National Library of Energy BETA

Sample records for net metering customers

  1. Nevada Renewable Energy Application For Net Metering Customers...

    Open Energy Info (EERE)

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  3. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  4. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  16. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  19. LADWP- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  20. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The California Public Utilities Commission (CPUC) issued a decision in April 2016 establishing rules for net metering PV systems paired with storage devices 10 kW or smaller. See below for...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  3. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  4. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  8. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Dakota's net metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  10. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  12. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  13. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  14. Austin Energy- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  15. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  16. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  17. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  18. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  19. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  1. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  2. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed renewable energy technologies by providing value to the electricity generation that, during certain times of day or season, exceeds the customer's electricity demand. Find net metering resources below. DOE Resource Net Metering Policy Development in

  3. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  4. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA Economist/Engineer Campo Kumeyaay Nation Location map Tribal Energy Planning  Current 50 MW project  Proposed 160 MW project  DOE energy grant  Land use planning, renewable energy zones overlay  Economic analysis  Transmission, queue, PPA  Energy Resource Agreement analysis  Tribal Net meter turbine planning California SGIP program  Self Generation Incentive Program  Requires utilities to allow net metering

  5. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  6. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  7. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  8. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  9. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  10. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  11. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  12. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  13. N. Mariana Islands- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  14. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  15. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  16. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  17. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  19. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  20. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  1. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  2. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  3. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  4. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  5. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  6. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  7. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    294 2,971 650 Rhode Island 2 136 58 194 172 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 6 Table 2. Estimated U.S. net ...

  8. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  9. City of Danville- Net Metering

    Broader source: Energy.gov [DOE]

    A customer may begin operation of their renewable energy generator once the conditions of interconnection have been met. These include:

  10. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas,...

  11. City of Brenham- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ordinance includes a standard form interconnection application and agreement as well as standard riders. Customers must provide all equipment necessary to meet applicable safety, power quality...

  12. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 i This report was prepared by ...

  13. Green Pricing and Net Metering Programs 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    30,060 27,750 Vermont 2 4,453 239 4,692 4,936 September 2012 U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2010 4 Table 1. Estimated U.S. ...

  14. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  15. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  16. Innovation and Success in Solar Net Metering and Interconnection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Net Metering and Interconnection Innovation and Success in Solar Net Metering and Interconnection This document summarizes the latest developments in solar net metering and interconnection. webinar_080713_solar_net_metering_connection.pdf (2.09 MB) More Documents & Publications webinar_innovation_net_metering_interconnection.doc PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE Final Report - Chicago Region Solar Market Transformation Team

  17. The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues

    Broader source: Energy.gov [DOE]

    In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies to illustrate the models.

  18. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and ...

  19. Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

  20. Aggregate Net Metering Opportunities for Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aggregate Net Metering Opportunities for Local Governments Aggregate Net Metering Opportunities for Local Governments This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public-sector photovoltaic projects, and describes the important details that must be considered when promoting or pursuing such a policy. Aggregate net metering is the practice of

  1. Vermont Construction and Operation of Net Metering Systems Rules...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  2. Vermont Construction and Operation of Net Metering Systems Rule...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  3. Application for a Certificate of Public Good for Net Metered...

    Open Energy Info (EERE)

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  4. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",43.582,29.851,21.913,14.856,7.363 "Industrial",0.235,0.208,0.182,0.212,0.01 "Transportation",0,0,0,0,0 "Customers",10997,8507,5219,3775,2501 ...

  5. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",0.192,0.16,0.15,0.4,0 "Residential",0.051,0.028,0.014,0.015,0 "Commercial",0.141,0.132,0.132,0.206,0 "Industrial",0,0,0,0.18,0 "Transportation",0,0,0,0,0 "Customers",12,10,8,17,0 ...

  6. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",75.542,61.793,37.98,26.65,19.6 "Residential",34.052,25.504,16.995,11.126,7.151 "Commercial",40.944,35.713,20.636,15.173,12.435 "Industrial",0.546,0.576,0.35,0.35,0.02 "Transportation",0,0,0,0,0 "Customers",7968,6208,4348,3037,1789 "Residential",7305,5670,3957,2761,1657

  7. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",312.678,175.579,98.31,70.4,41.47 "Residential",165.349,83.781,50.708,37.822,25.153 "Commercial",143.619,89.631,47.52,32.29,16.318 "Industrial",3.71,2.167,0.08,0.29,0 "Transportation",0,0,0,0,0 "Customers",29175,15826,10785,8396,5619 "Residential",25637,13002,8829,7056,4802

  8. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",70.567,56.208,42.74,31.28,23.11 "Residential",34.851,26.301,20.326,14.076,9.618 "Commercial",33.41,28.319,21.164,16.171,13.015 "Industrial",2.306,1.588,1.242,1.015,0.483 "Transportation",0,0,0,0,0 "Customers",9108,7574,6269,4595,3115 "Residential",8086,6651,5514,4022,2730

