National Library of Energy BETA

Sample records for networking scientific discovery

  1. 2006 Department of Energy Strategic Plan - Scientific Discovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan - Scientific Discovery and Innovation 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation The United States has always been a Nation of innovators ...

  2. Accelerating scientific discovery : 2007 annual report.

    SciTech Connect (OSTI)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis of Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications

  3. Amplify scientific discovery with artificial intelligence

    SciTech Connect (OSTI)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  4. 2006 Department of Energy Strategic Plan - Scientific Discovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Plan - Scientific Discovery and Innovation 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation The United States has always been a Nation of innovators and the Department of Energy has been a major contributor to that legacy. DOE-supported basic research has produced Nobel Laureates, numerous paradigm-shifting scientific discoveries, and revolutionary technologies that have spawned entirely new industries. Such breakthroughs have

  5. Advanced Scientific Computing Research Network Requirements

    SciTech Connect (OSTI)

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  6. Role of Modeling and Simulation in Scientific Discovery

    Broader source: Energy.gov [DOE]

    Scientific discovery, or understanding, involves the formulation of theory to explain observed phenomena, the design and execution of experiments to test theory and the feedback of experimental results to evolve theory.

  7. What Are the Computational Keys to Future Scientific Discoveries?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the Computational Keys to Future Scientific Discoveries? What Are the Computational Keys to Future Scientific Discoveries? NERSC Develops a Data Intensive Pilot Program to Help Scientists Find Out August 23, 2012 Linda Vu,lvu@lbl.gov, +1 510 495 2402 ALS.jpg Advanced Light Source at the Lawrence Berkeley National Laboratory. (Photo by: Roy Kaltschmidt, Berkeley Lab) A new camera at the hard x-ray tomography beamline of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Advanced

  8. DOE Announces $60 Million in Projects to Accelerate Scientific Discovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Advanced Computing | Department of Energy 0 Million in Projects to Accelerate Scientific Discovery through Advanced Computing DOE Announces $60 Million in Projects to Accelerate Scientific Discovery through Advanced Computing September 7, 2006 - 8:53am Addthis WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science today announced approximately $60 million in new awards annually for 30 computational science projects over the next three to five years. The projects

  9. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  10. Role of Modeling and Simulation in Scientific Discovery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    method. Addthis Related Articles The ability to do 3D, large-scale simulations of supernovae, such as above, led to the discovery of an entirely new and unexpected explosion...

  11. U.S.-CERN Agreement Paves Way for New Era of Scientific Discovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy -CERN Agreement Paves Way for New Era of Scientific Discovery U.S.-CERN Agreement Paves Way for New Era of Scientific Discovery May 7, 2015 - 1:27pm Addthis NEWS MEDIA CONTACT (202) 586-4940 A new agreement between the United States and the European Organization for Nuclear Research (CERN) signed today will pave the way for renewed collaboration in particle physics, promising to yield new insights into fundamental particles and the nature of matter and our universe. The

  12. The Mind Research Network - Mental Illness Neuroscience Discovery Grant

    SciTech Connect (OSTI)

    Roberts, J.; Calhoun, V.

    2013-12-17

    The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.

  13. On-demand Overlay Networks for Large Scientific Data Transfers

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Guok, Chin; Jackson, Keith; Kissel, Ezra; Swany, D. Martin; Agarwal, Deborah

    2009-10-12

    Large scale scientific data transfers are central to scientific processes. Data from large experimental facilities have to be moved to local institutions for analysis or often data needs to be moved between local clusters and large supercomputing centers. In this paper, we propose and evaluate a network overlay architecture to enable highthroughput, on-demand, coordinated data transfers over wide-area networks. Our work leverages Phoebus and On-demand Secure Circuits and AdvanceReservation System (OSCARS) to provide high performance wide-area network connections. OSCARS enables dynamic provisioning of network paths with guaranteed bandwidth and Phoebus enables the coordination and effective utilization of the OSCARS network paths. Our evaluation shows that this approach leads to improved end-to-end data transfer throughput with minimal overheads. The achievedthroughput using our overlay was limited only by the ability of the end hosts to sink the data.

  14. Scientific Solutions (TRL 5 6 Component)- Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy

  15. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect (OSTI)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  16. Inder Monga Named Director of ESnet, Berkeley Lab's Scientific Networking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division Inder Monga Named Director of ESnet, Berkeley Lab's Scientific Networking Division News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback:

  17. Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  18. A Network Client Using the Gopher Information Discovery Protocol

    Energy Science and Technology Software Center (OSTI)

    1993-10-05

    WSGOPHER uses the protocol known as Gopher, which is described in Internet RFC 1436. Specifically Gopher is a client/server protocol. Gopher servers provide information across the network to Gopher clients. WSGOPHER is an implementation of a Gopher client for Microsoft Windows 3.1 and Windows Sockets version 1.1.

  19. Toward a Data Scalable Solution for Facilitating Discovery of Scientific Data Resources

    SciTech Connect (OSTI)

    Chappell, Alan R.; Choudhury, Sutanay; Feo, John T.; Haglin, David J.; Morari, Alessandro; Purohit, Sumit; Schuchardt, Karen L.; Tumeo, Antonino; Weaver, Jesse R.; Villa, Oreste

    2013-11-18

    Science is increasingly motivated by the need to process larger quantities of data. It is facing severe challenges in data collection, management, and processing, so much so that the computational demands of "data scaling" are competing with, and in many fields surpassing, the traditional objective of decreasing processing time. Example domains with large datasets include astronomy, biology, genomic, climate and weather, and material sciences. This paper presents a real-world use case in which we wish to answer queries provided by domain scientists in order to facilitate discovery of relevant science resources. The problem is that the metadata for these science resources is very large and is growing quickly, rapidly increasing the need for a data scaling solution. We propose the use of our SGEM stack -- a system designed for answering graph-based queries over large datasets on cluster architectures -- for answering complex queries over the metadata, and we report early results for our current capability.

  20. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  1. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    SciTech Connect (OSTI)

    Coppock, Edrick G.

    2014-04-07

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology in collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.

  2. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect (OSTI)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  3. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    SciTech Connect (OSTI)

    Rodriguez, Marko A; Pepe, Alberto

    2009-01-01

    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  4. Accelerating Scientific Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Co-PI's: Galen Shipman, Bobby Sumpter, Olivier Delaire Mantid - Joint Development with ISIS, STFC Rutherford Appleton Laboratory Ryan Adamson, Jose Borreguero, Blake Caldwell, ...

  5. Next Generation Networking | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S.

  6. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    SciTech Connect (OSTI)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  7. Choosing experiments to accelerate collective discovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation wouldmore » accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.« less

  8. Choosing experiments to accelerate collective discovery

    SciTech Connect (OSTI)

    Rzhetsky, Andrey; Foster, Jacob G.; Foster, Ian T.; Evans, James A.

    2015-11-24

    Scientists perform a tiny subset of all possible experiments. What characterizes the experiments they choose? What are the consequences of those choices for the pace of scientific discovery? We model scientific knowledge as a network and science as a sequence of experiments designed to gradually uncover it. By analyzing millions of biomedical articles published over 30 y, we find that biomedical scientists pursue conservative research strategies exploring the local neighborhood of central, important molecules. Although such strategies probably serve scientific careers, we show that they slow scientific advance, especially in mature fields, where more risk and less redundant experimentation would accelerate discovery of the network. Lastly, we also consider institutional arrangements that could help science pursue these more efficient strategies.

  9. Network as Discovery Instrument: A Quick-Start Guide (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Bell, Gregory [Berkeley Lab

    2013-03-01

    Gregory Bell of Berkeley Lab on "Network as discovery instrument: a Quick-Start Guide" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  10. 2012 Scientific Collaborations at Extreme-Scale | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 2 Scientific Collaborations at Extreme-Scale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced

  11. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    SciTech Connect (OSTI)

    Galli, Giulia; Dunning, Thom

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  12. Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net About ESnet A Platform for Science Discovery The Energy Sciences Network (ESnet) is a high-performance, unclassified network built to

  13. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  14. Decades of Discovery

    DOE R&D Accomplishments [OSTI]

    2011-06-01

    For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.

  15. BES Science Network Requirements

    SciTech Connect (OSTI)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  16. ICSTI08Ses2Warnick.mp4 | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    08 Public Conference Dr. Walter Warnick - WorldWideScience.org Accelerating Global Scientific Discovery

  17. Energy Department Requests Proposals for Advanced Scientific...

    Broader source: Energy.gov (indexed) [DOE]

    integrates applied mathematics, computer science and computational science in the physical, biological and environmental sciences for scientific discovery on petascale computers. ...

  18. September is Scientific Supercomputing Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Scientific Supercomputing Month DOE celebrates the science and technology that drive modern discovery September 3, 2013 hopper2cshp.jpg NERSC's flagship Cray XE6 system is...

  19. NP Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  20. Scientific Process Automation Improves Data Interaction

    SciTech Connect (OSTI)

    Critchlow, Terence J.

    2009-09-30

    This is an article written for the September 09 Scientific Computing magazine about the work of the Scientific Process Automation team of The U.S. Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program. The SPA team is focused on developing and deploying automated workflows for a variety of computational science domains. Scientific workflows are the formalization of a scientific process that is frequently and repetitively performed.

  1. Scientific Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact Scientific Impact Since its inception over twenty years ago, CAMS has achieved noteworthy scientific progress by developing new capabilities and by combining state-of-the-art tools and expertise to address important scientific challenges. Scientific Leadership CAMS scientists are recognized as scientific leaders in the field of AMS and the disciplines that it supports. Many CAMS staff participate on federal agency (NIH, NSF, NOAA and DOE) scientific review panels as well as giving a

  2. Discovery in Action - Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery in Action Discovery in Action

  3. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    universe Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been

  4. Announcements | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Scientific Research Data Now Easier to Find 090711 You Provide the Search Term, Green Energy Portal Provides the Concepts 060811 A First in Combining Science Discovery ...

  5. The National Energy Research Scientific Computing Center: Forty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Energy Research Scientific Computing Center: Forty Years of Supercomputing ... discovery has been evident in both simulation and data analysis for many years. ...

  6. Federated Search | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    That's because popular search engines generally cannot search in the deep web where most scientific research results are found. Discovery Tools The deep web is huge - by some ...

  7. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

  8. Microsoft Word - The_Advanced_Networks_and_Services_Underpinning_Modern,Large-Scale_Science.SciDAC.v5.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet4: Advanced Networking and Services Supporting the Science Mission of DOE's Office of Science William E. Johnston ESnet Dept. Head and Senior Scientist Lawrence Berkeley National Laboratory May, 2007 1 Introduction In many ways, the dramatic achievements in scientific discovery through advanced computing and the discoveries of the increasingly large-scale instruments with their enormous data handling and remote collaboration requirements, have been made possible by accompanying

  9. The Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Engineering Services The Network Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net The Network A Nationwide Platform for Science Discovery The

  10. September is Scientific Supercomputing Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September is Scientific Supercomputing Month September is Scientific Supercomputing Month DOE celebrates the science and technology that drive modern discovery September 3, 2013 hopper2cshp.jpg NERSC's flagship Cray XE6 system is called "Hopper" in honor of American computer scientist Grace Murray Hopper. Whether it's building a car battery that will take you 500 miles on a single charge or understanding the impact of Earth's changing climate on agriculture-advanced computing is a

  11. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centersmore » and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  12. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  13. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Bio Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Navigate Section Director Deputy Director Leadership Team Advisory Board...

  14. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  15. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    xperimentally o bserved r obust p iezoelectricity in s uspended s ingle m olecular l ayer o f M oS 2 i n atmosphere, the first discovery of such direct conversion b etween e lectricity a nd m echanical stress in free---standing 2D materials. Significance and Impact It p romises n ew a pplicaCons i n n ano---generators a nd low---power l ogic s witches f or c ompuCng s caled down t o a s ingle a tomic u nit c ell. Research Details - Fabricated e lectro---mechanical d evices w ith f ree---

  16. BER Science Network Requirements

    SciTech Connect (OSTI)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  17. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    The DOE Office of Scientific and Technical Information (OSTI) is now registering publicly ... (DOIs), to the individual datasets to aid in citation, discovery, and retrieval. ...

  18. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    Prize-winning work? Science Accelerator, developed by the Office of Scientific and Technical Information(OSTI) to advance discovery and to deliver science information, is a ...

  19. Slide10 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    to linking different forms of research output to enhance the scientific discovery process. ... for individual researchers and an open and transparent linking mechanism between ...

  20. Scientific Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols - Effects on Clouds and Climate Scientific Objective Aerosols in the sky are essential to Earth's climate because they can reflect light into space, cooling the atmosphere, or they can combine with other particles to create clouds that have both warming and cooling effects. Biogenic aerosols are emitted by the biosphere directly, or are formed from biogenic volatile gases in gas-to-particle conversion. Examples include dead cells and pollen spores. Boreal forests are among the

  1. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect (OSTI)

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  2. Supercomputers Drive Discovery of Materials for More Efficient Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture | U.S. DOE Office of Science (SC) Supercomputers Drive Discovery of Materials for More Efficient Carbon Capture Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  3. NERSC Role in Advanced Scientific Computing Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. Sample Scientific Accomplishments at NERSC 3 Award-winning software uses massively-parallel supercomputing to map hydrocarbon

  4. Energy Department Requests Proposals for Advanced Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research | Department of Energy Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery

  5. Data Services | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    DataCite to aid in citation, discovery, retrieval, and reuse. DOIs can be used to search for datasets on a number of OSTI's scientific and technical information database products. ...

  6. Scientific Research Data | OSTI, US Dept of Energy, Office of...

    Office of Scientific and Technical Information (OSTI)

    This web service builds on OSTI scientific research data discovery tools, DOE Data Explorer and SciTech Connect, by providing an easy-to-use mechanism to submit, edit, and retrieve ...

  7. Biological and Environmental Research Network Requirements

    SciTech Connect (OSTI)

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  8. Scientific Grand Challenges Workshop Series | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific Grand Challenges Workshop Series Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Featured Content ASCR Discovery ASCR Program Documents ASCR Workshops and Conferences Workshops & Conferences Archive DOE Simulations Summit Scientific Grand Challenges Workshop Series SciDAC Conferences HPC Operations Review

  9. DOE Announces First Awards in Scientific Discovery through Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technologies | Department of Energy 16 Million for 54 Projects to Help Commercialize Promising Energy Technologies DOE Announces $16 Million for 54 Projects to Help Commercialize Promising Energy Technologies June 21, 2016 - 2:52pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON -The U.S. Department of Energy (DOE) today announced nearly $16 million in funding to help businesses move promising energy technologies from DOE's National Laboratories to the

  10. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership...

    Office of Scientific and Technical Information (OSTI)

    Authors: Hoffman, Forest M. 1 ; Bochev, Pavel B. 2 ; Cameron-Smith, Philip J.. 3 ; Easter, Richard C 4 ; Elliott, Scott M. 5 ; Ghan, Steven J. 4 ; Liu, Xiaohong 6 ; ...

  11. What Are the Computational Keys to Future Scientific Discoveries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Many of the big data challenges that have long existed in the particle and high energy physics world are now percolating other areas of science. At NERSC we've seen an increase in ...

  12. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  13. Scientific Discovery with the Blue Gene/L

    SciTech Connect (OSTI)

    Negele, John W.

    2011-12-09

    This project succeeded in developing key software optimization tools to bring fundamental QCD calculations of nucleon structure from the Terascale era through the Petascale era and prepare for the Exascale era. It also enabled fundamental QCD physics calculations and demonstrated the power of placing small versions of frontier emerging architectures at MIT to attract outstanding students to computational science. MIT also hosted a workshop September 19 2008 to brainstorm ways to promote computational science at top tier research universities and attract gifted students into the field, some of whom would provide the next generation of talent at our defense laboratories.

  14. DOE Announces First Awards in Scientific Discovery through Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Four projects in high energy and nuclear physics will significantly extend our exploration of the fundamental processes of nature. The projects include the search for the explosion ...

  15. Scientific Discovery through Advanced Computing (SciDAC) | U...

    Office of Science (SC) Website

    Historical information on the previous portfolios can be found on the SciDAC web site. ... Email a Friend Email link to: send SciDAC Web Site SciDAC Logo Meetings and Workshops ...

  16. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  17. The Greatest Mathematical Discovery?

