National Library of Energy BETA

Sample records for net energy metering

  1. Austin Energy- Net Metering

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  2. Net Metering | Open Energy Information

    Open Energy Info (EERE)

    Gas Wind Biomass Geothermal Electric Anaerobic Digestion Small Hydroelectric Tidal Energy Wave Energy No Ashland Electric - Net Metering (Oregon) Net Metering Oregon Commercial...

  3. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy facilities established on military property for on-site military consumption may net meter for systems up to 2.2 megawatts (MW, AC). Aggregate Capacity Limit...

  4. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu...

  6. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    commercial) as long as the base requirements are met. All net-metered facilities must be behind a customer's meter, but only a minimal amount of load located on-site is required....

  7. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of retail renewable distributed generation and net metering. Details will be posted once a final order is issued. Eligibility and Availability In December 2005 the Colorado...

  8. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power, or fuel cell technologies.* A net metering facility must be...

  9. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion Fuel Cells using Renewable Fuels Program Info Sector Name State State North Carolina Program Type Net Metering Summary The North Carolina Utilities Commission...

  10. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after 12312014) are eligible. Net-metered systems must be intended primarily to offset part or all of a customer's electricity requirements. Public utilities may not limit...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  12. Net Metering Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Resources Net Metering Resources State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price,...

  13. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA), which pertains to renewable energy systems and co...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted P.A. 295, requiring the Michigan Public Service Commission (MPSC) to establish a statewide net metering program for renewable energy systems. On May 26, 2009 the...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  3. Nevada Renewable Energy Application For Net Metering Customers...

    Open Energy Info (EERE)

    Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On October 21, 2015, the NY Public Service Commission denied the Orange and Rockland Utility’s petition to cease offering net-metering and interconnections once the 6% net-metering cap was...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Note: In January 2016, the California Public Utilities Commission issued a ruling on its net metering successor tariff. Customers on the new net metering successor tariff will have to pay an...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: Although, this post is categorized as netmetering, the policy adopted by MS does not meet DSIRE's standards for a typical net metering policy. Net metering policy allows a customer to offset...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3 alternative options: a grid supply option, a self-supply option, and a time of use tariff. Customers with net...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is credited to the customer's next monthly bill. The customer may choose to start the net metering period at the beginning of January, April, July or October to match...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered systems equals 0.5% of a utility’s peak demand during 1996.* At least one-half...

  13. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer???¢????????s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  14. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Website http:www.epelectric.comtxbusinessrollback-net-metering-approved-in-... State Texas Program Type Net Metering Summary El Paso Electric (EPE) has offered net metering to...

  15. Net Metering

    Broader source: Energy.gov [DOE]

     NOTE: The program website listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fu...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity owned and operated by customer-generators reaches 1% of an electric distribution...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: On February 2016, the PA Public Service Commission (PUC) issued a final rulemaking order amending net metering regulations to provide clarity and to comply with the statutes. Changes include...

  20. Duke Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric Landfill Gas Wind (Small) Hydroelectric (Small) Program Info Sector Name Utility Website http:www.duke-energy.comgenerate-your-own-powersc-rate-options-tarif.....

  1. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  2. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  3. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA EconomistEngineer Campo Kumeyaay Nation Location map Tribal Energy Planning Current 50 MW project Proposed 160 MW ...

  4. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of net metering programs offered by the IOUs. South Carolina Electric & Gas (SCE&G) designed two net-metering options for its South Carolina customers. These options are...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  7. EWEB- Net Metering

    Broader source: Energy.gov [DOE]

    The Eugene Water and Electric Board (EWEB) offers net metering for customers with renewable energy generation systems with an installed capacity of 25 kW or less. Eligible systems use solar power,...

  8. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  9. SRP- Net Metering

    Broader source: Energy.gov [DOE]

    Note: Salt River Project (SRP) modified its existing net-metering program for residential customers in February 2015. These changes are effective with the April 2015 billing cycle.

  10. Idaho Power- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2013, the PUC issued an order in response to Idaho Power's application to modify its net metering program. The ruling removed a previously existing service capacity cap of 2.9 MW and chan...

  11. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Note: As of October 2015, the net metering program had around 700 customers. According to the Guam Daily Post, the program is expected to reach the current 1,000-customer cap in mid-2016. This cap...

  12. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Island’s net metering policy is not governed by the State’s net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  13. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  14. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008, and updated the policy in December 2014.* Net metering is available to any customer of...

  15. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  16. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The City of St. George Energy Services Department (SGESD) offers a net metering program to its customers, and updated program guidelines and fees in September 2015.* 

  17. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  18. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  19. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  20. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  1. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  2. South Carolina- Net Metering

    Broader source: Energy.gov [DOE]

    In April of 2014 the South Carolina legislature unanimously passed S.B. 1189 to create a voluntary Distributed Energy Resource Program. In March 2015 the Public Utilities Commission approved a...

  3. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  4. June 25 Webinar to Explore Net Metering

    Broader source: Energy.gov [DOE]

    Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  5. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  6. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  7. City of Danville- Net Metering

    Broader source: Energy.gov [DOE]

    A customer may begin operation of their renewable energy generator once the conditions of interconnection have been met. These include:

  8. The Intersection of Net Metering and Retail Choice: An Overview of Policy,

    Energy Savers [EERE]

    Practice and Issues | Department of Energy Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues The Intersection of Net Metering and Retail Choice: An Overview of Policy, Practice and Issues In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies

  9. Vermont Construction and Operation of Net Metering Systems Rules...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  10. Vermont Construction and Operation of Net Metering Systems Rule...

    Open Energy Info (EERE)

    rule is applicable to all net metered installations in Vermont, and applies to every person, firm, company, corporation and municipality engaged in the construction or operation...

  11. Aggregate Net Metering Opportunities for Local Governments

    Broader source: Energy.gov [DOE]

    This guide summarizes the variations in state laws that determine whether or not meter aggregation is an option for local governments, explores the unique opportunities that it can extend to public...

  12. Application for a Certificate of Public Good for Net Metered...

    Open Energy Info (EERE)

    Certificate of Public Good for Net Metered Power Systems that are Non-Photovoltaic Systems Up to 150 kW (AC) in Capacity Jump to: navigation, search OpenEI Reference LibraryAdd to...

  13. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  14. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All) Biomass Hydroelectric Municipal Solid Waste Combined Heat & Power Wind (Small) Hydroelectric (Small) Other Distributed Generation Technologies Program Info Sector Name...

  15. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the final rules, there was a typographical error related to eligible resources. RM09-10 LSA10-662(ac) corrects the error, clarifying the list of eligible technologies as IC...

  16. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas,...

  17. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  18. Healthcare Energy Metering Guidance (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  19. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  20. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  1. Net Energy Billing

    Broader source: Energy.gov [DOE]

    Note: On June 30, 2015, the Maine legislature enacted L.D. 1263/H.P. 863, directing the Public Utilities Commission to convene a stakeholder group to develop an alternative to net energy billing.

  2. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  3. Mode Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Analysis Find More Like This Return to Search Mode Meter Pacific Northwest National Laboratory Contact PNNL About This Technology Technology Marketing Summary Electricity grids have traditionally been monitored using systems based upon dated and slow communications and computational technologies. A large effort is underway in the electricity industry to replace those legacy systems with high-speed and accurate monitoring units call "phasor monitoring units," or PMUs.

  4. Progress Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Tribal Government Agricultural Institutional Savings Category Solar...

  5. Metering in Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Maintenance » Metering in Federal Buildings Metering in Federal Buildings The U.S. Department of Energy is required by the Energy Policy Act of 2005 and Executive Order 13693 to establish guidelines for agencies to meter their federal buildings for energy (electricity, natural gas, and steam) and water use. To help agencies meet these metering requirements, the Federal Energy Management Program (FEMP) provides guidance materials, an implementation plan template, and a best practices

  6. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  7. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use) | Department of Energy Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering of Energy Use) Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy. PDF icon Download the Federal Building

  8. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  9. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  10. Status of Net Metering: Assessing the Potential to Reach Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the PSC noted that the current rate of installation "does ... to DG solar facilities for solar production; customers continue to pay for their energy use at the applicable tariff ...

  11. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  12. Nevada Smart Meter Program Launches | Department of Energy

    Energy Savers [EERE]

    Smart Meter Program Launches Nevada Smart Meter Program Launches October 18, 2010 - 11:30am Addthis Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Paul Lester Paul

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy,...

  15. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data This case study describes how...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Note: On May 12, 2015 Georgia's governor signed House Bill 57 which allows residential and commercial customers to enter into third party financing deals for solar systems.

  18. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Ongoing issues related to Minnesota's Community Solar Garden rules and program implementation are being considered in Docket No. E002/M-13-867. This entry will be updated as necessary to...

  19. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid...

  20. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  1. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  2. Metering Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Technology Corporation Jump to: navigation, search Name: Metering Technology Corporation Place: Scotts Valley, California Product: Engineering related to communicating meters....

  3. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  4. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and RP-1 Agreement and Guide For Use and Utilization of the RadEye B20-ER Survey Meters The Rad Eye B20-ER is a pancake GM detector capable of measuring low levels of Alpha, Beta,...