  9. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",181.733,170.669,155.21,137.1,34.1 "Residential",61.325,58.006,50.406,41.888,19.223 "Commercial",80.43,77.336,75.406,72.164,12.725 "Industrial",39.978,35.327,29.387,23.03,2.149 "Transportation",0,0,0,0,0 "Customers",9123,8536,7474,6408,2859 "Residential",7978,7450,6478,5547,2585

  10. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",36.102,25.428,17.09,10.65,7.38 "Residential",29.204,19.414,12.741,7.424,6.021 "Commercial",6.848,5.974,4.312,3.194,1.314 "Industrial",0.05,0.04,0.024,0.024,0.024 "Transportation",0,0,0,0,0 "Customers",6607,4751,3222,2150,1673 "Residential",6067,4299,2857,1884,1490

  11. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",7096.828,5147.38,3679.63,2495.41,1459.11 "Residential",3452.987,2286.567,1542.226,1024.139,697.89 "Commercial",2933.122,2294.831,1741.821,1089.275,517.861 "Industrial",710.719,565.982,395.328,381.67,243.051 "Transportation",0,0,0,0,0 "Customers",688742,480054,323365,219018,150740

  12. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",601.915,447.596,252.66,126.57,120.74 "Residential",314.38,213.628,150.958,76.948,66.022 "Commercial",229.004,201.599,78.694,32.17,41.447 "Industrial",58.531,32.369,23.005,17.453,13.273 "Transportation",0,0,0,0,0 "Customers",53510,38281,24277,11328,8443 "Residential",51282,36234,23282,10753,8082

  13. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2791.582,2040.944,1536.71,1129.19,790.74 "Residential",1592.605,1054.34,734.319,529.795,362.404 "Commercial",705.45,577.335,524.977,307.782,214.282 "Industrial",493.527,409.269,277.413,291.565,214.033 "Transportation",0,0,0,0,0 "Customers",337099,233181,158940,115139,85835

  14. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",257.969,204.61,166.4,129.78,53.43 "Residential",136.39,96.632,70.855,51.233,40.162 "Commercial",120.17,106.727,94.033,77.232,11.868 "Industrial",1.409,1.251,1.504,1.313,1.374 "Transportation",0,0,0,0,0 "Customers",27903,20814,16377,12491,9635 "Residential",25197,18362,14098,10622,8386

  15. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",105.031,64.026,37.39,30.61,3.98 "Residential",47.298,25.608,16.666,13.336,1.465 "Commercial",52.13,35.816,19.387,15.931,1.371 "Industrial",5.603,2.602,1.345,1.345,1.145 "Transportation",0,0,0,0,0 "Customers",7904,4461,3092,2471,278 "Residential",7195,3923,2643,2107,247

  16. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",75.491,58.918,43.82,31.65,20.13 "Residential",36.417,26.769,20.99,17.278,11.39 "Commercial",37.817,31.865,22.754,14.283,8.709 "Industrial",1.257,0.284,0.06,0.06,0 "Transportation",0,0,0,0,0 "Customers",8558,6656,5239,3862,2699 "Residential",6778,5175,4167,3263,2369

  17. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",291.115,220.565,121.11,55.38,28.85 "Residential",230.896,173.15,84.817,32.328,13.906 "Commercial",60.219,47.415,36.298,23.044,14.939 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",51895,40511,22264,9785,4302 "Residential",49946,39008,21007,9129,3905

  18. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",152.271,105.226,65.82,36.92,11.06 "Residential",69.546,36.071,22.582,11.629,5.159 "Commercial",78.128,66.138,42.245,24.284,5.891 "Industrial",4.597,3.017,1,1,0 "Transportation",0,0,0,0,0 "Customers",11277,6596,4146,2456,1155 "Residential",10675,6066,3734,2236,1051

  19. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",577.703,278.065,123.77,59.72,43.84 "Residential",119.594,54.325,25.025,13.334,18.958 "Commercial",434.013,203.506,86.325,38.241,23.26 "Industrial",24.096,20.234,12.398,8.133,1.617 "Transportation",0,0,0,0,0 "Customers",21628,11468,6109,3886,2829 "Residential",19246,9742,4884,2997,2142

  20. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",867.839,777.626,669.2,441.4,149.5 "Residential",207.295,161.917,129.036,85.734,40.127 "Commercial",610.222,578.461,506.592,327.977,101.744 "Industrial",50.322,37.248,33.572,27.688,7.629 "Transportation",0,0,0,0,0 "Customers",32689,25802,19205,12907,7481 "Residential",28473,21780,15755,10576,6156

  1. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.529,0.45,0.23,0.19,0.2 "Residential",0.324,0.25,0.145,0.107,0.1 "Commercial",0.205,0.2,0.087,0.085,0.1 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",86,74,45,25,19 "Residential",70,59,34,15,12 "Commercial",16,15,11,10,7 "Industrial",0,0,0,0,0