    SciTech Connect (OSTI)

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  18. NERSC Played Key Role in Nobel Laureate's Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Played Key Role in Nobel Laureate's Discovery NERSC Played Key Role in Nobel Laureate's Discovery NERSC, Berkeley Lab Now Centers for Computational Cosmology Community October 4, 2011 Contact: Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 In the 1990s, Saul Perlmutter discovered that the universe is expanding at an accelerating rate. He confirmed his observational conclusions by running thousands of simulations at the National Energy Research Scientific Computing Center (NERSC) at Lawrence

  19. Scientific Solutions (TRL 5 6 Component) - Underwater Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Solutions (TRL 5 6 Component) - Underwater Active Acoustic Monitoring Network ... CX-009160: Categorical Exclusion Determination EA-1916: Draft Environmental Assessment ...

  20. BNL Discovery to Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discovery to Deployment: Chemistry for Sustainable Energy Alex Harris Chair, BNL Chemistry Department State Energy Advisory Board October 10, 2012 Topics  BNL Energy Research in Sustainable Chemical Conversion  Fuel Cell Electrocatalysis: Discovery to Deployment 2 Brookhaven Mission, Part I: "Advance photon sciences, energy, and environment-related research and apply them to 21 st Century problems of critical importance to the Nation." Brookhaven Energy R&D Basic Research,

  1. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Impact: Widely used in molecular genetics and biotechnology, T7 protein expressions systems are noted for their reliability and adaptability. Even gene products that are ...

  2. Discovery of Charm

    DOE R&D Accomplishments [OSTI]

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  3. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation,...

  4. Index of /documents/public/ScientificWriting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScientificWriting

  5. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 6/1/2011 2.24 Unraveling the Mystery of High-Temperature Superconductivity Since the discovery in the 1980s of high-temperature superconductors, the Office of Science has supported research designed to explain and improve the physical behavior of these materials and develop methods of making wires and other objects from them. These materials conduct electricity with virtually no resistance at temperatures high enough to be cooled by liquid nitrogen (-196 degrees C, or -321 degrees F) instead

  6. Magellan Explores Cloud Computing for DOE's Scientific Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explores Cloud Computing for DOE's Scientific Mission Magellan Explores Cloud Computing for DOE's Scientific Mission March 30, 2011 Cloud Control -This is a picture of the Magellan management and network control racks at NERSC. To test cloud computing for scientific capability, NERSC and the Argonne Leadership Computing Facility (ALCF) installed purpose-built testbeds for running scientific applications on the IBM iDataPlex cluster. (Photo Credit: Roy Kaltschmidt) Cloud computing is gaining

  7. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Electrifies Scientific Computing Edison Electrifies Scientific Computing NERSC Flips Switch on New Flagship Supercomputer January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 The National Energy Research Scientific Computing (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be dedicated in a ceremony held at the Department of

  8. LBNL-41172 Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41172 Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, A. Goobar, D. E. Groom, 1. M. Hook, A. G. Kim, M. Y. Kim, R.A. Knop, C. Lidman, R. G. McMahon, P. Nugent, R. Pain, N. Panagia, C. R. Pennypacker, P. Ruiz-Lapuente, B. Schaefer & N. Walton (The Supernova Cosmology Project) This work was supported in part by the Director, Office of

  9. Decades of Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 3.2 Discovery of One of the Smallest Particles of Matter Forces of nature are mediated by the interaction or exchange of particles called bosons. In 1989, experiments at Stanford Linear Accelerator Center and the European Laboratory for Particle Physics (also known as CERN) made precise measurements of the lifetime of the Z0 boson, which carries the "weak force" that allows particles to change form. The experiment was significant because it implied that only three families

  10. OSTIblog Articles in the International Council for Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Topic | OSTI, US Dept of Energy Office of Scientific and Technical Information International Council for Scientific and Technical Information Topic OSTI's contribution to international discovery: WorldWideScience.org by Kristin Bingham 03 Apr, 2008 in Products and Content On June 22, 2007, OSTI opened WorldWideScience.org, a global science gateway, to the public. WorldWideScience.org was an ambitious undertaking and OSTI was the perfect organization to take on the technical,

  11. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  12. Scientific Leadership - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Leadership Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance

  13. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program Applications due February

  14. Accelerating Electrolyte Discovery for Energy Storage with High Throughput

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening - Joint Center for Energy Storage Research December 26, 2014, Research Highlights Accelerating Electrolyte Discovery for Energy Storage with High Throughput Screening A screening scheme has been developed to down-select molecule candidates based on successive property evaluations obtained from high-throughput computations. Here we show the down-select results for ~1400 candidates for non-aqueous redox flow battery application. Scientific Achievement We have developed a strategy to

  15. System for Information Discovery

    Energy Science and Technology Software Center (OSTI)

    1998-09-25

    SID characterizes natural language based documents so that they may be related and retrieved based on content similarity. This technology processes textual documents, autonoumsly identifies the major topics of the document set, and constructs an interpretable, high dimensional representation of each document. SID also provides the ability to interactively reweight representations based on user need, so users may analyze the dataset from multiple points of view. The particular advantages SID offers are speed, data compression,more » flexibility in representation, and incremental processing. SPIRE consists of software for visual analysis of text-based information sources. This technology enables users to make discoveries about the content of very large sets of textual documents without requiring the user to read or presort the documents. It employs algorithms for text and word proximity analysis to identify the key themes within the documents. The results of this analysis are projected onto a visual spatial proximity display (Galaxies or Themescape) where document proximity represents the degree of relatedness of theme.« less

  16. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  17. A Passion for Discovery

    ScienceCinema (OSTI)

    Peter Freund

    2010-01-08

    The human side of doing theoretical physics is explored through stories about the interactions between physicists and about the way world events can affect not only the scientists' behavior, but even their scientific interests and style.  These stories cluster nicely around certain bigger themes to create an overarching whole.  This happens both on account of some interesting narrative structures intrinsic to the science of Physics itself and on account of the way Physics integrates into the general culture. The stories concern Einstein, Schrödinger, Pauli, Heisenberg, Stueckelberg, Jordan and Fock and also involve some mathematicians like Emmy Noether, Teichmüller and Bers and even the psychologist C.G. Jung.

  18. Mapping the evolution of scientific ideas

    SciTech Connect (OSTI)

    Roberts, David; Herrera, Mark; Gulbahce, Natali

    2009-01-01

    Despite the apparent conceptual boundaries of scientific fields, a formal description for their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society PACS numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using Cfinder, an overlapping community finding algorithm, and describe the time evolution of these fields using a community evolution method over the course of 1985-2006. The communities we identify map to known scientific fields, and their age strongly depends on t.heir size, impact and activity. Our analysis further suggests that communities that redefine themselves by merging and creating new groups of ideas tend to have more fitness as measured by the impact per paper, and hence communities with a higher fitness tend to be short-lived. The described approach to quantify the evolution of ideas may be relevant in making predictions about the future of science and how to guide its development.

  19. Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Engineering Services The Network Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet...

  20. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Conference: HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES. Citation Details In-Document Search Title: HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  1. Fermilab | Inquiring Minds | Neutrino | Discovery | Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | theory | astrophysics | discoveries at Fermilab Discoveries at Fermilab - The Tau Neutrino Neutrino Symbol An international collaboration of scientists at the Department...

  2. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    Michael Nielsenstated that networked science has the potential to speed up dramatically the rate of discovery across all of science, and that we may well see the day-to-day process ...

  3. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  4. Discovery of Dark Energy Ushered in a New Era in Computational Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of Dark Energy Ushered in a New Era in Computational Cosmology Discovery of Dark Energy Ushered in a New Era in Computational Cosmology October 4, 2011 John Hules, JAHules@lbl.gov, +1 510 486 6008 "If NERSC does not enable a major scientific discovery every few years, then we're not doing our job." That was the challenge issued by Bill McCurdy, then Lawrence Berkeley National Laboratory's Associate Laboratory Director for Computing Sciences, at the first all-hands meeting for

  5. NERSC Oakland Scientific Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 February 1-2, 2012 NERSC Oakland Scientific Facility Debugging with DDT Woo-Sun Yang NERSC User Services Group Why a Debugger? * It makes it easy to find a bug in your...

  6. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  7. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  8. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  9. Scientific Cloud Computing Misconceptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Cloud Computing Misconceptions Scientific Cloud Computing Misconceptions July 1, 2011 Part of the Magellan project was to understand both the possibilities and the limitations of cloud computing in the pursuit of science. At a recent conference, Magellan investigator Shane Canon outlined some persistent misconceptions about doing science in the cloud - and what Magellan has taught us about them. » Read the ISGTW story. » Download the slides (PDF, 4.1MB

  10. 'Most Influential Scientific Minds'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three Los Alamos scientists named 'Most Influential Scientific Minds' July 22, 2014 Aiken, Korber and Perelson spotlighted in Thomson Reuters report LOS ALAMOS, N.M., July 22, 2014-Los Alamos National Laboratory scientists Allison Aiken, Bette Korber and Alan Perelson have been named to Thomson Reuters list of "The World's Most Influential Scientific Minds." "To have three of our premier scientists recognized on this list is a great honor and attests to the intellectual vitality

  11. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  12. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  13. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University David L. Brown, Berkeley Lab George Crabtree, Argonne National

  14. Awards | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced...

  15. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect (OSTI)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  16. Scientific/Techical Report

    SciTech Connect (OSTI)

    Dr. Chris Leighton, Neutron Scattering Society of American; Mr. J. Ardie Dillen, MRS Director of Finance and Administration

    2012-11-07

    The ACNS provides a focal point for the North American neutron user community, strengthening ties within this diverse group, and promoting neutron research in related disciplines. The conference thus serves a dual role as both a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides a forum for scientific discussion of neutron-enabled research in fields as diverse as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, elementary excitations, fundamental physics, and development of neutron instrumentation. This is achieved through a combination of invited oral presentations, contributed oral presentations, and poster sessions. Adequate opportunity for spontaneous discussion and collaboration is also built into the ACNS program in order to foster free exchange of new scientific ideas and the potential for use of powerful neutron scattering methods beyond the current realms of application. The sixth American Conference on Neutron Scattering (ACNS 2012) provided essential information on the breadth and depth of current neutron-related research worldwide. A strong program of plenary, invited and contributed talks showcased recent scientific results in neutron science in a wide range of fields, including soft and hard condensed matter, biology, chemistry, energy and engineering applications, and neutron physics.

  17. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect (OSTI)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  18. REVIEW OF SCIENTIFIC INSTRUMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REVIEW OF SCIENTIFIC INSTRUMENTS 81, 123503 (2010) The rotating wall machine: A device to study ideal and resistive magnetohydrodynamic stability under variable boundary conditions C. Paz-Soldan, W. F. Bergerson, M. I. Brookhart, D. A. Hannum, R. Kendrick, G. Fiksel, and C. B. Forest Department of Physics, University of Wisconsin, 1150 University Ave, Madison, Wisconsin 53706, USA (Received 31 July 2010; accepted 4 October 2010; published online 7 December 2010) The rotating wall machine, a

  19. Accelerating Scientific Workflows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the Burst Buffer: Accelerating Scientific Workflows in Chombo-Crunch Andrey Ovsyannikov* (NERSC, LBL) with David Trebotich, Brian Van Straalen (CRD, LBL) August 22 nd , 2016 *aovsyannikov@lbl.gov Carbon sequestration Main goal is to enable accurate prediction of the fate of geologically stored CO 2 Acetate solution Pore scale 100 µm Pore scale Field scale Flow and transport typically simulated at field scale CO 2 trapping mechanisms governed by emergent processes at pore (micro) scale è

  20. Scientific Exchange Program deadline | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program deadline Scientific Exchange Program deadline Applications due February...

  1. HEP Science Network Requirements--Final Report

    SciTech Connect (OSTI)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity

  2. Fermilab | Science | Particle Physics | Key Discoveries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Discoveries Fermilab produced its first high-energy particle beam on March 1, 1972. Since then hundreds of experiments have used Fermilab's accelerators to study matter at ever smaller scales and its detectors to study the universe at great distances. Here an overview of the top achievements so far. Discovery of the Higgs boson Discovery of the top quark Discovery of the bottom quark Observation of tau neutrino Discovery of a quasar at a distance of 27 billion light-years Observation of

  3. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Why might the critical-point behavior of coauthorship networks be universal? The symmetry group of the associated concept space by Dr. William Watson on Mon, February 01, 2010 In December 2008, Luis Bettencourt and David Kaiser reported their findings[1] from studies of research collaboration networks, which included their discovery that, as coauthorship networks in a particular field reach the point of forming a single giant

  4. Scientific and Organizational Awards | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific and Organizational Awards NREL's facility and staff are regularly recognized by scientific societies and community and government organizations. Find awards and honors by category below. Scientific and Technical Society Honors and Awards Scientific and technical society fellows are listed below, along with recent awards. American Association for the Advancement of Science 2015 Fellow -Brian Gregg 2014 Fellow - David S. Ginley 2013 Fellow - Martin Keller 2011 Fellow - Stanley Bull 2003

  5. Domain-Specific Languages for Composing Signature Discovery Workflows

    SciTech Connect (OSTI)

    Jacob, Ferosh; Gray, Jeff; Wynne, Adam S.; Liu, Yan; Baker, Nathan A.

    2012-10-23

    Domain-agnostic signature discovery entails investigation across multiple scientific disciplines. The breadth and cross-disciplinary nature of this work requires that existing executables be integrated with new capabilities into workflows, representing a wide range of user tasks. An algorithm may be written in multiple programming languages for various hardware platforms, and so workflow composition requires integrating executables from any number of remote hosts. This raises an engineering issue on how to generate web service wrappers for these heterogeneous executables and to compose them into a scientific workflow environment (e.g., Taverna). In this paper, we introduce two simple Domain-Specific Languages (DSLs) to automate these processes. Our Service Description Language (SDL) describes key elements of a signature discovery service and automatically generates its implementation code. The Workflow Description Language (WDL) describes the pipeline of services and generates deployable artifacts for the Taverna workflow management system. We demonstrate our approach with a real-world workflow composed of services wrapping remote executables.

  6. ASCR Cybersecurity for Scientific Computing Integrity

    SciTech Connect (OSTI)

    Piesert, Sean

    2015-02-27

    The Department of Energy (DOE) has the responsibility to address the energy, environmental, and nuclear security challenges that face our nation. Much of DOE’s enterprise involves distributed, collaborative teams; a signi¬cant fraction involves “open science,” which depends on multi-institutional, often international collaborations that must access or share signi¬cant amounts of information between institutions and over networks around the world. The mission of the Office of Science is the delivery of scienti¬c discoveries and major scienti¬c tools to transform our understanding of nature and to advance the energy, economic, and national security of the United States. The ability of DOE to execute its responsibilities depends critically on its ability to assure the integrity and availability of scienti¬c facilities and computer systems, and of the scienti¬c, engineering, and operational software and data that support its mission.

  7. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  8. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilitiesInternational Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden)Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis VlachoudisWorkshop Assistant: Graldine Jean

  9. A mobile-agent based wireless sensing network for structural...

    Office of Scientific and Technical Information (OSTI)

    Title: A mobile-agent based wireless sensing network for structural health monitoring ... Office of Scientific and Technical Information (OSTI) and is provided as a public service. ...

  10. Flow Batteries Enabled by Nanoscale Percolating Conductor Networks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014, Research Highlights Flow Batteries Enabled by Nanoscale Percolating Conductor Networks Images for Flow Batteries Scientific Achievement Created novel electronically ...

  11. Guide to Scientific Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide to Scientific Management A Practical Guide to Scientifıc Management for Postdocs and New Faculty. PDF icon Guide to Scientific Management second edition.pdf

  12. CNM Scientific Contact List | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM Scientific Contact List A list of scientific contacts for the Center for Nanoscale Materials PDF icon CNM Scientific Contact sheet 716

  13. Scientific Data Management Center for Enabling Technologies

    SciTech Connect (OSTI)

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  14. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  15. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  16. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  17. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  18. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  19. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  20. Stories of Discovery & Innovation: Scientists Create World's...

    Office of Science (SC) Website

    Scientists Create World's Smallest Battery Energy Frontier Research Centers (EFRCs) EFRCs ... Stories of Discovery & Innovation: Scientists Create World's Smallest Battery Print Text ...