  5. Grid Net | Open Energy Information

    Open Energy Info (EERE)

    Grid Net Jump to: navigation, search Name: Grid Net Address: 340 Brannan St Place: San Francisco, California Zip: 94107 Region: Bay Area Sector: Efficiency Product: Sells open,...

  6. Federal Building Metering Guidance (per U.S.C. 8253 (e), Metering of Energy Use)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Building Metering Guidance (per 42 U.S.C. § 8253(e), Metering of Energy Use) November 2014 Update United States Department of Energy Washington, DC 20585 Department of Energy |November 2014 U.S. Department of Energy 1 I. Background The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum 1 to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued

  7. Non-Invasive Energy Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Non-Invasive Energy Meter Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (805 KB) Technology Marketing SummarySandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique

  8. greenMeter | Open Energy Information

    Open Energy Info (EERE)

    physics engine from the gMeter app, greenMeter computes power, fuel usagecost, crude oil consumption, and carbon emission (data can be shown in US or metric units). Thanks to...

  9. Wire-Net | Open Energy Information

    Open Energy Info (EERE)

    Wire-Net Jump to: navigation, search Name: Wire-Net Address: 4855 W. 130th Street, Suite 1 Place: Cleveland, OHio Zip: 44135 Sector: Efficiency, Renewable Energy, Services Phone...

  10. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  11. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  12. Energy Secretary Chu Announces Five Million Smart Meters Installed

    Energy Savers [EERE]

    Nationwide as Part of Grid Modernization Effort | Department of Energy Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide

  13. Evaluating Behind-the-Meter Energy Storage Systems with NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery ...

  14. Meters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sc 620 Meters ~ 310 ~g~ 1, coOmpartment 11 ~~I . * ~~O~6 ~,~: '- N A o Soils Soil Series and Phase ~BaB FuB OrA TrB o ~ u Vegetation o 310 o o Commun;~y I fPme - L~ng e~'ne/HardwOOd %. EJ ~~:~1o,;"'a'" W~*. Monitoring wells :W~~~~ o Wa"""'" ~ :/'/ m// .y ~WWE:~~tI' s/~~ N Roads . et-Asld ~ ~~!~~ ~~~~l~idL:sndfili ~/#//};;;;>. Figure 28-1. Plant cOl1llllunities and soils associated with the Field 3-409 Set-Aside Area. 28-5 Set-Aside 28: Field 3-409

  15. Smart Meters Help Balance Energy Consumption at Solar Decathlon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated

  16. Two Million Smart Meters and Counting | Department of Energy

    Energy Savers [EERE]

    Million Smart Meters and Counting Two Million Smart Meters and Counting August 31, 2010 - 6:02pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this mean for me? Smart meter technology will help families and businesses cut their energy costs by reducing response time for energy disruptions and enabling consumers to better monitor their consumption. The implementation of smart grid technologies could reduce

  17. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy...

  18. Definition of a 'Zero Net Energy' Community

    SciTech Connect (OSTI)

    Carlisle, N.; Van Geet, O.; Pless, S.

    2009-11-01

    This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

  19. Collective Impact for Zero Net Energy Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Star Certified New Home Building America Goal: High-Performance Zero Net-Energy Ready New & Existing Homes ZNER NewExist. Home Low HERS Code New Home Building...

  20. Smart Meters and a Smarter Grid | Department of Energy

    Energy Savers [EERE]

    Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory Have you heard of smart meters? Do you understand them? If so, you've had a leg up on me until now. I've heard of smart meters here and there from the odd news article or website, but to me the grapevine has been more like an invisible beehive: all buzz and no honey. Where are they? Why don't I have one yet, and will I have

  1. Lessons Learned from Net Zero Energy Assessments and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects at Military Installations | Department of Energy Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Report highlights the increase in resources, project speed, and scale required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals. It also summarizes the net zero energy installation

  2. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Nam R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer adoption of PV (from -14% to -61%, depending on the design). Moving towards time-varying rates, on the other hand, may accelerate near- and medium-term deployment (through 2030), but is found to slow adoption in the longer term (-22% in 2050).

  3. Best Practices for Controlling Capital Costs in Net Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy ...

  4. Army Net Zero: Guide to Renewable Energy Conservation Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects...

  5. US Crude Oil Production Surpasses Net Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by

  6. OpenNet Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OpenNet Training OpenNet Training Training Instructions for Submitting Document to OpenNet Reference OpenNet

  7. net_energy_load_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Thousands of Megawatthours and 2006 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 3,911,914 230,115 222,748 294,319 926,279 1,011,173 201,521 305,672 720,087 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas,...

  9. How to Read Your Electric Meter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliances & Electronics » How to Read Your Electric Meter How to Read Your Electric Meter The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One

  10. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  11. Collective Impact for Zero Net Energy Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collective Impact for Zero Net Energy Homes Collective Impact for Zero Net Energy Homes This presentation was delivered at the U.S. Department of Energy Building America meeting on April 29-30, 2013, in Denver, Colorado. PDF icon collective_impact_znerh_rashkin.pdf More Documents & Publications Update on U.S. Department of Energy Building America Program Goals Update on U.S. Department of Energy Building America Program Goals Building America Roadmap to High

  12. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy ...

  13. NASA Net Zero Energy Buildings Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASA Net Zero Energy Buildings Roadmap Shanti Pless, DOE NREL Wayne Thalasinos, NASA http://www.nrel.gov/docs/fy15osti/60838.pdf FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Hosted by: ARC JPL AFRC JSC SSC KSC MSFC LaRC HQ GSFC GRC PBS MAF WFF WSTF GDSCC Field Centers & Component Facilities Sustain- able Design Policy Since 2003 Executive Order 13514 Goals "... establish an integrated strategy towards sustainability in the Federal

  14. Targeting Net Zero Energy at Marine Corps Air Station Miramar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and ... laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable ...

  15. Net Zero Energy Military Installations: A Guide to Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to reduce energy demand and increase use of renewable energy on DoD installations. PDF icon 48876.pdf More Documents & Publications Lessons Learned from Net Zero Energy...

  16. Analysis … Targeting Zero Net Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis - Targeting Zero Net Energy 2014 Building Technologies Office Peer Review Scott Horowitz, scott.horowitz@nrel.gov NREL Project Summary Timeline: Start date: 2010 Planned end date: ? Key Milestones * 2010: BEopt release (v1.0) w/EnergyPlus * 2012-13: New residential models: HPWH, MSHP, GSHP, Window AC, dehumidifier, etc. * 2013: BEopt release (v2.0) w/retrofit analysis Budget: Total DOE $ to date: $2.5M (includes $600k ARRA) Total Non-DOE $ to date: $1.3M Total future DOE $: TBD Target

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Wind (Small) Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The documents associated...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tidal Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy...

  11. RWE Metering GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: RWE Metering GmbH Place: Germany Product: Smart metering subsidiary of Germany's second largest utility RWE AG. References: RWE Metering...

  12. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; Van Geet, O.; Simkus, S.; Eastment, M.

    2012-04-01

    This abbreviated report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project.

  13. NREL: Technology Deployment - Hawaii's First Net-Zero Energy Affordable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing Community Hawaii's First Net-Zero Energy Affordable Housing Community News Kaupuni Village: The First Net-Zero Affordable Housing Community in Hawaii Publications Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawaii Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis Sponsors State of Hawaii U.S. Department of Energy Key Partners Department of Hawaiian Homelands Hawaiian Homelands Trust Group 70 International

  14. American PowerNet | Open Energy Information

    Open Energy Info (EERE)

    PowerNet Jump to: navigation, search Name: American PowerNet Place: Pennsylvania Phone Number: (877) 977-2636 Website: www.americanpowernet.com Outage Hotline: (877) 977-2636...

  15. net_energy_load_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 (Thousands of Megawatthours and 2003 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853 147,464

  16. net_energy_load_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 (Thousands of Megawatthours and 2004 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853

  17. net_energy_load_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 (Thousands of Megawatthours and 2005 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005 3,900,461 226,544 216,633 303,607 1,005,226 962,054 201,548 299,225 685,624 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) In 2005 for 2006 3,926,389 232,561 220,006 301,893 992,742

  18. net_energy_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Thousands of Megawatthours) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 NPCC 250,681 253,701 252,256 257,447 259,947 261,235 263,125 264,464 268,309 277,902 281,518 282,670

  19. Targeting Net Zero Energy for Military Installations (Presentation)

    SciTech Connect (OSTI)

    Burman, K.

    2012-05-01

    Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  20. Coriolis Meters for Hydrogen Dispensing Measurement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coriolis Meters for Hydrogen Dispensing Measurement Coriolis Meters for Hydrogen Dispensing Measurement This presentation by John Daly of GE Measurement and Control Solutions was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_14_daly.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Report on RFI DE-FOA-000753: High-Accuracy Hydrogen Meters Metering Best

  1. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data Solutia, Inc. has a long history with sub-metering, dating back to the construction of some of its frst manufacturing plants in the late 1950s by its then parent company, Monsanto. A progressive technology, sub-metering is the installation of metering devices to measure actual energy consumption for individual pieces of equipment or other loads. As part of its aggressive corporate sustainability goals, Solutia

  2. Sandia Energy - NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell Home Videos Renewable Energy Energy Facilities Partnership News Concentrating Solar Power Solar National Solar Thermal Test...