  2. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.681,2.927,1.27,0.86,0.55 "Residential",1.843,1.43,1.086,0.718,0.487 "Commercial",1.838,1.497,0.179,0.144,0.052 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",404,330,260,184,122 "Residential",365,298,240,168,117 "Commercial",39,32,20,16,5 "Industrial",0,0,0,0,0

  3. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",18.762,10.191,6.17,3.72,10.35 "Residential",8.683,4.661,2.56,1.368,8.591 "Commercial",8.968,5.352,3.604,2.353,1.757 "Industrial",1.111,0.178,0,0,0 "Transportation",0,0,0,0,0 "Customers",2215,1244,573,261,163 "Residential",1995,1097,487,224,136 "Commercial",218,146,86,37,27

  4. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.256,0.241,0.17,0.08,0.01 "Residential",0.206,0.191,0.114,0.063,0.008 "Commercial",0.05,0.05,0.05,0.02,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",24,22,15,9,2 "Residential",22,20,13,8,2 "Commercial",2,2,2,1,0 "Industrial",0,0,0,0,0

  5. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",65.663,59.06,46.45,19.33,10.37 "Residential",8.624,6.684,4.275,2.701,1.41 "Commercial",51.567,46.952,39.954,16.222,8.929 "Industrial",5.472,5.424,2.211,0.395,0.038 "Transportation",0,0,0,0,0 "Customers",2042,1684,1271,899,506 "Residential",1453,1145,814,546,318 "Commercial",552,502,434,344,185

  6. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",1.914,1.155,0.66,0.51,0.25 "Residential",1.472,0.779,0.405,0.311,0.163 "Commercial",0.442,0.376,0.253,0.187,0.082 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",423,243,147,115,60 "Residential",390,220,132,105,54 "Commercial",33,23,15,10,6 "Industrial",0,0,0,0,0

  7. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",4.701,3.361,2,1.43,1.97 "Residential",1.403,1.205,0.633,0.574,0.535 "Commercial",3.298,2.156,1.37,0.856,1.43 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",415,260,206,182,169 "Residential",322,187,150,135,128 "Commercial",93,73,56,47,41 "Industrial",0,0,0,0,0

  8. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.347,1.885,1.2,0.68,1.38 "Residential",2.609,1.56,1.034,0.604,1.312 "Commercial",0.694,0.322,0.162,0.056,0.065 "Industrial",0.044,0.003,0,0,0 "Transportation",0,0,0,0,0 "Customers",691,414,280,164,105 "Residential",634,388,262,155,94 "Commercial",56,25,18,9,11 "Industrial",1,1,0,0,0

  9. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.29,0.092,0.09,0.07,0.01 "Residential",0.066,0.02,0.017,0.012,0.005 "Commercial",0.224,0.072,0.072,0.06,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",21,9,9,7,1 "Residential",12,4,4,3,1 "Commercial",9,5,5,4,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0

  10. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",31.823,17.151,10.78,5.73,3.45 "Residential",15.261,7.328,3.823,2.643,2.567 "Commercial",14.185,9.073,6.551,3.031,0.864 "Industrial",2.377,0.75,0.381,0.046,0.018 "Transportation",0,0,0,0,0 "Customers",3997,2483,1670,1199,795 "Residential",3561,2170,1441,1027,697 "Commercial",406,297,218,167,94

  11. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",31.62,19.874,18.9,8.33,6.32 "Residential",23.926,15.192,14.888,5.361,3.963 "Commercial",7.459,4.485,3.804,2.749,2.193 "Industrial",0.235,0.197,0.197,0.197,0.165 "Transportation",0,0,0,0,0 "Customers",3895,2676,2316,1187,827 "Residential",3649,2512,2184,1082,728 "Commercial",241,160,128,101,97

  12. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",16.438,11.378,9.9,6.55,3.68 "Residential",9.285,6.68,5.179,3.987,2.776 "Commercial",6.938,4.596,4.582,2.468,0.788 "Industrial",0.215,0.102,0.123,0.123,0.113 "Transportation",0,0,0,0,0 "Customers",2147,1610,1305,992,702 "Residential",1918,1420,1134,875,647 "Commercial",225,188,169,115,53

  13. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.588,2.163,1.77,0.75,0.3 "Residential",1.985,1.633,1.286,0.495,0.249 "Commercial",0.598,0.524,0.473,0.261,0.043 "Industrial",0.005,0.006,0.006,0,0 "Transportation",0,0,0,0,0 "Customers",389,325,245,151,75 "Residential",339,280,210,127,68 "Commercial",49,44,34,24,7

  14. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",1.785,1.616,1.32,0.99,1.03 "Residential",1.021,0.923,0.754,0.515,0.409 "Commercial",0.551,0.516,0.413,0.323,0.613 "Industrial",0.213,0.177,0.151,0.151,0 "Transportation",0,0,0,0,0 "Customers",272,318,215,178,147 "Residential",211,261,173,147,120 "Commercial",54,49,38,27,27