  1. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » News » Center News » Throwback Thursdays Celebrate Scientific Supercomputing Throwback Thursdays Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in May 1978. The U.S. Department of Energy (DOE) was investing in scientific supercomputing long before the internet became the internet, and back when clouds only came in

  2. Load Balancing Scientific Applications

    SciTech Connect (OSTI)

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  3. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn

    2014-05-16

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  4. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    730,000 e-print documents from scientific Web sites - an increase of 39 percent since January 2005. More than 100,000 documents were added to the network in the past three months. ...

  5. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  6. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Throwback Thursdays Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the ...

  7. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would create or appear to create a conflict of interest. *Formerly known as Program Advisory Committee (PAC) (rev. 1 - February 15, 1995) Scientific Advisory Committee...

  8. Network Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics Network Activity Network Activity PDSF Network Uplinks to NERSC (dual 10 Gbps) NERSC Uplink to ESnet Last edited: 2011-03-31 22:20:59...

  9. Enhancing the Impact of Science Data: Toward Data Discovery and Reuse

    SciTech Connect (OSTI)

    Chappell, Alan R.; Weaver, Jesse R.; Purohit, Sumit; Smith, William P.; Schuchardt, Karen L.; West, Patrick; Lee, Benno; Fox, Peter

    2015-06-28

    The amount of data produced in support of scientific research continues to grow rapidly. Despite the accumulation and demand for scientific data, relatively little data are actually made available for the broader scientific community. We surmise that one root of this problem is the perceived difficulty of electronically publishing scientific data and associated metadata in a way that makes it discoverable. We propose exploiting Semantic Web technologies and best practices to make metadata both discoverable and easy to publish. We share experiences in curating metadata to illustrate the cumbersome nature of data reuse in the current research environment. We also make recommendations with a real-world example of how data publishers can provide their metadata by adding limited additional markup to HTML pages on the Web. With little additional effort from data publishers, the difficulty of data discovery, access, and sharing can be greatly reduced and the impact of research data greatly enhanced.

  10. Discoveries in Energy & Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to proved reserves of U.S. natural gas by source, 2013-14 trillion cubic feet Year-end 2013 2014 Year-end 2014 proved 2014 revisions and 2014 proved Source of natural gas reserves Discoveries other changes production reserves Coalbed methane 12.4 0.4 4.3 -1.4 15.7 Shale 159.1 37.8 16.2 -13.4 199.7 Other U.S. natural gas Lower 48 onshore 166.0 11.4 -8.4 -11.7 157.2 Lower 48 offshore 9.1 0.8 0.8 -1.3 9.4 Alaska 7.4 0.1 -0.4 -0.3 6.8 U.S. TOTAL 354.0 50.5 12.4 -28.1 388.8 Note: Lower 48

  11. ARM - Field Campaign - Single Frequency GPS Water Vapor Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSingle Frequency GPS Water Vapor Network ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  12. Commentary: The Hash House Harriers and the winding path to materials discovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canfield, Paul C.

    2015-04-07

    Materials science research can be both very demanding and extremely rewarding. In this Commentary, in my own research of new electronic and magnetic materials, I give numerous exemplars of the path followed to materials discovery. I also highlight the parallels between my research experiences with the pastime of running. I hope that my thoughts will help guide junior researchers along the often tortuous and exciting path to new materials and that I can teach them to be open minded and persistent about following new lines of discovery. “No-pain, no-gain” applies to many things in life, running and scientific research beingmore » just two examples, but I hope in the case of scientific research that I can convince you the gain normally outweighs the pain.« less

  13. Commentary: The Hash House Harriers and the winding path to materials discovery

    SciTech Connect (OSTI)

    Canfield, Paul C.

    2015-04-07

    Materials science research can be both very demanding and extremely rewarding. In this Commentary, in my own research of new electronic and magnetic materials, I give numerous exemplars of the path followed to materials discovery. I also highlight the parallels between my research experiences with the pastime of running. I hope that my thoughts will help guide junior researchers along the often tortuous and exciting path to new materials and that I can teach them to be open minded and persistent about following new lines of discovery. “No-pain, no-gain” applies to many things in life, running and scientific research being just two examples, but I hope in the case of scientific research that I can convince you the gain normally outweighs the pain.

  14. Domain-Specific Languages For Developing and Deploying Signature Discovery Workflows

    SciTech Connect (OSTI)

    Jacob, Ferosh; Wynne, Adam S.; Liu, Yan; Gray, Jeff

    2013-12-02

    Domain-agnostic Signature Discovery entails scientific investigation across multiple domains through the re-use of existing algorithms into workflows. The existing algorithms may be written in any programming language for various hardware architectures (e.g., desktops, commodity clusters, and specialized parallel hardware platforms). This raises an engineering issue in generating Web services for heterogeneous algorithms so that they can be composed into a scientific workflow environment (e.g., Taverna). In this paper, we present our software tool that defines two simple Domain-Specific Languages (DSLs) to automate these processes: SDL and WDL. Our Service Description Language (SDL) describes key elements of a signature discovery algorithm and generates the service code. The Workflow Description Language (WDL) describes the pipeline of services and generates deployable artifacts for the Taverna workflow management system. We demonstrate our tool with a landscape classification example that is represented by BLAST workflows composed of services that wrap original scripts.

  15. OntologicalDiscovery.org: A web resource for the empirical discovery of phenotypic relations across species and experimental systems

    SciTech Connect (OSTI)

    Baker, Erich J; Li, Zuopan; Jay, Jeremy J; Philip, Vivek M; Zhang, Yun; Langston, Michael A; Chesler, Elissa J

    2009-01-01

    The Ontological Discovery Environment ( http://ontologicaldiscovery.org ) is a free, public Internet resource for the storage, sharing, retrieval and analysis of phenotype-centered genomic data sets. The intent of this resource is to allow the creation of user-defined phenotype categories based on naturally and experimentally observed biological networks, pathways and systems rather than on externally manifested constructs and semantics such as disease names and processes. By extracting the relationships of complex processes from the technology that produces those relationships, this resource meets a growing demand for data integration and hypothesis discovery across multiple experimental contexts, including broad species and phenotype domains. At a highly processed level, analyses of set similarity, distance and hierarchical relations are performed through a modular suite of tools. The core pivot point of analysis is the creation of a bipartite network of gene-phenotype relations, a unique discrete graph approach to gene-set analysis which enables set-set matching of non-referential data. The central organizing metaphor of a gene set may be created, stored and curated by individual users, shared among virtual working groups, or made publicly available. Gene sets submission incorporates a variety of accession numbers, microarray feature IDs, and gene symbols from model organisms, allowing integration across experimental platforms, literature reviews and other genomic analyses. The sets themselves are annotated with several levels of metadata which may include an unstructured description, publication information and structured community ontologies for anatomy, process and function. Gene set translation to user chosen reference species through gene homology allows translational comparison of models regardless of the face validity of the experimental systems. In addition, computationally derived gene sets can be integrated into phenome interdependency and similarity

  16. NUG 2013 User Day: Trends, Discovery, and Innovation in High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Home » For Users » NERSC Users Group » Annual Meetings » NUG 2013 » User Day NUG 2013 User Day: Trends, Discovery, and Innovation in High Performance Computing Wednesday, Feb. 13 Berkeley Lab Building 50 Auditorium Live streaming: http://hosting.epresence.tv/LBL/1.aspx 8:45 - Welcome: Kathy Yelick, Berkeley Lab Associate Director for Computing Sciences Trends 9:00 - The Future of High Performance Scientific Computing, Kathy Yelick, Berkeley Lab Associate Director for Computing

  17. U.S.-CERN Agreement Paves Way for New Era of Scientific Discovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research (CERN) signed today will pave the way for renewed collaboration in particle physics, promising to yield new insights into fundamental particles and the nature of matter...

  18. Superlative Supercomputers: Argonne’s Mira to Accelerate Scientific Discoveries, Societal Benefits

    Broader source: Energy.gov [DOE]

    With 48,000 nodes, 768 cores and 768 terabytes of memory, Mira will scream at some 10 petaflops per second and help scientists unlock the secrets of supernovae.

  19. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect (OSTI)

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  20. U.S.-CERN Agreement Paves Way for New Era of Scientific Discovery

    Office of Science (SC) Website

    to yield new insights into fundamental particles and the nature of matter and our universe. The agreement, signed in a White House ceremony by the U.S. Department of Energy,...

  1. Scientific documentary animation: How much accuracy is enough

    SciTech Connect (OSTI)

    Max, N.L.

    1992-02-06

    Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may even be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.

  2. Scientific documentary animation: How much accuracy is enough?

    SciTech Connect (OSTI)

    Max, N.L.

    1992-02-06

    Scientific documentary animation presents final results, and thus has a somewhat different purpose than the scientific visualization used in their discovery. For an audience of non-specialists, production quality in the graphics, pacing, narration, music, and story-telling are important. However, the animation need only be qualitatively correct in order to communicate the desired information. When physical simulations are used to produce animated movement, the laws of motion can be adjusted to give a nicer appearance, to allow for easier programming, to compensate for incompatible time or size scales, or to artifically push things in a desired direction. Graphic tricks may even be used to disguise inadequacies in the simulation. Biological structures which are not yet completely understood may be given an arbitrary or approximate form in order to show their function. But in illustrating mathematics, it is often easy to be completely accurate.

  3. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    SciTech Connect (OSTI)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  4. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Scientific Advisory Committee Gary Brudvig Scientific Advisory Committee Member Read more about Gary Brudvig J. Clark Lagarias Scientific Advisory Committee Member Read more about J. Clark Lagarias Jennifer Ogilvie Scientific Advisory Committee Member Read more about Jennifer Ogilvie Marion Thurnauer Marion Thurnauer Scientific Advisory Committee Member Read more about Marion Thurnauer Thomas Moore Thomas Moore Scientific Advisory Committee Chair Read more about

  5. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Scientific Advisory Committee Gary Brudvig Scientific Advisory Committee Member E-mail: gary.brudvig@yale.edu J. Clark Lagarias Scientific Advisory Committee Member E-mail: jclagarias@ucdavis.edu Thomas Moore Thomas Moore Scientific Advisory Committee Chair E-mail: tom.moore@asu.edu Phone: 480.965.3308 Jennifer Ogilvie Scientific Advisory Committee Member E-mail: jogilvie@umich.edu Marion Thurnauer Marion Thurnauer Scientific Advisory Committee Member E-mail:

  6. Scientific Visualization, Seeing the Unseeable

    ScienceCinema (OSTI)

    LBNL

    2009-09-01

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  7. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Get scientific e-prints by Dennis Traylor on Fri, August 31, 2012 4267 EPN_slide2.jpg Get scientific e-prints Read more about 4267 The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate

  8. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    SciTech Connect (OSTI)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank; Ma, Kwan-Liu; Geveci, Berk; Meredith, Jeremy

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  9. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Free-Electron Lasers move discovery into warp speed by Kathy Chambers on Tue, March 26, 2013 5445 121212-cosmic-chandra_caption.jpg Free-Electron Lasers move discovery into warp speed Read more about 5445 Scientific research being performed today using free-electron lasers could be fodder for the next James Bond or Star Wars movie but it is way better than science fiction and it is real. Almost everything we know about the laws of

  10. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-13

    The purpose of this directive is to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation. Supersedes DOE O 241.1B.

  11. DOE SCIENTIFIC AND TECHNICAL REPORTS

    Broader source: Energy.gov [DOE]

    The Record Disposition Schedule items listed below are have been consolidated from DOE Records Schedules previously approved over the last 35 years. They apply specifically to those scientific and...

  12. UC 9-8-307 - Antiquities Discovery Reporting Requirements | Open...

    Open Energy Info (EERE)

    UC 9-8-307 - Antiquities Discovery Reporting RequirementsLegal Abstract Sets forth reporting requirements for discovery of archaeological resources on nonfederal lands....

  13. The Top Quark, Its Discovery, and Subsequent Research

    Office of Scientific and Technical Information (OSTI)

    The Top Quark, Its Discovery, and Subsequent Research Resources with Additional Information 'Ever since the existence of the bottom (or b) quark was inferred from the discovery of ...

  14. Materials Design and Discovery: Catalysis and Energy Storage...

    Office of Scientific and Technical Information (OSTI)

    Materials Design and Discovery: Catalysis and Energy Storage (Mira Early Science Program ... Citation Details In-Document Search Title: Materials Design and Discovery: Catalysis and ...

  15. NERSC User Day February 13 - Trends, Discovery, and Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day February 13 - Trends, Discovery, and Innovation in HPC NERSC User Day February 13 - Trends, Discovery, and Innovation in HPC February 10, 2013 by Francesca Verdier All members ...

  16. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have ...

  17. Virginia Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Virginia Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves Virginia Dry Natural Gas Proved Reserves ...

  18. West Virginia Dry Natural Gas Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves New ... New Field Discoveries of Dry Natural Gas Reserves West Virginia Dry Natural Gas Proved ...

  19. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  20. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  1. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Charter Print This document was revised and approved December 18, 2008. I. FUNCTION AND REPORTING The ALS Scientific Advisory Committee (SAC) is advisory to the Berkeley Lab Director through the ALS Director. The SAC serves two primary functions: It acts as a "board of directors" to advise the Laboratory on current and future ALS operations, allocation of facility resources, strategic planning, budget development, and other major issues; and It reviews

  2. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Charter Print This document was revised and approved December 18, 2008. I. FUNCTION AND REPORTING The ALS Scientific Advisory Committee (SAC) is advisory to the Berkeley Lab Director through the ALS Director. The SAC serves two primary functions: It acts as a "board of directors" to advise the Laboratory on current and future ALS operations, allocation of facility resources, strategic planning, budget development, and other major issues; and It reviews

  3. Scientific Societies, E-print Network -- Energy, science, and...

    Office of Scientific and Technical Information (OSTI)

    Chinese Dutch English French German Italian Japanese Nordic Russian SpanishPortuguese Other View list of all societies. Choose desired language(s) andor discipline(s) and select ...

  4. Scientific Societies, E-print Network -- Energy, science, and...

    Office of Scientific and Technical Information (OSTI)

    Chinese Dutch English French German Italian Japanese Nordic Russian SpanishPortuguese ... All Languages English Japanese Chinese Nordic Dutch Russian French Spanish-Portuguese ...

  5. On the belated discovery of fission

    SciTech Connect (OSTI)

    Pearson, J. Michael

    2015-06-15

    A remarkable sequence of missteps, misfortune, and oversights delayed the discovery of nuclear fission until the eve of World War II—and likely altered history’s course.

  6. 2015 Discovery Science Call for Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users 2015 Discovery Science Call for Proposal Reference Links: - Basic NIF Specs (User ... proposals via the web based form June 30, 2015. Full proposals are due by September 1, ...

  7. Resource Discovery for Extreme Scale Collaboration (RDESC) Final Report - RPI/TWC - Year 3

    SciTech Connect (OSTI)

    Fox, Peter

    2015-05-30

    The amount of data produced in the practice of science is growing rapidly. Despite the accumulation and demand for scientific data, relatively little is actually made available for the broader scientific community. We surmise that the root of the problem is the perceived difficulty to electronically publish scientific data and associated metadata in a way that makes it discoverable. We propose to exploit Semantic Web technologies and practices to make (meta)data discoverable and easy to publish. We share our experiences in curating metadata to illustrate both the flexibility of our approach and the pain of discovering data in the current research environment. We also make recommendations by concrete example of how data publishers can provide their (meta)data by adding some limited, additional markup to HTML pages on the Web. With little additional effort from data publishers, the difficulty of data discovery/access/sharing can be greatly reduced and the impact of research data greatly enhanced.

  8. Applied Mathematics Conferences and Workshops | U.S. DOE Office...

    Office of Science (SC) Website

    ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced ...

  9. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  10. Software Engineer (Scientific Application) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Engineer (Scientific Application) Department: Information Technology Staff: ENG ... This Scientific Applications Software Engineer position is with the Controls and Data ...

  11. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  12. Taiflex Scientific Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Taiflex Scientific Co Ltd Place: Kaohsiung, Taiwan Product: Taiwan-based electronic material manufacturer. References: Taiflex Scientific Co Ltd1 This article is a stub. You...

  13. Topco Scientific Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Topco Scientific Company Ltd Jump to: navigation, search Name: Topco Scientific Company Ltd Place: Taipei City, Taiwan Sector: Solar Product: String representation "Its principal a...

