Powered by Deep Web Technologies
Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Massachusetts Program Type Net Metering Provider Department of Public Utilities In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) Class I, Class II, Class III net metering facilities In Massachusetts, there are several categories of net-metering facilities.

2

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Arkansas Program Type Net Metering Provider Arkansas Economic Development Commission In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved final rules for net metering in July 2002. Subsequent legislation enacted in April 2007 (HB 2334) expanded the availability of net metering; increased the capacity

3

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State North Carolina Program Type Net Metering Provider North Carolina Utilities Commission The North Carolina Utilities Commission (NCUC) requires the state's three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering available to customers that own and operate systems that generate electricity using solar energy, wind energy, hydropower, ocean or wave energy, biomass resources, combined heat and

4

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Net Metering Provider Missouri Public Service Commission Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to customers with systems up to 100 kilowatts (kW) in capacity that generate electricity using wind energy, solar-thermal energy, hydroelectric energy, photovoltaics (PV), fuel cells

5

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State District of Columbia Program Type Net Metering Provider DC Public Service Commission In the District of Columbia (DC), net metering is currently available to residential and commercial customer-generators with systems powered by renewable-energy sources, combined heat and power (CHP), fuel cells and microturbines, with a maximum capacity of 1 megawatt (MW). The term "renewable energy sources" is defined as solar, wind, tidal, geothermal, biomass, hydroelectric power and digester gas. In October 2008, the Clean

6

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State New Hampshire Program Type Net Metering Provider New Hampshire Public Utilities Commission New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas, bio-oil or

7

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Virginia Program Type Net Metering Provider Virginia Department of Mines, Minerals, and Energy '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a monthly standby charge. The Virginia State Corporation Commission approved standby charges for transmissions and distribution components as proposed by Virginia Electric and Power Company (Dominion Virginia Power) on November 3, 2011.'''''

8

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Ohio Program Type Net Metering Provider Ohio Public Utilities Commission '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2050-EL-ORD Case 12-0250-EL-RDR]) to review the net metering rules for investor-owned utilities. Details will be posted as more information is available.''''' Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fuel cells or microturbines.

9

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial General Public/Consumer Industrial Residential Fed. Government Local Government State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Oklahoma Program Type Net Metering Provider Oklahoma Corporation Commission Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under the commission's jurisdiction* to file net-metering tariffs for customer-owned renewable-energy systems and combined-heat-and-power (CHP) facilities up to 100 kilowatts (kW) in capacity. Net metering is available to all customer

10

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Fed. Government Local Government Residential State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Hawaii Program Type Net Metering Provider Hawaii Public Utilities Commission NOTE: Kauai Island Electric Cooperative's (KIUC) net metering program has reached its capacity and has implemented a Net Energy Metering Pilot Program. Hawaii's original net-metering law was enacted in 2001 and expanded in 2004 by HB 2048, which increased the eligible capacity limit of net-metered systems from 10 kilowatts (kW) to 50 kW. In 2005, the law was further amended by SB 1003, which authorized the Hawaii Public Utilities Commission

11

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Iowa Program Type Net Metering Provider Iowa Utilities Board Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ''et seq.'' Iowa's net-metering subrule, adopted by the IUB in July 1984, applies to customers that generate electricity using alternate energy production facilities (AEPs). Net metering is available to all customer classes of Iowa's two investor-owned utilities -- MidAmerican Energy and Interstate Power and

12

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Minnesota Program Type Net Metering Provider Minnesota Department of Commerce '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the PUC. The below summary reflects the current rules.''''' Minnesota's net-metering law, enacted in 1983, applies to all investor-owned utilities, municipal utilities and electric cooperatives. All "qualifying facilities" less than 40 kilowatts (kW) in capacity are

13

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Pennsylvania Program Type Net Metering Provider Pennsylvania Public Utility Commission Note: In March 2012 the Pennsylvania Public Utilities Commission (PUC) issued a Final Order (Docket M-2011-2249441) approving the use of third-party ownership models (i.e., system leases or retail power purchase agreements) in conjunction with net metering. The Order allows these types of arrangements for net metered systems, subject to a restriction that the

14

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Net Metering Provider Public Utilities Regulatory Authority Connecticut's two investor-owned utilities -- Connecticut Light and Power Company (CL&P) and United Illuminating Company (UI) -- are required to provide net metering to customers that generate electricity using "Class I" renewable-energy resources, which include solar, wind, landfill gas, fuel

15

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Fed. Government General Public/Consumer Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State California Program Type Net Metering Provider California Public Utilities Commission California's net-metering law originally took effect in 1996 and applies to all utilities with one exception*. The law has been amended numerous times since its enactment, most recently by AB 327 of 2013. '''Eligible Technologies''' The original law applied to wind-energy systems, solar-electric systems and hybrid (wind/solar) systems. In September 2002, legislation (AB 2228)

16

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New Jersey Program Type Net Metering Provider New Jersey Board of Public Utilities New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives). Systems that generate electricity using solar, wind, geothermal, wave, tidal, landfill gas or sustainable biomass resources, including fuel cells (all "Class I" technologies under the state RPS), are

17

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Michigan Program Type Net Metering Provider Michigan Public Service Commission '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].''''' In October 2008, Michigan enacted legislation (P.A. 295) requiring the Michigan Public Service Commission (PSC) to establish a statewide net metering program for renewable-energy systems within 180 days. On May 26, 2009 the Michigan Public Service Commission (PSC) issued an order formally

18

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering June 25, 2014 11:00AM MDT Attendees will become familiar with the services provided by utility net metering and their importance in making projects...

19

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas or geothermal energy. Net metering is available for residential systems up to 25 kilowatts (kW) in capacity and non-residential systems up to two megawatts (MW) in capacity....

20

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts (kW) in capacity.** Net metering is available to all customers of investor-owned...

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Washington State University Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All customer classes are eligible, and all utilities -- including municipal utilities and electric cooperatives -- must offer net metering.

22

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Vermont Program Type Net Metering Provider Vermont Department of Public Service NOTE: Legislation enacted in May 2012 (HB475) further amends Vermont's net metering policy. Vermont's original net-metering legislation was enacted in 1998, and the law has been expanded several times subsequently. Any electric customer in Vermont may net meter after obtaining a Certificate of Public Good from the Vermont Public Service Board (PSB). Solar net metered systems 10 kilowatts

23

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Wind Program Info State Indiana Program Type Net Metering Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric customers. The rules, which apply to renewable energy resource projects [defined by IC 8-1-37-4(a)(1) - (8)] with a maximum capacity of 1 megawatt (MW), include the following

24

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Wisconsin Program Type Net Metering Provider Public Service Commission of Wisconsin The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity with systems up to 20 kilowatts (kW)* in capacity. The order applies to investor-owned utilities and municipal utilities, but not to electric cooperatives. All distributed-generation (DG) systems, including renewables and combined heat and power (CHP), are eligible. There is no limit on total enrollment.

25

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State New Mexico Program Type Net Metering Provider New Mexico Public Regulation Commission Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW) in capacity. Previously, net metering in New Mexico was limited to systems up to 10 kilowatts (kW) in capacity. Net-metered customers are credited or paid for any monthly net excess generation (NEG) at the utility's avoided-cost rate. If a customer has net

26

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Wind Program Info State Maryland Program Type Net Metering Provider Maryland Public Service Commission Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing implementation of net metering in Maryland, such as meeting agendas, minutes, and draft utility tariffs.