  15. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.613,0.401,0.27,0.17,0.01 "Residential",0.417,0.253,0.157,0.1,0.005 "Commercial",0.177,0.129,0.082,0.041,0.008 "Industrial",0.019,0.019,0.028,0.028,0.002 "Transportation",0,0,0,0,0 "Customers",138,90,62,39,5 "Residential",110,68,44,27,3 "Commercial",25,19,14,8,1 "Industrial",3,3,4,4,1

  16. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",27.237,22.224,19.05,14.1,8.52 "Residential",12.306,8.361,6.918,5.043,3.523 "Commercial",12.353,11.858,10.184,7.13,4.533 "Industrial",2.578,2.005,1.932,1.926,0.465 "Transportation",0,0,0,0,0 "Customers",2217,1617,1246,919,783 "Residential",1950,1372,1049,780,651 "Commercial",253,231,189,133,112

  17. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",10.095,7.664,5.44,3.55,1.71 "Residential",5.954,4.141,2.841,1.829,0.94 "Commercial",4.141,3.523,2.603,1.72,0.765 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",1522,1124,638,418,276 "Residential",1425,1049,586,389,256 "Commercial",97,75,52,29,20

  18. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",6.209,9.614,7.94,4.8,2.74 "Residential",2.883,2.929,2.066,2.692,2.107 "Commercial",2.416,5.058,4.468,1.78,0.62 "Industrial",0.91,1.627,1.413,0.311,0 "Transportation",0,0,0,0,0 "Customers",641,690,556,342,193 "Residential",533,509,398,249,144 "Commercial",100,165,145,89,49

  19. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",3.685,2.836,2.22,1.57,0.31 "Residential",1.897,1.37,1.016,0.594,0.212 "Commercial",1.788,1.466,1.186,0.94,0.106 "Industrial",0,0,0.001,0.032,0.001 "Transportation",0,0,0,0,0 "Customers",548,428,349,207,76 "Residential",439,331,265,180,66 "Commercial",109,97,83,24,9 "Industrial",0,0,1,3,1

  20. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",9.99,5.167,4.35,2.74,1.05 "Residential",4.524,2.88,2.626,1.808,0.75 "Commercial",5.336,2.157,1.725,0.938,0.301 "Industrial",0.13,0.13,0,0,0 "Transportation",0,0,0,0,0 "Customers",927,716,682,506,233 "Residential",749,535,544,414,210 "Commercial",175,178,138,92,23 "Industrial",3,3,0,0,0

  1. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",5.139,3.331,2.19,1.32,0.56 "Residential",3.565,2.223,1.127,0.716,0.366 "Commercial",1.558,1.082,1.06,0.602,0.168 "Industrial",0.016,0.026,0.01,0,0.005 "Transportation",0,0,0,0,0 "Customers",736,551,335,238,131 "Residential",629,454,260,180,90 "Commercial",106,95,74,58,40

  2. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",20.568,5.998,1.77,0.65,9.43 "Residential",8.343,2.885,0.794,0.268,9.289 "Commercial",11.676,2.91,0.947,0.373,0.116 "Industrial",0.549,0.203,0.036,0,0 "Transportation",0,0,0,0,0 "Customers",1448,534,148,79,65 "Residential",880,388,111,59,49 "Commercial",543,136,35,20,16

  3. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.617,1.36,0.92,0.61,0 "Residential",1.364,0.576,0.324,0.206,0.004 "Commercial",1.253,0.784,0.588,0.405,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",326,164,106,76,2 "Residential",265,124,75,49,2 "Commercial",61,40,31,27,0 "Industrial",0,0,0,0,0

  4. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",2.612,1.834,1.37,1.14,0.51 "Residential",1.384,0.838,0.534,0.397,0.23 "Commercial",1.228,0.996,0.83,0.733,0.282 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",412,330,254,208,122 "Residential",355,284,221,180,100 "Commercial",57,46,33,28,22 "Industrial",0,0,0,0,0

  5. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",88.904,51.156,23.19,8.44,6.25 "Residential",85.823,48.69,21.418,7.73,5.521 "Commercial",3.081,2.466,1.755,0.697,0.716 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",16305,9569,3899,1287,1656 "Residential",15571,9111,3835,1245,1512 "Commercial",734,458,64,42,144

  6. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",10.883,7.74,5.04,5.95,2.57 "Residential",7.551,5.696,3.558,4.263,1.907 "Commercial",3.306,2.018,1.464,1.687,0.655 "Industrial",0.026,0.026,0.026,0,0 "Transportation",0,0,0,0,0 "Customers",1703,1344,967,683,446 "Residential",1519,1210,850,584,379 "Commercial",183,133,116,99,67