  14. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    SciTech Connect (OSTI)

    Yue, Peng; Gong, Jianya; Di, Liping; He, Lianlian; Wei, Yaxing

    2011-04-01

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information and discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.

  15. The Electrochemical Discovery Laboratory - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electrochemical Discovery Laboratory The Electrochemical Discovery Laboratory (EDL) - a key JCESR discovery tool located at Argonne - synthesizes high-quality materials for testing in beyond-lithium-ion batteries and characterizes their properties with state-of-the-art analytical techniques. Download Electrochemical Discovery Laboratory

  16. OSTI's E-print Network content tops 900,000 documents | OSTI...

    Office of Scientific and Technical Information (OSTI)

    than 22,000 scientific e-print Web sites. In addition, the E-print Network provides links to more than 2,900 relevant scientific societies. This Web portal, established as the ...

  17. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-09

    To establish Department of Energy (DOE) requirements and responsibilities to ensure that scientific and technical information (STI) is identified, processed, disseminated, and preserved in a manner that (a) enables the scientific community and the public to locate and use the unclassified and unlimited STI resulting from DOE's research and related endeavors and (b) ensures access to classified and sensitive unclassified STI is protected according to legal or Departmental requirements. Cancels DOE O 241.1. Canceled by DOE O 241.1A Chg 1.

  18. Efficient Feature-Driven Visualization of Large-Scale Scientific Data

    SciTech Connect (OSTI)

    Lu, Aidong

    2012-12-12

    Very large, complex scientific data acquired in many research areas creates critical challenges for scientists to understand, analyze, and organize their data. The objective of this project is to expand the feature extraction and analysis capabilities to develop powerful and accurate visualization tools that can assist domain scientists with their requirements in multiple phases of scientific discovery. We have recently developed several feature-driven visualization methods for extracting different data characteristics of volumetric datasets. Our results verify the hypothesis in the proposal and will be used to develop additional prototype systems.

  19. Electrochemical Discovery Laboratory - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electrochemical Discovery Laboratory March 28, 2016, Accomplishments The Electrochemical Discovery Laboratory The Electrochemical Discovery Laboratory (EDL) - a key JCESR discovery tool located at Argonne - synthesizes high-quality materials for testing in beyond-lithium-ion batteries and characterizes their properties with state-of-the-art analytical techniques. Read More Electrochemical Discovery Laboratory February 29, 2016, Accomplishments Water as a Catalyst - Improving how

  20. Milestones | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Milestones Achievements Home Accelerating Access Charts Milestones Archive OSTI accelerates knowledge discovery, speeding the advancement of science. 2014 August 2014 - U.S. Department of Energy Increases Access to Results of DOE-funded Scientific Research January 2014 - DOE R&D Accomplishments Celebrates 15th Anniversary 2013 March 2013 - OSTI Using Semantic Search in New SciTech Connect Product February 2013 - Introducing the National Library of EnergyBeta 2012 December

  1. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Connects with Higher Education Community by Karen Spence on Thu, September 16, 2010 When you think of the U.S. Department of Energy (DOE), what do you think of? The national laboratories? DOE's leadership role in reliable, clean and affordable energy? Scientific discovery and innovation? Nuclear security? DOE has a role in all of these things, and more. Now, do you think about DOE's connection with higher education? Probably not, but

  2. Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where can I find DOE research results? OSTI delivers free public access to DOE R&D results. Science, technology, and engineering research from DOE DOEOSTI--C187 0915 OSTI...

  3. ESnet, NERSC Blaze 400G Production Network Path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet, NERSC Blaze 400G Production Network Path ESnet, NERSC Blaze 400G Production Network Path 400G Link is First Ever by R&E Network November 10, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 NetworkMapIllustration.png This map shows the 400G production link between Wang Hall at the main LBNL site and the Oakland Scientific Facility. The Department of Energy's Energy Sciences Network (ESnet) and the National Energy Research Scientific Computing Center (NERSC) have built a 400

  4. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-13

    The purpose of this directive is to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation. Supersedes DOE O 241.1A and DOE O 241.1A Chg 1.

  5. High Energy Physics and Nuclear Physics Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  6. Research towards a systematic signature discovery process

    SciTech Connect (OSTI)

    Baker, Nathan A.; Barr, Jonathan L.; Bonheyo, George T.; Joslyn, Cliff A.; Krishnaswami, Kannan; Oxley, Mark; Quadrel, Richard W.; Sego, Landon H.; Tardiff, Mark F.; Wynne, Adam S.

    2013-06-04

    In its most general form, a signature is a unique or distinguishing measurement, pattern, or collection of data that identifies a phenomenon (object, action, or behavior) of interest. The discovery of signatures is an important aspect of a wide range of disciplines from basic science to national security for the rapid and efficient detection and/or prediction of phenomena. Current practice in signature discovery is typically accomplished by asking domain experts to characterize and/or model individual phenomena to identify what might compose a useful signature. What is lacking is an approach that can be applied across a broad spectrum of domains and information sources to efficiently and robustly construct candidate signatures, validate their reliability, measure their quality, and overcome the challenge of detection -- all in the face of dynamic conditions, measurement obfuscation and noisy data environments. Our research has focused on the identification of common elements of signature discovery across application domains and the synthesis of those elements into a systematic process for more robust and efficient signature development. In this way, a systematic signature discovery process lays the groundwork for leveraging knowledge obtained from signatures to a particular domain or problem area, and, more generally, to problems outside that domain. This paper presents the initial results of this research by discussing a mathematical framework for representing signatures and placing that framework in the context of a systematic signature discovery process. Additionally, the basic steps of this process are described with details about the methods available to support the different stages of signature discovery, development, and deployment.

  7. Shell appraising deepwater discovery off Philippines

    SciTech Connect (OSTI)

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  8. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individuals data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  9. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsÆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  10. NREL'S Zunger Receives Scientific Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Award For more information contact: Kerry Masson 303-275-4083 email: Kerry Masson Golden, Colo., Aug. 18, 2000 - Alex Zunger, a leading scientist and research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory, has been named the 2001 recipient of the prestigious John Bardeen award from The Minerals, Metals and Materials Society (TMS). The annual award recognizes "an individual who has made an outstanding contribution and is a leader in the field of

  11. BER Science Network Requirements Workshop -- July 26-27,2007

    SciTech Connect (OSTI)

    Tierney, Brian L.; Dart, Eli

    2008-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In July 2007, ESnet and the Biological and Environmental Research (BER) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the BER Program Office. These included several large programs and facilities, including Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility (ACRF), Bioinformatics and Life Sciences Programs, Climate Sciences Programs, the Environmental Molecular Sciences Laboratory at PNNL, the Joint Genome Institute (JGI). National Center for Atmospheric Research (NCAR) also participated in the workshop and contributed a section to this report due to the fact that a large distributed data repository for climate data will be established at NERSC, ORNL and NCAR, and this will have an effect on ESnet. Workshop participants were asked to codify their requirements in a 'case study' format, which summarizes the instruments and facilities necessary for the science and the process by which the science is done, with emphasis on the network services needed and the way in which the network is used. Participants were asked to consider three time scales in their case studies--the near term (immediately and up to 12 months in the future), the medium term (3-5 years in the future), and the long term (greater than 5 years in the future). In addition to achieving its goal of collecting and characterizing

  12. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  13. Unraveling the Higgs Boson Discovery - Rik Yoshida

    SciTech Connect (OSTI)

    Rik Yoshida

    2012-10-02

    Argonne physicist Rik Yoshida explains what the Higgs boson is and what its discovery means for physics, the universe, and life. The third of Argonne's "OutLoud" public lecture series, held at the lab on September 27, 2012. Find out when the next one is at http://www.anl.gov/community/outloud

  14. Unraveling the Higgs Boson Discovery - Rik Yoshida

    ScienceCinema (OSTI)

    Rik Yoshida

    2013-06-06

    Argonne physicist Rik Yoshida explains what the Higgs boson is and what its discovery means for physics, the universe, and life. The third of Argonne's "OutLoud" public lecture series, held at the lab on September 27, 2012. Find out when the next one is at http://www.anl.gov/community/outloud

  15. The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte for Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research February 2, 2015, Research Highlights The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium Electrolyte for Rechargeable Magnesium Batteries NMR confirms formation of new species Scientific Achievement A simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS)2) and magnesium chloride (MgCl2) was prepared to achieve reversible Mg deposition/dissolution, a wide

  16. Introduction to Scientific I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific I/O Show All | 1 2 3 4 5 6 | Next » Introduction to Scientific I/O Table of Contents Introduction to Scientific I/O The Lustre File System The HDF5 Library Parallel HDF5 Scientific I/O in HDF5 Optimizations for HDF5 on Lustre Introduction to Scientific I/O I/O is commonly used by scientific applications to achieve goals like: storing numerical output from simulations for later analysis; implementing 'out-of-core' techniques for algorithms that process more data than can fit in system

  17. The Bioenergy Knowledge Discovery Framework (KDF) | Department...

    Office of Environmental Management (EM)

    The KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of ...

  18. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  19. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  20. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  1. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  2. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  3. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  4. West Virginia Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) West Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  5. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  6. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  7. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  8. Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  10. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  12. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  14. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  15. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  16. Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Discovery: Water Leads to Chemical that "Gunks Up" Biofuels Production November 20, 2014 - 12:16pm Addthis In this episode of 90 Seconds of Discovery, Catalysis Scientist ...

  17. New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Field Discoveries (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. New York Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) New York Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. Geothermal Discovery Offers Hope for More Potential Across the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discovery Offers Hope for More Potential Across the Country Geothermal Discovery Offers Hope for More Potential Across the Country October 17, 2012 - 12:50pm Addthis The solution...

  1. Discovery sheds light on nuclear reactor fuel behavior during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery sheds light on nuclear reactor fuel behavior during a severe event By Angela Hardin * November 20, 2014 Tweet EmailPrint A new discovery about the atomic structure of...

  2. NERSC National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Research Scientific Computing Center 2007 Annual Report National Energy Research Scientific Computing Center 2007 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Ad- vanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-1143E, October 2008 iii National Energy Research Scientific Computing

  3. FWP Scientific Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FWP Scientific Publications FWP Scientific Publications Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date. Stange B., McInerney J., Golden A., Benade W., Neill B., Mayer A., Witter R., Tenney L., Stinson K., Cragle D., Newman

  4. LCLS CDR Chapter 3 - Scientific Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Basis for Optical Systems TECHNICAL SYNOPSIS The LCLS Scientific Advisory Committee (SAC) has recommended experiments in five scientific disciplines for the initial operation of the LCLS. These experiments cover a variety of scientific disciplines: atomic physics, plasma physics, chemistry, biology and materials science. The x-ray optics and detectors needed to verify the LCLS capability to address these five disciplines will be constructed and installed as part of the LCLS project.

  5. Scientific Advisory Committee | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Role and Charter of the SSRL SAC Scope The SSRL Scientific Advisory Committee (SAC) reports to and advises the SSRL Director on issues related to: Operation of SSRL as a scientific user facility Planning, construction and operation of new SSRL facilities Long-term scientific directions of SSRL Membership and Officers SAC consists of 12 external members, and representatives from the following SSRL committees serve on the SAC in an Ex Officio capacity Co-Chairs of the

  6. Scientific Alternative Investment Advisory Partners | Open Energy...

    Open Energy Info (EERE)

    Alternative Investment Advisory Partners Jump to: navigation, search Name: Scientific Alternative Investment Advisory Partners Place: Frankfurt, Germany Zip: 60325 Sector:...

  7. The Discovery of the Top Quark

    DOE R&D Accomplishments [OSTI]

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  8. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nations nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOEs Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EMs responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EMs mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The overall

  9. Energy Sciences Network (ESnet) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Network (ESnet) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National Energy Research Scientific Computing Center (NERSC) Oak Ridge Leadership Computing Facility (OLCF) Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced

  10. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    SciTech Connect (OSTI)

    Tsai, Yingssu; McPhillips, Scott E.; Gonzlez, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-05-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  11. U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Reach Updated Estimate of Oil Flows from BP's Well | Department of Energy Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well June 15, 2010 - 12:00am Addthis Washington - Based on updated information and scientific assessments, Secretary of Energy Steven Chu, Secretary of the Interior Ken

  12. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle ...

  13. The Digital Road to Scientific Knowledge Diffusion; A Faster...

    Office of Scientific and Technical Information (OSTI)

    The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? Citation Details In-Document Search Title: The Digital Road to Scientific Knowledge ...

  14. Nothing But Networking for Residential Network Members

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Nothing But Networking for Residential Network Members, Call Slides and Discussion Summary, March 12, 2015.

  15. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program / Scientific Exchange Application Scientific Exchange Application Please read all instructions before submitting your application. Interested applicants should complete the following application and provide the materials requested below. The PARC Steering Committee will evaluate these proposals and select those that offer the best chance to lead to new directions and publishable results. An effort will be made to achieve some balance in the various types of exchanges

  16. ORISE: Capabilities in Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Link Best Practices in Peer Review Assure Quality, Value, Objectivity (PDF, 330KB) Journal of the National Grants Management Association Oak Ridge Institute for Science Education Capabilities in Scientific Peer Review ORISE Provides Extensive Capabilities in Managing Competitive Scientific Peer Reviews The Oak Ridge Institute for Science and Education (ORISE) manages scientific peer reviews for the U.S. Department of Energy (DOE) and other government agencies. Our capabilities span the

  17. Peter Nugent Named Deputy for Scientific Engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter Nugent Named Deputy for Scientific Engagement Peter Nugent Named Deputy for Scientific Engagement June 3, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov XBD201308-03524-01.jpg Peter Nugent working with 2013 summer student Kayla Mendel. Peter Nugent has been appointed Deputy for Scientific Engagement in Berkeley Lab's Computing Sciences. In his new role, Nugent will work with CRD and Computing Sciences leadership to develop and implement a strategy for engaging with other Berkeley Lab

  18. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing

  19. DOE Supercomputing Resources Available for Advancing Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthroughs | Department of Energy Supercomputing Resources Available for Advancing Scientific Breakthroughs DOE Supercomputing Resources Available for Advancing Scientific Breakthroughs April 15, 2009 - 12:00am Addthis Washington, DC - The U.S. Department of Energy (DOE) announced today it is accepting proposals for a program to support high-impact scientific advances through the use of some of the world's most powerful supercomputers located at DOE national laboratories. Approximately

  20. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program The Scientific Exchange Program was established as part of Washington University's Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center (EFRC) funded by the Department of Energy in 2009. This program will permit individuals from PARC teams, with a strong emphasis on graduate students and postdocs, to make extended visits to other laboratories within PARC. In addition to exchanges of team members, funds are also

  1. The Digital Road to Scientific Knowledge Diffusion

    Office of Scientific and Technical Information (OSTI)

    Digital Road to Scientific Knowledge Diffusion A Faster, Better Way to Scientific Progress? By David E. Wojick, Walter L. Warnick, Bonnie C. Carroll, and June Crowe Introduction With the United States federal government spending over $130 billion annually for research and development, ways to increase the productivity of that research can have a significant return on investment. It is well known that all scientific advancement is based on work that has come before. Isaac Newton expressed this

  2. Insecurity of Wireless Networks

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  3. Workshop on Scientific Applications of the LCLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WORKSHOP ON SCIENTIFIC APPLICATIONS OF THE LCLS Stanford Linear Accelerator Center, January 12-14, 1999 I. Lindau and J. Arthur, principal organizers INTRODUCTION Free electron...

  4. ORISE: Contact Us - Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Tony Lester Senior Associate Director, Scientific Assessment and Workforce Development Work: 865.576.3304 peerreview@orau.org

  5. Hoku Scientific Inc | Open Energy Information

    Open Energy Info (EERE)

    Hoku Scientific Inc Place: Kapolei, Hawaii Zip: 96707 Product: US-based materials science company, which started as a fuel cell company and then got into polysilicon...

  6. Increasing Scientific Productivity by Tracking Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than its predecessor. To effectively meet the increasing scientific demand for storage systems and services, the center's staff must first understand how data moves within the...

  7. Peter Nugent Named Deputy for Scientific Engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leadership to develop and implement a strategy for engaging with other Berkeley Lab scientific divisions in need of computational solutions for data-intensive science projects. ...

  8. The Digital Road to Scientific Knowledge Diffusion

    Office of Scientific and Technical Information (OSTI)

    ... data and textual information; and 4. Modeling scientific exchange in the research process. ... for conceptual context and the importance of reviewing the body of knowledge that exists. ...