27

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Local Government Multi-Family Residential Nonprofit Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Net Metering Provider West Virginia Public Service Commission Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following table. Customer Type IOUs with 30,000 customers or more IOUs with fewer than 30,000 customers, municipal utilities, electric cooperatives

28

Progress Energy - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy - Net Metering Progress Energy - Net Metering Progress Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering Provider Progress Energy Carolinas In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

29

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Home Weatherization Water Program Info State New York Program Type Net Metering Provider New York State Department of Public Service Note: In October 2012 the New York Public Service Commission (PSC) issued an order directing Central Hudson Gas and Electric to file net metering tariff revisions tripling the aggregate net metering cap for most systems from 1% of 2005 peak demand (12 MW) to 3% of 2005 peak demand (36 MW). The PSC issued another order in June 2013 to raise the aggregate net metering cap

30

Duke Energy - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy - Net Metering Duke Energy - Net Metering Duke Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an [http://dms.psc.sc.gov/pdf/matters/F05030FC-E19A-9225-B838F72EDF4557DC.pdf] order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including

31

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Illinois Program Type Net Metering Provider Illinois Commerce Commission '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1, 2011, the law prescribes a dual metering and bill crediting system which does not meet the definition of net metering as the term is generally defined. Click here for information regarding competitive classes, and

32

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

metering. Independent systems with retail sales of less than 5,000,000 kilowatt-hours (kWh) are exempt from offering net metering. Utilities that generate 100% of electricity...

33

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider Louisiana Public Service Commission '''''Note: Ongoing proceedings related to net metering can be found in Docket R-31417.''''' Louisiana enacted legislation in June 2003 establishing net metering. Modeled on Arkansas's law, Louisiana's law requires investor-owned utilities, municipal utilities and electric cooperatives to offer net metering to customers that generate electricity using solar, wind, hydropower, geothermal or biomass resources. Fuel cells and microturbines that generate electricity entirely derived from renewable resources are

34

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Net Metering Provider Georgia Public Service Commission The Georgia Cogeneration and Distributed Generation Act of 2001 requires all utilities -- investor-owned...

35

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Agricultural Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kentucky Program Type Net Metering Provider Kentucky Public Service Commission In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind, biomass, biogas or hydroelectric systems up to 30 kilowatts (kW) in capacity. The Kentucky Public Service Commission (PSC) issued rules on January 8, 2009. Utilities had 90 days from that date to file tariffs that include all terms and conditions of their net metering programs, including interconnection.

36

Net Metering | Open Energy Information  

Open Energy Info (EERE)

Metering Metering Jump to: navigation, search For electric customers who generate their own electricity, net metering allows for the flow of electricity both to and from the customer,– typically through a single, bi-directional meter. With net metering, when a customer’'s generation exceeds the customer’'s use, the customer's electricity flows back to the grid, offsetting electricity consumed by the customer at a different time. In effect, the customer uses excess generation to offset electricity that the customer otherwise would have to purchase at the utility’'s full retail rate. Net metering is required by law in most states, but some of these laws only apply to investor-owned utilities,– not to municipal utilities or electric cooperatives. [1] Net Metering Incentives

37

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Colorado Program Type Net Metering Provider Colorado Public Utilities Commission [http://www.leg.state.co.us/clics/clics2009a/csl.nsf/fsbillcont3/571064D8... Senate Bill 51] of April 2009 made several changes, effective September 1, 2009, to the state's net metering rules for investor-owned utilities, as they apply to solar-electric systems. These changes include converting the maximum system size for solar-electric systems from two megawatts (MW) to 120% of the annual consumption of the site; redefining a site to include

38

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Vehicles Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Delaware Program Type Net Metering Provider Delaware Public Service Commission In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fuels. Grid-interactive electric vehicles are also eligible for net metering treatment for electricity that they put on the grid, although these vehicles do not themselves generate electricity. The maximum capacity of a net-metered system is 25 kilowatts (kW) for residential customers; 100 kW for farm customers on residential rates; two megawatts (MW) per meter for

39

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Oregon Program Type Net Metering Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives. '''PGE and PacifiCorp Customers''' The Oregon Public Utilities Commission (PUC) adopted new rules for net metering for PGE and PacifiCorp customers in July 2007, raising the individual system limit from 25 kilowatts (kW) to two megawatts (MW) for non-residential applications. (The rules do not apply to customers of Idaho

40

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institutional Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Arizona Program Type Net Metering Provider Arizona Corporation Commission Net metering is available to customers who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm kilowatt-based limit on system size capacity; instead, systems must be sized to not exceed 125% of the customer's total connected load. If there is no available load data for the customer, the generating system may not

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Net Metering Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Webinar Net Metering Webinar Net Metering Webinar June 25, 2014 11:00AM MDT Attendees will become familiar with the services provided by utility net metering and their importance in making projects cost-effective. The speakers will provide information based on case histories of how facilities that generate their own electricity from renewable energy sources can feed electricity they do not use back into the grid. Many states have net-metering laws with which utilities must comply. In states without such legislation, utilities may offer net-metering programs voluntarily or as a result of regulatory decisions. The webinar will cover the general differences between states' legislation and implementation and how the net-metering benefits can vary widely for facilities in different areas of

42

Ashland Electric - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to...

43

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Wyoming Program Type Net Metering Provider Wyoming Public Service Commission Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible technologies include solar, wind, biomass and hydropower systems up to 25 kilowatts (kW) in capacity. Systems must be intended primarily to offset part or all of the customer-generator's requirements for electricity. Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits at the utility's avoided-cost

44

Guam - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guam - Net Metering Guam - Net Metering Guam - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info Program Type Net Metering Provider Guam Energy Office Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC] for the results of that docket review. In 2004, Guam enacted legislation requiring the Guam Power Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, hydroelectric, solar energy or hybrid systems of these

45

Net Metering Rules (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Net Metering Provider Arkansas Public Service Commission The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These rules are developed pursuant to the Arkansas Renewable Energy Development Act (Arkansas Code Annotated 23-18-603). These rules apply to all electric utilities.

46

Austin Energy - Net Metering (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) Eligibility Commercial Savings For Bioenergy...

47

Puerto Rico - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Net Metering Puerto Rico - Net Metering Puerto Rico - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Program Type Net Metering Provider Autoridad de Energía Electrica de Puerto Rico Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable-energy resources to offset their electricity usage. This law applies to residential systems with a generating capacity of up to 25 kilowatts (kW) and non-residential systems up to one megawatt (MW) in capacity.*

48

Net Metering (Ontario, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering (Ontario, Canada) Net Metering (Ontario, Canada) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

49

Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

In March 2008, the Florida Public Service Commission (PSC) adopted rules for net metering and interconnection for renewable-energy systems up to two megawatts (MW) in capacity. The PSC rules apply...

50

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar energy, wind energy, ocean-thermal energy, geothermal energy, small hydropower, biogas from anaerobic digestion, or fuel cells using any of these energy sources are...

51

Avista Utilities - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

52

Idaho Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Idaho Power - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Idaho Power Company Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar, wind, hydropower, biomass or fuel cells; (2) limits residential systems to

53

Net Metering (Indiana) | Open Energy Information  

Open Energy Info (EERE)

eligible to net meter. In addition, the rulemaking defined "name plate capacity" for inverter-based net metering facilities to be "the aggregate output rating of all inverters in...

54

Kansas - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas - Net Metering Kansas - Net Metering Kansas - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kansas Program Type Net Metering Provider Kansas Corporation Commission Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering applies to systems that generate electricity using solar, wind, methane, biomass or hydro resources, and to fuel cells using hydrogen produced by an eligible

55

SRP - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRP - Net Metering SRP - Net Metering SRP - Net Metering < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Net Metering Provider SRP Salt River Project (SRP) modified an existing net-metering program for residential and commercial customers in November 2013. Net metering is now available to customers who generate electricity using photovoltaic (PV), geothermal, or wind systems up to 300 kilowatts (kW) in AC peak capacity. The kilowatt-hours (kWh) delivered to SRP are subtracted from the kWh delivered from SRP for each billing cycle. If the kWh calculation is net positive for the billing cycle, SRP will bill the net kWh to the customer under the applicable price plan, Standard Price Plan E-21, E-23, E-26,

56

LADWP - Net Metering (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering (California) Net Metering (California) LADWP - Net Metering (California) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Net Metering Provider Los Angeles Department of Water and Power LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless an installation requires atypical metering equipment. In these cases the customer must cover the additional metering expenses. The customer must also pay any related interconnection fees. Excess kilowatt-hours (kWh) generated by the customer's system will be

57

Austin Energy - Net Metering (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) < Back Eligibility Commercial Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State Texas Program Type Net Metering Provider Austin Energy Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of renewable includes solar*, wind, geothermal, hydroelectric, wave and tidal energy, biomass, and biomass-based waste products, including landfill gas. Systems must be used primarily to offset a portion or all of a customer's on-site electric load. Metering is accomplished using a single meter capable of registering the

58

DOE Tribal Renewable Energy Series Webinar: Net Metering | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Series Webinar: Net Metering DOE Tribal Renewable Energy Series Webinar: Net Metering June 25, 2014 11:00AM EDT https:www1.gotomeeting.comregister...