  7. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",13.915,11.493,8.69,5.54,3.42 "Residential",7.853,6.351,4.86,3.581,2.837 "Commercial",5.551,4.63,3.724,1.913,0.54 "Industrial",0.511,0.512,0.103,0.047,0.033 "Transportation",0,0,0,0,0 "Customers",1612,1299,996,769,383 "Residential",1299,1032,807,624,331 "Commercial",300,254,184,142,48

  8. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",17.355,11.209,8.87,4.07,8.13 "Residential",6.922,5.001,3.851,2.302,5.203 "Commercial",9.516,5.728,4.484,1.505,2.774 "Industrial",0.917,0.48,0.52,0.25,0.114 "Transportation",0,0,0,0,0 "Customers",1575,1172,970,613,608 "Residential",1156,879,723,487,489 "Commercial",390,277,230,117,107

  9. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.663,0.077,0.04,0.03,0 "Residential",0.553,0.077,0.036,0.024,0 "Commercial",0.11,0,0,0,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",23,13,5,4,0 "Residential",21,13,5,4,0 "Commercial",2,0,0,0,0 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0

  10. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",97.377,42.797,14.7,4.31,1.21 "Residential",40.811,21.508,6.129,1.602,0.786 "Commercial",55.989,21.115,8.547,2.693,0.424 "Industrial",0.577,0.174,0.03,0,0 "Transportation",0,0,0,0,0 "Customers",6105,2930,1260,512,200 "Residential",3581,1929,834,345,167 "Commercial",2505,994,425,167,33

  11. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",5.634,7.52,3.57,2.29,2.18 "Residential",3.822,5.939,2.303,1.37,1.337 "Commercial",1.812,1.581,1.268,0.917,0.833 "Industrial",0,0,0,0,0 "Transportation",0,0,0,0,0 "Customers",1383,1174,1010,676,664 "Residential",1109,930,795,508,497 "Commercial",274,244,215,168,167 "Industrial",0,0,0,0,0

  12. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",0.855,0.651,0.55,0.19,0.08 "Residential",0.573,0.399,0.243,0.106,0.041 "Commercial",0.216,0.18,0.297,0.034,0.03 "Industrial",0.066,0.072,0.012,0.047,0.008 "Transportation",0,0,0,0,0 "Customers",133,104,73,32,13 "Residential",101,73,51,22,7 "Commercial",28,26,19,6,4

  13. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",59.397,44.618,41.66,28.33,0.02 "Residential",23.045,10.101,8.529,6.356,0.027 "Commercial",28.269,27.322,26.859,17.837,0 "Industrial",8.083,7.195,6.274,4.141,0 "Transportation",0,0,0,0,0 "Customers",4727,2500,2265,1663,13 "Residential",4198,1972,1757,1276,13 "Commercial",461,471,453,340,0

  14. Table 11. Net metering, 2010 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "Photovoltaic",,,,, "Capacity (MW)",12.986,8.565,5.07,3.05,1.88 "Residential",8.347,5.005,2.668,1.791,1.223 "Commercial",4.165,3.064,2.097,0.959,0.343 "Industrial",0.474,0.496,0.293,0.299,0.313 "Transportation",0,0,0,0,0 "Customers",1899,1353,780,584,406 "Residential",1650,1155,647,481,343 "Commercial",239,188,125,94,31

  15. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect (OSTI)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  16. Akwesasne Housing Authority - Go Solar Initiative: Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Akwesasne Housing Authority Go Solar Initiative: Net Metering Indian Energy Webinar: Understanding the Energy Policy and Regulatory Environment Theresa Cole, Special Projects Coordinator * Intro Akwesasne Housing Authority * Energy Vision * Sunrise Acres Complex * Technical Assistance/Strategic Plan * Project Goals & Outcomes * Community Awareness Campaign * Solar Initiative Goals * AHA's Unique Energy Conservation & Education Programming * Funding Sources * New York State and Utility

  17. Net Requirements Transparency Process for Slice/Block Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2012 Net Requirements Transparency Process for SliceBlock Customers Description of Changes and a Response to Comments September 24, 2012 Background and Description of Changes:...

  18. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  19. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  20. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  1. Green Pricing and Net Metering Programs - Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in green pricing programs grew by 8 percent in 2010, reaching a new high of 1,216,582 out of a nationwide customer base of 144,140,2581 (Figure 1 and Table 1). energy-efficie...

  2. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  3. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: Ongoing issues related to Minnesota's Community Solar Garden rules and program implementation are being considered in Docket No. E002/M-13-867. This entry will be updated as necessary to...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  5. Analysis of U.S Interconnection and Net-Metering Policy

    SciTech Connect (OSTI)

    Haynes, Rusty; Cook, Chris

    2006-07-01

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues.The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  6. U.S. Energy Information Administration | Green Pricing and Net...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Energy Information Administration | Green Pricing and Net Metering Programs 2009 Green Pricing and Net Metering Programs 2009 Table 5.1 Estimated U.S. Green Pricing Customers ...