  9. Superlative Supercomputers: Argonne's Mira to Accelerate Scientific...

    Broader source: Energy.gov (indexed) [DOE]

    ... supercomputers actually drives the project team to make these scientific models easier to port to multiple computer architectures. That's what the Office of Science does. ...

  10. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect (OSTI)

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  11. Langley Deep Field, discovery and interpretation

    SciTech Connect (OSTI)

    Henderson, G.J.; Lake, E.A.; Douglas, G.

    1984-01-01

    In May 1978, ARCO Oil and Gas Co. completed the Langley Deep Unit 1 well in Lea County, New Mexico, discovering a deep gas field with production from two horizons. The discovery well produces gas from a northwest-southeast-trending anticline that has a reverse fault at the Ellenburger formation on the northeast flank of the structure. This reverse fault, possibly persistent to the base of the Wolfcamp Formation, generated an anticlinal feature in the upthrown block at the Devonian level. The fault itself is the trap at the Ellenburger formation. Since the discovery of the Langley Deep field in 1978, a new geologic interpretation has been proposed for the eastern rim of the Delaware basin. A major conclusion, based on seismic control, the well control from this field, and on subsurface control throughout southern Lea County, New Mexico, is that a strike-slip fault was activated during the Late Pennsylvanian and Early Permian and caused deformation resulting in the formation of the Langley Deep structure.

  12. DISCOVERY OF TWO ADDITIONAL JOVIAN IRREGULARS

    SciTech Connect (OSTI)

    Alexandersen, M.; Gladman, B.; Veillet, C.; Jacobson, R.; Brozovic, M.; Rousselot, P.

    2012-07-15

    We report on the discovery of two previously undetected irregular satellites of Jupiter (S/2010 J 1 and S/2010 J 2) during recovery observations of other known satellites. S/2010 J 1 was discovered with the Palomar 200 inch Hale telescope on September 7 UT of 2011, while S/2010 J 2 was discovered on September 8 with the 3.5 m Canada-France-Hawaii Telescope. The satellites have r-band magnitudes of 23.2 {+-} 0.3 and 24.0 {+-} 0.3, for S/2010 J 1 and S/2010 J 2, respectively, indicating diameters of {approx}2-3 km. Both S/2010 J 1 and S/2010 J 2 are on bound retrograde orbits. Time-averaged integrated orbits suggest the association to the Carme and Ananke groups, respectively. Given that the satellites were discovered within a small field during the routine observations of the previously known irregulars, their discovery agrees with predictions that other moons of similar sizes remain undetected in the Jovian Hill sphere.

  13. Data Science and Optimal Learning for Material Discovery and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Science & Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material Discovery and Design WHEN: May 16, 2016 8:00 AM - May 18, 2016 5:00 PM WHERE: Hilton Santa Fe CONTACT: Karla Jackson (505) 667-5336 CATEGORY: Community Science TYPE: Conference INTERNAL: Calendar Login Event Description Accelerating materials discovery has been an emerging theme in several Office of Science and other government reports and proposal calls. It also has been the

  14. Single, Key Gene Discovery Could Streamline Production of Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON, DC -- A team of researchers at the Department of Energy's BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a microorganism. This discovery could be the missing link in developing biomass crops that produce higher concentrations

  15. Electrochemical Discovery Laboratory - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Electrochemical Discovery Laboratory The Electrochemical Discovery Laboratory (EDL)-a key JCESR discovery tool located at Argonne-synthesizes high-quality materials for testing in beyond-lithium-ion batteries and characterizes their properties with state-of-the-art analytical techniques. These techniques include structural, compositional, and trace analysis probes with the goal of understanding, at atomic and molecular levels, the chemical transformations that occur during battery

  16. Machine learning accelerates the discovery of new materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machine learning accelerates the discovery of new materials Machine learning accelerates the discovery of new materials Researchers recently demonstrated how an informatics-based adaptive design strategy, tightly coupled to experiments, can accelerate the discovery of new materials with targeted properties. May 9, 2016 Adaptive design framework. Adaptive design framework. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "What we've done is show that, starting with a

  17. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Do You Have a Favorite Science Teacher? Adopt-A-Doc in Their Honor by Debbie Nuchols on Thu, August 30, 2012 4268 AdoptADoc2012_slide.jpg Do You Have a Favorite Science Teacher? Adopt-A-Doc in Their Honor Read more about 4268 What is Adopt-A-Doc? Adopt-A-Doc is another way OSTI is working to increase the availability of important research. You can be a part of accelerating scientific discovery and help make important research

  18. Energy Innovation Hubs: A Home for Scientific Collaboration

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy

  19. New design strategy reduces time and cost of material discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New design strategy New design strategy reduces time and cost of material discovery Iteratively guiding experiments toward finding materials with the desired target properties May ...

  20. ,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  1. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  2. A General Strategy for the Discovery of Metabolic Pathways: d...

    Office of Scientific and Technical Information (OSTI)

    Title: A General Strategy for the Discovery of Metabolic Pathways: d-Threitol, l-Threitol, and Erythritol Utilization in Mycobacterium smegmatis Authors: Huang, Hua ; Carter, ...

  3. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF...

    Office of Scientific and Technical Information (OSTI)

    OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Citation Details In-Document Search Title: ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL ...

  4. Discovery of the Transuranium Elements (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Hoffman, Darleane

    2011-04-28

    Summer Lecture Series 2006: Darleane Hoffman, a Berkeley Lab nuclear chemist, chronicles the discovery of the heaviest elements ? those much heavier than uranium and plutonium.

  5. Discovery-Spring Garden, Maryland: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Discovery-Spring Garden, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4614398, -77.358284 Show Map Loading map......

  6. Discovery of functional toxin/antitoxin systems in bacteria by...

    Office of Scientific and Technical Information (OSTI)

    ...antitoxin systems in bacteria by shotgun cloning Citation Details In-Document Search Title: Discovery of functional toxinantitoxin systems in bacteria by shotgun cloning ...

  7. Discovery of the Fundamental Mechanism of Action of Resveratrol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of the Fundamental Mechanism of Action of Resveratrol Thursday, May 28, 2015 Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, ...

  8. Stories of Discovery & Innovation: A Step Toward Artificial Photosynth...

    Office of Science (SC) Website

    This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported by the Photosynthetic Antenna Research Center (PARC), an EFRC led by Robert ...

  9. Discovery of bridgmanite, the most abundant mineral in Earth...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite Citation Details In-Document Search Title: ...

  10. Materials Design and Discovery: Catalysis and Energy Storage...

    Office of Scientific and Technical Information (OSTI)

    Materials Design and Discovery: Catalysis and Energy Storage (Mira Early Science Program Final Technical Report): ALCF-2 Early Science Program Technical Report Citation Details ...

  11. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  12. ,"New Mexico Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  13. Discovery and Preclinical Characterization of theCyclopropylindoloben...

    Office of Scientific and Technical Information (OSTI)

    clopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase Citation Details In-Document Search Title: Discovery and Preclinical...

  14. Discovery of novel hydrogen storage materials: an atomic scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of novel hydrogen storage materials: an atomic scale computational approach Home Author: C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, V. Ozolins Year: 2008 Abstract:...

  15. U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  16. Rapid discovery and functional characterization of terpene synthases...

    Office of Scientific and Technical Information (OSTI)

    Title: Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae Endophytic fungi are ubiquitous plant endosymbionts that establish ...

  17. Stories of Discovery & Innovation: From Human Genome to Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Human Genome to Materials "Genome" Energy Frontier Research Centers (EFRCs) EFRCs ... Stories of Discovery & Innovation: From Human Genome to Materials "Genome" Print Text ...

  18. U.S. Scientific Team Draws on New Data, Multiple Scientific Methodolog...

    Office of Environmental Management (EM)

    Updated Estimate of Oil Flows from BP's Well U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well ...

  19. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  20. Exploring network structure, dynamics, and function using networkx

    SciTech Connect (OSTI)

    Hagberg, Aric; Swart, Pieter; S Chult, Daniel

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  1. Sentient networks

    SciTech Connect (OSTI)

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A better idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.

  2. ESnet - the energy sciences network strategic plan

    SciTech Connect (OSTI)

    1996-12-01

    The goal of the Energy Sciences Network (ESnet) Program is to provide a highly capable and reliable communications infrastructure that supports the Department of Energy`s (DOE) missions and enables DOE researchers to tap the power of leading-edge information technologies. ESnet provides an essential infrastructure that enhances national competitiveness and accelerates the development of future generations of high-performance, distributed computing systems and networks. These computing systems and networks are vital to modern scientific research. In addition, they enable development of new approaches to energy management, environmental restoration and waste management, national security, industrial processing, and health care, and also facilitate public access to government information. Extensive networks developed by the DOE`s high-energy physics and fusion energy research communities were the forerunners of the ESnet. These networks initially provided improved access to high-energy accelerator sites and to the Magnetic Fusion Energy Supercomputer Center, which opened at Lawrence Livermore National Laboratory in 1974.

  3. Delta: the First Pion Nucleon Resonance - Its Discovery and Applications

    DOE R&D Accomplishments [OSTI]

    Nagle, D. E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  4. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect (OSTI)

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  5. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  6. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    SciTech Connect (OSTI)

    William M. Tang

    2011-02-09

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  7. Network Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable Use Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet Acceptable Use Policy The

  8. Secretarial Policy Statement on Scientific Integrity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-23

    Science and Technology are the foundation of all Department of Energy (DOE) activities, so it is essential that we be committed to developing and maintaining a culture that fosters the highest levels of scientific integrity.

  9. PNNL: Center for Molecular Electrocatalysis - Scientific Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smoke Stack Increased use of fossil fuels is causing rising levels of carbon dioxide and other emissions. Scientific Challenges Demands and emissions: Higher use of non-fossil fuel ...

  10. Secretarial Policy Statement on Scientific Integrity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-02

    This Secretarial policy statement is intended to enhance our culture by establishing a unified framework for scientific integrity. This policy applies to all DOE Federal employees. This policy will be reviewed annually. Does not cancel/supersede other directives.

  11. Historical Network Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Maps Network Traffic Volume Historical Network Maps Network Facts & Stats Connected Sites Peering Connections ESnet Site Availabiliy OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Science Engagement Move your data Programs & Workshops Science

  12. Nothing But Networking for Residential Network Members | Department...

    Energy Savers [EERE]

    Nothing But Networking for Residential Network Members Nothing But Networking for Residential Network Members Better Buildings Residential Network Peer Exchange Call: Nothing But ...

  13. Fermilab | Science | Particle Physics | Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Feynman Computing Center State-of-the-art computing facilities and expertise drive successful research in experimental and theoretical particle physics. Fermilab is a pioneer in managing "big data" and counts scientific computing as one of its core competencies. For scientists to understand the huge amounts of raw information coming from particle physics experiments, they must process, analyze and compare the information to simulations. To accomplish these feats,

  14. Australian Commonwealth Scientific and Industrial Organisation | Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration | NREL Australia's Commonwealth Scientific and Industrial Organisation Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) and NREL researchers are validating a plug-and-play microgrid control solution. This technology helps hybrid microgrids to automatically recognize when solar power is available and prioritize its use over other power sources. Photo of three researchers examining computer screens in a laboratory Photo by Dennis Schroeder

  15. DOE Launches First Segment of its Next-Generation Nationwide Network to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Scientific Research Efforts | Department of Energy First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts DOE Launches First Segment of its Next-Generation Nationwide Network to Support Scientific Research Efforts May 30, 2007 - 1:24pm Addthis WASHINGTON, DC- The U.S. Department of Energy's (DOE) Office of Science and Internet2 announced today that the first segment of a next-generation, nationwide network has gone live, marking a key step in

  16. PHENIX: Beyond 15 years of discovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morrison, David; Nagle, James L.

    2015-01-12

    The PHENIX experiment at BNL’s Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark–gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physicsmore » via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.« less

  17. PHENIX: Beyond 15 years of discovery

    SciTech Connect (OSTI)

    Morrison, David; Nagle, James L.

    2015-01-12

    The PHENIX experiment at BNL’s Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark–gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physics via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.

  18. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  19. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The claim of discovery of an element has varied over the centuries. Many claims, e.g., the discovery of certain rare earth elements of the lanthanide series, involved the discovery ...

  20. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    SciTech Connect (OSTI)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three

  1. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond is Committed to Facilitating Science Research by Karen Spence on Thu, December 04, 2008 OSTI is driven! We are fully committed to providing scientists and researchers with the social networking tools and services that can make it easier for them to more rapidly advance their scientific research. We have a number of exciting ongoing initiatives in support of accelerating the evolution of science. Here are ten that come to mind: We are

  2. Discovery of a 〈210〉-fiber texture in medical-grade metastable...

    Office of Scientific and Technical Information (OSTI)

    Discovery of a 210-fiber texture in medical-grade metastable beta titanium wire This content will become publicly available on May 4, 2017 Title: Discovery of a ...

  3. Global Discovery introduced at AAAS 2006 | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    OSTI is conducting applied research on a number of challenges related to this vision aimed at turning local discovery into Global Discovery. The benefits for researchers, for ...

  4. Search Method for Real-time Knowledge Discovery Modeled on the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Method for Real-time Knowledge Discovery Modeled on the Human Brain Oak Ridge ... information processing properties of the human brain to computational knowledge discovery. ...

  5. Office of Scientific and Technical Information DOE PAGES (Beta) Portal

    Office of Scientific and Technical Information (OSTI)

    Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding | OSTI, US Dept of Energy Office of Scientific and Technical Information Office of Scientific and Technical Information DOE PAGES (Beta) Portal Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding Get a printer-friendly version Recent Presentations Office of Scientific and Technical Information DOE PAGESBeta Portal Offers Public Access to Scholarly Scientific

  6. NetworkX

    Energy Science and Technology Software Center (OSTI)

    2004-05-17

    NetworkX (abbreviated NX in the software and documentation) is a package for studying network structure using graph theory.

  7. A network security case study; The Los Alamos National Laboratory integrated computer network

    SciTech Connect (OSTI)

    Dreicer, J.S.; Stoltz, L. )

    1991-01-01

    This paper reports on a study to validate the Graphical Network Representation (GRPHREP) model which is being conducted on the Los Alamos National Laboratory Integrated Computer Network (ICN). The GRPHREP model is a software system application based on graph theory and object-oriented programming methodologies. It codified the Department of Energy (DOE) Order 5637.1, which is concerned with classified computer secret policy, restrictions, and requirements. The Los Alamos ICN is required to control access to and support large-scale scientific and administrative computing. Thus, large-scale scientific and administrative computing. Thus we felt that this large, complex, and dynamic network would provide a good test for the graphical and functional capabilities of the model. Furthermore, the ICN is composed of multiple partitions that reflect the sensitivity and classification of the computation (data) and designate the required clearance level for the user.

  8. Office of Scientific and Technical Information DOE PAGES (Beta...

    Office of Scientific and Technical Information (OSTI)

    Canada - Canada Institute for Scientific and Technical Information (CISTI) China - Institute of Scientific and Technical Information of China (ISTIC) France - National Institute of ...

  9. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & ...

  10. Final scientific report for DOE award title: Improving the Representat...

    Office of Scientific and Technical Information (OSTI)

    scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models Citation Details In-Document Search Title: Final scientific ...

  11. Scientific Computing at Los Alamos National Laboratory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Scientific Computing at Los Alamos National Laboratory Citation Details In-Document Search Title: Scientific Computing at Los Alamos National Laboratory You are accessing a ...

  12. A Web Accessible Scientific Workflow System for Performance Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Web Accessible Scientific Workflow System for Performance Monitoring Citation Details In-Document Search Title: A Web Accessible Scientific Workflow System for Performance ...

  13. Web-Accessible Scientific Workflow System for Performance Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Web-Accessible Scientific Workflow System for Performance Monitoring Citation Details In-Document Search Title: Web-Accessible Scientific Workflow System for Performance Monitoring ...

  14. Sources for Department of Energy Scientific and Technical Reports...

    Office of Scientific and Technical Information (OSTI)

    Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to ...

  15. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like ...

  16. Final Scientific/Technical Report for Project entitled "Mechanism...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis" Citation Details In-Document Search Title: Final Scientific...