  3. How Would You Use a Smart Meter to Manage Your Energy Use? | Department of

    Energy Savers [EERE]

    Energy How Would You Use a Smart Meter to Manage Your Energy Use? How Would You Use a Smart Meter to Manage Your Energy Use? May 19, 2011 - 7:30am Addthis On Monday, Andrea told you about smart meters and how they can help you monitor your home's energy usage. How would you use a smart meter to manage your energy use? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy

  4. NREL Tool Finds Effective Behind-the-Meter Energy Storage Configuratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Finds Effective Behind-the-Meter Energy Storage Configurations Small battery systems can offer attractive return on investment March 9, 2015 The Energy Department's (DOE) ...

  5. Millenial Net Inc | Open Energy Information

    Open Energy Info (EERE)

    MA 01803 Sector: Services Product: Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates: 44.446275, -108.431704...

  6. Army Net Zero: Guide to Renewable Energy Conservation Investment Program

    Office of Environmental Management (EM)

    (ECIP) Projects | Department of Energy Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects This guide is intended to serve as a desk reference for energy managers at Army installations who are preparing renewable energy (RE) Energy Conservation Investment Program (ECIP) applications. The guide provides practical information on six RE technologies and walks the energy

  7. Zero Net Energy Homes Production Builder Business Case: California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Net Energy Homes Production Builder Business Case: CaliforniaFlorida Production ...Florida Production Builders - Building America Top Innovation Photo of a solar home. ...

  8. Deep Energy Efficiency and Getting to Net Zero

    Broader source: Energy.gov [DOE]

    Presentation covers energy efficiency and getting to net zero and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  9. GEO NET Umweltconsulting GmbH | Open Energy Information

    Open Energy Info (EERE)

    search Name: GEO-NET Umweltconsulting GmbH Place: Hannover, Germany Zip: 30161 Sector: Wind energy Product: Undertakes environmental planning and consulting in wind and other...

  10. net_energy_load_1990_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    for this table format Table 1a . Historical Net Energy For Load, Actual by North American Electric Reliability Council Region, 1990 through 2004. (Thousands of Megawatthours)...

  11. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  12. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  13. Net-Zero Energy Retail Store Debuts in Illinois

    Broader source: Energy.gov [DOE]

    Walgreens on November 21 opened a net-zero energy retail store in Evanston, Illinois that it anticipates will generate at least as much energy as it consumes over the course of a year.

  14. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Energy Savers [EERE]

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  15. Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D 100 Award for NETL, WVU and Schneider Electric Researchers | Department of Energy Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D 100 Award for NETL, WVU and Schneider Electric Researchers Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D 100 Award for NETL, WVU and Schneider Electric Researchers November 20, 2015 - 8:28am Addthis Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets R&D

  16. Stick-on Electricity Meter - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Stick-on Electricity Meter (SEM) generates current and voltage signals at a set sample rate to enable computation of real and apparent power and to capture harmonics created by ...

  17. ODUSD (I&E) Facilities Energy Program Advanced Metering Policy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the U.S. Department of Defense's (DoD's) metering policy, including implementation challenges and utility partnerships.

  18. Meeting the "Applied" Accuracy Needs of Energy Metering

    Energy Savers [EERE]

    NOT worst case accuracy of meter * NOT the accuracy as a function of input value Working definition: Average accuracy a user can expect to achieve on the desired measurement that...

  19. NREL and Army Validate Energy Savings for Net Zero Energy Installations -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL and Army Validate Energy Savings for Net Zero Energy Installations Net Zero Energy Installations could save millions a year in energy costs October 27, 2014 The U.S. Army (Army) has partnered with the Energy Department's National Renewable Energy Laboratory (NREL) to increase energy security through improved energy efficiency and optimized renewable energy strategies at nine installations in the Army's portfolio. If all nine of the Army Net Zero Energy Installation

  20. Renewable Generation Effect on Net Regional Energy Interchange: Preprint

    SciTech Connect (OSTI)

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul; Jenkin, Thomas; Margolis, Robert

    2015-07-30

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affecting the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.

  1. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    SciTech Connect (OSTI)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  2. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  3. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Historical Net Energy For Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load ...

  4. Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories – Net Zero Energy Communities," originally presented on October 16, 2012.

  5. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial

    Energy Savers [EERE]

    Buildings | Department of Energy 6 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings PDF icon Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings More Documents & Publications Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation A Common Definition for Zero Energy Buildings

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to...

  7. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation A Common Definition for ...

  8. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    SciTech Connect (OSTI)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

  9. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  10. Mapping Battery Activity at the Level of a Billionth of a Meter - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mapping Battery Activity at the Level of a Billionth of a Meter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAn ORNL method and apparatus offer a new approach to revealing battery behavior at the nanoscale. With this invention, researchers successfully mapped lithium diffusivity and electrochemical activity, showing how the battery works at the level of a billionth of a meter. Future energy technologies will rely heavily on

  11. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cooperatives* to offer net metering to customers who generate electricity using solar energy, wi... Eligibility: Commercial, Industrial, Local Government, Nonprofit,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net...

  14. Holy Cross Energy- Renewable Energy Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers an incentive for customers who install renewable energy generation for net metering at their premises...

  15. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 6: SENSORS, METERS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices Consumers (residentialsmall, medium business) do not have expertise to manage energy Optimization and automation of control system responses Changing utility price...

  16. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Broader source: Energy.gov [DOE]

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  17. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  18. How to Read Your Electric Meter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The basic unit of measure of electric power is the Watt. One thousand Watts are called a kilowatt. If you use one thousand Watts of power in one hour you have

  19. DOE Challenge Home: Zero Net-Energy Ready Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home: Zero Net-Energy Ready Training DOE Challenge Home: Zero Net-Energy Ready Training The DOE Challenge Home offers leading builders a timely solution for differentiating their product from existing homes as well as minimum code new homes. PDF icon training_info.pdf More Documents & Publications Training Partner Agreement ZERH Trainer Partnership Agreement Building America Update - July 2013

  20. Army Reserve Expands Net Zero Energy, Water, Waste

    SciTech Connect (OSTI)

    Solana, Amy E.

    2015-04-14

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  1. Best Practices for Net Zero Energy Cost Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Net Zero Energy Cost Control New Project for FY14 2014 Building Technologies Office Peer Review Shanti Pless, Shanti.Pless@NREL.gov National Renewable Energy Laboratory Project Summary (through Month 5 of 11) Timeline: Start date: 11/1/2013 Planned end date: 09/30/2014 Key Milestones 1. Detailed Project Plan; 12/31/2013 2. Guide and Fact Sheet; 09/30/2014 Budget: Total DOE $ to date: $150k ($55k spent) Total future DOE $: TBD Target Market/Audience: Building owners, engineers,

  2. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Energy Savers [EERE]

    | Department of Energy Net Zero Energy Military Installations: A Guide to Assessment and Planning Net Zero Energy Military Installations: A Guide to Assessment and Planning In 2008, DoD and DOE defined a joint initiative to address military energy use by identifying specific actions to reduce energy demand and increase use of renewable energy on DoD installations. PDF icon 48876.pdf More Documents & Publications Lessons Learned from Net Zero Energy Assessments and Renewable Energy

  3. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment of Behind-The- Meter Energy Storage for Demand Charge Reduction J. Neubauer and M. Simpson Technical Report NREL/TP-5400-63162 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy

  4. Radiation dose-rate meter using an energy-sensitive counter

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  5. Solutia: Utilizing Sub-Metering to Drive Energy Project Approvals Through Data

    Broader source: Energy.gov [DOE]

    This case study describes how Solutia uses sub-meters at all of its U.S. facilities to understand how equipment is running and to identify quick and inexpensive energy efficiency solutions, like reducing the run-time for a compressed air system at its Trenton, Michican plant.

  6. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 1 gy y gy Buildings' Energy Use Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 2 Commercial Square Footage Projections g j 104 Plus ~38B ft. 2 new additions 72 82 66 Minus ~16B ft. 2 demolitions 66 Net-Zero Energy Commercial Building

  7. City of Brenham- Net Metering

    Broader source: Energy.gov [DOE]

    The ordinance includes a standard form interconnection application and agreement as well as standard riders. Customers must provide all equipment necessary to meet applicable safety, power quality...

  8. Holy Cross Energy- WE CARE Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers an incentive for customers who install renewable energy generation for net metering at their premises...

  9. Non-invasive energy meter for fixed and variable flow systems

    DOE Patents [OSTI]

    Menicucci, David F.; Black, Billy D.

    2005-11-01

    An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

  10. Definition of a Zero Net Energy Community | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Partner Nancy Carlisle, Otto Van Geet, Shanti Pless Focus Area Energy Efficiency, Buildings, People and Policy Phase Determine Baseline, Evaluate Options...

