program with an easy-to-use graphical user interface to over 8000 reaction rates." This website continues to be resource for the nuclear astrophysics community. NucAstroData provides both links to datasets around the world and a repository where researchers can upload their own data. Tools for generating and manipulating reaction rates, merging libraries of data, plotting data and performing other tasks are provided under the website's Infrastructure section and the menu selection for software leads to useful codes.

  10. Neutrino emission in the jet propagation process

    SciTech Connect (OSTI)

    Xiao, D.; Dai, Z. G.

    2014-07-20

    Relativistic jets are universal in long-duration gamma-ray burst (GRB) models. Before breaking out, they must propagate in the progenitor envelope along with a forward shock and a reverse shock forming at the jet head. Both electrons and protons will be accelerated by the shocks. High-energy neutrinos could be produced by these protons interacting with stellar materials and electron-radiating photons. The jet will probably be collimated, which may have a strong effect on the final neutrino flux. Under the assumption of a power-law stellar-envelope density profile ??r {sup ?} with index ?, we calculate the neutrino emission flux by these shocks for low-luminosity GRBs (LL-GRBs) and ultra-long GRBs (UL-GRBs) in different collimation regimes, using the jet propagation framework developed by Bromberg et al. We find that LL-GRBs and UL-GRBs are capable of producing detectable high-energy neutrinos up to ?PeV, from which the final neutrino spectrum can be obtained. Further, we conclude that a larger ? corresponds to greater neutrino flux at the high-energy end (?PeV) and to higher maximum neutrino energy as well. However, such differences are so small that it is not promising for us to be able to distinguish these in observations, given the energy resolution we have now.

  11. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect (OSTI)

    Coleman, Stephen James; /William-Mary Coll.

    2011-01-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting {Delta}m{sub 23}{sup 2} = (2.32{sub -0.08}{sup +0.12}) x 10{sup -3} eV{sup 2}/c{sup 4} and the mixing angle sin{sup 2}(2{theta}{sub 32}) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2{sigma} and the neutrino quantum decoherence hypothesis is disfavored at 9.0{sigma}.

  12. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect (OSTI)

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vs MiniBooNE MiniBooNE is the first phase of the Booster Neutrino Experiment (BooNE); in this phase, neutrino oscillation measurements will be made with a single detector. If oscillations are observed, then MiniBooNE will be upgraded to stage two (BooNE) with a two-detector configuration. The BooNE experiment proposes to definitively explore the neutrino oscillation signal reported by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of

  14. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect (OSTI)

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  15. Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses Citation Details In-Document Search Title: Mini Z' Burst from Relic Supernova Neutrinos and Late NeutrinoMasses Authors: Goldberg, Haim ; Perez, Gilad ; Sarcevic, Ina Publication Date: 2006-11-26 OSTI Identifier: 933093 Report Number(s): LBNL--57632 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Journal of High Energy Physics;

  16. IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDS-NF Impact of Neutrino Cross Section Impact of Neutrino Cross Section Knowledge on Oscillation Knowledge on Oscillation Measurements Measurements M. Sorel, IFIC (CSIC and U. of Valencia) IDS-NF, RAL, Jan 16-17 2008 M. Sorel - IFIC (Valencia U. & CSIC) 2 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA M. Sorel - IFIC (Valencia U. & CSIC) 3 IDS-NF Neutrino Cross Sections: At What Energies Needed? Superbeams: Solid: T2K Dashed: NovA Beta

  17. Neutrinos from Hell: the Dawn of Neutrino Geophysics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Seismic waves have been for long time the only messenger reporting on the conditions deep inside the Earth. While global seismology provides amazing details about the structure of our planet, it is only sensitive to the mechanical properties of rocks and not to their chemical composition. In the last 5 years KamLAND and Borexino have started measuring anti-neutrinos produced by Uranium and Thorium inside the Earth. Such "Geoneutrinos" double the number of tools available to study the Earth's interior, enabling a sort of global chemical analysis of the planet, albeit for two elements only.I will discuss the results of these new measurements and put them in the context of the Earth Sciences."

  18. Division Postdoctoral Appointments Frequently Asked Questions | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Division Postdoctoral Appointments Frequently Asked Questions Are the Division Postdoctoral Appointments the same as "Regular Postdocs"? Yes. Who chooses the final candidate; DEP, the sub-committee, or the programmatic Division? The programmatic Division does. The sub-committee reviews the final candidate's application package to ensure that he or she complies with Argonne 's high standards and that all the requirements have been met. If the candidate has

  19. Jefferson Lab Divisions & Departments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions & Departments Privacy and Security Notice Skip over navigation search Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO IT/CIO CSO Engineering ESH&Q FEL Physics 12000 Jefferson Avenue, Newport News, VA 23606 Phone: (757) 269-7100 Fax: (757)

  20. California Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Rights Jump to: navigation, search Logo: California Division of Water Rights Name: California Division of Water Rights Place: Sacramento, California Phone Number:...

  1. Jeff Broughton Named NERSC Division Deputy for Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Division Deputy for Operations. The announcement was made Aug. 15 by NERSC Division Director Sudip Dosanjh. "Rather than this being a new position, the Division Deputy title...

  2. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Jump to: navigation, search Logo: Colorado Division of Water Resources Name: Colorado Division of Water Resources Address: 1313 Sherman St., Suite 818...

  3. Nevada Division of Water Resources Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    library Web Site: Nevada Division of Water Resources Forms Webpage Abstract Provides access to State of Nevada Division of Water Resources forms. Author State of Nevada Division...

  4. New Mexico Historic Preservation Division | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Division Jump to: navigation, search Logo: New Mexico Historic Preservation Division Name: New Mexico Historic Preservation Division Abbreviation: NMHPD...

  5. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE...

    Office of Scientific and Technical Information (OSTI)

    the convective luminosity and turbulent dissipation scale with the driving neutrino power. ... INSTABILITY; KINETIC ENERGY; LUMINOSITY; NEUTRINOS; SCALING; SHOCK WAVES; ...

  6. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect (OSTI)

    Liu, Qiuguang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.55 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  7. The CAPTAIN liquid argon neutrino experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  8. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema (OSTI)

    Rasio, Fred [Northwestern University

    2009-09-01

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  9. Is the Higgs boson composed of neutrinos?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  10. Toroidal Dipole Moment of a Massless Neutrino

    SciTech Connect (OSTI)

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-04-20

    We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.

  11. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect (OSTI)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  12. MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS

    SciTech Connect (OSTI)

    Porth, O.; Xia, C.; Hendrix, T.; Moschou, S. P.; Keppens, R.

    2014-09-01

    In this paper, we present an update to the open source MPI-AMRVAC simulation toolkit where we focus on solar and non-relativistic astrophysical magnetofluid dynamics. We highlight recent developments in terms of physics modules, such as hydrodynamics with dust coupling and the conservative implementation of Hall magnetohydrodynamics. A simple conservative high-order finite difference scheme that works in combination with all available physics modules is introduced and demonstrated with the example of monotonicity-preserving fifth-order reconstruction. Strong stability-preserving high-order Runge-Kutta time steppers are used to obtain stable evolutions in multi-dimensional applications, realizing up to fourth-order accuracy in space and time. With the new distinction between active and passive grid cells, MPI-AMRVAC is ideally suited to simulate evolutions where parts of the solution are controlled analytically or have a tendency to progress into or out of a stationary state. Typical test problems and representative applications are discussed with an outlook toward follow-up research. Finally, we discuss the parallel scaling of the code and demonstrate excellent weak scaling up to 30, 000 processors, allowing us to exploit modern peta-scale infrastructure.

  13. Light sterile neutrinos after BICEP-2

    SciTech Connect (OSTI)

    Archidiacono, Maria; Hannestad, Steen; Fornengo, Nicolao; Gariazzo, Stefano; Giunti, Carlo; Laveder, Marco E-mail: fornengo@to.infn.it E-mail: giunti@to.infn.it E-mail: marco.laveder@pd.infn.it

    2014-06-01

    The recent discovery of B-modes in the polarization pattern of the Cosmic Microwave Background by the BICEP2 experiment has important implications for neutrino physics. We revisit cosmological bounds on light sterile neutrinos and show that they are compatible with all current cosmological data provided that the mass is relatively low. Using CMB data, including BICEP-2, we find an upper bound of m{sub s} < 0.85 eV (2σ Confidence Level). This bound is strengthened to 0.48 eV when HST measurements of H{sub 0} are included. However, the inclusion of SZ cluster data from the Planck mission and weak gravitational measurements from the CFHTLenS project favours a non-zero sterile neutrino mass of 0.44{sup +0.11}{sub −0.16} eV. Short baseline neutrino oscillations, on the other hand, indicate a new mass state around 1.2 eV. This mass is highly incompatible with cosmological data if the sterile neutrino is fully thermalised (Δχ{sup 2} > 10). However, if the sterile neutrino only partly thermalises it can be compatible with all current data, both cosmological and terrestrial.

  14. THE BNL SUPER NEUTRINO BEAM PROJECT

    SciTech Connect (OSTI)

    WENG,W-T.; RAPARIA,D.

    2004-12-02

    To determine the neutrino mixing amplitudes and phase accurately, as well as the CP violation parameters, a very long base line super neutrino beam facility is needed. This is possible due to the long distance and wideband nature of the neutrino beam for the observation of several oscillations from one species of the neutrino to the other [1,2]. BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of three major subsystems. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade for the AGS itself for the higher intensity and repetition rate, and finally is target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS form 0.3 Hz to 2.5 Hz, with moderate increase from the intensity [3]. The design consideration to achieve high intensity and low losses for the linac and the AGS will be reviewed. The target horn design for high power operation and easy maintenance will also be presented.

  15. Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a function of time. The fits to a constant and a line with a slope are consistent with a constant rate. which are simulated with the MiniBooNE detector Monte Carlo. Figure 3...

  16. Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapid rate. In addition to the studies presented here, analyses of neutral current elas- tic scattering and charged current + production are also in progress. MiniBooNE is...

  17. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and

    Office of Scientific and Technical Information (OSTI)

    Nucleosynthesis (Technical Report) | SciTech Connect Technical Report: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Citation Details In-Document Search Title: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  18. Research in nuclear astrophysics: Stellar collapse and supernovae

    SciTech Connect (OSTI)

    Lattimer, J.M.; Yahil, A.