  17. Ankur Scientific Energy Technologies Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ankur Scientific Energy Technologies Pvt Ltd Jump to: navigation, search Name: Ankur Scientific Energy Technologies Pvt Ltd Place: Baroda, Gujarat, India Zip: 390 008 Sector:...

  18. NREL: News - Scientific American' Recognizes Solar Cell Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American' Recognizes Solar Cell Research Monday November 11, 2002 Magazine Names NREL to its First "Scientific American 50" List Golden, CO. - The U.S. Department of ...

  19. Audit of the Department of Energy's Scientific and Technical...

    Office of Environmental Management (EM)

    ... of scientific and technical information statistics during its reviews at field activities. ... scientific efforts to clean up the environment, pursue basic research, develop ...

  20. OSTIblog Articles in the scientific integrity Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    OSTI and Its Mission Highlighted in Secretary Chu's Policy Statement on Scientific Integrity by Peter Lincoln 17 May, 2012 in Science Communications The Office of Scientific and ...

  1. I/O Resources for Scientific Applications at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IO Resources for Scientific Applications at NERSC IO Resources for Scientific Applications at NERSC Introduction NERSC provides a range of online resources to assist users...

  2. Stories of Discovery & Innovation: More Heat than Light? | U...

    Office of Science (SC) Website

    This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported by the Solid-State Solar-Thermal Energy Conversion Center (S3TEC), an EFRC led by ...

  3. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING...

    Office of Scientific and Technical Information (OSTI)

    We report the discovery of an eclipsing cataclysmic variable with eclipse depths >5.7 mag, ... The optical light curves show a deep, 5-minute eclipse immediately followed by a shallow ...

  4. ORNL, partners officially recognized for discovery of elements 115, 117

    ScienceCinema (OSTI)

    Roberto, Jim

    2016-01-15

    The International Union for Pure and Applied Chemistry has announced formal verification of four new chemical elements, recognizing the Department of Energy?s Oak Ridge National Laboratory and its collaborators for the discovery of elements 115 and 117.

  5. Alaska Crude Oil + Lease Condensate New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's...

  6. Dark matter: the next great discovery of particle physics?: Ettore...

    Office of Scientific and Technical Information (OSTI)

    to these remaining questions are being pursued on all frontiers of discovery. In this talk, I will provide an overview of the suite of experiments that is colloquially known as...

  7. Pantex night held at discovery center | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event featured an exhibit on the extinct Megalodon shark as well as a mummy in the Lost Egypt exhibit. B&W Pantex sponsored the shark exhibit. Pantex night held at discovery center...

  8. Robert Curl, Jr. and the Discovery of Fullerenes

    Office of Scientific and Technical Information (OSTI)

    Tommy LaVergne Rice University The 1996 Nobel Prize in Chemistry was awarded to Robert F. Curl, Jr., Richard E. Smalley and Sir Harold Kroto 'for their 1985 discovery of...

  9. SAMDI Mass Spectrometry for High Throughput Discovery of Enzyme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAMDI Mass Spectrometry for High Throughput Discovery of Enzyme Function January 15, 2016 11:00AM to 12:00PM Presenter Milan Mrksich, Northwestern University Location Building 446,...

  10. Stories of Discovery and Innovation: Could Cheaper Gasoline be...

    Office of Science (SC) Website

    This work, featured in the Office of Science's Stories of Discovery & Innovation, was supported by the Catalysis Center for Energy Innovation (CCEI), an EFRC led by Dion Vlachos at ...

  11. DOE-Led Research Team Makes Significant Rare Earth Discovery...

    Office of Environmental Management (EM)

    DOE-Led Research Team Makes Significant Rare Earth Discovery DOE-Led Research Team Makes ... Energy (DOE) has found that rare earth elements (REEs) can be removed from two U.S. ...

  12. Similarity-Driven Discovery of Zeolite Materials for Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Similarity-Driven Discovery of Zeolite Materials for Adsorption-Based Separations Previous Next List Richard L. Martin, Thomas F. Willems, Li-Chiang Lin, Jihan Kim, Joseph A....

  13. DOE Isotope Program Provides Target Material for the Discovery...

    Office of Science (SC) Website

    Discovery of Superheavy Elements Basic Energy Sciences (BES) BES Home About Research ... Enlarge Photo Image courtesy of source The green dot at the bottom of the glass vial is ...

  14. Growth and Discovery of Novel Materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth and Discovery of Novel Materials During this SULI program the student will learn how to grow single crystals of novel intermetallic compounds as part of the on-going Ames...

  15. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  16. Tools for Discovery Offer Potential Hope for Huntington's | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tools for Discovery Offer Potential Hope for Huntington's Tools for Discovery Offer Potential Hope for Huntington's May 25, 2011 - 3:24pm Addthis Flora Meilleur prepares protein solutions for structural investigation with neutrons. | Courtesy of ORNL Flickr / Jason Richards Flora Meilleur prepares protein solutions for structural investigation with neutrons. | Courtesy of ORNL Flickr / Jason Richards Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What

  17. Discoveries | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Discoveries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Discoveries Nobel Prizes Vignettes Archives Presentations BES and Congress Science for Energy Flow Seeing Matter Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building

  18. Bioenergy Knowledge Discovery Framework Recognized at National Conference |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Knowledge Discovery Framework Recognized at National Conference Bioenergy Knowledge Discovery Framework Recognized at National Conference December 17, 2014 - 4:14pm Addthis The paper and poster presentation "Bioenergy KDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration" was awarded second place for best paper at the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, held November 4-7 in Dallas, Texas. It

  19. Melvin Schwartz and the Discovery of the Muon Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Melvin Schwartz and the Discovery of the Muon Neutrino Resources with Additional Information Melvin Schwartz Courtesy Brookhaven National Laboratory Melvin Schwartz was the co-winner of the 1988 Nobel Prize in Physics "for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino". 'In 1962, Schwartz, with Leon Lederman and Jack Steinberger ... discovered the muon neutrino at the Alternating Gradient Synchrotron

  20. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 7,383 -25 268 690 167 195 146 0 0 305 6,805 Lower 48 States 346,611 4,930 55,060 53,654

  1. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 955 -24 89 137 0 34 138 0 0 101 954 Lower 48 States 294,549 3,533 41,975 44,047

  2. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 6,428 -1 179 553 167 161 8 0 0 204 5,851 Lower 48 States 52,062 1,397

  3. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL

    Office of Scientific and Technical Information (OSTI)

    RESOURCES IN THE GREAT BASIN, USA (Technical Report) | SciTech Connect ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Citation Details In-Document Search Title: ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which

  4. National Geothermal Data System: Transforming the Discovery, Access, and

    Office of Scientific and Technical Information (OSTI)

    Analytics of Data for Geothermal Exploration (Conference) | SciTech Connect Conference: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Citation Details In-Document Search Title: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California

  5. Carl Anderson and the Discovery of the Positron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carl Anderson and the Discovery of the Positron Resources with Additional Information * Discovery of the Positron and Muons The Positron Positron Single Track Antiparticle of Electron from California Institute of Technology Courtesy of Lawrence Berkeley National Laboratory, © 2010 The Regents of the University of California, Lawrence Berkeley National Laboratory Carl David Anderson discovered the positron in 1932. Anderson, then a postdoc in the physics department at California Institute of

  6. CERN Announces Discovery of Different Pentaquarks | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN Announces Discovery of Different Pentaquarks Illustration of the possible layout of the quarks in a pentaquark particle such as those discovered at LHCb. The five quarks might be tightly bonded (shown), or they might also be assembled into a meson (one quark and one antiquark) and a baryon (three quarks), weakly bonded together (not shown). Images: © CERN / LHCb Collaboration. CERN Announces Discovery of Different Pentaquarks NEWPORT NEWS, VA, July 15, 2015 - CERN, the European

  7. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  8. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  9. VisIt - 3D Scientific Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VisIt VisIt - 3D Scientific Visualization Description and Overview VisIt is a point-and-click 3D scientific visualization application that supports most common visualization techniques (e.g., iso-contouring and volume rendering) on structured and unstructured grids. Due to its distributed and parallel architecture, VisIt is able to handle very large datasets interactively. In addition, VisIt is extensible, allowing users to add data loaders or additional analysis tools to VisIt. The NERSC

  10. Novel Visual and Analytical Methods in Repurposing Legacy Scientific Code - A Case Study

    SciTech Connect (OSTI)

    Oehmen, Christopher S.; Curtis, Darren S.; Phillips, Aaron R.; Peterson, Elena S.

    2013-07-23

    Scientific computing is dominated by team-authored legacy code that has evolved over decades with the purpose of capturing the evolving understanding of a scientific discipline. Accumulated deprecated code, various optimization techniques, and evolving algorithms lead to convoluted source code that is impractical to reverse engineer using mainstream methods. This prevents codes from being truly repeatable or understandable, which are two of the most essential needs in scientific computing. We refactored a long-standing implementation of a common biosequence alignment algorithm in an effort to reproduce its salient behaviors in usable form. Because of the sheer size and complexity of this code base, we developed custom tools to visualize and manipulate the source code behavior under a variety of conditions. We present a case study of extracting and refactoring the algorithmic core and a novel process of discovery/prototyping/testing using a combination of openly available and custom-built tools. The result is a reduction in code size of over 2 orders of magnitude while reconstructing the key protein alignment function in BLAST

  11. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Artist's rendering of a rare B-meson "penguin" showing the ... Sun and outgoing heat from the Earth is well established. ... Kinectrics Metal alloys for pipe networks DDR Melior ...

  12. 2006 XSD Scientific Software User Survey.

    SciTech Connect (OSTI)

    Jemian, P. R.

    2007-01-22

    In preparation for the 2006 XSD Scientific Software workshop, our committee sent a survey on June 16 to 100 users in the APS user community. This report contains the survey and the responses we received. The responses are presented in the order received.

  13. Participant Obligations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S.

  14. SIGNATURES OF ILLICIT NUCLEAR PROCUREMENT NETWORKS: AN OVERVIEW OF PRELIMINARY APPROACHES AND RESULTS

    SciTech Connect (OSTI)

    Webster, Jennifer B.; Erikson, Luke E.; Gastelum, Zoe N.; Lewis, Valerie A.; Best, Daniel M.; Hogan, Emilie A.; Chikkagoudar, Satish

    2014-05-12

    The illicit trafficking of strategic nuclear commodities (defined here as the goods needed for a covert nuclear program excluding special nuclear materials) poses a significant challenge to the international nuclear nonproliferation community. Export control regulations, both domestically and internationally, seek to inhibit the spread of strategic nuclear commodities by restricting their sale to parties that may use them for nefarious purposes. However, export controls alone are not sufficient for preventing the illicit transfer of strategic nuclear goods. There are two major pitfalls to relying solely on export control regulations for the deterrence of proliferation of strategic goods. First, export control enforcement today relies heavily on the honesty and willingness of participants to adhere to the legal framework already in place. Secondly, current practices focus on the evaluation of single records which allow for the necessary goods to be purchased separately and hidden within the thousands of legitimate commerce transactions that occur each day, disregarding strategic information regarding several purchases. Our research presents two preliminary data-centric approaches for investigating procurement networks of strategic nuclear commodities. Pacific Northwest National Laboratory (PNNL) has been putting significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. In particular, the PNNL Signature Discovery Initiative (SDI) has codified several scientific methodologies for the detection, characterization, and prediction of signatures that are indicative of a phenomenon of interest. The methodologies and tools developed under SDI have already been applied successfully to problems in bio-forensics, cyber security and power grid balancing efforts and they have now made the nonproliferation of

  15. Knowledge Discovery from Massive Healthcare Claims Data

    SciTech Connect (OSTI)

    Chandola, Varun; Sukumar, Sreenivas R; Schryver, Jack C

    2013-01-01

    The role of big data in addressing the needs of the present healthcare system in US and rest of the world has been echoed by government, private, and academic sectors. There has been a growing emphasis to explore the promise of big data analytics in tapping the potential of the massive healthcare data emanating from private and government health insurance providers. While the domain implications of such collaboration are well known, this type of data has been explored to a limited extent in the data mining community. The objective of this paper is two fold: first, we introduce the emerging domain of big"healthcare claims data to the KDD community, and second, we describe the success and challenges that we encountered in analyzing this data using state of art analytics for massive data. Specically, we translate the problem of analyzing healthcare data into some of the most well-known analysis problems in the data mining community, social network analysis, text mining, and temporal analysis and higher order feature construction, and describe how advances within each of these areas can be leveraged to understand the domain of healthcare. Each case study illustrates a unique intersection of data mining and healthcare with a common objective of improving the cost-care ratio by mining for opportunities to improve healthcare operations and reducing hat seems to fall under fraud, waste,and abuse.

  16. Announcements | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Science Discovery Technologies: Federated Search and Speech-Indexed Multimedia 052511 CERN Multimedia Now Playing at DOE's ScienceCinema 020811 ScienceCinema Gives You ...

  17. DOE Awards Over a Billion Supercomputing Hours to Address Scientific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects receiving INCITE awards utilize complex simulations to accelerate discoveries in ground-breaking technologies such as lithium air batteries and nano solar cells. The ...

  18. OSTI History, Office of Scientific and Technical Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI History Accelerating Science Discovery: From the '40s to the Future Timeline History 1940 Answering the Call 1950s Expanding Internationally 1960s Supporting Education 1970s...

  19. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  20. Robert Curl, Jr. and the Discovery of Fullerenes

    Office of Scientific and Technical Information (OSTI)

    Curl's expertise in microwave and infrared spectroscopy helped to make scientific history ... and he was key in attaining a degree of equilibrium in the carbon vapor that allowed ...

  1. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    SciTech Connect (OSTI)

    Hey, Tony; Agarwal, Deborah; Borgman, Christine; Cartaro, Concetta; Crivelli, Silvia; Van Dam, Kerstin Kleese; Luce, Richard; Arjun, Shankar; Trefethen, Anne; Wade, Alex; Williams, Dean

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  2. Report for the Office of Scientific and Technical Information: Population

    Office of Scientific and Technical Information (OSTI)

    Modeling of the Emergence and Development of Scientific Fields (Technical Report) | SciTech Connect Technical Report: Report for the Office of Scientific and Technical Information: Population Modeling of the Emergence and Development of Scientific Fields Citation Details In-Document Search Title: Report for the Office of Scientific and Technical Information: Population Modeling of the Emergence and Development of Scientific Fields The accelerated development of digital libraries and

  3. Advance Network Reservation and Provisioning for Science

    SciTech Connect (OSTI)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2009-07-10

    We are witnessing a new era that offers new opportunities to conduct scientific research with the help of recent advancements in computational and storage technologies. Computational intensive science spans multiple scientific domains, such as particle physics, climate modeling, and bio-informatics simulations. These large-scale applications necessitate collaborators to access very large data sets resulting from simulations performed in geographically distributed institutions. Furthermore, often scientific experimental facilities generate massive data sets that need to be transferred to validate the simulation data in remote collaborating sites. A major component needed to support these needs is the communication infrastructure which enables high performance visualization, large volume data analysis, and also provides access to computational resources. In order to provide high-speed on-demand data access between collaborating institutions, national governments support next generation research networks such as Internet 2 and ESnet (Energy Sciences Network). Delivering network-as-a-service that provides predictable performance, efficient resource utilization and better coordination between compute and storage resources is highly desirable. In this paper, we study network provisioning and advanced bandwidth reservation in ESnet for on-demand high performance data transfers. We present a novel approach for path finding in time-dependent transport networks with bandwidth guarantees. We plan to improve the current ESnet advance network reservation system, OSCARS [3], by presenting to the clients, the possible reservation options and alternatives for earliest completion time and shortest transfer duration. The Energy Sciences Network (ESnet) provides high bandwidth connections between research laboratories and academic institutions for data sharing and video/voice communication. The ESnet On-Demand Secure Circuits and Advance Reservation System (OSCARS) establishes

  4. DOE Science Networking Challenge: Roadmap to 2008

    SciTech Connect (OSTI)

    R. Roy Whitney; Larry Price

    2003-06-01

    This report establishes a roadmap for a new approach to the DOE Science Networking and Services needed for science in the U.S. Department of Energy in the 21st century. It has become increasingly clear 2 that the network provided for DOE science in the past will not be adequate to keep that science competitive in the future. This roadmap, if implemented and followed during the next five years, will solve that problem. The past 5 years have seen a broad and general movement toward the assumption of and reliance on networked systems in all of the large new initiatives for DOE science. It is clear that the success of science depends increasingly on the ability of scientists to move large amounts of data, access computing and data resources, and collaborate in real time from multiple remote locations. It is also abundantly clear that business-as-usual in the network and information services that underpin the scientific collaborations will fall woefully short of what is needed. New capabilities such as computational and data grids, high-speed wireless networking, super-high-speed metro-scale networks, and cheap gigabit Ethernet have arrived in turn and have been enthusiastically incorporated into the arsenal of science, each permitting substantial new collaborative abilities and efficiencies. However, sophisticated structures and services using basic network connections can be used effectively only if the network infrastructure itself provides the necessary environment. Increasingly, the network must become a collaborative information exchange, with a core of higher-level services supported by network providers in addition to basic bandwidth and connectivity.