  11. New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy

  12. Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review | Department of

    Energy Savers [EERE]

    Energy Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review Presenter: Scott Horowitz, National Renewable Energy Laboratory Development of whole-house zero energy ready solutions requires accurate models for a full range of enclosure and equipment technologies. The primary goal of this project is to provide an accurate analysis for Building America program planning, emerging technologies, and net zero energy packages for new

  13. Zero Net Energy Myths and Modes of Thought

    SciTech Connect (OSTI)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  14. NREL: Technology Deployment - Net Zero Energy and Energy Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Federal Energy Management Program U.S. DOE Integrated Deployment Program U.S. DoD Energy Conservation Investment Program Key Partners Marine Corps Air Station Miramar ...

  15. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    SciTech Connect (OSTI)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  16. Geothermal energy to contribute to net-zero campus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy to contribute to net-zero campus Geothermal energy to contribute to net-zero campus December 18, 2009 - 3:26pm Addthis Joshua DeLung What will the project do? The two power plants combined will create 1.3 MW of power. Combined, the plants will save the campus $500,000 annually. Of the handful of frontrunners in the scramble to become the nation's first net-zero college campus, the Oregon Institute of Technology may be one of the most unique. Sometime between 2011 and 2012, OIT plans to

  17. American PowerNet (Maine) | Open Energy Information

    Open Energy Info (EERE)

    PowerNet (Maine) Jump to: navigation, search Name: American PowerNet Place: Maine Phone Number: (877) 977-2636 Website: americanpowernet.com Outage Hotline: (877) 977-2636...

  18. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect (OSTI)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  19. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options Shanti Pless and Paul Torcellini Technical Report NREL/TP-550-44586 June 2010 Technical Report Net-Zero Energy Buildings: NREL/TP-550-44586 A Classification System Based June 2010 on Renewable Energy Supply Options Shanti Pless and Paul Torcellini Prepared under Task Nos. BEC7.1210, BEC7.1123 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

  20. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  1. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  2. Workplace Charging Challenge Partner: NetApp | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NetApp Workplace Charging Challenge Partner: NetApp Workplace Charging Challenge Partner: NetApp NetApp consistently ranks as one of the "Best Companies to Work For" in part because of the organizational response to employees' interests and needs. One such example is NetApp's installation of 31 Level 2 plug-in electric vehicle (PEV) charging stations at the organization's Sunnyvale campus in April 2013. This extensive deployment was the result of rapid growth in PEV-driving employees.

  3. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Broader source: Energy.gov [DOE]

    NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  4. Chapter 9, Metering Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Metering Cross- Cutting Protocols Dan Mort, ADM Associates, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 9 - 1 Chapter 9 - Table of Contents 1 Introduction ............................................................................................................................ 3 2 Metering Application and Considerations

  5. Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    870 July 2010 Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice Preprint Paul Torcellini, Shanti Pless, and Chad Lobato National Renewable Energy Laboratory Tom Hootman RNL Design Presented at the ASME 2010 4 th International Conference on Energy Sustainability Phoenix, Arizona May 17-22, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No.

  6. Kaupuni Village: A closer look at the first net-zero energy affordable

    Energy Savers [EERE]

    housing community in Hawaii | Department of Energy Kaupuni Village: A closer look at the first net-zero energy affordable housing community in Hawaii Kaupuni Village: A closer look at the first net-zero energy affordable housing community in Hawaii Information on the LEED Platinum, net-zero energy, Kaupuni Village in Hawaii, which is comprised of 19 single-family homes and a community center. Not only are the structures built to be net-zero, but the entire community was built as a fully

  7. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and...

  8. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of...

  9. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 "...

  10. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and...

  11. Property:EnergyPurchaser | Open Energy Information

    Open Energy Info (EERE)

    (next 25) A AB Tehachapi Wind Farm + Southern California Edison Co + AFCEE MMR Turbines + Distributed generation - net metered + AG Land 1 + Alliant Energy + AG Land 2 + Alliant...

  12. Advanced Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    and Wind Generated Electricity Energy Efficiency Utility-TiedNet Metered or Off-Grid Systems System Design System and Component Sales Installation On-site Consulting and...

  13. Owner Receives Keys to Net Zero Energy Habitat for Humanity House - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Owner Receives Keys to Net Zero Energy Habitat for Humanity House Home to Produce as Much Energy as it Consumes Annually September 15, 2005 Golden, Colo. - Habitat for Humanity of Metro Denver today dedicated the ultimate energy efficient demonstration home: a house designed to produce as much energy as it consumes on an annual basis. The Net Zero Energy Habitat for Humanity House, at 4700 Carr Street in Wheat Ridge, Colo., combines energy efficient building design that

  14. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  15. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  16. Camelot | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Developer Atlantic Design Energy Purchaser Net-metered Location Plymouth MA Coordinates 41.925433, -70.644414 Show Map Loading map... "minzoom":false,"mappings...

  17. Historic Railroad Building Goes Net Zero | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to its net-zero power consumption and geothermal technology, the building itself is made from sustainable materials. The floors on the first level of the building are ...

  18. American PowerNet (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Maryland) Jump to: navigation, search Name: American PowerNet Place: Maryland Phone Number: (877) 977-2636 or (610) 372-8500 Website: www.americanpowernet.com Outage Hotline:...

  19. American PowerNet (District of Columbia) | Open Energy Information

    Open Energy Info (EERE)

    American PowerNet Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 49730 This article is a stub. You...

  20. American PowerNet (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    American PowerNet Abbreviation: APN Place: New Jersey Phone Number: 877-977-2636 Website: www.americanpowernet.comindex Outage Hotline: 877-977-2636 References: EIA Form EIA-861...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu... Eligibility: Commercial, Industrial, Residential...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu... Eligibility: Commercial,...

  3. Consumers Energy- Experimental Advanced Renewable Program

    Broader source: Energy.gov [DOE]

    Note: The Experimental Advanced Renewable Energy Program is closed to new participants. New distributed generation customers of Consumers Energy can refer to Michigan's net metering policy and...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    orientation, tilt and... Eligibility: Commercial, Industrial, Nonprofit Savings Category: Solar Photovoltaics Austin Energy- Net Metering Austin Energy, the municipal utility of...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heat, Solar Space Heat, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics Austin Energy- Net Metering Austin Energy, the municipal utility of...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu... Eligibility: Commercial, Industrial,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fu......

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Austin Energy- Net Metering Austin Energy, the municipal utility of Austin...

  9. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 17 Oberlin College Lewis Center Oberlin, OH 13,600 -4.23 Science House St. Paul, MN 1,530 0 System ...

  10. Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

  11. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  12. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing

  13. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.

    2012-07-25

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  14. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    SciTech Connect (OSTI)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

  15. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John Barnett, Kari Burman, Josh Hambrick and Robert Westby Technical Report NREL/TP-7A2-48876 August 2010 Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment and Planning Samuel Booth, John Barnett, Kari Burman, Josh Hambrick and Robert Westby Prepared under Task No. IDOD.1010 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado

  16. Lesson Plan: Power Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Metering Project Grades: 9-12 Topic: Energy Basics Owner: ACTS This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and...

  17. United States Virgin Islands: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Rebate Program (Virgin Islands) U.S. Virgin Islands - Energy Efficiency Residential Rebates (Virgin Islands) U.S. Virgin Islands - Net Metering (Virgin Islands) U.S. Virgin...

  18. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  19. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. Millions of smart meters have been installed across the

  20. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  1. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  2. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  3. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Thousands of Megawatthours and 2005 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power...

  4. University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy (CommRE) success stories UC Davis net zero energy community; energy efficiency in buildings; PV and photovoltaics.

  5. DOE to Pursue Zero-Net Energy Commercial Buildings | Department...

    Broader source: Energy.gov (indexed) [DOE]

    sustainable new businesses which focus on energy efficiency, smart power, renewable energy, transportation, green building technologies, pollution control and resource management. ...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). Eligibility:...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Daylighting, Wind (Small) Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who...

  20. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, ... Eligibility: Commercial, Industrial, Nonprofit, Residential, Schools,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-......

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the State's Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The documents associated with the case can be accessed at... Eligibility:...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Solid Waste Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's Alternative Energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Service Commission (PSC) to establish a statewide net metering program for renewable-energy systems within... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-......

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standards NOTE: In Feb 2014, the PUC proposed changes to the State's Alternative Energy Portfolio Standard, Interconnection, and Net-metering rules. The documents associated...

  9. AFCEE MMR Turbines | Open Energy Information

    Open Energy Info (EERE)

    the Environment Energy Purchaser Distributed generation - net metered Location Camp Edwards Sandwich MA Coordinates 41.75754733, -70.54557323 Show Map Loading map......

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's Alternative Energy...

  11. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  12. Knoxville Energy Deal to Net Big Savings for Taxpayers

    Broader source: Energy.gov [DOE]

    Knoxville, Tennessee, will save millions of dollars and reduce its energy consumption and carbon emissions thanks to a $13 million deal with Massachusetts-based energy services company Ameresco.

  13. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  14. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  15. Net Power Technology NP Holdings or NPH | Open Energy Information

    Open Energy Info (EERE)

    Holdings or NPH) Place: Chanchun, Jilin Province, China Sector: Efficiency, Renewable Energy Product: China-based company, focused on electricity storage systems based on...