59

Long Island Power Authority - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

60

Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators  

Science Conference Proceedings (OSTI)

As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer???¢????????s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

Rose, James; Varnado, Laurel

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

62

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Multi-Family Residential Residential Schools Savings Category Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Nova Scotia Program Type Net Metering Provider Nova Scotia Power, Inc Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid. Generating units that produce renewable energy such as wind, solar, small hydro or biomass can be added to homes or businesses with the addition of a bi-directional meter. This meter monitors the electricity generated by the

63

Washington City Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington City Power - Net Metering Washington City Power - Net Metering Washington City Power - Net Metering < Back Eligibility General Public/Consumer Savings Category Solar Buying & Making Electricity Wind Program Info State Utah Program Type Net Metering Provider Washington City Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems or wind-energy systems up to 10 kilowatts (kW) in capacity. At the customer's expense, the municipal utility will provide a single, bidirectional meter to measure the in-flow and out-flow of electricity at the customer's home. Systems are restricted to being sized to provide no more than 120% of the historic maximum monthly energy consumption of the

64

Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

[http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

65

Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Montana's net-metering law, enacted in July 1999, applies to all customers of investor-owned utilities. Systems up to 50 kilowatts (kW) in capacity that generate electricity using solar, wind or...

66

City of New Orleans - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of New Orleans - Net Metering City of New Orleans - Net Metering City of New Orleans - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider City Council Utilities Regulatory Office In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules require Entergy New Orleans, an investor-owned utility regulated by the city, to offer net metering to customers with systems that generate electricity using solar energy, wind energy, hydropower, geothermal or biomass resources. Fuel

67

U.S. Virgin Islands - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

68

City of Brenham - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Brenham - Net Metering City of Brenham - Net Metering City of Brenham - Net Metering < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Nonprofit Residential Schools State Government Savings Category Bioenergy Wind Buying & Making Electricity Energy Sources Solar Program Info State Texas Program Type Net Metering Provider City of Brenham In September 2010, the City of Brenham passed an ordinance adopting net metering and interconnection procedures. Customer generators up to 10 megawatts (MW) are eligible to participate, although customer generators with systems 20 kilowatts (kW) or less are eligible for a separate rider and expedited interconnection. The utility will install and maintain a meter capable of measuring flow of electricity in both directions. Any net

69

Net metering programs  

Science Conference Proceedings (OSTI)

There has been a recent surge of interest from the renewable energy industry and environmental groups in net metering. The reason for this interest is that net metering is a simple, low-cost, and easily administered method to encourage direct customer investment in renewable energy technologies. The renewable energy industry supports net metering because it removes an economic disincentive for potential customers by increasing the value of the electricity generated by renewable energy technologies. Environmental groups support net metering because it promotes clean energy production. The concept of net metering programs is to allow the electric meters of customers with generating facilities to turn backwards when their generators are producing more energy than the customers` demand. Net metering allows customers to use their generation to offset their consumption over the entire billing period, not just instantaneously. This offset would enable customers with generating facilities to receive retail prices for more of the electricity they generate. Without a net metering program, utilities usually install a second meter to measure any electricity that flows back to the utility grid and purchase it at a rate that is much lower than the retail prices. There are various net metering programs in the country. Most are available to customer-owned small generating facilities only, some further restrict the eligibility to renewable energy technologies. This Topical Issues Brief discusses how these net metering programs have been implemented by different utilities an states, what the rationales are behind may net metering programs, and what the potential impact of net metering may be on the deployment of renewable energy technologies.

Wan, Y H

1996-12-01T23:59:59.000Z

70

Net Metering (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Electric, Tidal Energy, Wave Energy, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Aggregate Capacity...

71

Net Metering (Washington) | Open Energy Information  

Open Energy Info (EERE)

Hydroelectric, Solar Thermal Electric, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Aggregate Capacity...

72

Net Metering (Alaska) | Open Energy Information  

Open Energy Info (EERE)

Energy Category Renewable Energy Incentive Programs Aggregate Capacity Limit 1.5% of average retail demand Applicable Utilities Utilities with annual retail sales of 5,000,000...

73

City of St. George - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of St. George - Net Metering City of St. George - Net Metering City of St. George - Net Metering < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Program Info State Utah Program Type Net Metering Provider City of St. George The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The interconnection procedures include different requirements, based on system size, for systems up to 10 megawatts (MW). Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems. The net metering agreements currently available on the utility's web site only pertain to

74

Rocky Mountain Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

75

American Samoa - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential and small commercial customers with wind or solar-energy systems up to 30 kilowatts (kW) in capacity, although ASPA may extend the policy to larger systems for larger...

76

Net Metering (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Capacity Limit The lesser of 1 MW or 100% of the customer's annual requirements for electricity Website http:pucweb1.state.nv.usPUCNRenewableEnergy.aspx Date added to DSIRE...

77

Montana Electric Cooperatives - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Cooperatives - Net Metering Electric Cooperatives - Net Metering Montana Electric Cooperatives - Net Metering < Back Eligibility Commercial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Montana Program Type Net Metering Provider Montana Electric Cooperatives' Association The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or part by most of the 26 electric cooperatives in Montana. A map of the service areas of each of member cooperative is available on the MECA web site. To determine if a specific cooperative offers net metering, view the MECA

78

SCE&G - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCE&G - Net Metering SCE&G - Net Metering SCE&G - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

79

Ashland Electric- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

80

Murray City Power - Net Metering Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Utah Program Type Net Metering Provider Murray City Power Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10 kilowatts (kW).* The utility will install and maintain a revenue meter capable of registering the bi-directional flow of electricity at the customer's facility. Any customer net excess generation (NEG) is carried over to the customer's next bill as a kilowatt-hour credit. Each April, any remaining NEG credits are

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SaskPower Net Metering (Saskatchewan, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) < Back Eligibility Commercial Agricultural Industrial Residential Savings Category Solar Buying & Making Electricity Program Info Funding Source SaskPower State Saskatchewan Program Type Net Metering Provider SaskPower Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our electrical grid. SaskPower will pay a one-time rebate, equivalent to 20% of eligible costs to a maximum payment of $20,000, for an approved and grid interconnected net metering project. The Net Metering Rebate is available to SaskPower, Saskatoon Light and Power and City of Swift Current electricity customers

82

Grays Harbor PUD - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Grays Harbor PUD - Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Grays Harbor PUD Grays Harbor PUD's net-metering program differs slightly from what is required by Washington state law in that Grays Harbor PUD reimburses customers for net excess generation (NEG), at the end of each year, at 50% of the utility's retail rate. State law allows utilities to require customers to surrender NEG to the utility, without reimbursement, at the end of a 12-month billing cycle. Grays Harbor PUD has voluntarily gone

83

City of Danville - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Danville - Net Metering Danville - Net Metering City of Danville - Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Program Info State Virginia Program Type Net Metering For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their renewable fuel generator to the Utility's facilities. Renewable fuel generators with capacity over 25 kW are required to submit forms no later than 60 days prior to planned interconnection. The Utility will review and determine whether the requirements for Interconnection have been met. More information on this

84

Avista Utilities - Net Metering (Idaho) | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Avista Utilities - Net Metering (Idaho) This is the approved revision of this page, as well as being the most recent. Jump...

85

City of St. George - Net Metering (Utah) | Open Energy Information  

Open Energy Info (EERE)

City of St. George has also developed interconnection rules for net metered systems. Inverter-based systems up to 10kW in capacity can qualify for Level 1 interconnection, which...