  5. Protein Co-Expression Network Analysis (ProCoNA)

    SciTech Connect (OSTI)

    Gibbs, David L.; Baratt, Arie; Baric, Ralph; Kawaoka, Yoshihiro; Smith, Richard D.; Orwoll, Eric S.; Katze, Michael G.; Mcweeney, Shannon K.

    2013-06-01

    Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

  6. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater monitoring network Map of LANL's groundwater monitoring network

  7. ESnet Network Operating System (ENOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data ... Blog ESnet Live Home Network R&D Software-Defined Networking (SDN) ENOS Network ...

  8. Interconnection networks

    DOE Patents [OSTI]

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  9. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  10. Evidence for neutrino mass: A decade of discovery

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  11. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  12. NERSC Initiative for Scientific Exploration (NISE) Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards NERSC Initiative for Scientific Exploration (NISE) Awards June 3, 2011 by Francesca Verdier The June NISE awards have been added to the NISE Awards Table. Subscribe via RSS Subscribe Browse by Date August 2016 June 2016 May 2016 April 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015 December 2014 November 2014 October 2014 August 2014 June 2014 May 2014 April 2014 March 2014 January 2014 December 2013

  13. NREL'S Zunger Receives Top Scientific Honors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Scientific Honors For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Nov. 29, 2000 - Alex Zunger, a physicist and research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory, has been named the 2001 recipient of the prestigious Rahman Award by the American Physical Society (APS). The award from the APS is bestowed once annually to an individual for "outstanding achievement in computational physics research."

  14. Scientific Themes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Scientific Themes The Photosynthetic Antenna Research Center (PARC) is focused on a basic science approach to understanding the process of light collection in natural, artificial, and hybrid antenna complexes. In order to attain a deep understanding of these systems, a wide variety of approaches will be utilized, ranging from synthetic methods that produce novel pigments that are then associated with de novo designed proteins to genetic engineering and manipulation of organisms. In most

  15. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect (OSTI)

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  16. Exploring HPCS Languages in Scientific Computing

    SciTech Connect (OSTI)

    Barrett, Richard F; Alam, Sadaf R; de Almeida, Valmor F; Bernholdt, David E; Elwasif, Wael R; Kuehn, Jeffery A; Poole, Stephen W; Shet, Aniruddha G

    2008-01-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  17. Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 155 197 1980's 168 412 376 53 53 94 14 11 26 91 1990's 50 10 0 25 0 23 30 2 4 0 2000's 20 13 14 6 8 1 0 6 21 0 2010's 51 47 44 2 135 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  18. The Discovery of the Higgs Boson: America's Role

    SciTech Connect (OSTI)

    2013-10-08

    The discovery of the Higgs boson was an international endeavor, involving thousands of physicists from across the world. While the accelerator at which the experimental work was done is located on Europe, the US supplied more physicists than any other single country. America had a very large role in the discovery of the Higgs particle and continues to have a leading role in the ongoing studies of the boson's properties. This video describes some of the contributions of U.S. universities and laboratories.

  19. The Discovery of the Higgs Boson: America's Role

    ScienceCinema (OSTI)

    None

    2014-05-30

    The discovery of the Higgs boson was an international endeavor, involving thousands of physicists from across the world. While the accelerator at which the experimental work was done is located on Europe, the US supplied more physicists than any other single country. America had a very large role in the discovery of the Higgs particle and continues to have a leading role in the ongoing studies of the boson's properties. This video describes some of the contributions of U.S. universities and laboratories.

  20. Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 772 7 16 23 17 1990's 3 68 75 5 25 63 13 11 57 44 2000's 45 27 68 12 18 6 27 0 191 257 2010's 48 47 5 17 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  1. Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Michigan Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 115 47 48 1980's 33 18 16 15 30 42 65 90 96 30 1990's 39 16 7 0 0 10 76 0 6 0 2000's 15 50 8 0 0 11 1 0 4 19 2010's 2 14 7 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  2. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 159,115 12,113 27,643 26,199 5,029 7,657 35,401

  3. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves, reserves changes, and production, 2014 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 12,392 1,796 3,299 1,020 442 680 395 0 0 1,404 15,696 Alabama 413 641 42 40 0 0 0

  4. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil and lease condensate proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 2,898 1 239 196 125 187 35 0 0 182 2,857 Lower 48 States 33,622 439 5,789 5,416 2,350 2,641 4,986 164 219

  5. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 2,898 1 238 196 125 186 35 0 0 182 2,855 Lower 48 States 30,473 515 5,077 4,798 2,032 2,234 4,395 151 207 2,692 33,530 Alabama

  6. Published New Reservoir Proved Revision Revision New Field Discoveries

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease condensate proved reserves, reserves changes, and production, 2014 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/13 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/14 Alaska 0 0 1 0 0 1 0 0 0 0 2 Lower 48 States 3,149 -76 712 618 318 407 591 13 12 326 3,546 Alabama 14 1 0 1 0 0 0 0 0 1 13

  7. Valley Entrepreneurs' Network (VEN) Monthly Network Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VEN Monthly Network Meeting Valley Entrepreneurs' Network (VEN) Monthly Network Meeting WHEN: Mar 05, 2015 5:30 PM - 7:00 PM WHERE: Anthony's At the Delta North Paseo De Onate, Española, NM CATEGORY: Community INTERNAL: Calendar Login Event Description An evening of exciting enterprise networking with like-minded entrepreneurs. For more information, contact Alejandro, VEN Coordinator, at (505) 410-0959

  8. Chemical Doping Enhances Electronic Transport in Networks of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hexabenzocoronenes Assembles in Electrolyte - Joint Center for Energy Storage Research June 12, 2015, Research Highlights Chemical Doping Enhances Electronic Transport in Networks of Hexabenzocoronenes Assembles in Electrolyte (Top) HBCs assemble into nanowires and are chemically oxidized (Bottom Left) Changing UV-vis spectra with temperature indicates assembly (Bottom Right) Increased shuttling current with increased oxidation Scientific Achievement Organic semiconductors provide

  9. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect (OSTI)

    Kathawa, J.; Fry, C.; Thoennessen, M., E-mail: thoennessen@nscl.msu.edu

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  10. Historical Review of Californium-252 Discovery and Development

    DOE R&D Accomplishments [OSTI]

    Stoddard, D. H.

    1985-01-01

    This paper discusses the discovery and history of californium 252. This isotope may be synthesized by irradiating plutonium 239, plutonium 242, americium 243, or curium 244 with neutrons in a nuclear reactor. Various experiments and inventions involving Cf conducted at the Savannah River Plant are discussed. The evolution of radiotherapy using californium 252 is reviewed. (PLG)

  11. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  12. The Department of Energy's Scientific Response to the Oil Spill...

    Energy Savers [EERE]

    The Department of Energy's Scientific Response to the Oil Spill The Department of Energy's Scientific Response to the Oil Spill May 28, 2010 - 12:00am Addthis At the request of ...

  13. STIP Glossary | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information (STI) and Copyright Fri, 2016-04-29 10:37 Page, Submitting STI 2 Scientific and Technical Information (STI) Defined Fri, 2016-06-10 11:03 ...

  14. 2016 PARC Scientific Advisory Committee Meeting | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Scientific Advisory Committee Meeting 2016 PARC Scientific Advisory Committee Meeting June 23, 2016 - 8:00am Meeting is for SAC members and PIs only.

  15. Publications and Presentations at Scientific Meetings | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Publications and Presentations at Scientific Meetings Calendar Year 2014: †Denotes papers on which a university or other collaborator was the lead author. Alessi D.S., J.S. Lezama-Pacheco, J.E. Stubbs, M. Janousch, J.R. Bargar, P. Persson, and R. Bernier-Latmani (2014) The product of microbial uranium reduction includes multiple species with U(IV)-phosphate coordination, Geochim. Cosmochim. Acta, in press. †Qafoku, N.P., B.N. Gartman, R.K. Kukkadapu,

  16. Synchronization in Complex Oscillator Networks and Smart Grids

    SciTech Connect (OSTI)

    Dorfler, Florian; Chertkov, Michael; Bullo, Francesco

    2012-07-24

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  17. SDN for Science Networks Inder Monga Eric Pouyoul, Chin Guok and Eli Dart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDN for Science Networks Inder Monga Eric Pouyoul, Chin Guok and Eli Dart Energy Sciences Network, Scientific Networking Division Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Disclaimer Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Two Prime Requirements 1. Data Mobility 2. Global Collaboration - Higgs Boson Long latencies (RTT) Multi-domain Multi-vendor Multi-technology {Lots of Bits} {Lots of Bits} Lawrence Berkeley

  18. OSTIblog Articles in the scientific integrity Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    scientific and technological information," the policy statement provides, "consistent with standards for treatment of classified, sensitive, private, and proprietary information. ...

  19. Recap: Advancing Scientific Innovation at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advancing Scientific Innovation at the National Labs Recap: Advancing Scientific Innovation at the National Labs April 3, 2014 - 1:00pm Addthis Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs Advancing Scientific Innovation at the National Labs During the month of March, we featured the Energy Department's National Labs and how they are advancing scientific innovation through user facilities and industry partnerships. Storified by Energy

  20. OSTIblog Articles in the Scientific and Technical Information Program

    Office of Scientific and Technical Information (OSTI)

    Website Topic | OSTI, US Dept of Energy Office of Scientific and Technical Information Scientific and Technical Information Program Website Topic DOE's Scientific and Technical Information Program: A Winning Collaboration by Judy Gilmore 26 Mar, 2014 in 17009 PNL.jpg DOE's Scientific and Technical Information Program: A Winning Collaboration Read more about 17009 Once again, dedicated representatives from the Department of Energy (DOE) headquarters program offices, field offices, national

  1. 2017 PARC All Hands & Scientific Advisory Committee Meetings |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center Scientific Advisory Committee Meeting June 22, 2017 - 8:30am

  2. Helping Advance the Scientific Foundation that Enables Major...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Quantum Optics Polariton Lasing Unconventional Lasing Enabling Energy Efficiency ... Fusion Energy Sciences Advanced Scientific Computing Research (ASCR) Biological and ...

  3. Statutory Authorities | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    collections of scientific and technical information resulting from research, development, demonstration, and commercial applications activities supported by the Department." ...

  4. Conduit - Scientific Data Exchange Library for HPC Simulations

    Energy Science and Technology Software Center (OSTI)

    2014-10-22

    Conduit is a C++ software library that helps software developers with data representation and data exchange in scientific simulations

  5. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & Publications PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL Education Programs Business Enclav

  6. Damselfly Network Simulator

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Damselfly is a model-based parallel network simulator. It can simulate communication patterns of High Performance Computing applications on different network topologies. It outputs steady-state network traffic for a communication pattern, which can help in studying network congestion and its impact on performance.

  7. Los Alamos National Laboratory Scientific Excellence for Mission Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 10, 2015 | 1 UNCLASSIFIED As a Premier National Security Scientific Laboratory, Los Alamos tackles:  Multidisciplinary science, technology, and engineering challenges  Problems demanding unique experimental and computational facilities  Highly complex national security issues requiring fundamental breakthroughs LOS ALAMOS A NATIONAL SECURITY SCIENTIFIC LABORATORY FOR THE 21ST CENTURY The nation's investment in Los Alamos has fostered scientific capabilities for national security

  8. Accelerating Science Discovery: From the '40s to the Future ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thus, in 1947, the precursor to the Office of Scientific and Technical Information (OSTI, www.osti.gov) was born. On Sept. 18, OSTI, within the U.S. Department of Energy's Office ...

  9. Fundamental Scientific Problems in Magnetic Recording

    SciTech Connect (OSTI)

    Schulthess, T.C.; Miller, M.K.

    2007-06-27

    Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.

  10. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less

  11. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    SciTech Connect (OSTI)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  12. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  13. Explicit integration with GPU acceleration for large kinetic networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike W.

    2015-09-15

    In this study, we demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. In addition, this orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies thatmore » important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.« less

  14. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery...

    Office of Scientific and Technical Information (OSTI)

    access to research data and literature, GIS mapping tools, and collaborative networks. ... (EERE) Country of Publication: United States Language: English Subject: 9 - BIOMASS FUELS

  15. U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  16. U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. U.S. Crude Oil + Lease Condensate New Reservoir Discoveries in...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Million Barrels) U.S. Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 ...

  18. Discovery of GeV Emission tfrom the Circinus Galaxy with the...

    Office of Scientific and Technical Information (OSTI)

    Discovery of GeV Emission tfrom the Circinus Galaxy with the Fermi-Lat Citation Details In-Document Search Title: Discovery of GeV Emission tfrom the Circinus Galaxy with the...

  19. New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  20. New York Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Gasoline and Diesel Fuel Update (EIA)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  1. Discovery of a new ATP-binding motif involved in peptidic azoline...

    Office of Scientific and Technical Information (OSTI)

    Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis Citation Details In-Document Search Title: Discovery of a new ATP-binding motif involved in peptidic ...

  2. Discovery of Dark Energy Ushered in a New Era in Computational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of Dark Energy Ushered in a New Era in Computational Cosmology Discovery of Dark Energy Ushered in a New Era in Computational Cosmology October 4, 2011 John Hules, ...

  3. Discovery of a meta-stable Al-Sm phase with unknown stoichiometry...

    Office of Scientific and Technical Information (OSTI)

    Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm Citation Details In-Document Search Title: Discovery of a meta-stable Al-Sm phase with...

  4. Acquisition Guide Chapter 35.1, Scientific and Technical Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting | Department of Energy 35.1, Scientific and Technical Information Reporting Acquisition Guide Chapter 35.1, Scientific and Technical Information Reporting The Acquisition Guide Chapter 35.1, Scientific and Technical Information Reporting, is updated to include changes to the Scientific and Technical Information website and DOE Order 241.1 B. PF2011-58 Acquisition Guide Chapter 35.1, Scientific and Technical Information Reporting (8.37 KB) PF2011-58a.pdf (114.73 KB) More Documents

  5. Institute for Scientific Computing Research Fiscal Year 2002 Annual Report

    SciTech Connect (OSTI)

    Keyes, D E; McGraw, J R; Bodtker, L K

    2003-03-11

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions

  6. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    SciTech Connect (OSTI)

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K; Kruse, Kara L

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  7. Federated Search | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    To get to the deep web, you need discovery tools, such as The National Library of Energy ... Results are then ranked in relevance order. You can review the results and navigate to the ...

  8. Lakeside: Merging Urban Design with Scientific Analysis

    SciTech Connect (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-10-08

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  9. Lakeside: Merging Urban Design with Scientific Analysis

    ScienceCinema (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-11-18

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  10. (Sparsity in large scale scientific computation)

    SciTech Connect (OSTI)

    Ng, E.G.

    1990-08-20

    The traveler attended a conference organized by the 1990 IBM Europe Institute at Oberlech, Austria. The theme of the conference was on sparsity in large scale scientific computation. The conference featured many presentations and other activities of direct interest to ORNL research programs on sparse matrix computations and parallel computing, which are funded by the Applied Mathematical Sciences Subprogram of the DOE Office of Energy Research. The traveler presented a talk on his work at ORNL on the development of efficient algorithms for solving sparse nonsymmetric systems of linear equations. The traveler held numerous technical discussions on issues having direct relevance to the research programs on sparse matrix computations and parallel computing at ORNL.