    1992-01-01

    This progress report describes the nuclear astrophysics research activities in the Earth and Space Sciences Department at Stony Brook during the last year. Our research focused on three aspects of nuclear astrophysics: (1) the equation of state of hot, dense matter, (2) the origin of supernovae and neutron stars, (3) the early cooling epoch of neutron stars. The following contains detailed reports which summarize each completed project.

  19. Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Princeton Plasma Physics Lab February 14, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory Experiments Dr. Clayton Myers, Associate Research Physicist PPPL Abstract: PDF icon Myers.pdf Science on Saturday, 14FEB2015, "Honey, I Shrunk the Plasma: Studying Astrophysical Processess in Laboratory Experiments", Dr. Clayton Myers, PPPL Contact Information Website: Science on Saturday

  20. Directory - Center for Plasma in the Laboratory and Astrophysics - UW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madison Physics Department Directory UW Madison Center for Plasma in the Laboratory and Astrophysics Directory CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum Transport and Flow

  1. Everything under the sun: A review of solar neutrinos (Journal...

    Office of Scientific and Technical Information (OSTI)

    Everything under the sun: A review of solar neutrinos Citation Details In-Document Search Title: Everything under the sun: A review of solar neutrinos You are accessing a...

  2. Researchers Discover a New Kind of Neutrino Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Daya Bay Neutrino Facility in China. Photo by: Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Neutrinos, the...

  3. Everything under the sun: A review of solar neutrinos

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gann, Gabriel D. Orebi

    2015-07-15

    Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

  4. Melvin Schwartz and the Discovery of the Muon Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  5. Physics Division progress report, January 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Hollen, G.Y.; Schappert, G.T.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  6. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  7. Theoretical Research at the High Energy Frontier: Cosmology, Neutrinos, and Beyond

    SciTech Connect (OSTI)

    Krauss, Lawrence M; Vachaspati, Tanmay; Parikh, Maulik

    2013-03-06

    The DOE theory group grew from 2009-2012 from a single investigator, Lawrence Krauss, the PI on the grant, to include 3 faculty (with the addition of Maulik Parikh and Tanmay Vachaspati), and a postdoc covered by the grant, as well as partial support for a graduate student. The group has explored issues ranging from gravity and quantum field theory to topological defects, energy conditions in general relativity, primordial magnetic fields, neutrino astrophysics, quantum phases, gravitational waves from the early universe, dark matter detection schemes, signatures for dark matter at the LHC, and indirect astrophysical signatures for dark matter. In addition, we have run active international workshops each year, as well as a regular visitor program. As well, the PI's outreach activities, including popular books and articles, and columns for newspapers and magazines, as well as television and radio appearances have helped raise the profile of high energy physics internationally. The postdocs supported by the grant, James Dent and Roman Buniy have moved on successfully to a faculty positions in Louisiana and California.

  8. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    SciTech Connect (OSTI)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.; Phillips, C. J.; Roberts, P.; Alvarez-Muniz, J.; Bray, J. D.; McFadden, R. A.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  9. Status and Aims of the DUMAND Neutrino Project: the Ocean as a Neutrino Detector

    DOE R&D Accomplishments [OSTI]

    Roberts, A.; Blood, H.; Learned, J.; Reines, F.

    1976-07-01

    The possibility of using the ocean as a neutrino detector is considered. Neutrino-produced interactions result in charged particles that generate Cherenkov radiation in the water, which can be detected by light-gathering equipment and photomultipliers. The properties of the ocean as seen from this standpoint are critically examined, and the advantages and disadvantages pointed out. Possible uses for such a neutrino detector include (1) the detection of neutrinos emitted in gravitational collapse of stars (supernova production), not only in our own galaxy, but in other galaxies up to perhaps twenty-million light-years away, (2) the extension of high-energy neutrino physics, as currently practiced up to 200 GeV at high-energy accelerators, to energies up to 50 times higher, using neutrinos generated in the atmosphere by cosmic rays, and (3) the possible detection of neutrinos produced by cosmic-ray interactions outside the earth`s atmosphere. The technology for such an undertaking seems to be within reach.

  10. Division of Energy and Mineral Development

    Office of Environmental Management (EM)

    Office of Indian Energy and Economic Development Division of Energy and Mineral Development DOE Energy Efficiency & Renewable Energy Tribal Energy Program November 14 th , 2011 Winter Jojola-Talburt, Electrical Engineer Assistant Secretary - Indian Affairs (Larry Echo Hawk) Director Bureau of Indian Affairs Director Bureau of Indian Education Deputy Assistant Secretary Policy and Economic Development (Jodi Gillette) Division of Energy and Mineral Development Division of Economic Development

  11. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  12. TO: Procurement Directors FROM: Director, Policy Division

    Broader source: Energy.gov (indexed) [DOE]

    4 DATE: April 7, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT:...

  13. TO: Procurement Directors FROM: Director, Policy Division

    Energy Savers [EERE]

    POLICY FLASH 2011-56 DATE: March 16, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance...

  14. Division Director, Chemical Sciences, Geosciences and Biosciences

    Broader source: Energy.gov [DOE]

    The Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division is seeking a motivated and highly qualified individual to...

  15. Computing and Computational Sciences Directorate - Divisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center for Computational Sciences

  16. Amur Energy Division | Open Energy Information

    Open Energy Info (EERE)

    Division is a company located in Spain. Related Links http:findarticles.comparticlesmim5CNKis2007Jan4ain24998390 http:www.businesswirenet.orgprindex.phpid...

  17. Hawaii Department of Transportation Highways Division | Open...

    Open Energy Info (EERE)

    Hawaii Department of Transportation Highways Division Address: 869 Punchbowl Street, Room 513 Place: Honolulu, Hawaii Zip: 96809 Website: hawaii.govdothighways Coordinates:...

  18. Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}}

    Office of Scientific and Technical Information (OSTI)

    oscillations with extragalactic neutrinos (Journal Article) | SciTech Connect Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations with extragalactic neutrinos Citation Details In-Document Search Title: Tau neutrinos underground: Signals of {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations with extragalactic neutrinos The appearance of high energy tau neutrinos due to {nu}{sub {mu}}{yields}{nu}{sub {tau}} oscillations of extragalactic neutrinos can be

  19. Matter effects in active-sterile solar neutrino oscillations

    SciTech Connect (OSTI)

    Giunti, C.; Li, Y. F.

    2009-12-01

    The matter effects for solar neutrino oscillations are studied in a general scheme with an arbitrary number of sterile neutrinos, without any constraint on the mixing, assuming only a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results are illustrated with a numerical solution of the evolution equation in three examples of the possible mixing matrix in the simplest case of four-neutrino mixing.

  20. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  1. MINERvA: Bringing neutrinos into sharp focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MINERvA: Bringing neutrinos into sharp focus MINERvA is the first neutrino experiment in the world to use a high-intensity beam to study neutrino reactions with five different nuclei, creating the first self-contained comparison of interactions in different elements. While this type of study has previously been done using beams of electrons, this is a first for neutrinos. MINERvA is providing the world's best, high-precision measurements of neutrino interactions on various nuclei, in the 1-to

  2. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect (OSTI)

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle ?23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  3. Neutrino oscillations in a turbulent plasma

    SciTech Connect (OSTI)

    Mendona, J. T.; Haas, F.

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FermiNews A biweekly magazine published by the Fermilab Office of Public Affairs about work and life at Fermilab. 2002: September 20, 2002 - New Neutrino Experiment at Fermilab Goes Live June 14, 2002 - Changing of the Guard: Mike Shaevitz returns to Columbia May 24, 2002 - Beam Me Up: MiniBooNE gets ready to go May 10, 2002 - Dastow 2002: 3D neutrino event simulation Mar. 29, 2002 - Exploring the Invisible Universe Jan. 18, 2002 - A Clear View: MiniBooNE's detector oil 2001: Dec. 14, 2001 -

  5. Neutrinoless double beta decay and neutrino masses

    SciTech Connect (OSTI)

    Duerr, Michael [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2012-07-27

    Neutrinoless double beta decay (0{nu}{beta}{beta}) is a promising test for lepton number violating physics beyond the standard model (SM) of particle physics. There is a deep connection between this decay and the phenomenon of neutrino masses. In particular, we will discuss the relation between 0{nu}{beta}{beta} and Majorana neutrino masses provided by the so-called Schechter-Valle theorem in a quantitative way. Furthermore, we will present an experimental cross check to discriminate 0{nu}{beta}{beta} from unknown nuclear background using only one isotope, i.e., within one experiment.

  6. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect (OSTI)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  7. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    SciTech Connect (OSTI)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  8. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  9. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  10. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  11. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments [OSTI]

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  12. Staff Listing - Office of Regulation and International Engagement, Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Natural Gas Regulation, Division of International Engagement | Department of Energy Staff Listing - Office of Regulation and International Engagement, Division of Natural Gas Regulation, Division of International Engagement Staff Listing - Office of Regulation and International Engagement, Division of Natural Gas Regulation, Division of International Engagement Office of Regulation and International Engagement Mailing Address: Office of Regulation and International Engagement Office of

  13. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration Find here collaboration lists of MiniBooNE at various stages of the experiment Current MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated ~2008. from inspirehep.net Booster Neutrino Experiment FNAL-E-0898

  15. Report on the Brookhaven Solar Neutrino Experiment

    DOE R&D Accomplishments [OSTI]

    Davis, R. Jr.; Evans, J. C. Jr.

    1976-09-22

    This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

  16. NOvA: Exploring Neutrino Mysteries

    ScienceCinema (OSTI)

    Vahle, Tricia; Messier, Mark

    2014-08-12

    Neutrinos are a mystery to physicists. They exist in three different flavors and mass states and may be able to give hints about the origins of the matter-dominated universe. A new long-baseline experiment led by Fermilab called NOvA may provide some answers.

  17. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect (OSTI)

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  18. The halo model in a massive neutrino cosmology

    SciTech Connect (OSTI)

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ?20% accuracy up to very non-linear scales of k=10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k=0.51 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k<0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of <0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k=1 h/Mpc with ?30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  19. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; et al

    2015-06-02

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  20. Biology and Medicine Division: Annual report 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  1. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  2. G Subject: Implementation of Division D, Title III and Title...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    G Subject: Implementation of Division D, Title III and Title V, and Division E, Title ... 301(a), 304, 305, 307, and 310 and Title V, Section 501; Division E, Title VII, ...