86

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

87

Hydro-Québec Net Metering (Quebec, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) < Back Eligibility Commercial Agricultural Residential Savings Category Buying & Making Electricity Solar Program Info Funding Source Hydro-Quebec State Quebec Program Type Net Metering In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option reflects a broad approach to energy efficiency. It is both environmentally friendly and advantageous for self-generators seeking to optimize their energy management. Net metering provides a way to act on convictions by using renewable energy and state-of-the-art technology to truly take control of consumption

88

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

89

Current experience with net metering programs  

SciTech Connect

Net metering is a utility metering practice that encourages direct consumer investment in renewable energy technologies. Laws and regulations that establish net metering practices now exist in 22 states. Net metering enables electricity customers with small generators to receive a higher value for some or all of the electricity they generate. This is accomplished by allowing the electric meters of such customers to turn backward when there is more generation than demand. It effectively allows customers with small generators to use the electricity they generate to offset their usage over an entire billing period. This paper reports on the current status of net metering laws and rules in the US. In particular, the extent of the net metering authority in each state is highlighted. Differing requirements for grid-interconnection have introduced significant variations in the actual implementation of net metering programs. Interconnection requirements from specific utilities are collected to understand how net metering programs have been affected.

Wan, Y.H.; Green, H.J.

1998-05-01T23:59:59.000Z

90

Green Power Network: Net Metering  

NLE Websites -- All DOE Office Websites (Extended Search)

As of November, 2010, net metering was offered in 43 states, Washington, D.C., and Puerto Rico (see map of state net metering rules from DSIRE). For a more detailed...

91

American Samoa- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The American Samoa Power Authority (ASPA), a government-owned electric utility, is the only power provider in this U.S. territory of almost 70,000 people. ASPA's "Interconnection and Net Energy...

92

Net Metering (New Brunswick, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The NB Power Net Metering program provides customers with the option to connect their own environmentally sustainable generation unit to NB Power's distribution system. The program allows customers...

93

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionRenewable Energy). Map of Net Metering Policies, Net Metering to Residential Customers in

Darghouth, Naim

2010-01-01T23:59:59.000Z

94

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

95

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

96

Hydro-Québec Net Metering (Quebec, Canada) | Open Energy Information  

Open Energy Info (EERE)

Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Quebec, Canada Applies to Utility Hydro-Quebec Name Hydro-Québec Net Metering (Quebec, Canada) Policy Type Net Metering Affected Technologies Geothermal Electric, Solar Photovoltaics Active Policy Yes Implementing Sector Utility Funding Source Hydro-Quebec Primary Website http://www.hydroquebec.com/self-generation/index.html Summary In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option reflects a broad approach to

97

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

98

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionRenewable Energy). Map of Net Metering Policies, Metering_map.ppt>. Accessed

Darghouth, Naim

2010-01-01T23:59:59.000Z

99

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

The Economic Cost of Net Metering in Maryland: Who Bears thefor Renewable Energy). 2010. Map of Net Metering Policies.documents/summarymaps/Net_Metering_map.ppt>. Accessed

Darghouth, Naim

2010-01-01T23:59:59.000Z

100

City of St. George- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The...

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy meter  

SciTech Connect

This patent describes improvement in an energy meter. It comprises: a meter chassis having a transducer connected to sense energy usage and to provide an output having a fixed relation to the sensed energy usage, and a replaceable register connectable to the transducer for converting the output provided by the transducer into a readable energy usage indication. The improvement comprises: transducer identifying means secured to the chassis and coded to identify the fixed relation between the transducer output and the sensed energy usage; and transducer sensing means secured to the register for coupling with the transducer identifying means when the register is connected to the transducer.

Medlin, R.E.

1990-10-16T23:59:59.000Z

102

Property:OpenEI/UtilityRate/UseNetMetering | Open Energy Information  

Open Energy Info (EERE)

UseNetMetering UseNetMetering Jump to: navigation, search This is a property of type Boolean. Name: Use Net Metering Pages using the property "OpenEI/UtilityRate/UseNetMetering" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + false + 000086db-7a5e-4356-9c57-c912f7d1622e + false + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + false + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + false + 000b6dfa-a541-428a-9029-423006e22a34 + false + 000db36e-b548-43e7-a283-d37ecc77cef1 + false + 000e60f7-120d-48ab-a1f9-9c195329c628 + false + 00101108-073b-4503-9cd4-01769611c26f + false + 001361ca-50d2-49bc-b331-08755a2c7c7d + false + 00141c43-a74b-4768-aacc-47357b9e7858 + false + 0015a129-b638-4018-8e5b-aa54dd07b223 + false + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + false +

103

The Statewide Benefits Of Net-Metering In California  

E-Print Network (OSTI)

The Statewide Benefits Of Net-Metering In California & the Consequences of Changes to the Program-Metering In California Net Metering is a policy that allows commercial and residential electricity customers to receive and to meeting the clean energy mandates under California's Global Warming Solutions Act, AB32. Under

Kammen, Daniel M.

104

Participation in electric net-metering programs increased sharply ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... they can usually enter into a net-metering agreement with their utility.

105

Participation in electric net-metering programs increased ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... they can usually enter into a net-metering agreement with their utility.

106

Maritime Electric- Net Metering (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

In December 2005 The Renewable Energy Act and associated Regulations came into effect. A Government policy objective incorporated in the Act was the introduction of net metering for...

107

Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Operations & Maintenance » Metering Program Areas » Operations & Maintenance » Metering Metering October 7, 2013 - 9:21am Addthis Historically, the Federal sector has lagged in metering applications. It is not uncommon to find one meter serving hundreds of Federal facilities. These master meters make it very difficult to manage energy use and are a primary driver for Federal metering requirements. To help Federal agencies meet these requirements, this section outlines strategies and resources surrounding metering best practices, including: Metering Systems: Overview of metering system capabilities and functionality as well as common components across various metering systems Metering Approaches: Description of the four primary approaches to metering, including required equipment common for each approach

108

Current Experience With Net Metering Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

require customers who exceed a particular threshold in monthly demand to switch from an energy-based tariff to a demand-charge tariff. Since demand charge meters typically do not...

109

Net Metering and Interconnection Procedures-- Incorporating Best Practices  

SciTech Connect

State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC???¢????????s model interconnection and net metering procedures.

Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

2009-04-01T23:59:59.000Z

110

Review of EMGCs Recommendations for Net Metering  

E-Print Network (OSTI)

The Electricity Marketplace Governance Committee (part of the Nova Scotia Energy Strategy) Second Interim Report focuses on renewables and renewable generation of electricity. One section of the Report makes a series of recommendations regarding net metering, a way for electrical customers to generate and supply electricity to themselves as well as electricity utilities and distributors. The Second Interim Report makes seven recommendations for net metering, none of which favour the customer who is generating electricity. This paper considers the recommendations, highlighting the limitations of each. A series of alternate recommendations are proposed. 1

Larry Hughes

2003-01-01T23:59:59.000Z

111

Overcoming Net Metering and Interconnection Objections: New Jersey MSR Partnership  

DOE Green Energy (OSTI)

This fact sheet explains how the New Jersey MSR Partnership successfully revised net metering rules to make solar installations easier.

Not Available

2005-09-01T23:59:59.000Z

112

The Impact of Rate Design and Net Metering on the Bill Savings from  

E-Print Network (OSTI)

LBNL-3276E The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers

113

, Analysis of U.S. Net Metering and Interconnection Policy  

SciTech Connect

Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues. The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

Haynes, Rusty; Cook, Chris

2006-07-01T23:59:59.000Z

114

Net Energy Billing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Billing Energy Billing Net Energy Billing < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Maine Program Type Net Metering Provider Maine Public Utilities Commission All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing for individual customers. Furthermore IOUs are required to offer net metering for shared ownership customers, while COUs may offer net metering to shared ownership

115

Federal Energy Management Program: Metering  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering to Metering to someone by E-mail Share Federal Energy Management Program: Metering on Facebook Tweet about Federal Energy Management Program: Metering on Twitter Bookmark Federal Energy Management Program: Metering on Google Bookmark Federal Energy Management Program: Metering on Delicious Rank Federal Energy Management Program: Metering on Digg Find More places to share Federal Energy Management Program: Metering on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency Data Center Energy Efficiency Industrial Facilities

116

Federal Energy Management Program: Metering  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering Metering Historically, the Federal sector has lagged in metering applications. It is not uncommon to find one meter serving hundreds of Federal facilities. These master meters make it very difficult to manage energy use and are a primary driver for Federal metering requirements. To help Federal agencies meet these requirements, this section outlines strategies and resources surrounding metering best practices, including: Metering Systems: Overview of metering system capabilities and functionality as well as common components across various metering systems. Metering Approaches: Description of the four primary approaches to metering, including required equipment common for each approach. Metering Process: Outline of the five step process typically used to evaluate, design, install, and implement Federal metering programs.