  16. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  17. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  18. GreenCraft Builders 2009 TimberCreek Net Zero Energy House Prototype

    SciTech Connect (OSTI)

    2010-08-24

    This case study describes strategy for achieving zero net energy by lowering building consumption through a high efficiency enclosure and mechanical as much as possible and using photovoltaic installation to generate the remaining amount of energy needed to operate the building over the course of a year.

  19. EcoVillage: A Net Zero Energy Ready Community

    SciTech Connect (OSTI)

    Arena, L.; Faakye, O.

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  20. Property:NetProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric...

  1. PNC Financial Services - Net-Zero Energy Bank Branch

    SciTech Connect (OSTI)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  2. NCCI Gardner Dept of Correction | Open Energy Information

    Open Energy Info (EERE)

    - Division of Capital Asset Management for the Commonwealth of MA Energy Purchaser Distributed generation - net metered Location Westminster MA Coordinates 42.5800093,...

  3. PROJECT PROFILE: California Center for Sustainable Energy (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (Solar Market Pathways) Title: Virtual Net Metering Market Development Plan CCSE logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs...

  4. Energy Secretary Bodman Kicks Off "Energizing America for Energy Security" Tour with Visit to Habitat for Humanity "Net-Zero Energy Home"

    Broader source: Energy.gov [DOE]

    WHEAT RIDGE, COLORADO - Secretary of Energy Samuel W. Bodman today kicked off the "Energizing America for Energy Security" Tour with a visit to Habitat for Humanity's first "true net-zero energy...

  5. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Environmental Management (EM)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  6. Insights from Smart Meters: Ramp Up, Dependability, and Short-Term Persistence of Savings from Home Energy Reports

    Broader source: Energy.gov [DOE]

    In this report, we use smart meter data to analyze the ramp-up, dependability, and short-term persistence of savings in one type of BB program: Home Energy Reports (HERs). In these programs, reports are mailed to households on a monthly, bi-monthly, or even quarterly basis. The reports provide energy tips and information about how a household's energy use compares to its neighbors. HERs typically obtain 1% to 3% annual electricity savings; several studies report that savings from mature HERs persist over multiple years while the programs are running (and decay after the reports are discontinued).

  7. Zero Net Energy Homes Production Builder Business Case: California/Florida

    Broader source: Energy.gov (indexed) [DOE]

    Production Builders - Building America Top Innovation | Department of Energy solar home. Building America's production builder partners have found that energy efficiency helps them sell more homes and sell them faster than their competitors even at a higher price point. These impressive business case results have helped influence substantial growth in zero net-energy homes. This Top Innovation profile describes four California home builders who worked with Building America teams to

  8. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    SciTech Connect (OSTI)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  9. Energy Department Helps University of California Develop Net-Zero Campus

    Broader source: Energy.gov [DOE]

    With the help of $2.5 million in U.S. Department of Energy (DOE) funding, the University of California, Davis (UC Davis) built a net-zero community on its 130-acre West Village campus that provides housing for approximately 3,000 people in 662 apartments and 343 single-family homes.

  10. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  11. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  12. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  13. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  14. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  15. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  16. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  17. Saturation meter

    DOE Patents [OSTI]

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",32,20,16,5 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.117,0.28,0.213,0.191 "Residential",0.054,0.12,0.053,0.032 ...

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    "Commercial",15,11,10,7 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity (MW)",0.003,0.002,0.002,0.2 "Residential",0.001,0,0,0 ...

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.51,0.27,0.17,0.01 "Residential",0.362,0.157,0.1,0.005 "Commercial",0.129,0.082,0.041,0.008 "Industrial",0.019,0.028,0.028,0.002 "Transportation",0,0,0,0 "Customers",90,62,39,5 "Residential",68,44,27,3 "Commercial",19,14,8,1 "Industrial",3,4,4,1 "Transportation",0,0,0,0

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",433.54,252.66,126.57,120.74 "Residential",189.267,150.958,76.948,66.022 "Commercial",207.56,78.694,32.17,41.447 "Industrial",36.713,23.005,17.453,13.273 "Transportation",0,0,0,0 "Customers",33298,24277,11328,8443 "Residential",31245,23282,10753,8082 "Commercial",1865,861,495,309

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1978.416,1536.71,1129.19,790.74 "Residential",1053.345,734.319,529.795,362.404 "Commercial",625.514,524.977,307.782,214.282 "Industrial",299.557,277.413,291.565,214.033 "Transportation",0,0,0,0 "Customers",232747,158940,115139,85835 "Residential",222803,150663,108722,80994

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",204.622,166.4,129.78,53.43 "Residential",96.632,70.855,51.233,40.162 "Commercial",106.739,94.033,77.232,11.868 "Industrial",1.251,1.504,1.313,1.374 "Transportation",0,0,0,0 "Customers",20815,16377,12491,9635 "Residential",18362,14098,10622,8386 "Commercial",2431,2259,1851,1163

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",64.026,37.39,30.61,3.98 "Residential",25.608,16.666,13.336,1.465 "Commercial",35.816,19.387,15.931,1.371 "Industrial",2.602,1.345,1.345,1.145 "Transportation",0,0,0,0 "Customers",4461,3092,2471,278 "Residential",3923,2643,2107,247 "Commercial",522,437,353,22 "Industrial",16,12,11,9

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",22.224,19.05,14.1,8.52 "Residential",8.361,6.918,5.043,3.523 "Commercial",11.858,10.184,7.13,4.533 "Industrial",2.005,1.932,1.926,0.465 "Transportation",0,0,0,0 "Customers",1617,1246,919,783 "Residential",1372,1049,780,651 "Commercial",231,189,133,112 "Industrial",14,8,6,20

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.664,5.44,3.55,1.71 "Residential",4.141,2.841,1.829,0.94 "Commercial",3.523,2.603,1.72,0.765 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",1124,638,418,276 "Residential",1049,586,389,256 "Commercial",75,52,29,20 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",59.797,43.82,31.65,20.13 "Residential",27.648,20.99,17.278,11.39 "Commercial",31.865,22.754,14.283,8.709 "Industrial",0.284,0.06,0.06,0 "Transportation",0,0,0,0 "Customers",6656,5239,3862,2699 "Residential",5175,4167,3263,2369 "Commercial",1477,1070,597,330 "Industrial",4,2,2,0

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",9.614,7.94,4.8,2.74 "Residential",2.929,2.066,2.692,2.107 "Commercial",5.058,4.468,1.78,0.62 "Industrial",1.627,1.413,0.311,0 "Transportation",0,0,0,0 "Customers",690,556,342,193 "Residential",509,398,249,144 "Commercial",165,145,89,49 "Industrial",16,13,4,0 "Transportation",0,0,0,0

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",220.565,121.11,55.38,28.85 "Residential",173.15,84.817,32.328,13.906 "Commercial",47.415,36.298,23.044,14.939 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",40511,22264,9785,4302 "Residential",39008,21007,9129,3905 "Commercial",1503,1257,656,397 "Industrial",0,0,0,0

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.836,2.22,1.57,0.31 "Residential",1.37,1.016,0.594,0.212 "Commercial",1.466,1.186,0.94,0.106 "Industrial",0,0.001,0.032,0.001 "Transportation",0,0,0,0 "Customers",428,349,207,76 "Residential",331,265,180,66 "Commercial",97,83,24,9 "Industrial",0,1,3,1 "Transportation",0,0,0,0

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.167,4.35,2.74,1.05 "Residential",2.88,2.626,1.808,0.75 "Commercial",2.157,1.725,0.938,0.301 "Industrial",0.13,0,0,0 "Transportation",0,0,0,0 "Customers",716,682,506,233 "Residential",535,544,414,210 "Commercial",178,138,92,23 "Industrial",3,0,0,0 "Transportation",0,0,0,0

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.331,2.19,1.32,0.56 "Residential",2.223,1.127,0.716,0.366 "Commercial",1.082,1.06,0.602,0.168 "Industrial",0.026,0.01,0,0.005 "Transportation",0,0,0,0 "Customers",551,335,238,131 "Residential",454,260,180,90 "Commercial",95,74,58,40 "Industrial",2,1,0,1 "Transportation",0,0,0,0

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",5.998,1.77,0.65,9.43 "Residential",2.885,0.794,0.268,9.289 "Commercial",2.91,0.947,0.373,0.116 "Industrial",0.203,0.036,0,0 "Transportation",0,0,0,0 "Customers",534,148,79,65 "Residential",388,111,59,49 "Commercial",136,35,20,16 "Industrial",10,2,0,0 "Transportation",0,0,0,0

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.36,0.92,0.61,0 "Residential",0.576,0.324,0.206,0.004 "Commercial",0.784,0.588,0.405,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",164,106,76,2 "Residential",124,75,49,2 "Commercial",40,31,27,0 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Wind",,,,

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.838,1.37,1.14,0.51 "Residential",1.842,0.534,0.397,0.23 "Commercial",0.996,0.83,0.733,0.282 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",330,254,208,122 "Residential",284,221,180,100 "Commercial",46,33,28,22 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",51.156,23.19,8.44,6.25 "Residential",48.69,21.418,7.73,5.521 "Commercial",2.466,1.755,0.697,0.716 "Industrial",0,0,0,0 "Transportation",0,0,0,0 "Customers",9569,3899,1287,1656 "Residential",9111,3835,1245,1512 "Commercial",458,64,42,144 "Industrial",0,0,0,0 "Transportation",0,0,0,0