  7. Status of Net Metering: Assessing the Potential to Reach Program Caps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Net Metering: Assessing the Potential to Reach Program Caps J. Heeter, R. Gelman, and L. Bird National Renewable Energy Laboratory Technical Report NREL/TP-6A20-61858 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  8. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta, and Gamma radiation. User authorization under this agreement is for use of the RadEye B20-ER radiation survey instrument for Process Knowledge surveys and user informational purposes only. These instruments cannot be used for official surveys. An RP-1 RCT must be contacted for official surveys or item release surveys.

  9. South Carolina- Net Metering

    Broader source: Energy.gov [DOE]

    In April of 2014 the South Carolina legislature unanimously passed S.B. 1189 to create a voluntary Distributed Energy Resource Program. In March 2015 the Public Utilities Commission approved a...

  10. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  11. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  12. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

  13. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All) Biomass Hydroelectric Municipal Solid Waste Combined Heat & Power Wind (Small) Hydroelectric (Small) Other Distributed Generation Technologies Program Info Sector Name...

  14. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the final rules, there was a typographical error related to eligible resources. RM09-10 LSA10-662(ac) corrects the error, clarifying the list of eligible technologies as IC...

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  16. U.S. Energy Information Administration | Green Pricing and Net...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Green Pricing and Net Metering Programs 2009 4 Green Pricing and Net Metering Programs ... Source: Energy Information Administration, Form EIA-861, "Annual Electric Power Industry ...

  17. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  18. Financial Impacts of Net-Metered PV on Utilities and Ratepayers: A Scoping Study of Two Prototypical U.S. Utilities

    Broader source: Energy.gov [DOE]

    Deployment of customer-sited photovoltaics (PV) in the United States has expanded rapidly in recent years, driven by falling PV system prices, the advent of customer financing options, and various forms of policy support at the federal, state, and local levels. With the success of these efforts, heated debates have surfaced in a number of U.S. states about the impacts of customer-sited PV on utility shareholders and ratepayers. Researchers performed an analysis using a financial model to quantify the financial impacts of customer-sited PV on utility shareholders and ratepayers and to assess the magnitude of these impacts under alternative utility conditions. They found that customer-sited PV generally reduces utility collected revenues greater than reductions in costs, leading to a revenue erosion effect and lost future earnings opportunities. They also found that average retail rates increase as utility costs are spread over a relatively smaller sales base. These results were analyzed under various assumptions about utility operating and regulatory environments, and these impacts can vary greatly depending upon the specific circumstances of the utility. Based on this analysis, this report highlights potential implications for policymakers and identifies key issues warranting further analysis.

  19. Working With Your Utility to Obtain Metering Services

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the government metering requirement, the U.S. Department of Defense (DoD) metering directive, and customer metering services available from utilities.

  20. Plugging meter

    DOE Patents [OSTI]

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  1. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  2. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  3. Progress Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Tribal Government Agricultural Institutional Savings Category Solar...

  4. Duke Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric Landfill Gas Wind (Small) Hydroelectric (Small) Program Info Sector Name Utility Website http:www.duke-energy.comgenerate-your-own-powersc-rate-options-tarif.....

  5. Smart Meters | OpenEI Community

    Open Energy Info (EERE)

    Smart Meters Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart...

  6. Power-factor metering gains new interest

    SciTech Connect (OSTI)

    Womack, D.L.

    1980-01-01

    The combined effect of increased energy costs, advances in digital metering techniques, and regulatory pressures is stimulating utility interest in charging smaller customers the full cost of their burden on the electric system, by metering reactive power and billing for poor power factor. Oklahoma Gas and Electric Co. adopted the Q-meter method, made practical with the advent of magnetic-tape metering. Digital metering and new techniques now being developed will add more options for utilities interested in metering power factor. There are three commonly used methods of determining power factor, all of which require the use of the standard induction watthour meter, plus at least one other meter, to obtain a second value in the power triangle. In all cases, the third value, if required, is obtained by calculation.

  7. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Customer Comments Customer Response to July 24August 8 Forums N.Wasco County PUD (08262013) Portland General Electric (08262013) Renewable Northwest Project (0826...

  8. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acscustomercomments Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand Customer Involvement Reports &...

  9. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  10. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand Customer Involvement Reports & Tools Expand Reports & Tools Operations &...

  11. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  12. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  13. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  14. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...

  15. Customer Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Operating Committee Transmission Issues Policy Steering Committee Customer Training Interconnection Small Generator Interconnection Procedures (SGIP) Balancing Authority...

  16. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009) Customer Comments on 2009 PTSA Avista Utilities BPA Power Services Grant County PUD Horizon Wind Energy Iberdrola Renewables Northwest Requirements Utilities Powerex...

  17. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  18. Customer Involvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Meetings Customer Comments Attachment K 2015 Planning Cycle 2014...

  19. Customer Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Meetings Customer Comments Attachment K 2015 Planning Cycle 2014...