  3. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  4. High-energy solar astrophysics: solar gamma-ray astronomy (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-energy solar astrophysics: solar gamma-ray astronomy Citation Details In-Document Search Title: High-energy solar astrophysics: solar gamma-ray astronomy ...

  5. High-energy solar astrophysics: solar gamma-ray astronomy (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-energy solar astrophysics: solar gamma-ray astronomy Citation Details In-Document Search Title: High-energy solar astrophysics: solar gamma-ray astronomy...

  6. Division of Energy and Mineral Resources Management - Projects

    Office of Environmental Management (EM)

    BIA - - Division of Energy and Mineral Division of Energy and Mineral Resources Management Resources Management 1 1 Assistant Secretary Assistant Secretary - - Indian Affairs Indian Affairs Office of Indian Office of Indian Energy and Economic Energy and Economic Development Development Division of Energy and Division of Energy and Mineral Resources Mineral Resources Management Management BIA BIA - - Division of Energy and Mineral Division of Energy and Mineral Resources Management Resources

  7. SciDAC Computational Astrophysics Consortium (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: SciDAC Computational Astrophysics Consortium Citation Details In-Document Search Title: SciDAC Computational Astrophysics Consortium Supernova explosions are the central events in nuclear astrophysics. The core-collapse variety is a major source for the universe's heavy elements. The neutron stars, pulsars, and stellar-mass black holes of high-energy astrophysics are their products. Given their prodigious explosion energies, they are the major agencies of change in

  8. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  9. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  10. Oregon Land Management Division - Easements | Open Energy Information

    Open Energy Info (EERE)

    Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management...

  11. AET Solar formerly solar division of GGAM Electrical Services...

    Open Energy Info (EERE)

    Solar formerly solar division of GGAM Electrical Services Jump to: navigation, search Name: AET Solar (formerly solar division of GGAM Electrical Services) Place: Limassol, Cyprus...

  12. Railroad Commission of Texas, Oil and Gas Division | Open Energy...

    Open Energy Info (EERE)

    Texas, Oil and Gas Division Jump to: navigation, search Name: Texas Railroad Commission, Oil and Gas Division Address: 1701 N. Congress Place: Texas Zip: 78711-2967 Website:...

  13. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  14. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  15. FERC Division of Hydropower Administration and Compliance | Open...

    Open Energy Info (EERE)

    Division of Hydropower Administration and Compliance Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Division of Hydropower Administration and...

  16. Uppsala University Division for Electricity | Open Energy Information

    Open Energy Info (EERE)

    University Division for Electricity Jump to: navigation, search Name: Uppsala University Division for Electricity Region: Sweden Sector: Marine and Hydrokinetic Website:...

  17. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Accomplish- ments for 1994 2 Nuclear Materials Technology DivisionLos Alamos ... Figure 1. Acid recycle and recovery system. 3 Nuclear Materials Technology DivisionLos ...

  18. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  19. Human Capital Policy Division (HC-11) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Organization Policy, Accountability, and Technology (HC-10) Human Capital Policy Division (HC-11) Human Capital Policy Division (HC-11) Mission Statement This ...

  20. Kansas Corporation Commission Energy Division | Open Energy Informatio...

    Open Energy Info (EERE)

    Commission Energy Division Jump to: navigation, search Name: Kansas Corporation Commission Energy Division Address: 1500 SW Arrowhead Road Place: Topeka, KS Zip: 66604-4074 Phone...

  1. Getwatt KISCO s energy division | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Getwatt (KISCO's energy division) Place: Jeungpeong, North Chungcheong, Korea (Republic) Zip: 368-906 Product: Energy division of South Korean...

  2. WDEQ-Air Quality Division | Open Energy Information

    Open Energy Info (EERE)

    Quality Division Jump to: navigation, search Name: WDEQ-Air Quality Division Abbreviation: WDEQ AQD Address: 122 West 25th Street, Herschler Building Place: Cheyenne, Wyoming Zip:...

  3. Procurement IT Tools - John Makepeace, Systems Division, OAPM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IT Tools - John Makepeace, Systems Division, OAPM Procurement IT Tools - John Makepeace, Systems Division, OAPM Topics Discussed: Procurement Systems at the Department of Energy...

  4. IAI MLM division Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: IAI - MLM division Ltd Place: Be'er Ya'acov, Israel Zip: 70350 Product: Developed a CPV system and plan to continue the project till the...

  5. Director, Division of Energy Market Oversight

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced senior level executive to serve as the Director, Division of Energy Market Oversight. The Director plans and implements the...

  6. Earth Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  7. DOE Human Resources Management Division - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs DOE Human Resources Management Division DOE Employment Recognition and Awards Program Federal Employees Union (AFGE Local 788) Work Schedules / Pay and Leave Benefits and Services EEO & Diversity Contact Us DOE Human Resources Management Division Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Richland Operations Office / Office of River Protection The Human Resources

  8. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect (OSTI)

    Laintz, Kenneth E.

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  9. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE)

    Office of Scientific and Technical Information (OSTI)

    Double Differential Cross Section (Conference) | SciTech Connect First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup

  10. Forecasting neutrino masses from combining KATRIN and the CMB observations:

    Office of Scientific and Technical Information (OSTI)

    Frequentist and Bayesian analyses (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses Citation Details In-Document Search Title: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological

  11. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of

  12. SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS:

    Office of Scientific and Technical Information (OSTI)

    FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING (Journal Article) | SciTech Connect SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS: FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING Citation Details In-Document Search Title: SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS: FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING We present a new series of supernova neutrino light curves and spectra calculated by numerical simulations for a variety

  13. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  14. The Next Generation of Photo-Detectors for Particle Astrophysics

    SciTech Connect (OSTI)

    Wagner, Robert G.; Byrum, Karen L.; Sanchez, Mayly; Vaniachine, Alexandre V.; Siegmund, Oswald; Otte, Nepomuk A.; Ramberg, Erik; Hall, Jeter; Buckley, James

    2009-04-01

    We advocate support of research aimed at developing alternatives to the photomultiplier tube for photon detection in large astroparticle experiments such as gamma-ray and neutrino astronomy, and direct dark matter detectors. Specifically, we discuss the development of large area photocathode microchannel plate photomultipliers and silicon photomultipliers. Both technologies have the potential to exhibit improved photon detection efficiency compared to existing glass vacuum photomultiplier tubes.

  15. The next generation of photo-detector for particle astrophysics.

    SciTech Connect (OSTI)

    Wagner, R. G.; Byrum, K. L.; Sanchez, M.; Vaniachine, A. V.; Siegmund, O.; Otte, N.A.; Ramberg, E.; Hall, J.; Buckley, J.; High Energy Physics; Univ. of California at Berkeley; FNAL; Washington Univ.

    2009-06-02

    We advocate support of research aimed at developing alternatives to the photomultiplier tube for photon detection in large astroparticle experiments such as gamma-ray and neutrino astronomy, and direct dark matter detectors. Specifically, we discuss the development of large area photocathode microchannel plate photomultipliers and silicon photomultipliers. Both technologies have the potential to exhibit improved photon detection efficiency compared to existing glass vacuum photomultiplier tubes.

  16. Neutrino Cross-Section Experiments David Schmitz, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Weak Interactions and Neutrinos September 13-19, 2009 - Perugia, Italy Outline ... on the horizon 2 WIN 09 - Perugia, Italy - September 14-19, 2009 D. Schmitz, ...

  17. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    Conference: First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section Citation Details In-Document Search Title: First Measurement of...

  18. Neutrino self-energy operator in plasmas at ultrahigh energies

    SciTech Connect (OSTI)

    Kuznetsov, A. V. Mikheev, N. V. Shitova, A. M.

    2013-11-15

    A general expression for the neutrino self-energy operator in plasmas was obtained in the limit of ultrahigh energies. Quantitative estimations were performed for the boundaries of the region kinematically allowed for the 'neutrino-spin-light' process. An analysis of the additional neutrino energy in plasmas revealed that, in the cases where neutrino spin light was kinematically allowed, the processes v-bar{sub e} + e{sup -} {yields} W{sup -} and v-bar{sub l} + v{sub l} {yields} Z would be dominant.

  19. Redshift-space distortions in massive neutrino and evolving dark...

    Office of Scientific and Technical Information (OSTI)

    Title: Redshift-space distortions in massive neutrino and evolving dark energy cosmologies Authors: Upadhye, Amol ; Kwan, Juliana ; Pope, Adrian ; Heitmann, Katrin ; Habib, Salman ...

  20. EA-1943: Construction and Operation of the Long Baseline Neutrino...

    Office of Environmental Management (EM)

    Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota EA-1943: Construction and Operation of the Long Baseline...

  1. Detecting electron neutrinos from solar dark matter annihilation...

    Office of Scientific and Technical Information (OSTI)

    Detecting electron neutrinos from solar dark matter ... channel is dominant, the future JUNO results are very ... Institute of High Energy Physics, Chinese Academy of ...

  2. Arthur B. McDonald and Oscillating Neutrinos

    Office of Scientific and Technical Information (OSTI)

    detector in Japan. This "metamorphosis" requires that neutrinos have mass.'1 'For particle physics this was a historic discovery. Its Standard Model of the innermost...

  3. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a few percent Critical input to oscillation result without it, 0 background errors would be 25% Neutrino 2008 Steve Brice (FNAL) 8 Two algorithms were used: -...

  4. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details ... Sponsoring Org: US DOE Office of Science (DOE SC);Laboratory Directed Research and ...

  5. Publisher's Note: Phase effects from the general neutrino Yukawa...

    Office of Scientific and Technical Information (OSTI)

    Phase effects from the general neutrino Yukawa matrix on lepton flavor violation Phys. Rev. D 72, 055012 (2005) Citation Details In-Document Search Title: Publisher's Note: Phase ...

  6. Neutrino mass, dark energy, and the linear growth factor (Journal...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Neutrino mass, dark energy, and the linear ... OSTI Identifier: 21249781 Resource Type: Journal Article Resource Relation: Journal Name: ...