  17. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.74,5.04,5.95,2.57 "Residential",5.696,3.558,4.263,1.907 "Commercial",2.018,1.464,1.687,0.655 "Industrial",0.026,0.026,0,0 "Transportation",0,0,0,0 "Customers",1344,967,683,446 "Residential",1210,850,584,379 "Commercial",133,116,99,67 "Industrial",1,1,0,0 "Transportation",0,0,0,0

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",105.226,65.82,36.92,11.06 "Residential",36.071,22.582,11.629,5.159 "Commercial",66.138,42.245,24.284,5.891 "Industrial",3.017,1,1,0 "Transportation",0,0,0,0 "Customers",6596,4146,2456,1155 "Residential",6066,3734,2236,1051 "Commercial",526,411,219,104 "Industrial",4,1,1,0

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",278.065,123.77,59.72,43.84 "Residential",54.325,25.025,13.334,18.958 "Commercial",203.506,86.325,38.241,23.26 "Industrial",20.234,12.398,8.133,1.617 "Transportation",0,0,0,0 "Customers",11468,6109,3886,2829 "Residential",9742,4884,2997,2142 "Commercial",1581,1104,793,662

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.493,8.69,5.54,3.42 "Residential",6.351,4.86,3.581,2.837 "Commercial",4.63,3.724,1.913,0.54 "Industrial",0.512,0.103,0.047,0.033 "Transportation",0,0,0,0 "Customers",1299,996,769,383 "Residential",1032,807,624,331 "Commercial",254,184,142,48 "Industrial",13,5,3,4

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.21,8.87,4.07,8.13 "Residential",4.99,3.851,2.302,5.203 "Commercial",5.74,4.484,1.505,2.774 "Industrial",0.48,0.52,0.25,0.114 "Transportation",0,0,0,0 "Customers",1172,970,613,608 "Residential",877,723,487,489 "Commercial",279,230,117,107 "Industrial",16,17,9,12

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",6.077,0.04,0.03,0 "Residential",1.077,0.036,0.024,0 "Commercial",2,0,0,0 "Industrial",3,0,0,0 "Transportation",0,0,0,0 "Customers",50,5,4,0 "Residential",24,5,4,0 "Commercial",22,0,0,0 "Industrial",4,0,0,0 "Transportation",0,0,0,0 "Wind",,,, "Capacity

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",42.797,14.7,4.31,1.21 "Residential",21.508,6.129,1.602,0.786 "Commercial",21.115,8.547,2.693,0.424 "Industrial",0.174,0.03,0,0 "Transportation",0,0,0,0 "Customers",2930,1260,512,200 "Residential",1929,834,345,167 "Commercial",994,425,167,33 "Industrial",7,1,0,0

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",17.151,10.78,5.73,3.45 "Residential",7.328,3.823,2.643,2.567 "Commercial",9.073,6.551,3.031,...

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",11.378,9.9,6.55,3.68 "Residential",6.68,5.179,3.987,2.776 "Commercial",4.596,4.582,2.468...

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",3.361,2,1.43,1.97 "Residential",1.205,0.633,0.574,0.535 "Commercial",2.156,1.37,0.85...

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",19.874,18.9,8.33,6.32 "Residential",15.192,14.888,5.361,3.963 "Commercial",4.485,3.804,2....

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",44.618,41.66,28.33,0.02 "Residential",10.101,8.529,6.356,0.027 "Commercial",27.322,26.859,...

  9. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",59.06,46.45,19.33,10.37 "Residential",6.684,4.275,2.701,1.41 "Commercial",46.952,39.954,16.2...

  10. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",56.423,42.74,31.28,23.11 "Residential",26.353,20.326,14.076,9.618 "Commercial",28.482,21.1...

  11. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",25.528,17.09,10.65,7.38 "Residential",19.414,12.741,7.424,6.021 "Commercial",6.074,4.3...

  12. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",10.191,6.17,3.72,10.35 "Residential",4.661,2.56,1.368,8.591 "Commercial",5.352,3.604,2.3...

  13. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.241,0.17,0.08,0.01 "Residential",0.191,0.114,0.063,0.008 "Commercial",0.05,0.05,0.02,0 ...

  14. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.092,0.09,0.07,0.01 "Residential",0.02,0.017,0.012,0.005 "Commercial",0.072,0.072,0.06,0 ...

  15. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",7.52,3.57,2.29,2.18 "Residential",5.939,2.303,1.37,1.337 "Commercial",1.581,1.268,0.917,0...

  16. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",175.579,98.31,70.4,41.47 "Residential",83.781,50.708,37.822,25.153 "Commercial",89.631,47.52...

  17. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",2.163,1.77,0.75,0.3 "Residential",1.633,1.286,0.495,0.249 "Commercial",0.524,0.473,...

  18. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",8.565,5.07,3.05,1.88 "Residential",5.005,2.668,1.791,1.223 "Commercial",3.064,2.097,0.9...

  19. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.885,1.2,0.68,1.38 "Residential",1.56,1.034,0.604,1.312 "Commercial",0.322,0.162,0.056,...

  20. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.16,0.15,0.4,0 "Residential",0.028,0.014,0.015,0 "Commercial",0.132,0.132,0.206,0 ...

  1. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (mw)",5100.991,3679.63,2495.41,1459.11 "Residential",2285.847,1542.226,1024.139,697.89 ...

  2. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",0.651,0.55,0.19,0.08 "Residential",0.399,0.243,0.106,0.041 "Commercial",0.18,0.297,0.034...

  3. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",170.669,155.21,137.1,34.1 "Residential",58.006,50.406,41.888,19.223 ...

  4. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.616,1.32,0.99,1.03 "Residential",0.923,0.754,0.515,0.409 "Commercial",0.516,0.413,0.323...

  5. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",777.814,669.2,441.4,149.5 "Residential",162.105,129.036,85.734,40.127 ...

  6. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",61.793,37.98,26.65,19.6 "Residential",25.504,16.995,11.126,7.151 "Commercial",35.713,20.63...

  7. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",89.898,45.5,29.91,16.82 "Residential",59.839,23.363,14.826,9.433 "Commercial",29.851,21.913...

  8. Table 11. Net metering, 2010 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Technology by sector", 2013, 2012, 2011, 2010 "Photovoltaic",,,, "Capacity (MW)",1.155,0.66,0.51,0.25 "Residential",0.779,0.405,0.311,0.163 "Commercial",0.376,0.253,0.18...

  9. PROJECT PROFILE: California Center for Sustainable Energy (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    The Center for Sustainable Energy (CSE) is creating the Virtual Net Metering Market Development Plan as a part of the Solar Market Pathways program to expand the awareness, effectiveness and use of virtual net metering in California and beyond. California recently passed a virtual net metering tariff, which allows kilowatt hour credits from one solar system to be distributed to numerous utility accounts throughout the property based on a predetermined allocation arrangement. Currently, solar adoption outside of traditional commercial or single family rooftop systems has been challenging for solar markets throughout California. Virtual net metering is a system that enables a multi-meter property owner to allocate a solar system's energy credits to other tenants. CSE aims to expand the application of virtual net metering to multifamily and multi-metered homes and facilities. For more information on this award and the Solar Market Pathway’s program, visit their website.

  10. Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Shanti Pless, National Renewable Energy Laboratory For net zero energy (NZE) building performance to become the norm in new commercial construction, it is necessary to demonstrate that NZE can be achieved cost effectively.

  11. Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% reduction in energy use compared to 2009 International Residential Code.

  12. Federal Building Metering Implementation Plan Template | Department of

    Energy Savers [EERE]

    Energy Building Metering Implementation Plan Template Federal Building Metering Implementation Plan Template Document provides a template for a federal building metering implementation plan. File metering_implementation_template.docx

  13. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building Preprint Rob Guglielmetti, Jennifer Scheib, Shanti D. Pless, and Paul Torcellini National Renewable Energy Laboratory Rachel Petro RNL Design Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49103 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  14. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect (OSTI)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  15. Redbird Red Habitat for Humanity Net Zero Energy Home Project Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Redbird Red Habitat for Humanity Net Zero Energy Home Project Summary The Illinois State University team incorporated Habitat for Humanity's goals and constraints during the design process, as well as designing it to be zero barrier and ADA compliant. Throughout the process the team utilized the existing plan to have a direct comparison to the typical home Habitat for Humanity builds. In addition, the team designed the exterior of the home to compliment the surrounding architecture as well as

  16. LM to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater Treatment Systems

    Broader source: Energy.gov [DOE]

    The federal government, including the U.S. Department of Energy (DOE) Office of Legacy Management (LM), has been challenged by Executive and DOE orders to reach two goals related to energy usage...

  17. Decision Support for Water Planning: the ZeroNet Water-Energy Initiative.

    SciTech Connect (OSTI)

    Rich, P. M.; Weintraub, Laura H. Z.; Ewers, Mary E.; Riggs, T. L.; Wilson, C. J.