  20. Customer Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Customer Comments BPA Power (452012) Clark PUD (452012) Cowlitz PUD (452012) Emerald PUD (452012) Franklin PUD (452012) Grant PUD (452012) Iberdrola (452012)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Daylighting, Wind (Small) Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). Eligibility:...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers...

  7. Customer Participation in the Smart Grid: Lessons Learned (September 2014)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Customer Participation in the Smart Grid: Lessons Learned (September 2014) Customer Participation in the Smart Grid: Lessons Learned (September 2014) Effective customer education and outreach are key ingredients for Smart Grid success. Smart meter and customer system programs involve complicated equipment and often require customers to "climb learning curves" that necessitate extensive communication and education. Utilities must be prepared to dedicate

  8. Power Net Revenue Improvement Sounding Board (aboutpbl/financial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Web Sites Power Services Organization Power Services Financial Information Net Revenue Sounding Board Tribal Affairs Office Account Executives Customer Service Centers...

  9. Our Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Customers Our Customers The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Los Alamos National Laboratory is one of three laboratories owned by the National Nuclear Security Administration (NNSA). As of 2012, about 65% of our work is done for NNSA programs to care for America's nuclear weapons stockpile and

  10. Long Island Smart Metering Pilot Project

    SciTech Connect (OSTI)

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA’s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software “over the air” (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate – without the cost guarantee – at the end of that year. The customer who chose not to continue on the rate was also

  11. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  12. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  13. DIGITAL Q METER

    DOE Patents [OSTI]

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  14. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  15. webinar_innovation_net_metering_interconnection.doc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    netmeteringinterconnection.doc webinarinnovationnetmeteringinterconnection.doc webinarinnovationnetmeteringinterconnection.doc Microsoft Office document icon ...

  16. webinar_080713_solar_net_metering_connection.mp3 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...713solarnetmeteringconnection.mp3 webinar080713solarnetmeteringconnection.mp3 Audio icon webinar080713solarnetmeteringconnection.mp3 More Documents & Publications ...

  17. So You Have Questions About?Interconnection & Net Metering:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technical Assistance Team at: stat@nrel.gov Background Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-up Approach...

  18. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  19. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ...

  20. Smart Meter Investments Support Rural Economy in Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meter Investments Support Rural Economy in Arkansas Woodruff Electric Cooperative (Woodruff) serves customers in seven eastern Arkansas counties. The proportion of residents living in poverty in those counties is more than double the national average. As a member-owned rural electric cooperative, Woodruff is connected to its customers and engaged in economic development efforts to bring more jobs and higher incomes to local communities. In order to bring the capital investment and its

  1. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  2. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE...

  4. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  5. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  6. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  7. Unlocking Customer Value: The Virtual Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to

  8. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization ...

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. Net Requirements Transparency Process for Slice/Block and Block...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 As part of its Net Requirements Transparency process, on July 31, 2013 BPA published the SliceBlock and Block customers' FY2012 and forecast FY2014 Total Retail Load (TRL) and...

  12. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  13. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  14. Revenue metering error caused by induced voltage from adjacent transmission lines

    SciTech Connect (OSTI)

    Hughes, M.B. )

    1992-04-01

    A large zero sequence voltage was found to have been induced onto a 138 kV line from adjacent 500 kV lines where these share the same transmission right-of-way. This zero sequence voltage distorted the 2-1/2-element revenue metering schemes used for two large industrial customer supplied directly from the affected 138 kV line. As a result, these two customers were overcharged, on average, approximately 3.5% for 15 years. This paper describes the work done to trace the origins of the zero sequence voltage, quantify the metering error, and calculate customer refunds which, in the end, totalled $4 million.

  15. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  16. Federal Building Metering Implementation Plan Template | Department...

    Office of Environmental Management (EM)

    Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan....

  17. Prioritizing Building Water Meter Applications | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Prioritizing Building Water Meter Applications Prioritizing Building Water Meter Applications Executive Order 13693: Planning for Federal ...

  18. APPA Customer Connections Conference

    Broader source: Energy.gov [DOE]

    The Customer Connections Conference is APPA's annual meeting for utility professionals in the areas of:

  19. ,"Weekly Blender Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Production of Finished Motor Gasoline (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Blender Net Production of Finished Motor Gasoline (Thousand Barrels per ...

  20. Now that we have smart meters, what do we do with them?

    SciTech Connect (OSTI)

    2010-01-15

    For years, electric utilities have been dreaming about the day when they would have smart meters on customers' premises. However, there have always been lingering doubts among some consumer advocates and critics of the smart metering schemes about their cost-effectiveness. An issue that is beginning to become noticed is that installing smart meters and introducing variable pricing will accomplish very little unless the price signals are communicated to consumers and -- more important -- to energy-using devices beyond the meter. Since consumers are unlikely to sit around watching variable prices and adjusting consumption or thermostat settings, ways must be found for the price signals to automatically and directly communicate with devices,.