  7. G Subject: Implementation of Division D, Title III and Title V, and Division E, Title

    Office of Environmental Management (EM)

    G Subject: Implementation of Division D, Title III and Title V, and Division E, Title Title VII of the Consolidated and Further Continuing Appropriations Act, 2015, Pub. L. No.113-235 References: Consolidated and Further Continuing Division D, Title III, Sections Appropriations Act, 2015, Pub.L. No. 113-235 301(a), 304, 305, 307, and 310 and Title V, Section 501; Division E, Title VII, Sections 733, 735, 739, 743, 744, 745 and 747 When is this Acquisition Letter (AL) effective? The statutory

  8. Dark photons as fractional cosmic neutrino masquerader

    SciTech Connect (OSTI)

    Ng, Kin-Wang; Tu, Huitzu; Yuan, Tzu-Chiang E-mail: huitzu@phys.sinica.edu.tw

    2014-09-01

    Recently, Weinberg proposed a Higgs portal model with a spontaneously broken global U(1) symmetry in which Goldstone bosons may be masquerading as fractional cosmic neutrinos. We extend the model by gauging the U(1) symmetry. This gives rise to the so-called dark photon and dark Higgs. The dark photons can constitute about 0.912 (0.167) to the effective number of light neutrino species if they decouple from the thermal bath before the pions become non-relativistic and after (before) the QCD transition. Restriction on the parameter space of the portal coupling and the dark Higgs mass is obtained from the freeze-out condition of the dark photons. Combining with the collider data constraints on the invisible width of the standard model Higgs requires the dark Higgs mass to be less than a few GeV.

  9. Dirac neutrinos from a second Higgs doublet

    SciTech Connect (OSTI)

    Davidson, Shainen M.; Logan, Heather E. [Ottawa-Carleton Institute for Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2009-11-01

    We propose a minimal extension of the standard model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier standard-model-like Higgs boson consistent with electroweak precision data. The model predicts a {mu}{yields}e{gamma} rate potentially detectable in the current round of experiments, as well as distinctive signatures in the production and decay of the charged Higgs H{sup +} of the second doublet which can be tested at future colliders. Neutrinoless double beta decay is absent.

  10. THE BNL SUPER NEUTRINO BEAM PROJECT.

    SciTech Connect (OSTI)

    RAPARIA,D.

    2005-01-26

    BNL plans to create a very long base line super neutrino beam facility by upgrading the AGS from the current 0.14 MW to 1.0 MW and beyond. The proposed facility consists of three major components. First is a 1.5 GeV superconducting linac to replace the booster as injector for the AGS, second is the performance upgrade of the AGS itself for higher intensity and repetition rate, and finally is the target and horn system for the neutrino production. The major contribution for the higher power is from the increase of the repetition rate of the AGS from 0.3 Hz to 2.5 Hz, with moderate increase from the intensity. The accelerator design considerations to achieve high intensity and low losses for the new linac and the AGS will be presented. The target and horn design for high power operation and easy maintenance will also be covered.

  11. The NuMI Neutrino Beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  12. Neutrino-induced nucleosynthesis in supernovae

    SciTech Connect (OSTI)

    Hayakawa, Takehito

    2012-11-12

    The neutrino-induced reactions in supernova explosions produce some rare odd-odd nuclides. We have made a new time-dependent calculation of the supernova production ratio of the long-lived isomeric state of {sup 180}Ta. This time-dependent solution is crucial for understanding the production and survival of this isotope. We find that the explicit time evolution of the synthesis of {sup 180}Ta using the available nuclear data avoids the overproduction relative to {sup 138}La for a {nu}-process neutrino temperature of 4 MeV. An unstable isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 Multiplication-Sign 10{sup 7} years. We have proposed the {nu}-process origin for {sup 92}Nb. We calculate key neutrino-induced reactions and supernova {nu}-process. Our calculated result shows that the abundance of {sup 92}Nb can be explained by the {nu}-process.

  13. CP-phase effects on the effective neutrino mass m{sub ee} in the case of quasidegenerate neutrinos

    SciTech Connect (OSTI)

    Maalampi, J. [Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland); Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Riittinen, J. [Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaeskylae (Finland)

    2010-02-01

    We study the possibility that the three mass states of the ordinary active neutrinos actually split into pairs of quasidegenerate states, with {Delta}m{sub kk}{sup '2{approx}}10{sup -12} eV{sup 2} or less, as a result of mixing of active neutrinos with sterile neutrinos. While in laboratory experiments these quasidegenerate pairs will look identical to single active states, the CP phase factors associated with active-sterile mixing might cause cancellations in the effective electron neutrino mass m{sub ee} measured in the neutrinoless double beta decay experiments thereby revealing the split nature of states.

  14. Energy Technology Division research summary - 1999.

    SciTech Connect (OSTI)

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  15. The History of Metals and Ceramics Division

    SciTech Connect (OSTI)

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  16. Cosmological and astrophysical constraints on superconducting cosmic strings

    SciTech Connect (OSTI)

    Miyamoto, Koichi; Nakayama, Kazunori E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2013-07-01

    We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into account the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or ?-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.

  17. Argonne National Laboratory Physics Division annual report, January--December 1996

    SciTech Connect (OSTI)

    Thayer, K.J.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  18. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect (OSTI)

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  19. Publications - Center for Plasma in the Laboratory and Astrophysics - UW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madison Physics Department Publications CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum Transport and Flow Organization About CPLA Directory Publications Links CPLA Schedule

  20. The chemical composition of the sun from helioseismic and solar neutrino data

    SciTech Connect (OSTI)

    Villante, Francesco L.; Serenelli, Aldo M.; Delahaye, Franck; Pinsonneault, Marc H.

    2014-05-20

    We perform a quantitative analysis of the solar composition problem by using a statistical approach that allows us to combine the information provided by helioseismic and solar neutrino data in an effective way. We include in our analysis the helioseismic determinations of the surface helium abundance and of the depth of the convective envelope, the measurements of the {sup 7}Be and {sup 8}B neutrino fluxes, and the sound speed profile inferred from helioseismic frequencies. We provide all the ingredients to describe how these quantities depend on the solar surface composition, different from the initial and internal composition due to the effects of diffusion and nuclear reactions, and to evaluate the (correlated) uncertainties in solar model predictions. We include error sources that are not traditionally considered such as those from inversion of helioseismic data. We, then, apply the proposed approach to infer the chemical composition of the Sun. Our result is that the opacity profile of the Sun is well constrained by the solar observational properties. In the context of a two-parameter analysis in which elements are grouped as volatiles (i.e., C, N, O, and Ne) and refractories (i.e., Mg, Si, S, and Fe), the optimal surface composition is found by increasing the abundance of volatiles by (45 4)% and that of refractories by (19 3)% with respect to the values provided by Asplund et al. (2009, ARA and A, 47, 481). This corresponds to the abundances ?{sub O} = 8.85 0.01 and ?{sub Fe} = 7.52 0.01, which are consistent at the ?1? level with those provided by Grevesse and Sauval (1998, SSRv, 85, 161). As an additional result of our analysis, we show that the best fit to the observational data is obtained with values of input parameters of the standard solar models (radiative opacities, gravitational settling rate, and the astrophysical factors S {sub 34} and S {sub 17}) that differ at the ?1? level from those presently adopted.

  1. Plasma phenomenology in astrophysical systems: Radio-sources and jets

    SciTech Connect (OSTI)

    Montani, Giovanni; Petitta, Jacopo

    2014-06-15

    We review the plasma phenomenology in the astrophysical sources which show appreciable radio emissions, namely Radio-Jets from Pulsars, Microquasars, Quasars, and Radio-Active Galaxies. A description of their basic features is presented, then we discuss in some details the links between their morphology and the mechanisms that lead to the different radio-emissions, investigating especially the role played by the plasma configurations surrounding compact objects (Neutron Stars, Black Holes). For the sake of completeness, we briefly mention observational techniques and detectors, whose structure set them apart from other astrophysical instruments. The fundamental ideas concerning angular momentum transport across plasma accretion diskstogether with the disk-source-jet coupling problemare discussed, by stressing their successes and their shortcomings. An alternative scenario is then inferred, based on a parallelism between astrophysical and laboratory plasma configurations, where small-scale structures can be found. We will focus our attention on the morphology of the radio-jets, on their coupling with the accretion disks and on the possible triggering phenomena, viewed as profiles of plasma instabilities.

  2. Energy Technology Division research summary -- 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  3. Nuclear Chemistry Division annual report FY83

    SciTech Connect (OSTI)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  4. Section III, Division 5 - Development And Future Directions

    SciTech Connect (OSTI)

    Morton, Dana K.; Jetter, Robert I; Nestell, James E.; Burchell, Timothy D; Sham, Sam

    2012-01-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

  5. Jeff Broughton Named NERSC Division Deputy for Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Broughton Named NERSC Division Deputy for Operations Jeff Broughton Named NERSC Division Deputy for Operations August 15, 2013 broughton Jeff Broughton Jeff Broughton has been named as the new NERSC Division Deputy for Operations. The announcement was made Aug. 15 by NERSC Division Director Sudip Dosanjh. "Rather than this being a new position, the Division Deputy title is a fitting recognition of the duties and responsibilities Jeff has taken on since he joined NERSC four years

  6. Cosmology at the frontier of neutrino physics (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    More details are available in 1. Authors: Swanson, Molly E. C. ; Percival, Will J. ; Lahav, Ofer 1 ; Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, ...