    2005-01-01

    Rapid population growth and severe drought are impacting water availability for all sectors (agriculture, energy, municipal, industry...), particularly in arid regions. New generation decision support tools, incorporating recent advances in informatics and geographic information systems (GIS), are essential for responsible water planning at the basin scale. The ZeroNet water-energy initiative is developing a decision support system (DSS) for the San Juan River Basin, with a focus on drought planning and economic analysis. The ZeroNet DSS provides a computing environment (cyberinfrastructure) with three major components: Watershed Tools, a Quick Scenario Tool, and a Knowledge Base. The Watershed Tools, based in the Watershed Analysis Risk Management Framework (WARMF), provides capabilities (1) to model surface flows, both the natural and controlled, as well as water withdrawals, via an engineering module, and (2) to analyze and visualize results via a stakeholder module. A new ZeroNet module for WARMF enables iterative modeling and production of 'what if' scenario libraries to examine consequences of changes in climate, landuse, and water allocation. The Quick Scenario Tool uses system dynamics modeling for rapid analysis and visualization for a variety of uses, including drought planning, economic analysis, evaluation of management alternatives, and risk assessment. The Knowledge Base serves simultaneously as the 'faithful scribe' to organize and archive data in easily accessible digital libraries, and as the 'universal translator' to share data from diverse sources and for diverse uses. All of the decision tools depend upon GIS capabilities for data/model integration, map-based analysis, and advanced visualization. The ZeroNet DSS offers stakeholders an effective means to address complex water problems.

  18. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency

    SciTech Connect (OSTI)

    2015-03-02

    Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005.

  19. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to offer net...

  1. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado Jesse Dean and Otto VanGeet National Renewable Energy Laboratory Scott Simkus Boulder County Housing Authority Mark Eastment Mountain Energy Partnership Technical Report NREL/TP-7A40-51450 March 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable

  2. Advanced Metering Infrastructure Security Considerations | Department of

    Energy Savers [EERE]

    Energy Metering Infrastructure Security Considerations Advanced Metering Infrastructure Security Considerations The purpose of this report is to provide utilities implementing Advanced Metering Infrastructure (AMI) with the knowledge necessary to secure that implementation appropriately. We intend that utilities use this report to guide their planning, procurement, roll-out, and assessment of the security of Advanced Metering Infrastructure. PDF icon Advanced Metering Infrastructure Security

  3. Computer usage and national energy consumption: Results from a field-metering study

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Fuchs, Heidi; Greenblatt, Jeffery; Pratt, Stacy; Willem, Henry; Claybaugh, Erin; Beraki, Bereket; Nagaraju, Mythri; Price, Sarah; Young, Scott

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power of power supplies to computing needs, and improving the efficiency of individual components.

  4. Instructions for Submitting Document to OpenNet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions for Submitting Document to OpenNet Instructions for Submitting Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http://www.osti.gov/opennet. Click on the LOGIN link on the top right. Read the information and check the "I agree..." box. Click on the "Request data submission access..." link

  5. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  6. Advanced Sub-Metering Program

    Broader source: Energy.gov [DOE]

    The program is designed to provide information about energy usage for each residences at a multi-residential buildings. Residences living in multi-residential buildings that are not sub-metered d...

  7. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  9. Net Energy Payback and CO{sub 2} Emissions from Three Midwestern Wind Farms: An Update

    SciTech Connect (OSTI)

    White, Scott W.

    2006-12-15

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO{sub 2} analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO{sub 2} analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO{sub 2} emissions, in tonnes of CO{sub 2} per GW{sub e}h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.

  10. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    SciTech Connect (OSTI)

    Anderson, R.; Roberts, D.

    2008-11-01

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  11. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  13. DOE Zero Ready Home Case Study: One Sky Homes, Cottle Zero Net Energy Home, Sn Jose, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sky Homes Cottle Zero Net Energy Home San Jose, CA DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are

  14. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure), Department of Defense (DoD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMY NET ZERO Energy Roadmap and Program Summary Fiscal Year 2013 DISCLAIMER This document, developed by the Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory (NREL), is authorized for release on behalf of the U.S. Department of Defense (DOD). NREL may release this document in printed or electronic format, post or link to it on its public website, cite or reference it in other materials, and maintain a record in its publicly searchable

  15. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  16. Is revenue metering feasible

    SciTech Connect (OSTI)

    Taylor, N.R.

    1985-02-01

    Revenue metering for thermal systems has been in use for more than 100 years. There is an infinite variety of meters based on flow principles, but very limited choice of steam condensate meters. Progress is being made in the application of computer technology to thermal metering. Btu meters are showing substantial progress as the U.S. market increases. There is a lack of traceable standards, application guidelines and approved materials. Strongly needed are educational programs designed for the thermal metering technician. Costs of thermal measurements is, in general, out of balance with other utility type service meters.

  17. Tennessee Home to Energy Department's First Net-Zero-Energy Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak Ridge, Tennessee. It's just one of many buildings at the various Energy Department national labs scattered across the country - or so it seems.

  18. meter data | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 26 June, 2013 - 09:17 NREL's Energy Databus storing big energy data campus databus energy meter data NREL OpenEI Tool The Energy Databus began...

  19. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  20. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  1. Smart Meters on Tap for Owasso, Oklahoma

    Broader source: Energy.gov [DOE]

    Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter.

  2. Cost Control Best Practices for Net Zero Energy Building Projects: Preprint

    SciTech Connect (OSTI)

    Leach, M.; Pless, S.; Torcellini, P.

    2014-02-01

    For net zero energy (NZE) buildings to become the norm in commercial construction, it will be necessary to design and construct these buildings cost effectively. While industry leaders have developed workflows (for procurement, design, and construction) to achieve cost-effective NZE buildings for certain cases, the expertise embodied in those workflows has limited penetration within the commercial building sector. Documenting cost control best practices of industry leaders in NZE and packaging those strategies for adoption by the commercial building sector will help make the business case for NZE. Furthermore, it will promote market uptake of the innovative technologies and design approaches needed to achieve NZE. This paper summarizes successful cost control strategies for NZE procurement, design, and construction that key industry users (such as building owners, architects, and designers) can incorporate into their everyday workflows. It will also evaluate the current state of NZE economics and propose a path forward for greater market penetration of NZE buildings. By demonstrating how to combine NZE technologies and design approaches into an overall efficiency package that can be implemented at minimal (zero, in certain cases) incremental capital cost, the domain of NZE design and construction can be expanded from a niche market to the commercial construction mainstream.

  3. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Environmental Management (EM)

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon Download the Metering Best Practices Guide. More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition A

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a first-come, first-served basis until the cumulative generating capacity of net-metered...

  5. Kaupuni Village: A closer look at the first net-zero energy affordable...

    Energy Savers [EERE]

    built to be net-zero, but the entire community was built as a fully self-sufficient and sustainable environment keeping with traditional Hawaiian cultural practices. PDF...

  6. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  7. Development and field evaluation of revenue metering device for HVDC Systems

    SciTech Connect (OSTI)

    Schweitzer, E.O.; Aliga, A.; Ando, M.; Baker, R.A.; Seamans, D.A.

    1985-02-01

    A prototype dc revenue metering device was developed under sponsorship of the Electrical Power Research Institute. The device was installed at the Sylmar Converter Station of the Pacific HVDC Intertie, owned by the Los Angeles Department of Water and Power (host utility) in November 1981, and has been operating satisfactorily for over two years. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using signal processing principles in a single eight-bit microprocessor. The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc revenue meter energy measurements with the ac revenue meter measurements plus the station losses (estimated by the host utility) reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Net Metering Class I, Class II, Class III net metering...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    February 2011, the DPU opened up a docket to examine net metering and interconnection of distributed generation. While the intent is to make changes to net metering, issues...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering in Virginia is available on a first-come, first-served basis until...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering in Virginia is available on a first-come, first-served basis until the...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Residential Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering in Virginia is available on a first-come, first-served basis...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Montana Electric Cooperatives- Net Metering The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,... Eligibility:...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering in Virginia is available on a first-come, first-served basis until the rated generating capacity...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a first-come,...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a first-come,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small) Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering There is no stated limit on the aggregate capacity of net-metered systems in a...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Net Metering In Delaware, net metering is...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Hydroelectric, Municipal Solid Waste, Tidal, Wave, Wind (Small), Hydroelectric (Small) Net Metering In Delaware, net metering is available to any customer that generates...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering in Virginia is available on a first-come, first-served basis until the...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Wind (Small), Hydroelectric (Small) Net Metering Note: On October 12th, 2015 the Hawaii PUC voted to end net metering in favor of 3...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: SB 1395 passed on March 2015 increased the net-metering cap for non-residential...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Net Metering New Jersey's net-metering rules require state's...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a first-come, first-served basis...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering In Delaware, net metering is...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering In Delaware, net metering is...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is available on a...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering in Virginia is available...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts)...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: SB 1395 passed on March 2015 increased the net-metering cap for non-residential...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Direct-Use, Other Distributed Generation Technologies Net Metering The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Net Metering The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Hydroelectric (Small), Anaerobic Digestion Net Metering The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ocean Thermal, Wind (Small), Hydroelectric (Small), Anaerobic Digestion Net Metering The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rockingham County- Small Wind Ordinance Although net metering is not required, the ordinance complements the state's net-metering regulations and requires compliance with the...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering in...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Net Metering Net metering is...