117

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Database of State Incentives for Renewable Energy (DSIRE),Database of State Incentives for Renewable Energy), 2013.states offered net metering voluntarily (Database of State Incentives for Renewable Energy (

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

118

Economics of Energy Metering  

E-Print Network (OSTI)

Over the past 10 years energy costs at Union Carbide's Texas City Plant have risen tremendously. Most of this increase can be related to the rapid escalation in fuel prices. Because of the large cost increases and impact on product flow, it has become necessary to accurately measure energy usage (primarily fuel and steam) throughout the plant. There are currently several projects in the million dollar range to upgrade and add new metering to these flows. This paper will discuss the justification of one of these projects and give a brief overview of the project status.

Duncan, J. D.

1979-01-01T23:59:59.000Z

119

The Impact of Rate Design and Net Metering on the Bill Savings from  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Rate Design and Net Metering on the Bill Savings from The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Title The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Darghouth, Naïm, Galen L. Barbose, and Ryan H. Wiser Pagination 62 Date Published 04/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, electricity rate design, energy analysis and environmental impacts department, net metering, photovoltaics Abstract Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption.1 Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). Though net metering has played an important role in jump-starting the PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the bill-savings value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings benefits of PV varies under net metering, and how the bill savings under net metering compares to savings associated with other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE).3 The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state. We focus on these two utilities, both because we had ready access to a sample of load data for their residential customers, and because their service territories are the largest markets for residential PV in the country.

120

The Impact of Rate Design and Net Metering on the Bill Savings from  

Open Energy Info (EERE)

Impact of Rate Design and Net Metering on the Bill Savings from Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Focus Area: Renewable Energy Topics: Best Practices Website: eetd.lbl.gov/ea/emp/reports/lbnl-3276e.pdf Equivalent URI: cleanenergysolutions.org/content/impact-rate-design-and-net-metering-b Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report analyzes the bill savings from photovoltaic (PV) deployment for residential customers of California's two largest electric utilities -

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Management Certifications and Professional Development History Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal...

122

Metering Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Systems Metering Systems October 7, 2013 - 9:23am Addthis A variety of metering systems are currently on the market for Federal facility implementation. The information below outlines common metering system capabilities and common metering system components. Metering System Capabilities The capabilities and functionality of metering systems vary depending on the individual metering system. The following are some of the more common features used by Federal facilities. Data Recording: Advanced meters can record total energy resource consumption in addition to enhanced functions like time-of-use, peak demand, load survey, and power outage. Electrical meters may also be able to record data points such as voltage, current, and power factor. Total Consumption: The most basic data function, total consumption records

123

Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

certain types of hydropower are generally eligible, although systems greater than 100 kilowatts (kW) in capacity may be subject to certain costs at the utility's discretion....

124

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

The Economic Cost of Net-Metering in Maryland: Who Bears theDSIRE), 2010. Map of Net Metering Policies [WWW Document].documents/summarymaps/Net_Metering_map.ppt De Jonghe, C. ,

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

125

Energy Metering Audit Procedure  

E-Print Network (OSTI)

This paper describes the recent audit of the utility distribution meters in a petrochemical plant. These meters measure the steam, condensate, natural gas, water, nitrogen and air flows to the different process units within the plant. This audit started as an attempt to resolve discrepancies between the 650 PSIG steam distribution and supply meters. Theoretically the sum of the 650 PSIG steam flows to the units should have matched the total of the steam supplied to the plant. However, in this plant the monthly totals of the distribution were consistently 15% - 25% lower than the supply meter totals. The plant is billed on the basis of the supply meters. Therefore, these discrepancies represented a significant utility cost, approximately $150,000 a year, that was arbitrarily allocated among the different units. The plant commissioned an audit of the 650 PSIG distribution and supply meters. The purpose of this audit was to: 1. Certify that there were no users not monitored by the existing distribution meters. 2. Verify the operability and accuracy of the meters. Hopefully, the results of the audit would allow the plant to account for at least 90% of the steam supplied. This accounting was necessary for equitable distribution of utility costs and accurate determination of unit production costs. The project was eventually expanded to include all utility streams. The audit of the following utilities was funded and implemented due to their relatively high unit costs: 650 PSIG steam, 200 PSIG steam, natural gas, and nitrogen. The audit of the other utilities is planned but a schedule has not been established.

Whitaker, W. S.

1987-09-01T23:59:59.000Z

126

Net Zero Energy Communities  

Science Conference Proceedings (OSTI)

... Indianapolis, IN Transportation CO2 Per Acre Transportation CO2 Per Household Net Zero Energy Communities Page 18. Housing ...

2012-10-26T23:59:59.000Z

127

Electric Metering | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the electricity used by equipment that building occupants can control. Data is collected and reported by zones throughout Forrestal's north, south and west buildings. See the Forrestal metering zone map, below, for details on the zones.

128

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

purchasingratesfornetmetering,inter?tiefees,variabletothegrid,includingnetmetering,timeofusepricing,purchasingratesfornetmetering,intertiefees,peak

Al-Beaini, S.

2010-01-01T23:59:59.000Z

129

Healthcare Energy Metering Guidance (Brochure)  

Science Conference Proceedings (OSTI)

This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

Not Available

2011-07-01T23:59:59.000Z

130

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionThe Economic Cost of Net Metering in Maryland: Who Bears theImpact of Rate Design and Net Metering on the Bill Savings

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

131

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionThe Economic Cost of Net Metering in Maryland: Who Bears theof Rate Design and Net Metering on the Bill Savings from

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

132

Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States  

DOE Green Energy (OSTI)

Factors such as technological advancements, steadily decreasing costs, consumer demand, and state and federal policies are combining to make wind energy the world's fastest growing energy source. State and federal policies are facilitating the growth of the domestic, large-scale wind power market; however, small-scale wind projects (those with a capacity of less than 100 kilowatts[kW]) still face challenges in many states. Net metering, also referred to as net billing, is one particular policy that states are implementing to encourage the use of small renewable energy systems. Net metering allows individual, grid-tied customers who generate electricity using a small renewable energy system to receive credit from their utility for any excess power they generate beyond what they consume. Under most state rules, residential, commercial, and industrial customers are eligible for net metering; however, some states restrict eligibility to particular customer classes. This paper illustrates how net metering programs in certain states vary considerably in terms of how customers are credited for excess power they generate; the type and size of eligible technologies and whether the utility; the state, or some other entity administers the program. This paper focuses on10 particular states where net metering policies are in place. It analyzes how the different versions of these programs affect the use of small-scale wind technologies and whether some versions are more favorable to this technology than others. The choice of citizens in some states to net meter with photovoltaics is also examined.

Forsyth, T. L.; Pedden, M.; Gagliano, T.