  7. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema (OSTI)

    Perko, John; Williams, Ron; Miller, Bill;

    2014-05-30

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  8. The Era of Kilometer-Scale Neutrino Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halzen, Francis; Katz, Uli

    2013-01-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galacticmore » and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.« less

  9. Chemical Technology Division annual technical report, 1996

    SciTech Connect (OSTI)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  10. Testing neutrino spectra formation in collapsing stars with the diffuse supernova neutrino flux

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2007-04-01

    I address the question of what can be learned from the observation of the diffuse supernova neutrino flux in the precision phase, at next generation detectors of Megaton scale. An analytical study of the spectrum of the diffuse flux shows that, above realistic detection thresholds of 10 MeV or higher, the spectrum essentially reflects the exponential-times-polynomial structure of the original neutrino spectrum at the emission point. There is only a weak (tens of percent) dependence on the power {beta} describing the growth of the supernova rate with the redshift. Different original neutrino spectra correspond to large differences in the observed spectrum of events at a water Cherenkov detector: for typical supernova rates, the ratio of the numbers of events in the first and second energy bins (of 5 MeV width) varies in the interval 1.5-4.3 for pure water (energy threshold 18 MeV) and in the range 1-2.5 for water with gadolinium (10 MeV threshold). In the first case, discrimination would be difficult due to the large errors associated with background. With gadolinium, instead, the reduction of the total error down to the 10%-20% level would allow spectral sensitivity, with a dramatic improvement of precision with respect to the SN1987A data. Even in this latter case, for typical neutrino luminosity the dependence on {beta} is below sensitivity, so that it can be safely neglected in data analysis.

  11. Majorana equations and the rest mass of neutrinos

    SciTech Connect (OSTI)

    von Borzeszkowski, H.; Treder, H.

    1985-02-01

    As is well known, the law of parity conservation does not hold in weak interactions. This type of asymmetry created a number of theoretical problems which were solved, first of all, by a new understanding of the features of neutrinos and their role in weak interactions. These solutions were based, however, essentially on the handedness (chirality) of neutrinos which is closely related to their vanishing rest mass. The thesis of neutrinos with nonvanishing rest mass, newly considered in the literature, therefore requires a rediscussion of the early arguments concerning the relation between the neutrino theory and some weak interaction essentials. When one does this, as in the present paper, it is noted that neutrinos with rest mass lead to some difficulties, in particular to a violation of T invariance.

  12. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect (OSTI)

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  13. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect (OSTI)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

  14. Physics Division annual review, 1 April 1985-31 March 1986

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs.

  15. Breakthrough Prize Honors Neutrino Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthrough Prize Honors Neutrino Research Bob McKeown The Daya Bay and Ling Ao nuclear power reactors The Daya Bay and Ling Ao nuclear power reactors, pictured here behind Bob McKeown, are located roughly 55 kilometers from Hong Kong. He missed the 'glitzy Oscars for science,' but that's OK with Bob McKeown. McKeown is the Governor's Distinguished CEBAF Professor in William & Mary's physics department as well as deputy director for science at Jefferson Lab. He was a participant in two of

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  17. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  18. Earth Sciences Division annual report 1990

    SciTech Connect (OSTI)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  19. Foreword to Special Issue: Papers from the 54th Annual Meeting of the APS Division of Plasma Physics, Providence, Rhode Island, USA, 2012

    SciTech Connect (OSTI)

    Skiff, Fred; Davidson, Ronald C.

    2013-05-15

    Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvn wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.

  20. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

  1. EA-1943: Construction and Operation of the Long Baseline Neutrino Facility

    Office of Environmental Management (EM)

    and Deep Underground Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota | Department of Energy 43: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota EA-1943: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab,

  2. Direct reactions for nuclear structure and nuclear astrophysics

    SciTech Connect (OSTI)

    Jones, Katherine Louise

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  3. New Prospects in High Energy Astrophysics (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: New Prospects in High Energy Astrophysics Citation Details In-Document Search Title: New Prospects in High Energy Astrophysics Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to

  4. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    SciTech Connect (OSTI)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  5. Neutrinoless double beta decay and future neutrino oscillation precision experiments

    SciTech Connect (OSTI)

    Choubey, Sandhya [Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Rodejohann, Werner [Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)

    2005-08-01

    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the {delta}m{sup 2} corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter {theta}{sub 12} will govern a large part of the uncertainty. We focus, in particular, on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improved limit on) neutrinoless double beta decay can help to identify the neutrino mass matrix if more precise values of the relevant parameters are known.

  6. DIFFUSE PeV NEUTRINOS FROM GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Ruo-Yu; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)] [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-04-01

    The IceCube Collaboration recently reported the potential detection of two cascade neutrino events in the energy range 1-10 PeV. We study the possibility that these PeV neutrinos are produced by gamma-ray bursts (GRBs), paying special attention to the contribution by untriggered GRBs that elude detection due to their low photon flux. Based on the luminosity function, rate distribution with redshift and spectral properties of GRBs, we generate, using a Monte Carlo simulation, a GRB sample that reproduces the observed fluence distribution of Fermi/GBM GRBs and an accompanying sample of untriggered GRBs simultaneously. The neutrino flux of every individual GRB is calculated in the standard internal shock scenario, so that the accumulative flux of the whole samples can be obtained. We find that the neutrino flux in PeV energies produced by untriggered GRBs is about two times higher than that produced by the triggered ones. Considering the existing IceCube limit on the neutrino flux of triggered GRBs, we find that the total flux of triggered and untriggered GRBs can reach at most a level of {approx}10{sup -9} GeV cm{sup -2} s{sup -1} sr{sup -1}, which is insufficient to account for the reported two PeV neutrinos. Possible contributions to diffuse neutrinos by low-luminosity GRBs and the earliest population of GRBs are also discussed.

  7. IceCube: An Instrument for Neutrino Astronomy

    SciTech Connect (OSTI)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  8. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  9. A new method to generate dust with astrophysical properties

    SciTech Connect (OSTI)

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  10. Self-gravity in neutrino-dominated accretion disks

    SciTech Connect (OSTI)

    Liu, Tong; Yu, Xiao-Fei; Gu, Wei-Min; Lu, Ju-Fu

    2014-08-10

    We present the effects of self-gravity on the vertical structure and neutrino luminosity of the neutrino-dominated accretion disks in cylindrical coordinates. It is found that significant changes of the structure appear in the outer region of the disk, especially for high accretion rates (e.g., ? 1 M{sub ?} s{sup 1}), and thus cause the slight increase in the neutrino luminosity. Furthermore, the gravitational instability of the disk is reviewed by the vertical distribution of the Toomre parameter, which may account for the late-time flares in gamma-ray bursts and the extended emission in short-duration gamma-ray bursts.

  11. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect (OSTI)

    Ochoa Ricoux, Juan Pedro; /Caltech

    2009-10-01

    We perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, a process which would manifest a nonzero value of the {theta}{sub 13} mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of {nu}{sub e} charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in {theta}{sub 13}. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  12. Nevada Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    State Lands Jump to: navigation, search Logo: Nevada Division of State Lands Name: Nevada Division of State Lands Address: 901 S. Stewart St., Suite 5003 Place: Carson City, Nevada...

  13. Alaska Division of Water Permit Fees | Open Energy Information

    Open Energy Info (EERE)

    Water Permit Fees Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published...

  14. 16 TAC 3 - Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract This...

  15. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    Louisiana DNR Oil and Gas Division Jump to: navigation, search Name: Louisiana DNR Oil and Gas Division Address: P.O. Box 94396 Place: Louisiana Zip: 70804-9396 Website:...

  16. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  17. WDEQ-Water Quality Division | Open Energy Information

    Open Energy Info (EERE)

    Quality Division Jump to: navigation, search Name: WDEQ-Water Quality Division Abbreviation: WDEQ WQD Address: 122 West 25th Street 3W Place: Cheyenne, Wyoming Zip: 82002 Phone...

  18. Nevada Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    Division of Water Resources Name: Nevada Division of Water Resources Address: 901 S. Stewart St., Suite 2002 Place: Carson city, Nevada Zip: 89701 Phone Number: 775-684-2800...

  19. Kuraray Europe GmbH Division TROSIFOL | Open Energy Information

    Open Energy Info (EERE)

    Europe GmbH Division TROSIFOL Jump to: navigation, search Name: Kuraray Europe GmbH (Division TROSIFOL) Place: Troisdorf, North Rhine-Westphalia, Germany Zip: 53840 Product: Maker...

  20. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect (OSTI)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  1. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  2. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  3. National Electricity Delivery Division (NEDD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) National Electricity Delivery Division (NEDD) Timely, accurate and defensible policy and market analysis is a key ingredient to building and sustaining successful programs at DOE. The National Electricity Delivery Division coordinates OE's policy-related activities which include: Coordination of Federal Transmission Authorizations Section 1221(a) of EPACT added section 216(h) to the Federal Power Act,

  4. Search for neutrino oscillations by detecting UNK-1 600-GeV neutrino beams at Gran Sasso (Italy)

    SciTech Connect (OSTI)

    Vasil`ev, P.S.; Kuznetsov, A.E.; Kuznetsov, E.P.

    1995-12-01

    The possibility of formation of neutrino beams from the 600-GeV UNK-1 accelerator toward Gran Sasso (Italy) and of study neutrino oscillations with the ICARUS detector is demonstrated. The proposed experiment is sensitive to {Delta}m{sup 2} values down to 10{sup -3} eV{sup 2} at maximum neutrino mixing and to sin{sup 2}2{theta} values down to 6 x 10{sup -3} at {Delta}m{sup 2} {approximately} 2 x 10{sup -2} eV{sup 2}. 21 refs., 6 figs., 3 tabs.

  5. STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION, HAZARDOUS WASTE BUREAU, Complainant UNITED STATES DEPARTMENT OF ENERGY, and NUCLEAR WASTE PARTNERSIDP, LLC Respondents WASTE ISOLATION PILOT PLANT EDDY COUNTY, NEW MEXICO ) ) ) ) ) ) ) ) ) ) ) ) ) Compliance Order No. HWB-14-21 ORDER GRANTING AN EXTENSION OF TIME TO FILE AN ANSWER AND REQUEST FOR HEARING Responde~ts United States Department of Energy and Nuclear Waste Partnership, LLC, on December 22, 2014, filed an unopposed

  6. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations.