  10. Net-Zero Campus at University of California, Davis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net-Zero Campus at University of California, Davis Net-Zero Campus at University of California, Davis Sunlight reflects off the metal window sun shields on the Ramble apartments at West Village at UC Davis in Davis, California. Sunlight reflects off the metal window sun shields on the Ramble apartments at West Village at UC Davis in Davis, California. Photo by Greg Urquiaga /UC Davis, NREL 20240 The new Viridian apartments at West Village at UC Davis. The new Viridian apartments at West Village

  11. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Federal Building Metering Implementation Plan Template Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance for the ...

  12. Revenue-metering device for HVDC systems. Final report

    SciTech Connect (OSTI)

    Schweitzer, E.O. III; Ando, M.; Aliaga, A.; Baker, R.; Seamans, D.

    1984-05-01

    This final report describes a digital dc revenue metering device for HVDC systems developed by Washington State University researchers under a contract with the Electric Power Research Institute. The device was installed at the Sylmar Converter Station of the Los Angeles Department of Water and Power in November 1981, and has been operating satisfactorily for over 20 months. It uses voltage and current measurements from existing voltage dividers, current transductors, and a current shunt. The energy-computation algorithms are implemented using digital signal processing principles in a single eight-bit microprocessor (Motorola MC6809). The algorithms accommodate the different characteristics of the sensors, and tolerate the unavailability of some of the sensors, with some loss in accuracy. Comparisons of the dc Revenue Meter energy measurements with the ac revenue meter measurements plus the station losses reveal a 0.1 percent difference in one pole and a one percent difference in the other pole, for a net difference of about one-half percent.

  13. NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

  14. New Technologies Bring New Opportunities for Meter Reader | Department of

    Office of Environmental Management (EM)

    Energy Technologies Bring New Opportunities for Meter Reader New Technologies Bring New Opportunities for Meter Reader September 22, 2011 - 2:03pm Addthis Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. Liisa O'Neill Liisa O'Neill Former New Media Specialist,

  15. Building America Case Study: EcoVillage: A Net Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold, and ENERGY STAR certifcations for the entire project. ...

  16. Government Program Briefing: Smart Metering

    SciTech Connect (OSTI)

    Doris, E.; Peterson, K.

    2011-09-01

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  17. Government Program Briefing: Smart Metering

    Broader source: Energy.gov [DOE]

    This document is adapted and updated from a memo delivered to the City Council of New Orleans, the office of the Mayor of New Orleans, the Chairperson of the Citizen Stakeholders Group (New Orleans Energy Task Force) and the U.S. Department of Energy (DOE) Project Officer in March 2008. This briefing piece provides an overview of the benefits, costs, and challenges of smart metering.

  18. Metering Best Practices: A Guide to Achieving Utility Resource Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Metering Best Practices: A Guide to Achieving Utility Resource Efficiency Guide describes information about energy and resource metering at federal facilities, including metering requirements under the Energy Policy Act of 2005. PDF icon mbpg2015.pdf More Documents & Publications Review of Orifice Plate Steam Traps Improving Steam System Performance: A Sourcebook for Industry, Second Edition

  19. An assessment of the net value of CSP systems integrated with thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  20. An assessment of the net value of CSP systems integrated with thermal energy storage

    SciTech Connect (OSTI)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity valueor total system valuefor multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  1. Renewable Energy Annual

    Reports and Publications (EIA)

    2012-01-01

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  2. NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward Net Zero Energy (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net zero energy installation" (NZEI), which entails producing as much energy as it uses over the course of a year. In conjunction with the U.S. Department of Energy's Federal Energy Management Program, the National Renewable Energy Laboratory (NREL) has partnered with MCAS Miramar to develop a plan for meeting this

  3. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  4. On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    522 August 2010 On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building Preprint Rob Guglielmetti, Shanti Pless, and Paul Torcellini Presented at SimBuild 2010 New York, New York August 15-19, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance

  5. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  6. Road to Net Zero (Presentation)

    SciTech Connect (OSTI)

    Glover, B.

    2011-05-01

    A PowerPoint presentation on NREL's Research Support Facility (RSF) and the road to achieving net zero energy for new construction.

  7. Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

    SciTech Connect (OSTI)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

    2010-12-01

    The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

  8. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    SciTech Connect (OSTI)

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOEs Commercial Building Partnerships (CBP) Program.

  9. DOE Tour of Zero: The Garbett's Net Zero-Energy Home at Rosecrest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than 3,500 a year in energy costs in a Utah climate that experiences extreme hot and cold conditions. 3 of 11 The Garbett home's exterior siding is a combination of durable...

  10. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  11. The Intersection of Net Metering and Retail Choice: An Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this report, the authors studied different facets of crediting mechanisms, and defined five different theoretical models describing different ways competitive suppliers and ...

  12. So You Have Questions About?Interconnection & Net Metering:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technical Assistance Team at: stat@nrel.gov Background Benchmarking Non-Hardware Balance-of-System (Soft) Costs for U.S. Photovoltaic Systems, Using a Bottom-up Approach...

  13. webinar_innovation_net_metering_interconnection.doc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    netmeteringinterconnection.doc webinarinnovationnetmeteringinterconnection.doc webinarinnovationnetmeteringinterconnection.doc Microsoft Office document icon...

  14. Innovation and Success in Solar Net Metering and Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications webinarinnovationnetmeteringinterconnection.doc PRESENTATION: OVERVIEW OF THE SUNSHOT INITIATIVE SunShot Vision Study: February 2012 (Book), ...

  15. webinar_080713_solar_net_metering_connection.mp3 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0713solarnetmeteringconnection.mp3 webinar080713solarnetmeteringconnection.mp3 Audio icon webinar080713solarnetmeteringconnection.mp3 More Documents & Publications...

  16. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect (OSTI)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Net Metering There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    N. Mariana Islands- Net Metering Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net...

  20. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  1. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  2. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an event today at Battelle headquarters in Columbus, Ohio, U.S. Energy Secretary Steven Chu announced that two million smart grid meters have been installed across the country, helping to reduce energy costs for families and businesses. As a result of funding from the Recovery Act, smart grid

  4. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Environmental Management (EM)

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and document system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. PDF icon hpc_metering_protocol.pdf More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  5. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Transformations, Inc. Net Zero Energy Communities Devens, Easthampton, Townsend, Massachusetts PROJECT INFORMATION Construction: New home Type: Single-family, market-rate and affordable Builder: Transformations, Inc. www.transformations-inc.com Size: 1,064 to 2,365 ft 2 Price Range: $125,000-$400,000 Date Completed: 2010-ongoing Climate Zone: Cold PERFORMANCE DATA HERS Index Range: -21 to 43 Projected annual energy cost: $88* Incremental cost of energy efficiency measures: $3/ft 2 * Incremental

  6. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30

    This study, sponsored by the U.S. General Services Administrations Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  7. The Impact of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid

    SciTech Connect (OSTI)

    Dirks, James A.

    2010-08-16

    Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Wide-spread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time of day rates or real time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

  8. An Exploration of Impacts of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid

    SciTech Connect (OSTI)

    Dirks, James A.

    2010-07-01

    Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity, which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Widespread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time-of-day rates or real-time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

  9. Improvements in Shallow (Two-Meter) Temperature Measurements...

    Open Energy Info (EERE)

    Center for Geothermal Energy has been working on improvements in shallow (two-meter) temperature surveys in two areas: overcoming limitations posed by difficult ground...

  10. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing

  11. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  12. Flow metering valve

    DOE Patents [OSTI]

    Blaedel, Kenneth L. (Dublin, CA)

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  13. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  14. De Minimis Thresholds for Federal Building Metering Appropriateness

    SciTech Connect (OSTI)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered appropriate for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  15. PVWatts | Open Energy Information

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English Policies: Regulations Regulations: Net Metering & Interconnection...

  16. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Served - AMI (MWh)" "Year","Month","Utility Number","Utility Name","State","Data

  17. Chapter 23: Estimating Net Savings: Common Practices. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Estimating Net Savings: Common Practices The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Daniel M. Violette, Ph.D. Navigant, Boulder, Colorado Pamela Rathbun, Tetra Tech, Madison, Wisconsin NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-62678 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of

  18. NetCDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NetCDF NetCDF NetCDF NetCDF (network Common Data Form) is a set of libraries and machine-independent data formats for creation, access, and sharing of array-oriented scientific...

  19. Meters Roads N Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Meters Roads N Streams o Openwells E3i APT Site *. TES Plants (1) E2J Other Set-Asides lEI] Hydric Soils . 370 o 370 Soils Soil Series and Phase DBaB DBaC .Pk .TrB DTrC DTrD .TuE !iii TuF 740 Compartment 52 Compartment 53 N A sc Figure 5-1. Area. Plant communities and soils associated with the Oak Hickory Forest #1 Set-Aside 5-7 Set-Aside 5: Oak-Hickory Forest 1

  20. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.