2002-11-01T23:59:59.000Z

133

Metering Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Process Metering Process October 7, 2013 - 9:34am Addthis Developing and implementing a metering plan is highly dependent on the individual facility's needs, mission, metering equipment, and available infrastructure. One size does not fit all. The following guidelines outline the typical process for planning and implementing a metering program. Establish Program Goals and Objectives Establishing program goals and objectives is the critical first step for all metering programs. While the ultimate goal is usually measuring and lowering utility use or costs, the objectives needed to get this done varies. Examples of program objectives include: To fully enable energy bill allocation throughout the facility To effectively manage electric loads and minimize costs under a

134

Federal Energy Management Program: Metering Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering Systems Metering Systems to someone by E-mail Share Federal Energy Management Program: Metering Systems on Facebook Tweet about Federal Energy Management Program: Metering Systems on Twitter Bookmark Federal Energy Management Program: Metering Systems on Google Bookmark Federal Energy Management Program: Metering Systems on Delicious Rank Federal Energy Management Program: Metering Systems on Digg Find More places to share Federal Energy Management Program: Metering Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency

135

Smart meters | Open Energy Information  

Open Energy Info (EERE)

meters meters Jump to: navigation, search Smart meters are part of the initiative to install a smart grid to better power the United States in the coming year, helping incorporate renewable energy technologies into the grid while also making the existing grid more efficient. About Smart Grid Smartgridlogo.png The purpose of smart meters is to aid development of the United States Smart Grid initiative. The purpose of Smart Grid "to support the modernization of the nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure, outlined in Title XIII of the Energy Independence and Security Act of 2007 (PDF 821 KB)." More in-depth information can be found at SmartGrid.gov. It is believed that the implementation of a new Smart Grid "will make our grid more secure

136

NON INVASIVE ENERGY METER  

POTENTIAL APPLI ATIONS flow systems Fixed and variable liquid flow systems (e.g., solar systems) Energy Measurement TE HNOLOGI AL ENEFITS

137

Federal Energy Management Program: Metering Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Process to someone by E-mail Share Federal Energy Management Program: Metering Process on Facebook Tweet about Federal Energy Management Program: Metering Process on Twitter Bookmark Federal Energy Management Program: Metering Process on Google Bookmark Federal Energy Management Program: Metering Process on Delicious Rank Federal Energy Management Program: Metering Process on Digg Find More places to share Federal Energy Management Program: Metering Process on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency Data Center Energy Efficiency

138

Modeling adoption of solar photovoltaics and analysis of net metering in the city of Austin.  

E-Print Network (OSTI)

??Solar photovoltaics have received government support in the form of rebates, tax credits and net metering tariff mechanisms. The intended goal of these incentives is (more)

Josyula, Siva Kiran

2011-01-01T23:59:59.000Z

139

Metering Approaches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approaches Approaches Metering Approaches October 7, 2013 - 9:24am Addthis Metering approaches vary depending on facility design and intended purpose (e.g., administrative offices, laboratory, warehouse, etc.). No one approach fits all applications. In fact, different approaches are often needed at different times. For example, a different approach is needed depending on whether the program is trying to verify utility rates, implement demand response or load management programs, or support certification efforts. One-Time Measurements One-time measurements are useful in many baseline activities to understand instantaneous energy use, equipment performance, or loading. These measurements become particularly useful in trending equipment performance over time. For example, one-time measurements are useful when an energy-efficiency

140

Energy Theft in the Advanced Metering Infrastructure  

E-Print Network (OSTI)

Energy Theft in the Advanced Metering Infrastructure Stephen McLaughlin, Dmitry Podkuiko of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters, but that current AMI devices introduce a myriad of new vectors for achieving it. Key words: AMI, Smart meter

McDaniel, Patrick Drew

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

greenMeter | Open Energy Information  

Open Energy Info (EERE)

greenMeter greenMeter Jump to: navigation, search Tool Summary LAUNCH TOOL Name: greenMeter Agency/Company /Organization: Hunter Research & Technology Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Mobile Device Website: hunter.pairsite.com/greenmeter/ Web Application Link: hunter.pairsite.com/greenmeter/ Cost: Paid greenMeter Screenshot References: greenMeter[1] Logo: greenMeter greenMeter is an app for the iPhone and iPod Touch that computes your vehicle's power and fuel usage characteristics and evaluates your driving to increase efficiency, reduce fuel consumption and cost, and lower your environmental impact. Results are displayed in real time, while driving, to give instantaneous feedback. Overview Using accelerometer data and the advanced physics engine from the gMeter

142

GAS meter reading from real world images using a multi-net system  

Science Conference Proceedings (OSTI)

We present a new approach for automatic gas meter reading from real world images. The gas meter reading is usually done on site by an operator and a picture is taken from a mobile device as proof of reading. Since the reading operation is prone to errors, ... Keywords: Multi-net system, Neural networks, Object detection, Object segmentation, Ocr, Text localization

Marco Vanetti; Ignazio Gallo; Angelo Nodari

2013-04-01T23:59:59.000Z

143

Current Experience With Net Metering Programs Yih-huei Wan, NREL  

E-Print Network (OSTI)

with small generators to use the electricity they generate to offset their usage over an entire billing states. Net metering enables electricity customers with small generators to receive a higher value for some or all of the electricity they generate. This is accomplished by allowing the electric meters

144

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering.  

E-Print Network (OSTI)

??Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to (more)

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

145

A Million Meter Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Million Meter Milestone A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Program Manager, Smart Grid Investment Grant Program What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had the pleasure of seeing SGIG reach several important milestones recently. Among the most notable has been the recent achievement of three million smart meters installed by SGIG recipients as of December 31, 2010. On February 23, 2011, along with my colleague Chris Irwin, I was in Houston, Texas where SGIG

146

Net Metering (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Per H.F. 729: The PC may limit cumulative generation. IOUs may request a cumulative generation limit once generation has reached 4% of annual retail electricity sales. Applicable...

147

Net Metering (New Hampshire) | Open Energy Information  

Open Energy Info (EERE)

Government, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biodiesel, Biomass, CHP...

148

Net Metering (Utah) | Open Energy Information  

Open Energy Info (EERE)

Government, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

149

Net Metering (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Local Government, Multi-Family Residential, Nonprofit, Residential, Schools, State Government Eligible Technologies Biomass, Fuel Cells, Hydroelectric, Landfill Gas,...

150

Net Metering (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

Consumer, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Biomass, Fuel Cells using Renewable Fuels,...

151

Net Metering (Florida) | Open Energy Information  

Open Energy Info (EERE)

Government, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government, Tribal Government Eligible Technologies Biomass, CHPCogeneration,...

152

Net Metering (Arizona) | Open Energy Information  

Open Energy Info (EERE)

Commercial, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

153

Net Zero Energy Installations (Presentation)  

SciTech Connect

A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Booth, S.

2012-05-01T23:59:59.000Z

154

Energy Sub-Metering Equipment and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sub-Metering Equipment and Applications Energy Sub-Metering Equipment and Applications Speaker(s): Sim Gurewitz Date: July 24, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew This talk will address the following topics:Submetering basics: What is it? How does a submeter work?How to obtain a finer level of energy information within the buildingApplications: Who submeters and why?LEED NC/EB/CS and submetering / Energy & Atmosphere pointsSubmetering equipment: gas, electric, water, steam, CW Btu and HHW BtuHow to install equipment without scheduling an outageLoad Control option for automated load shedding and peak shavingWireless submeters and communication options / integration to EMS-BMCSAutomatic remote meter reading and cost allocation softwarePutting it all together into a metering SYSTEM: read from anywhere, IP

155

Smart meter aware domestic energy trading agents  

Science Conference Proceedings (OSTI)

The domestic energy market is changing with the increasing availability of energy micro-generating facilities. On the long run, households will have the possibility to trade energy for purchasing to and for selling from a number of different actors. ... Keywords: agents, energy trade, smart meter

Nicola Capodieci; Giuliano Andrea Pagani; Giacomo Cabri; Marco Aiello

2011-06-01T23:59:59.000Z

156

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network (OSTI)

); and · Similarly, use of PEM fuel cell waste heat for hot water heating would require careful integration with hot consider cogeneration of hot water to be a potential competitive advantage of stationary fuel cellsPWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems

Kammen, Daniel M.

157

Non-Invasive Energy Meter  

Sandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique that ...

158

Design of a Net-Metering and PV Exhibit for the 2005 Solar Decathlon  

SciTech Connect

In the 2005 Solar Decathlon competition, 19 collegiate teams will design, build, and operate grid-independent homes powered by photovoltaic (PV) arrays on the National Mall. The prominence of grid-interconnected systems in the marketplace has provided the impetus for the development of a net-metering exhibit to be installed and operated during the competition. The exhibit will inform the visiting public about PV basics and appropriate alternatives to grid-independent systems. It will consist of four interactive components. One will be designed to educate people about the principles of net metering using a small PV array, a grid-interactive inverter, and a variable load. Additional components of the exhibit will demonstrate the effects of orientation, cloud cover, and nighttime on performance. The nighttime component will discuss appropriate storage options for different applications.