  7. DNP 2015: APS Division of Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Annual Fall Meeting of the APS Division of Nuclear Physics October 28-31, 2015 Convention Center in downtown Santa Fe, NM Timetable for all workshops, regular and invited sessions Located at the foothills of the Sangre de Cristo Mountains, Santa Fe is a beautiful city with rich traditions in history, art, and culture. Santa Fe is one of the oldest cities in the United States and comprises a wide variety of excellent restaurants, museums, art galleries, and easily accessible

  8. Earth Sciences Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  9. TO: Procurement Directors FROM: Director, Policy Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2015-12 DATE: February 12, 2015 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Service Contracts Reporting (SCR) Requirements SUMMARY: The purpose of this flash is to remind the acquisition community of the SCR Requirements enacted under FAR Final Rule 2010-010. This requirement applies to all solicitations and contracts awarded after January 30, 2014. Attached is a brief

  10. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect (OSTI)

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  11. Chemical Technology Division annual technical report, 1994

    SciTech Connect (OSTI)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. Workforce Analysis and Planning Division (HC-52) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Analysis and Planning Division (HC-52) Workforce Analysis and Planning Division (HC-52) Mission Statement: This division provides strategic direction guidance and advice through analysis of budget and workforce projections and plans, congressional mandates, administration goals, Departmental priorities and mission needs. FUNCTIONS: Develops business intelligence, demographic and trend analyses in support of corporate workforce planning and in response to requests from within the

  13. First Measurement of Muon Neutrino Charged Current Quasielastic...

    Office of Scientific and Technical Information (OSTI)

    on Neutrino-Nucleus Interactions in the Few-GeV Region (NUINT 2009), Sitges, Barcelona, Spain, 18-22 May 2009 Research Org: Fermi National Accelerator Laboratory (FNAL), Batavia,...

  14. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  15. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  16. One-pion production in neutrino-nucleus collisions

    SciTech Connect (OSTI)

    Hernndez, E.; Nieves, J.; Vicente-Vacas, J. M.

    2015-05-15

    We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ? 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.

  17. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorber primary beam tertiary beam secondary beam (protons) (mesons) (neutrinos) e 2 HARP (CERN) measured the + production cross section - 5% Beryllium target - 8.9 GeV proton...

  18. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the energy range of the reviewed experiments. Detailed theory - covered by L. Alvarez-Ruso. Martin Tzanov University of Colorado Neutrino 2010 Experiments E GeV Main goal...

  19. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  20. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino

    Office of Scientific and Technical Information (OSTI)

    Hierarchy with Bolometric Detectors (Journal Article) | SciTech Connect Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Citation Details In-Document Search Title: Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  1. Charm Production by Neutrinos (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Charm Production by Neutrinos Citation Details In-Document Search Title: Charm Production by Neutrinos Authors: Baltay, Charles Publication Date: 1978-01-01 OSTI Identifier: 1128238 Report Number(s): FERMILAB-PUB-78-201 DOE Contract Number: AC02-07CH11359 Resource Type: Journal Article Research Org: Fermi National Accelerator Laboratory (FNAL), Batavia, IL Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: United States

  2. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchy with Bolometric Detectors (Journal Article) | SciTech Connect Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Citation Details In-Document Search Title: Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of

  3. Los Alamos scientists recognized with breakthrough prize for neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Breakthrough prize for neutrinos research Los Alamos scientists recognized with breakthrough prize for neutrinos research More than 1,300 scientists-including 35 from Los Alamos National Laboratory-were awarded the 2016 Breakthrough Prize in Fundamental Physics. November 12, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  4. Arthur B. McDonald and Oscillating Neutrinos

    Office of Scientific and Technical Information (OSTI)

    Arthur B. McDonald and Oscillating Neutrinos Resources with Additional Information Arthur B. McDonald Courtesy of Queen's University 'Queen's University professor emeritus Arthur McDonald is the co-winner of the 2015 Nobel Prize in physics. ... Dr. McDonald won the award, along with Takaaki Kajita of the University of Tokyo, "for their key contributions to the experiments which demonstrated that neutrinos change identities."... The findings solved a puzzle that physicists had wrestled

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE General Information BooNE Collaboration Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original BooNE proposal (30M ps) Run Plan MiniBooNE Run Plan(3.0M ps.gz) Detector TDR Technical Design Report for the MiniBooNE detector (6.1M .ps.gz) Horn TDR Technical Design Report for the MiniBooNE horn (7.5M .ps.gz) 8GeV Beam TDR Technical Design Report for the primary beam (0.4M .ps.gz)

  6. Neutrino oscillations with IceCube DeepCore and PINGU

    SciTech Connect (OSTI)

    DeYoung, T.; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    The IceCube neutrino telescope was augmented with the DeepCore infill array, completed in the 2010/11 austral summer, to enhance its response to neutrinos below 100 GeV. At these energies, neutrino oscillation effects are visible in the flux of atmospheric neutrinos traversing path lengths comparable to the Earth's diameter. Initial measurements of muon neutrino disappearance parameters using data from DeepCore are presented, as well as an estimate of potential future precision. In addition, plans for a Precision IceCube Next Generation Upgrade (PINGU), which could permit determination of the neutrino mass hierarchy within the coming decade, are discussed.

  7. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    SciTech Connect (OSTI)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  8. Neutrino flavor instabilities in a time-dependent supernova model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-19

    In this study, a dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collectivemore »neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.« less

  9. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  10. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  11. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  12. On Numerical Considerations for Modeling Reactive Astrophysical Shocks

    SciTech Connect (OSTI)

    Papatheodore, Thomas L; Messer, Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.

  13. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect (OSTI)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2012-10-20

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  14. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    SciTech Connect (OSTI)

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  15. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    SciTech Connect (OSTI)

    Wang, Anzhong

    2014-08-14

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articles in the prestigious national/international journals, which have already received about 1000 citations so far.

  16. Chaotic dynamics around astrophysical objects with nonisotropic stresses

    SciTech Connect (OSTI)

    Dubeibe, F. L.; Pachon, Leonardo A.; Sanabria-Gomez, Jose D.

    2007-01-15

    The existence of chaotic behavior for the geodesics of the test particles orbiting compact objects is a subject of much current research. Some years ago, Gueron and Letelier [Phys. Rev. E 66, 046611 (2002)] reported the existence of chaotic behavior for the geodesics of the test particles orbiting compact objects like black holes induced by specific values of the quadrupolar deformation of the source using as models the Erez--Rosen solution and the Kerr black hole deformed by an internal multipole term. In this work, we are interested in the study of the dynamic behavior of geodesics around astrophysical objects with intrinsic quadrupolar deformation or nonisotropic stresses, which induces nonvanishing quadrupolar deformation for the nonrotating limit. For our purpose, we use the Tomimatsu-Sato spacetime [Phys. Rev. Lett. 29 1344 (1972)] and its arbitrary deformed generalization obtained as the particular vacuum case of the five parametric solution of Manko et al. [Phys. Rev. D 62, 044048 (2000)] characterizing the geodesic dynamics throughout the Poincare sections method. We found only regular motion for the geodesics in the Tomimatsu-Sato {delta}=2 solution. Additionally, using the deformed generalization of Tomimatsu-Sato {delta}=2 solution given by Manko et al. we found chaotic motion for oblate deformation instead of prolate deformation, which is in contrast to the results by Gueron and Letelier. It opens the possibility that the particles forming the accretion disk around a large variety of different astrophysical bodies (nonprolate, e.g., neutron stars) could exhibit chaotic dynamics. We also conjecture that the existence of an arbitrary deformation parameter is necessary for the existence of chaotic dynamics.

  17. A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. IV. The neutrino signal

    SciTech Connect (OSTI)

    Mller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fr Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2014-06-10

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ?}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ?-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ? 10 M {sub ?} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of ?E{sub ?-bar{sub e}}? with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ?10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.

  18. Section III, Division 5 - Development and Future Directions

    SciTech Connect (OSTI)

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  19. Physics division. Progress report, January 1, 1995--December 31, 1996

    SciTech Connect (OSTI)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  20. Policy Flash 2014-27 Implementation of Division D, Titles III...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Division D, Titles III and V, and Division E, Title VII of the ... Policy Flash 2014-27 Implementation of Division D, Titles III and V, and Division E, Title ...

  1. Inder Monga CTO, ESnet Division Deputy of Technology, Scien?fic Networking Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Data and the NDN paradigm Inder Monga CTO, ESnet Division Deputy of Technology, Scien?fic Networking Division Lawrence Berkeley Na?onal Lab NDN Comm 2015 Experimental and observational science deals with big and small instruments, and a lot of data! 2 ● Data volumes are increasing faster than Moore's Law ● New algorithms and methods for analyzing data ● Infeasible to put a supercompu>ng center at every experimental facility Compu?ng Sciences Area All too common process of

  2. G Subject: Implementation of Division D, Titles III and V, and Division E,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriations Act, 2014, Pub. L. No. 113-76. References: Consolidated Appropriations Act, 2014, Division D, Title III, Section Pub.L. No. 113-76 301(a) and Title V, Sections 501, 502, 503 Division E, Title VII, Sections 724 and 742 When is this Financial Assistance Letter (FAL) effective? The statutory provisions addressed in this FAL were effective as of the enactment date of the Consolidated Appropriations Act, 2014, enacted January 17, 2014. When does this FAL expire? This FAL is in effect

  3. Chemical Technology Division annual technical report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  4. Chemical Technology Division annual technical report, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  5. Chemical technology division: Annual technical report 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  6. Physics division annual report - October 2000.

    SciTech Connect (OSTI)

    Thayer, K.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  7. Two wavelength division multiplexing WAN trials

    SciTech Connect (OSTI)

    Lennon, W.J.; Thombley, R.L.

    1995-01-20

    Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements necessary to connect to other such sites as well as to connect to remote-sited control centers and experiments. In this paper the authors discuss their vision of the future of Wide Area Networking, describe the plans for a wavelength division multiplexed link connecting Livermore with the University of California at Berkeley and describe plans for a transparent, {approx} 10 Gb/s ring around San Francisco Bay.

  8. Ecological Research Division, Marine Research Program

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  9. Division, NN-43, Office of Arms Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 10 CFR Ch. III (1-1-10 Edition) § 810.14 Division, NN-43, Office of Arms Control and Nonproliferation. [51 FR 44574, Dec. 10, 1986, as amended at 58 FR 39639, July 16, 1993; 65 FR 16128, Mar. 27, 2000] § 810.14 Additional information. The Department of Energy may at any time require a person engaging in any generally or specifically author- ized activity to submit additional in- formation. § 810.15 Violations. (a) The Atomic Energy Act provides that: (1) Permanent or temporary injunc- tions

  10. RCRA/CERCLA Division orientation package

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The Environmental Reporting Requirements Handbook has been developed by DOE Headquarters' Environmental Guidance Division (EH-231) in order to assist DOE Field Organizations in the identification of the various reporting the notification requirements mandated by Federal environmental laws, regulations and Executive Orders. The mission of the Office of Environmental Guidance is to develop DOE-wide environmental policies and requirements; to assure that the Department's position is appropriately represented in the development of regulatory requirements by EPA and other Federal agencies; and to assure DOE-wide understanding of DOE environmental policies, directives, and environmental laws and regulations. 10 tabs.