  1. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  2. Wavelength meter having elliptical wedge

    DOE Patents [OSTI]

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  3. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2014, 2013, 2012, 2011, 2010 "AMR meters",46829659,47321320,48330822,45965762,48685043 "Residential",41830781,42491242,43455437,41451888,43913225 "Commercial",4781167,4632744,4691018,4341105,4611877 "Industrial",216459,196132,185862,172692,159315 "Transportation",1252,1202,125,77,626 "AMI meters",58545938,53341422,43165183,37290373,20334525

  4. Net Requirements Transparency Process for Slice/Block Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which of loss of resource was recognized by the Administrator) from FY2011 were carried forward into the CHWM Contracts, and capabilities of those resources were evaluated and...

  5. Advanced Metering Infrastructure Security Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. Advanced Metering Infrastructure Security

  6. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  7. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  8. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  9. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  10. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  11. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  12. Electric Meters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Appliances & Electronics » Electric Meters Electric Meters The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  13. NetCDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NetCDF NetCDF Description and Overview NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. This includes the libnetcdf.a library as well as the NetCDF Operators (NCO), Climate Data Operators (CDO), NCCMP, and NCVIEW packages. Files written with previous versions can be read or written with the current version. Using NetCDF on Cray System NetCDF libraries on the

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Net Metering In Delaware, net metering is available to any customer that generates...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts)...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,... Eligibility:...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas,...

  1. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. Download the Federal Building Metering

  2. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  3. Application of IEEE Standard 519-1992 harmonic limits for revenue billing meters

    SciTech Connect (OSTI)

    Arseneau, R.; Heydt, G.T.; Kempker, M.J.

    1997-01-01

    This paper identifies the potential for billing inequities at harmonic generating loads due to different measuring methods implemented in revenue meters. Potential problems are almost exclusively in the commercial and industrial sectors where demand and power factor charges are common. Field data are used to illustrate that compliance with IEEE Standard 519-1992 reduces the possibility of meter reading differences thus promoting a more equitable treatment of all customers.

  4. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",33865,33662,57269,46871,44911,41201,28512,22820 "Residential",30803,32688,53083,44459,42324,38779,26141,21191 "Commercial",3062,974,4186,2412,2587,2394,2350,1629 "Industrial",0,0,0,0,0,28,21,0 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",29909,29489,30,758,9213,8713,8126,6571

  5. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",17894,6822,6415,5210,4499,116826,103242,101084 "Residential",15963,6455,6075,4920,3375,101823,101363,99995 "Commercial",1828,307,240,190,822,14701,1577,749 "Industrial",103,60,100,100,302,302,302,340 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",741819,739583,735415,669482,193415,0,0,0

  6. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",52528,53483,38201,81499,78292,96058,81992,63856 "Residential",43410,44206,30907,72579,69795,85984,74356,59256 "Commercial",7661,7729,5975,7473,7374,9197,7333,4305 "Industrial",1457,1548,1319,1447,1123,877,303,295 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",1213192,1125193,1021241,555414,20665,0,0,0

  7. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",40233,38125,41827,35412,43254,27018,21054,8132 "Residential",37473,35775,28906,23442,31700,15987,11031,7263 "Commercial",1873,1455,10789,10095,9635,8772,8234,621 "Industrial",868,876,2122,1866,1909,2258,1789,236 "Transportation",19,19,10,9,10,1,0,12 "AMI meters",36345,34919,11533,11610,0,0,0,0

  8. "AMR- Automatic Meter Reading. AMI- Advanced Meter Infrastructure.

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007 "AMR meters",42342,53266,44430,84409,81030,77963,71278,58477 "Residential",37948,48343,39930,76274,73703,71100,65176,53306 "Commercial",4394,4901,4481,8121,7325,6861,6100,5169 "Industrial",0,22,19,14,2,2,2,2 "Transportation",0,0,0,0,0,0,0,0 "AMI meters",296824,271526,343769,123,0,0,0,0 "Residential",253659,229844,294918,116,0,0,0,0

  9. Homeostatic control: the utility/customer marketplace for electric power

    SciTech Connect (OSTI)

    Schweppe, F.C.; Tabors, R.D.; Kirtley, J.L.

    1981-09-01

    A load management system is proposed in which the electric utility customer controls his on-site power demand to coincide with the lowest possible cost of power generation. Called Homeostatic Control, this method is founded on feedback between the customer and the utility and on customer independence. The utility has no control beyond the customer's meter. Computers located at the customer's site are continuously fed data on weather conditions, utility generating costs, and demand requirements for space conditioning, lighting, and appliances. The customer then directs the computer to schedule and control the power allotted for these functions. On-site generation by the customer can be incorporated in the system. It is argued that homeostatic control is technically feasible, that the level of control equipment sophistication can be adapted to the benefits received by the customer, that such a system would encourage the use of customer-site energy storage and energy conservation equipment, and that it represents a realistic method for allowing the customer to decide how he will use electric power during an era of increasing costs for power generation. (LCL)

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels, Microturbines Net Metering Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to...