Wassmer, M.; Warner, C.

2005-01-01T23:59:59.000Z

159

The Economic Value of PV and Net Metering to Residential Customers in California  

SciTech Connect

In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2010-05-17T23:59:59.000Z

160

The Economic Value of PV and Net Metering to Residential Customers in California  

SciTech Connect

In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2010-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Definition: Advanced Metering Infrastructure | Open Energy Information  

Open Energy Info (EERE)

search Dictionary.png Advanced Metering Infrastructure A system of smart meters, two-way communications networks, and data management systems implemented to enable metering and...

162

Metering Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Technology Corporation Jump to: navigation, search Name Metering Technology Corporation Place Scotts Valley, California Product Engineering related to communicating meters....

163

Nevada Smart Meter Program Launches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Smart Meter Program Launches Nevada Smart Meter Program Launches Nevada Smart Meter Program Launches October 18, 2010 - 11:30am Addthis Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Workers began installing smart meters for NV Energy's smart meter project three weeks ago. The project is expected to create 200 jobs, according to NV Energy. | Photo courtesy of NV Energy Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? These meters will not only allow residents to lower their energy bills by providing them information on their energy use, but by reducing operating costs, the utility expects to pass on these savings as well.

164

Portable Liquid Flow Metering for Energy Conservation Programs  

E-Print Network (OSTI)

Flow metering is absolutely required for evaluation of energy usage. In fact, determining usages and heat balances without metering are simply educated guesses. Recent technological innovations in flow metering have produced clamp-on, portable flow meters to measure liquids. This paper reviews the principles of ultrasonic flow meters. Applications and costs of ultrasonic versus orifice flow meters are important to consider in energy audits. A discussion follows on 'how' and 'where' to use ultrasonic flowmeters. Estimated costs contained in this paper encompass equipment costs as well as installation costs associated with both ultrasonic and orifice meters.

Miles, F. J.

1982-01-01T23:59:59.000Z

165

Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 2009 Net Metering Policy Development in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap Elizabeth Doris, Sarah Busche, and Stephen Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46670 December 2009 Net Metering Policy Development in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

166

Electricity Net Generation From Renewable Energy by Energy Use...  

Open Energy Info (EERE)

Electricity Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Provides annual net electricity generation (thousand kilowatt-hours) from...

167

Heating Energy Meter Validation for Apartments  

E-Print Network (OSTI)

Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second-stage buildings of the Kouan residential area in Baotou. Through the collection and processing of heat meters' data, reliability of data is analyzed, the main influencing factors for heat meters are discussed, and recommendations for heating pricing are presented.

Cai, B.; Li, D.; Hao, B.

2006-01-01T23:59:59.000Z

168

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes Title Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes Publication Type Report LBNL Report Number...

169

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

Science Conference Proceedings (OSTI)

Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

2011-06-01T23:59:59.000Z

170

Widget:GoalMeter | Open Energy Information  

Open Energy Info (EERE)

GoalMeter GoalMeter Jump to: navigation, search This widget produces an image showing progress against some numeric goal. Parameters Parameter Type Required? Example Description goal Integer Y 100 Total goal value http_link String Y groups.google.com/group/openei URL to which the meter will hyperlink. Note that the leading "http://" must be omitted. title String Y Google Group Members The goal's title. value Integer Y 25 Current value of progress against the goal. height Integer N (default=100) 150 Height of the meter image (in pixels). width Integer N (default=200) 300 Width of the meter image (in pixels). Example Output Google Group Members (goal: 100) Retrieved from "http://en.openei.org/w/index.php?title=Widget:GoalMeter&oldid=271157"

171

Securing Energy Metering Software with Automatic Source Code Correction  

E-Print Network (OSTI)

Securing Energy Metering Software with Automatic Source Code Correction Ib´eria Medeiros University of energy and achieving cost savings. This monitoring often involves energy metering software with a web of energy production have been fostering the monitoring and analy- sis of electricity consumption

Neves, Nuno

172

Definition: Net Zero | Open Energy Information  

Open Energy Info (EERE)

Zero Zero Jump to: navigation, search Dictionary.png Net Zero A building, home, or community that offsets all of its energy use from renewable energy available within the community's built environment.[1] View on Wikipedia Wikipedia Definition A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses". Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant

173

Net energy from nuclear power  

SciTech Connect

An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered. (auth)

Rotty, R.M.; Perry, A.M.; Reister, D.B.

1975-11-01T23:59:59.000Z

174

Definition: Meter Communications Network | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Meter Communications Network Jump to: navigation, search Dictionary.png Meter Communications Network The communications infrastructure that supports two-way delivery of information between smart meters and data collectors or access points. This infrastructure can be wired or wireless, and can be owned by the utility or a third party service provider. This network is sometimes referred to as a "field area network".[1] Related Terms smart grid References ↑ https://www.smartgrid.gov/category/technology/meter_communications_network [[C Like Like You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]] Retrieved from "http://en.openei.org/w/index.php?title=Definition:Meter_Communications_Network&oldid=493063"

175

Demand Response and Smart Metering Policy Actions Since the Energy...  

Open Energy Info (EERE)

Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

176

Study on Poly Phase Multifunction Energy Metering IC  

Science Conference Proceedings (OSTI)

ADE7758, ATT7022B and MAXQ3180 are three kinds of Three-phase multifunctional energy metering IC. In the first place, this paper gives an introduction of the three chips on theory of operation. After that, particular contrast is carried out on performance. ... Keywords: energy metering IC, interrupt, serial interface, power supply system

Jianyu Zhang, Maofa Gong, Lanbing Li, Yanping Su, Tao Liu

2013-07-01T23:59:59.000Z

177

Trinity College Green Week 2012 Energy Competition Win a Domestic Energy Meter  

E-Print Network (OSTI)

Trinity College Green Week 2012 Energy Competition ­ Win a Domestic Energy Meter As part of College and in many typical workplaces. The competition prizes will be 2 whole house energy meters. These meters allow would you like to win a domestic whole house energy meter as part of Trinity College Green Week 2012

O'Mahony, Donal E.

178

Smart Meters on Tap for Owasso, Oklahoma | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meters on Tap for Owasso, Oklahoma Meters on Tap for Owasso, Oklahoma Smart Meters on Tap for Owasso, Oklahoma September 10, 2010 - 12:52pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? Recovery Act-funded smart meter pilot project will help residents lower utility bills. Smart meter installations help utility company respond quicker to power outages. Seeing real-time energy use could help cities save 10% of their annual energy consumption. Owasso, Oklahoma, known as the "city with no limits," is living up to its name with sustainability and energy. The evidence is everywhere. You can't visit the city's website -- or Facebook, Twitter and Flickr accounts, for that matter -- without noticing its robust recycling and composting program, water conversation focus or

179

Demand Response and Smart Metering Policy Actions Since the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

180

Definition of a 'Zero Net Energy' Community  

SciTech Connect

This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

Carlisle, N.; Van Geet, O.; Pless, S.

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EnergyNet Student Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Activating EnergyNet<2> Saving Energy Matters Now and in the Future Remember this past July and how hot it was . . . the electric company had problems keeping up with the demand...