  11. Jr., Process Development Branch Construction Division SUBJECT:

    Office of Legacy Management (LM)

    FR?M : Jr., Process Development Branch Construction Division SUBJECT: INING TESTS AT BOWEN ENGINEERING, INC. - M A Y 16 AND 16,!1961 SYMBOL! EPD:ABBrbt I REY~AKC~: &DiVE;G?i&)il [q a 1 $ a, " I On day 16 and 16,,1951 Bowen Engineering, Inc. made test rune on ypray calcining of boiled-down Mallinokrodt pitohblende raffinate. Theqe rune were made in Bowen'e laboratory unit et North Branch, NT Jel;sey. The initial results indicate that raffidate &$be euocessfully epray oalcined to

  12. Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium beta decay, and cosmology

    SciTech Connect (OSTI)

    Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany); Rodejohann, Werner [Physik-Department, Technische Universitaet Muenchen, James-Franck-Strasse, D-85748 Garching (Germany)

    2006-06-01

    We analyze the constraints on neutrino mass spectra with extra sterile neutrinos as implied by the LSND experiment. The various mass related observables in neutrinoless double beta decay, tritium beta decay and cosmology are discussed. Both neutrino oscillation results as well as recent cosmological neutrino mass bounds are taken into account. We find that some of the allowed mass patterns are severely restricted by the current constraints, in particular, by the cosmological constraints on the total sum of neutrino masses and by the nonmaximality of the solar neutrino mixing angle. Furthermore, we estimate the form of the four neutrino mass matrices and also comment on the situation in scenarios with two additional sterile neutrinos.

  13. Overview of proton drivers for neutrino super beams and neutrino factories

    SciTech Connect (OSTI)

    Chou, W.; /Fermilab

    2006-06-01

    There has been a world-wide interest in Proton Drivers in the past decade. Numerous design proposals have been presented in Asia, Europe and North America, ranging from low energy rapid cycling synchrotrons, normal or superconducting linacs to high energy slow cycling synchrotrons and FFAGs. One thing in common is that all these machines provide MW beam power and are used primarily for neutrino experiments. This paper gives an overview of these activities. In the last section the author expresses his personal opinion on the future of this field.

  14. Improved search for muon-neutrino to electron-neutrino oscillations in MINOS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-10-27

    The authors report the results of a search for νe appearance in νμ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 1020 protons on the NuMI target at Fermilab, they find that 2 sin2 (θ23 sin2 (θ13) 2θ23) sin 2 (2θ13) = 0.041-0.031 +0.047 (0.079-0.053 +0.071). The θ13= 0 hypothesis is disfavored by the MINOS data at the 89% confidence level.

  15. Chemical Technology Division annual technical report, 1993

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  16. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  17. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after havingmore » traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  18. Neutrino Factory and Muon Collider Fellow

    SciTech Connect (OSTI)

    Hanson, Gail G.; Snopak, Pavel; Bao, Yu

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  19. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Andrew Hutton Named Head of Jefferson Lab's Accelerator Division March 23, 2007 Newport News, Va. - Andrew Hutton has been appointed as the new Associate Director of the Accelerator Division of the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (DOE's Jefferson Lab). Jefferson Lab's accelerator provides the world's most precise electron beam for exploring the fundamental nature of matter. As head of the Accelerator Division, Hutton will supervise the

  20. Performance Metrics and Budget Division (HC-51) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) MISSION: The mission of the Performance Metrics and Budget Division (HC-51) is to support the effective and efficient implementation of the Department of Energy's human capital initiatives and functions through the strategic integration of corporate human capital performance metrics and the budget of the Office of the Chief Human Capital Officer (HC). FUNCTIONS: Human capital performance measurement

  1. DOE - Office of Legacy Management -- Wolverine Tube Division - MI 05

    Office of Legacy Management (LM)

    Wolverine Tube Division - MI 05 FUSRAP Considered Sites Site: Wolverine Tube Division (MI.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Wolverine Tube Division of Calumet & Hecla Consolidated Copper Co. Star Tool Hermes Automotive Manufacturing Corporation MI.05-1 MI.05-2 Location: 1411 Central Avenue , Detroit , Michigan MI.05-3 Evaluation Year: 1990 MI.05-2 Site Operations: 1943 - Conducted research and development of methods for spinning

  2. Division of Energy and Mineral Development - Project Overviews

    Office of Environmental Management (EM)

    Secretary-Indian Affairs Office of Indian Energy and Economic Development Project Overviews Scott Haase Renewable Energy Engineer ASIA, Division of Energy and Mineral Development Presented at: U.S. DOE Tribal Energy Program Annual Meeting October 26, 2006 Prior to April 14, 2005 the Division was under the Office of Trust Services. The Division now reports to a newly formed office - The Office of Indian Energy and Economic Development Bureau of Indian Affairs Secretary, Policy and Economic

  3. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    of Forestry and Wildlife Jump to: navigation, search Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building...

  4. Division of Energy and Mineral Development | Open Energy Information

    Open Energy Info (EERE)

    in Lakewood, Colorado. The Division assists Tribes with the exploration, development and management of their energy and mineral resources to create sustainable economies for...

  5. Nevada Division of Environmental Protection - New Public Water...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Division of Environmental Protection - New Public Water Systems Abstract This website sets forth the...

  6. Vermont Drinking Water and Groundwater Protection Division Permit...

    Open Energy Info (EERE)

    2015 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Vermont Drinking Water and Groundwater Protection Division Permit Fees...

  7. Nevada Division of Environmental Protection online NOI system...

    Open Energy Info (EERE)

    2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Division of Environmental Protection online NOI system Citation...

  8. California Public Resources Code Division 3, Chapter 4 - Geothermal...

    Open Energy Info (EERE)

    Public Resources Code Division 3, Chapter 4 - Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: California...

  9. Virginia Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Jump to: navigation, search Name: Virginia Division of Oil and Gas Address: 1100 Bank Street Place: Virginia Zip: 23219 Website: www.dmme.virginia.govdivision...

  10. Enforcement Letter, Westinghouse Waste Isolation Division- October 3, 2000

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant

  11. Colorado Division of Water Resources Substitute Water Supply...

    Open Energy Info (EERE)

    Substitute Water Supply Plans Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Substitute Water Supply...

  12. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduces the Nuclear Danger, Responds to National Need 6 Division Director Discusses Plutonium Future 8 NMT Designs and Fabricates Standards for Nuclear Material Assay 10 ...

  13. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  14. Vermont Agency of Natural Resources Wastewater Management Division...

    Open Energy Info (EERE)

    Wastewater Management Division Water Pollution Control Permit Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  15. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  16. Title 14 CCR, Division 6, Chapter 3 - Guidelines for Implementation...

    Open Energy Info (EERE)

    Division 6, Chapter 3 - Guidelines for Implementation of the California Environmental Quality Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  17. New Mexico Oil Conservation Division | Open Energy Information

    Open Energy Info (EERE)

    is located in Santa Fe, New Mexico. About The Oil Conservation Division regulates oil, gas and geothermal activity in New Mexico. We gather well production data, permit new...

  18. Illinois DNR oil and gas division | Open Energy Information

    Open Energy Info (EERE)

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  19. Indiana DNR Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    to professional public service through the effective administration of Indiana's oil and gas exploration and production laws. References "Indiana DNR division of Oil...

  20. Oregon Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    Lands. The agency is comprised of four divisions: Director's Office, Land Management, Wetlands and Waterways Conservation, and Finance and Administration, and the South Slough...

  1. Operations Division at Berkeley Lab: Who We Are: Organization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations Safety DivisionsDepartments Suggestions Search: Go | Advanced Organization Chart Glenn Kubiak Glenn's Open Door Policy Operations Org Chart Download The Chart...

  2. Iver Anderson, Division of Materials Sciences and Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

  3. Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES...

    Broader source: Energy.gov (indexed) [DOE]

    Public Law 113-76 Consolidated Appropriations Act, 2014 DIVISION E-FINANCIAL SERVICES AND ... Attachment 4 Financial Assistance Award Term Title: REPORTING AND REGISTRATION ...

  4. OAR - Division 100-Wildlife Diversity Plan | Open Energy Information

    Open Energy Info (EERE)

    availability: http:crossref.org Citation Retrieved from "http:en.openei.orgwindex.php?titleOAR-Division100-WildlifeDiversityPlan&oldid792434" Feedback Contact...

  5. Biology and Medicine Division annual report, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  6. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  7. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  8. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  9. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  10. Big Bang Day: 5 Particles - 4. The Neutrino

    ScienceCinema (OSTI)

    None

    2011-04-25

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.

  11. Neutrinoless double {beta}-decay and neutrino mass hierarchies

    SciTech Connect (OSTI)

    Bilenky, S. M. [Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste (Italy); Faessler, Amand; Gutsche, Thomas; Simkovic, Fedor [Institute fuer Theoretische Physik der Universitaet Tuebingen, D-72076 Tuebingen (Germany)

    2005-09-01

    In the framework of the seesaw mechanism the normal hierarchy is favorable for the neutrino mass spectrum. For this spectrum we present a detailed calculation of the half-lives of neutrinoless double {beta}-decay for several nuclei of experimental interest. The half-lives are evaluated by considering the most comprehensive nuclear matrix elements, which were obtained within the renormalized quasiparticle random phase approximation by the Bratislava-Caltech-Tuebingen group. The dependence of the half-lives on sin{sup 2}{theta}{sub 13} and the lightest neutrino mass is studied. We present also the results of the calculations of the half-lives of neutrinoless double {beta}-decay in the case of the inverted hierarchy of neutrino masses.