  11. Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 5 60 1980's 8 48 13 3 0 0 6 0 0 0 1990's 6 0 0 0 0 0 0 0 1 0 2000's 0 33 0 21 0 0 13 7 61 128 2010's 50 165 414 36 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  12. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 53 17 1980's 359 45 15 9 17 10 0 1 20 25 1990's 21 12 5 10 4 14 0 0 0 0 2000's 1 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  14. Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1 3 1980's 5 17 7 4 2 13 0 0 0 0 1990's 3 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 4 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  15. California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 25 12 1980's 4 2 1 10 13 1990's 2 1 22 14 0 0 0 0 0 0 2000's 7 0 0 5 0 0 0 0 0 1 2010's 1 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Colorado Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 9 22 1980's 15 16 20 12 12 22 0 7 2 8 1990's 2 2 5 2 3 80 0 2 0 123 2000's 0 4 1 1 171 32 14 15 17 8 2010's 22 18 9 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  17. Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques in Large Scientific Collaborations

    SciTech Connect (OSTI)

    Ripeanu, Matei; Al-Kiswany, Samer; Iamnitchi, Adriana; Vazhkudai, Sudharshan S

    2009-03-01

    The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientific collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques.

  18. NREL Discovery Creates Future Opportunity in Quantum Computing - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Discovery Creates Future Opportunity in Quantum Computing Research into perovskites looks beyond material's usage for efficient solar cells August 31, 2016 Two men stand behind a spectrometer at an NREL lab. NREL scientists Ye Yang and Matt Beard stand in front of a transient absorption spectrometer in their laser lab. Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) discovered a use for perovskites that runs counter to the intended usage of

  19. Electronic Structure Based Discovery of Hybrid Photovoltaic Materials on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation HPC Platforms | Argonne Leadership Computing Facility Electronic Structure Based Discovery of Hybrid Photovoltaic Materials on Next-Generation HPC Platforms PI Name: Volker Blum PI Email: volker.blum@duke.edu Institution: Duke University Allocation Program: ESP Year: 2015 Research Domain: Materials Science Tier 2 Code Development Project Numerical Methods/Algorithms The FHI-aims all-electron electronic structure code is a well-established, accurate framework for large-scale

  20. Fault Detection Tool Project: Automatic Discovery of Faults using Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Fault Detection Tool Project: Automatic Discovery of Faults using Machine Learning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  1. Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activation from Inhibition of the MAPK Pathway | Stanford Synchrotron Radiation Lightsource Discovery of Next Generation RAF Inhibitors that Dissociate Paradoxical Activation from Inhibition of the MAPK Pathway Monday, February 29, 2016 Genes encoding members of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway are frequently mutated in human cancer. RAS (a small GTPase) and RAF (a serine/Threonine kinase) are two major nodes on this important

  2. Discovery of the Fundamental Mechanism of Action of Resveratrol | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Discovery of the Fundamental Mechanism of Action of Resveratrol Thursday, May 28, 2015 Resveratrol is reported to extend lifespan and provide cardio-neuro-protective, anti-diabetic, and anti-cancer effects by initiating a protective stress response. Resveratrol is produced in grapes, cacao beans (dark chocolates), peanuts (peanut butter), Japanese knotweed, blueberries and some other plants, in response to environmental stress conditions including infection,

  3. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  4. Kids at Camp Discovery Bond Over Building Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Each year, about 150 kids gather during the summer at Camp Discovery in Kerrville, Texas, to learn new things and have fun. But this isn't an ordinary summer camp — the attendees, ages seven to 16, all have been diagnosed with cancer. During the course of a week, campers get a great learning experience, but they also have the opportunity to talk about their experiences.

  5. Caltech announces discovery in fundamental physics | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Caltech announces discovery in fundamental physics August 18, 2015 Tweet EmailPrint This press release was originally printed by CalTech. When the transistor was invented in 1947 at Bell Labs, few could have foreseen the future impact of the device. This fundamental development in science and engineering was critical to the invention of handheld radios, led to modern computing, and enabled technologies such as the smartphone. This is one of the values of basic research. In a

  6. Center for Inverse Design: Modality 3 - Discovery of Missing Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Discovery of Missing Materials Modality 3 applies to yet discovered, currently undocumented materials. This approach is designed for a different class of problems: when the materials we would like to consider are simply undocumented standard compilations, i.e., they have not yet been made. Like the other two modalities, this one also involves a search space. But unlike Modalities 1 and 2, the steps involved in Modality 3 are: Calculate the stable crystal structure of a given hypothetical

  7. Stories of Discovery & Innovation: A Step Toward Artificial Photosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | U.S. DOE Office of Science (SC) A Step Toward Artificial Photosynthesis Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 01.06.12 Stories of Discovery & Innovation: A Step Toward Artificial Photosynthesis Print Text Size: A A A Subscribe FeedbackShare Page EFRC researchers construct an artificial version of a bacterium's light-absorbing

  8. Stories of Discovery & Innovation: Mimicking Nature Backwards and Forwards|

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Mimicking Nature Backwards and Forwards Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 04.26.12 Stories of Discovery & Innovation: Mimicking Nature Backwards and Forwards Print Text Size: A A A Subscribe FeedbackShare Page Using biology as their blueprint, EFRC researchers devise a reversible reaction for hydrogen energy

  9. Stories of Discovery & Innovation: Scientists Create World's Smallest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery | U.S. DOE Office of Science (SC) Scientists Create World's Smallest Battery Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 05.16.11 Stories of Discovery & Innovation: Scientists Create World's Smallest Battery Print Text Size: A A A Subscribe FeedbackShare Page Effort yields insights that could improve battery performance. This work, featured

  10. Raptor: An Enterprise Knowledge Discovery Engine - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Raptor: An Enterprise Knowledge Discovery Engine Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Enterprises generate large quantities of information contained in documents, presentations, spreadsheets, and databases. This information is stored across file shares, intranet portals, user desktops, and other business unit applications. Combined

  11. The top quark (20 years after the discovery)

    SciTech Connect (OSTI)

    Boos, Eduard; Brandt, Oleg; Denisov, Dmitri; Denisov, Sergey; Grannis, Paul

    2015-09-10

    On the twentieth anniversary of the observation of the top quark, we trace our understanding of this heaviest of all known particles from the prediction of its existence, through the searches and discovery, to the current knowledge of its production mechanisms and properties. We also discuss the central role of the top quark in the Standard Model and the windows that it opens for seeking new physics beyond the Standard Model.

  12. View discovery in OLAP databases through statistical combinatorial optimization

    SciTech Connect (OSTI)

    Hengartner, Nick W; Burke, John; Critchlow, Terence; Joslyn, Cliff; Hogan, Emilie

    2009-01-01

    OnLine Analytical Processing (OLAP) is a relational database technology providing users with rapid access to summary, aggregated views of a single large database, and is widely recognized for knowledge representation and discovery in high-dimensional relational databases. OLAP technologies provide intuitive and graphical access to the massively complex set of possible summary views available in large relational (SQL) structured data repositories. The capability of OLAP database software systems to handle data complexity comes at a high price for analysts, presenting them a combinatorially vast space of views of a relational database. We respond to the need to deploy technologies sufficient to allow users to guide themselves to areas of local structure by casting the space of 'views' of an OLAP database as a combinatorial object of all projections and subsets, and 'view discovery' as an search process over that lattice. We equip the view lattice with statistical information theoretical measures sufficient to support a combinatorial optimization process. We outline 'hop-chaining' as a particular view discovery algorithm over this object, wherein users are guided across a permutation of the dimensions by searching for successive two-dimensional views, pushing seen dimensions into an increasingly large background filter in a 'spiraling' search process. We illustrate this work in the context of data cubes recording summary statistics for radiation portal monitors at US ports.

  13. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect (OSTI)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  14. Cloud services for the Fermilab scientific stakeholders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; et al

    2015-01-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  15. E-print Network | OSTI, US Dept of Energy, Office of Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    citations, journal articles, conference papers, books, multimedia and data information. ... Content includes text-based and multimedia information, as well as research data. ...

  16. E-print Network | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    of Energy (DOE) research funding. For access to journal articles and peer-reviewed accepted manuscripts resulting from DOE research funding, please visit the Department of Energy ...

  17. Network II Database

    Energy Science and Technology Software Center (OSTI)

    1994-11-07

    The Oak Ridge National Laboratory (ORNL) Rail and Barge Network II Database is a representation of the rail and barge system of the United States. The network is derived from the Federal Rail Administration (FRA) rail database.

  18. Class network routing

    DOE Patents [OSTI]

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  19. Science-Driven Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 1-1 Science-Driven Network Requirements for ESnet Update to the 2002 Office of Science Networking Requirements Workshop Report February 21, 2006 Contributors Paul Adams, LBNL (Advanced Light Source) Shane Canon, ORNL (NLCF) Steven Carter, ORNL (NLCF) Brent Draney, LBNL (NERSC) Martin Greenwald, MIT (Magnetic Fusion Energy) Jason Hodges, ORNL (Spallation

  20. Calorimetry Network Program

    Energy Science and Technology Software Center (OSTI)

    1998-01-30

    This is a Windows NT based program to run the SRTC designed calorimeters. The network version can communicate near real time data and final data values over the network. This version, due to network specifics, can function in a stand-alone operation also.

  1. Metallic nanowire networks

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  2. LBNL Transactional Network Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transactional Network Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory LBNL Team: Mary Ann Piette, Richard Brown, Phil Price, Janie Page, Stephen Czarnecki, Anna Liao, Stephen Lanzisera, Jessica Granderson . LBNL Transactional Network Applications 2 | Building Technologies Office eere.energy.gov LBNL Transactional Network Applications Baseline Load Shape provides basis for measuring change in peak demand and energy use Demand Response Event Scheduler coordinates

  3. THE NATIONAL CENTER FOR RADIOECOLOGY: A NETWORK OF EXCELLENCE FOR ENVIRONMENTAL AND HUMAN RADIATION RISK REDUCTION

    SciTech Connect (OSTI)

    Jannik, T.

    2013-01-09

    Radioecology in the United States can be traced back to the early 1950s when small research programs were established to address the fate and effects of radionuclides released in the environment from activities at nuclear facilities. These programs focused primarily on local environmental effects, but global radioactive fallout from nuclear weapons testing and the potential for larger scale local releases of radioisotopes resulted in major concerns about the threat, not only to humans, but to other species and to ecosystems that support all life. These concerns were shared by other countries and it was quickly recognized that a multi-disciplinary approach would be required to address and understand the implications of anthropogenic radioactivity in the environment. The management, clean-up and long-term monitoring of legacy wastes at Department of Energy (DOE), Department of Defense (DOD), and Nuclear Regulatory Commission (NRC)-regulated facilities continues to be of concern as long as nuclear operations continue. Research conducted through radioecology programs provides the credible scientific data needed for decision-making purposes. The current status of radioecology programs in the United States are: fragmented with little coordination to identify national strategies and direct programs; suffering from a steadily decreasing funding base; soon to be hampered by closure of key infrastructure; hampered by aging and retiring workforce (loss of technical expertise); and in need of training of young scientists to ensure continuation of the science (no formal graduate education program in radioecology remaining in the U.S.). With these concerns in mind, the Savannah River National Laboratory (SRNL) took the lead to establish the National Center for Radioecology (NCoRE) as a network of excellence of the remaining radioecology expertise in the United States. As part of the NCoRE mission, scientists at SRNL are working with six key partner universities to re-establish a

  4. NERSC Initiative for Scientific Exploration proposals due May 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals due May 31 NERSC Initiative for Scientific Exploration proposals due May 31 May 2, 2011 by Francesca Verdier The deadline to apply for the second and final round of award decisions for the NERSC Initiative for Scientific Exploration (NISE) program is May 31, 2011. Award decisions will be announced by mid June. Details of NISE award and application form can be found at: NERSC Initiative for Scientific Exploration (NISE) Subscribe via RSS Subscribe Browse by Date August 2016 June 2016

  5. Three Los Alamos scientists named 'Most Influential Scientific Minds'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three scientists named 'Most Influential Scientific Minds' Three Los Alamos scientists named 'Most Influential Scientific Minds' Allison Aiken, Bette Korber and Alan Perelson have been named to Thomson Reuters list of "The World's Most Influential Scientific Minds." July 22, 2014 Left to right: Bette Korber, Alan Perelson and Allison Aiken Left to right: Bette Korber, Alan Perelson and Allison Aiken Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "To have three

  6. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  7. JCESR Scientific Sprints - Speed through Collaboration - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research February 22, 2016, Videos JCESR Scientific Sprints - Speed through Collaboration JCESR supplements its traditional project management approach with scientific "Sprints." Sprints take a single question from JCESR's catalog of prioritized scientific challenges and dedicate a small, multidisciplinary team of 5-15 members to answer it, enabling us to move forward more rapidly in our research. Sprints empower early-career scientists to show their leadership

  8. 2014 Call for NERSC Initiative for Scientific Exploration (NISE) Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due December 8 the NERSC Initiative for Scientific Exploration (NISE) program 2014 Call for NERSC Initiative for Scientific Exploration (NISE) Program Due December 8 November 18, 2013 by Francesca Verdier Users may now submit requests for the 2014 NERSC Initiative for Scientific Exploration (NISE) program. The deadline to apply is Sunday December 8, 11:59 PM Pacific Time. The goals for this program in 2014 are: HPC and data analysis: Projects that leverage extreme scale parallel computing to

  9. DOE Data ID Service - Digital object identifiers for DOE scientific

    Office of Scientific and Technical Information (OSTI)

    research datasets | OSTI, US Dept of Energy Office of Scientific and Technical Information Data ID Service DataCite | Contact DOE Data ID Service DOE Data ID Service DOE Data ID Service The DOE Office of Scientific and Technical Information (OSTI) offers a service for registering datasets to help increase access to digital data from DOE-funded scientific research. Through the DOE Data ID Service, OSTI assigns persistent identifiers, known as Digital Object Identifiers (DOIs), to datasets

  10. Technology Pathway Partnership Final Scientific Report

    SciTech Connect (OSTI)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  11. Verifying disarmament: scientific, technological and political challenges

    SciTech Connect (OSTI)

    Pilat, Joseph R

    2011-01-25

    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  12. Multicore Architecture-aware Scientific Applications

    SciTech Connect (OSTI)

    Srinivasa, Avinash

    2011-11-28

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a large scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.

  13. Scientific Graphical Displays on the Macintosh

    SciTech Connect (OSTI)

    Grotch, S.

    1994-11-15

    In many organizations scientists have ready access to more than one computer, often both a workstation (e.g., SUN, HP, SGI) as well as a Macintosh or other PC. The scientist commonly uses the work station for `number-crunching` and data analysis whereas the Macintosh is relegated to either word processing or serves as a `dumb terminal` to a larger main-frame computer. In an informal poll of my colleagues, very few of them used their Macintoshes for either statistical analysis or for graphical data display. I believe that this state of affairs is particularly unfortunate because over the last few years both the computational capability, and even more so, the software availability for the Macintosh have become quite formidable. In some instances, very powerful tools are now available on the Macintosh that may not exist (or be far too costly) on the so-called `high end` workstations. Many scientists are simply unaware of the wealth of extremely useful, `off-the-shelf` software that already exists on the Macintosh for scientific graphical and statistical analysis.

  14. First American Scientific Brazil Ltda | Open Energy Information

    Open Energy Info (EERE)

    Scientific Brazil Ltda Place: Brazil Product: Joint venture for the manufacture, marketing and operation of 'KDS' pellet-making equipment in Brazil and South America....

  15. STIP Community | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    STIP Community STIP Community Points of contacts and meeting information for the Scientific and Technical Information Program Read more about STIP Community STIP Community ...

  16. Global Databases | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    The leading information source for scientific literature published worldwide on the peaceful applications of nuclear science and technology dating back to 1970; access to INIS ...

  17. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    scientific research and development through the President's ... and provide American children with a strong foundation ... Tout America's Economic Growth in Ohio Department of ...

  18. FY 2013 General Scientific Infrastructure FOA (DE-FOA-0000814)

    Broader source: Energy.gov [DOE]

    This Funding Opportunity Announcement (FOA) is the fiscal year (FY) 2013 solicitation for Nuclear Energy University Programs (NEUP) General Scientific Infrastructure Support for the Department of...

  19. Definitions | OSTI, US Dept of Energy Office of Scientific and...

    Office of Scientific and Technical Information (OSTI)

    theses and dissertations, computer software, journal manuscripts and citations, ... resulting from research and development (R&D) efforts and scientific and ...

  20. Princeton University | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    James Gunn receives National Medal of Science, the nation's highest scientif Members of Congress, University leaders, scientists, launch ScienceWorksForUS Dr. William Brinkman new ...