  12. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE/LSND Neutrino Oscillation Results 1 M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND ν̅ μ →ν̅ e (1993-2001) 2. MiniBooNE ν μ →ν e (2001-2007) 3. MiniBooNE ν̅ μ →ν̅ e (2006-2010) 5. Light sterile neutrino oscillations: where we stand (2011) Outline of this talk 2 4. MiniBooNE ν μ →ν μ and ν̅ μ →ν̅ μ (2001-2011) 3 LSND ν̅ μ →ν̅ e The LSND Experiment 4 Stopped pion

  13. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect (OSTI)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  14. Muon neutrino charged current inclusive charged pion (CC?{sup }) production in MINER?A

    SciTech Connect (OSTI)

    Eberly, B.

    2015-05-15

    The production of charged pions by neutrinos interacting on nuclei is of great interest in nuclear physics and neutrino oscillation experiments. The MINER?A experiment is working towards releasing the worlds first high statistics neutrino pion production measurements in a few-GeV neutrino beam. We describe MINER?As CC?{sup } analysis event selection in both the neutrino and antineutrino beams, noting reconstruction resolutions and kinematic limits. We also show area-normalized data-simulation comparisons of the reconstructed muon and charged pion kinetic energy distributions.

  15. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  16. Research in nuclear astrophysics: Stellar collapse and supernovae. Performance reports, December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Lattimer, J.M.; Yahil, A.

    1992-07-01

    This progress report describes the nuclear astrophysics research activities in the Earth and Space Sciences Department at Stony Brook during the last year. Our research focused on three aspects of nuclear astrophysics: (1) the equation of state of hot, dense matter, (2) the origin of supernovae and neutron stars, (3) the early cooling epoch of neutron stars. The following contains detailed reports which summarize each completed project.

  17. History - Center for Plasma in the Laboratory and Astrophysics - UW Madison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Department History UW Madison Center for Plasma in the Laboratory and Astrophysics History CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum Transport and Flow

  18. Lab Phone Numbers - Center for Plasma in the Laboratory and Astrophysics -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UW Madison Physics Department Lab Phone Numbers UW Madison Center for Plasma in the Laboratory and Astrophysics Lab Phone Numbers CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum

  19. Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40 Department of Energy Carlsbad Field Office Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site Final January 2001 U.S. Department of Energy Final Environmental Assessment for Conducting Astrophysics and Other Basic Science Experiments at the WIPP Site i TABLE OF CONTENTS CHAPTER 1: INTRODUCTION AND STATEMENT OF PURPOSE AND NEED..........1-1 1.1 HISTORY AND BACKGROUND........................................................1-1 1.2 PURPOSE

  20. Links - Center for Plasma in the Laboratory and Astrophysics - UW Madison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Department Links UW Madison Center for Plasma in the Laboratory and Astrophysics Links CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum Transport and Flow Organization

  1. Center for Plasma in the Laboratory and Astrophysics - UW Madison Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Group UW Madison Center for Plasma in the Laboratory and Astrophysics CPLA Home - Experiments Madison Symmetric Torus Madsion Dynamo Experiment Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory - Multi-Institutional Centers Center for Magnetic Self Organization Center for Theory and Computation Center for Momentum Transport and Flow Organization About CPLA

  2. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  3. Dark matter signals at neutrino telescopes in effective theories

    SciTech Connect (OSTI)

    Catena, Riccardo

    2015-04-29

    We constrain the effective theory of one-body dark matter-nucleon interactions using neutrino telescope observations. We derive exclusion limits on the 28 coupling constants of the theory, exploring interaction operators previously considered in dark matter direct detection only, and using new nuclear response functions recently derived through nuclear structure calculations. We determine for what interactions neutrino telescopes are superior to current direct detection experiments, and show that Hydrogen is not the most important element in the exclusion limit calculation for the majority of the spin-dependent operators.

  4. Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Citation Details In-Document Search Title: Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors Authors: Strigari, Louis E. ; /KIPAC, Menlo Park ; , Publication Date: 2013-10-24 OSTI Identifier: 1097427 Report Number(s): SLAC-PUB-15817 arXiv:0903.3630 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: New J.Phys.11:105011,2009 Research

  5. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    SciTech Connect (OSTI)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ???? (nnvv, ppvv, and npvv) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ???? emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ???? cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv, ppvv, and npvv.

  6. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  7. NERSC, PDSF, Neutrino Oscillations and the 2015 Physics Nobel Prize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Oscillations and the 2015 Physics Nobel Prize NERSC, PDSF, Neutrino Oscillations and the 2015 Physics Nobel Prize October 8, 2015 by Richard Gerber Perhaps the most rewarding aspect of working at NERSC is sharing in the scientific enterprise, working day-to-day with the best scientists in the world seeking to answer the most interesting questions ever posed. How does the nanoworld work? Where did our universe come from and where is it going? How are we affecting our environment and what

  8. Implications of Fermi-LAT observations on the origin of IceCube neutrinos

    SciTech Connect (OSTI)

    Wang, Bin; Li, Zhuo [Department of Astronomy, School of Physics, Peking University, Beijing (China); Zhao, Xiaohong, E-mail: wang_b@pku.edu.cn, E-mail: zhaoxh@ynao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming (China)

    2014-11-01

    The IceCube (IC) collaboration recently reported the detection of TeV-PeV extraterrestrial neutrinos whose origin is yet unknown. By the photon-neutrino connection in pp and p? interactions, we use the Fermi-LAT observations to constrain the origin of the IC detected neutrinos. We find that Galactic origins, i.e., the diffuse Galactic neutrinos due to cosmic ray (CR) propagation in the Milky Way, and the neutrinos from the Galactic point sources, may not produce the IC neutrino flux, thus these neutrinos should be of extragalactic origin. Moreover, the extragalactic gamma-ray bursts (GRBs) may not account for the IC neutrino flux, the jets of active galactic nuclei may not produce the IC neutrino spectrum, but the starburst galaxies (SBGs) may be promising sources. As suggested by the consistency between the IC detected neutrino flux and the Waxman-Bahcall bound, GRBs in SBGs may be the sources of both the ultrahigh energy, ?> 10{sup 19}eV, CRs and the 1100 PeV CRs that produce the IC detected TeV-PeV neutrinos.

  9. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    SciTech Connect (OSTI)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. Combining the recent experimental constraints on ?{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  10. HQ Operations Division (HC-32) | Department of Energy

    Energy Savers [EERE]

    Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and classification, reduction in force in Headquarters; Provide operational and advisory support for competitive sourcing initiatives and impacted serviced population; Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift

  11. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  12. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  13. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  14. 7Be Solar Neutrino Measurement with KamLAND

    SciTech Connect (OSTI)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2014-05-26

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV {sup 7}Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582{+-}90 (kton#1;day){sup -1}, which corresponds to a 862 keV {sup 7}Be solar neutrino flux of (3.26{+-}0.50) #2;x 10{sup 9} cm{sup -2}s{sup -1}, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a #23;e survival probability of 0.66{+-}0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total {sup 7}Be solar neutrino flux of (5.82{+-}0.98) x 10{sup 9} cm{sup -2}s{sup -1}, which is consistent with the standard solar model predictions.

  15. Final Report - Nucelar Astrophysics & Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    Carlton, Robert F

    2009-12-01

    This enduring research program of 28 years has taken advantage of the excellent research facility of ORELA at Oak Ridge National Laboratory. The fruitful collaborations include a number of scientists from ORNL and some from LASL. This program which has ranged from nuclear structure determinations to astrophysical applications has resulted in the identification and/or the refinement of the nuclear properties of more than 5,000 nuclear energy levels or compound energy states. The nuclei range from 30Si to 250Cf, the probes range from thermal to 50 MeV neutrons, and the studies range from capture gamma ray spectra to total and differential scattering and absorption cross sections. Specific target nuclei studied include the following: 120Sn 124Sn 125Sn 113Sn 115Sn 117Sn 119Sn 249Cf 33S 34S 249Bk 186Os 187Os 188Os 30Si 32S 40Ca 48Ca 60Ni 54Fe 86Kr 88Sr 40Ar 122Sn 90Zr 122Sn(n,?) 208Pb 204Pb 52Cr 54Cr 50Cr 53Cr As can be seen, we have studied, on average, more than one isotope per year of grant funding and have focused on exploiting those elements having multiple isotopes in order to investigate systematic trends in nuclear properties, for the purpose of providing more stringent tests of the nuclear spherical optical model with a surface imaginary potential. We have investigated an l-dependence of the real-well depth of the spherical optical model; we have used these measurements to deduce the existence of doorway states in the compound nucleus; and in the total cross section measurements we have, in addition to resonance energies and widths, obtained values for the level density and neutron strength function. Due to the high neutron energy resolution of the ORELA and in some cases the addition of differential scattering cross section data, we have been able to disaggregate the spin states and provide level spacing and strength function for each partial wave in the neutron-nucleus interaction, in some cases up to d5/2. In the following we will summarize the most recent analyses of neutron total cross section measurements, some of which have not been previously reported.

  16. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect (OSTI)

    Ling, Jiajie; /South Carolina U.

    2010-07-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |{Delta}m{sub 23}{sup 2}|, sin{sup 2} {theta}{sub 23}. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  17. Energy Division progress report, fiscal years 1994--1995

    SciTech Connect (OSTI)

    Moser, C.I.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  18. Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach

    SciTech Connect (OSTI)

    Blennow, Mattias; Ohlsson, Tommy; Edsjoe, Joakim E-mail: edsjo@physto.se

    2008-01-15

    Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilations in several respects. We include neutrino oscillations in a full three-flavor framework as well as all effects from neutrino interactions on the way through the Sun (absorption, energy loss, and regeneration from tau decays). In addition, we study the effects of non-zero values of the mixing angle {theta}{sub 13} as well as the normal and inverted neutrino mass hierarchies. Our study is performed in an event-based setting which makes these results very useful both for theoretical analyses and for building a neutrino telescope Monte Carlo code. All our results for the neutrino yields, as well as our Monte Carlo code, are publicly available. We find that the yield of muon-type neutrinos from WIMP annihilations in the Sun is enhanced or suppressed, depending on the dominant WIMP annihilation channel. This effect is due to an effective flavor mixing caused by neutrino oscillations. For WIMP annihilations inside the Earth, the distance from source to detector is too small to allow for any significant amount of oscillations at the neutrino energies relevant for neutrino telescopes.

  19. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  20. Table 38. Coal Stocks at Coke Plants by Census Division

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 547 544 857 -36.2 East North Central 1,130 963 1,313 -13.9 South Atlantic