182

Grid Net | Open Energy Information  

Open Energy Info (EERE)

Net Net Jump to: navigation, search Name Grid Net Address 340 Brannan St Place San Francisco, California Zip 94107 Sector Efficiency Product Sells open, interoperable, policy-based network management software Website http://www.grid-net.com/ Coordinates 37.781265°, -122.393229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781265,"lon":-122.393229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

2010 Smart Meter Installations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

184

Smart Meters Help Balance Energy Consumption at Solar Decathlon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Clouds, rain, thunderstorms... at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's

185

Smart Meters Help Balance Energy Consumption at Solar Decathlon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a The Team Tidewater Virginia smart meter, as seen on opening day, indicates the team generated 5 kW hours of electricity in the first several hours of the competition. | Image courtesy of Lachlan Fletcher, Studio 18a Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Clouds, rain, thunderstorms... at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's

186

Energy Secretary Chu Announces Five Million Smart Meters Installed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Five Million Smart Meters Installed Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort June 13, 2011 - 12:00am Addthis Washington, DC - At a White House Grid Modernization event today, U.S. Department of Energy Secretary Steven Chu announced that more than five million smart meters have been installed nationwide as part of Recovery Act-funded efforts to accelerate modernization of the Nation's electric grid. Smart meters will provide utility companies with greater information about how much electricity is being used throughout their service areas. They will also give consumers access to real-time information about their energy consumption, allowing them to make well-informed decisions about how

187

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

188

An advanced metering infrastructure for future energy networks  

E-Print Network (OSTI)

Abstract. We are moving towards a highly distributed serviceoriented energy infrastructure where providers and consumers heavily interact with interchangeable roles. Smart meters empower an advanced metering infrastructure which is able to react almost in real time, provide fine-grained energy production or consumption info and adapt its behavior proactively. We focus on the infrastructure itself, the role and architecture of smart meters as well as the security and business implications. Finally we discuss on research directions that need to be followed in order to effectively support the energy networks on the future.

Stamatis Karnouskos; Orestis Terzidis; Panagiotis Karnouskos; Frigoglass S. A. I. C; Kato Achaia

2007-01-01T23:59:59.000Z

189

The "Other" Energy in Buildings: Wireless Power Metering of Plug...  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122...

190

2010 Smart Meter Installations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Small Business Partner Success Stories Prev 1 2 3 4 5 Next Related Topics Commercial Weatherization Home Energy Audits Sealing Your Home Energy Usage Consumption...

191

Smart Meter Company Boosting Production, Workforce | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce September 30, 2010 - 10:53am Addthis Kevin Craft What does this mean for me? This South Carolina company is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours Smart meters provide detailed data on energy usage to both utilities and consumers and is a key component of the Smart Grid. In 2009, Itron Inc.'s manufacturing facility in West Union, South Carolina was the third largest industrial employer in Oconee County. Then, the company used a $5.2 million 48C Advanced Manufacturing Tax Credit awarded via the Recovery Act to re-equip the facility and hired 420 additional employees. "Improving our production capacity allowed us to hire more employees, and

192

Smart Meter Company Boosting Production, Workforce | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce September 30, 2010 - 10:53am Addthis Kevin Craft What does this mean for me? This South Carolina company is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours Smart meters provide detailed data on energy usage to both utilities and consumers and is a key component of the Smart Grid. In 2009, Itron Inc.'s manufacturing facility in West Union, South Carolina was the third largest industrial employer in Oconee County. Then, the company used a $5.2 million 48C Advanced Manufacturing Tax Credit awarded via the Recovery Act to re-equip the facility and hired 420 additional employees. "Improving our production capacity allowed us to hire more employees, and

193

Net-Zero Energy, High-Performance Buildings Program  

Science Conference Proceedings (OSTI)

Net-Zero Energy, High-Performance Buildings Program. ... NIST completed design and construction of Net-Zero Energy Residential Test Facility; ...

2013-05-03T23:59:59.000Z

194

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems. The Arkansas Public Service Commission (PSC) adopted net-metering rules in...

195

How to Read Your Electric Meter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Electric Meter Your Electric Meter How to Read Your Electric Meter July 2, 2012 - 8:21pm Addthis The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. What are the key facts? The basic unit of measure of electric power is the Watt, and one thousand Watts are called a kilowatt. Your electric utility bills you by the kilowatt-hour -- the number of kilowatts you use per hour. When reading an electric meter, read and write down the numbers as shown on the dials from right to left. You may also wish to contact your local utility company for more

196

How to Read Your Electric Meter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to Read Your Electric Meter How to Read Your Electric Meter How to Read Your Electric Meter July 2, 2012 - 8:21pm Addthis The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. The difference between one month's reading and the next is the amount of energy units that have been used for that billing period. | Photo courtesy of Warren Gretz, NREL. What are the key facts? The basic unit of measure of electric power is the Watt, and one thousand Watts are called a kilowatt. Your electric utility bills you by the kilowatt-hour -- the number of kilowatts you use per hour. When reading an electric meter, read and write down the numbers as shown on the dials from right to left.

197

Two Million Smart Meters and Counting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Smart Meters and Counting Million Smart Meters and Counting Two Million Smart Meters and Counting August 31, 2010 - 6:02pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this mean for me? Smart meter technology will help families and businesses cut their energy costs by reducing response time for energy disruptions and enabling consumers to better monitor their consumption. The implementation of smart grid technologies could reduce electricity use by more than four percent annually by 2030 -- that would mean consumers around the country would see savings of over $20 billion each year. Secretary Steven Chu visited Battelle headquarters in Columbus, Ohio, today to make a big announcement about our nation's electrical grid: an

198

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

199

Mode Meter - Home - Energy Innovation Portal  

A large effort is underway in the electricity industry to replace those legacy systems ... Energy Innovation ... Technology Marketing Summary Electricity grids ...

200

Shared Signals: Using Existing Facility Meters for Energy Savings Verification  

E-Print Network (OSTI)

This paper reviews and summarizes techniques for using or sharing signals from existing facility and utility meters for the purpose of verifying energy savings from industrial, institutional and large commercial energy conservation projects. Techniques for sharing or using signals from existing electric, natural gas, fuel oil, steam, steam condensate, boiler feedwater, hot water and chilled water meters will be described. The techniques and experiences reported in this paper are based on the results of the actual in-field installation of energy monitoring equipment in several hundred sites at various locations throughout the United States.

McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

City of Brenham - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 kW or less are exempt from the insurance requirements as long as the system's inverter is UL 1741 listed and meets IEEE 1547 requirements. A disconnect switch that is...

202

Fort Collins Utilities - Net Metering (Colorado) | Open Energy...  

Open Energy Info (EERE)

to the customer) at the end of each 12-month billing cycle. The customer's inverter must meet IEEE 1547 and UL 1741 standards. A lockable disconnect switch is required....

203

City of Danville - Net Metering (Virginia) | Open Energy Information  

Open Energy Info (EERE)

Power Systems, certified by vendor * Utility inspection of static and nonstatic inverter-connected renewable fuel generators * Requirements specific to systems generating...

204

City of Brenham - Net Metering (Texas) | Open Energy Information  

Open Energy Info (EERE)

20 kW or less are exempt from the insurance requirements as long as the system's inverter is UL 1741 listed and meets IEEE 1547 requirements. A disconnect switch that is...

205

Ames Electric Department - Net Metering (Iowa) | Open Energy...  

Open Energy Info (EERE)

and tidal power. It does not include technologies that rely on fossil fuels, fossil fuel waste products, or waste products from inorganic sources. The use of the word...

206

Smart Meters and a Smarter Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid Smart Meters and a Smarter Grid May 16, 2011 - 4:40pm Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory Have you heard of smart meters? Do you understand them? If so, you've had a leg up on me until now. I've heard of smart meters here and there from the odd news article or website, but to me the grapevine has been more like an invisible beehive: all buzz and no honey. Where are they? Why don't I have one yet, and will I have to buy it to be part of the system? Do they really save energy? Is Big Brother counting my kilowatts for me now, or what? These are the questions that don't keep me up at night, but I suspect more and more people are asking. Photo credit: U.S. Department of Energy We talked about what a Smart Grid is in February. The standard electrical

207

Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap  

DOE Green Energy (OSTI)

The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

Doris, E.; Busche, S.; Hockett, S.

2009-12-01T23:59:59.000Z

208

Definition of a Zero Net Energy Community | Open Energy Information  

Open Energy Info (EERE)

Definition of a Zero Net Energy Community Definition of a Zero Net Energy Community Jump to: navigation, search Name Net Zero Agency/Company /Organization National Renewable Energy Laboratory Partner Nancy Carlisle, Otto Van Geet, Shanti Pless Focus Area Energy Efficiency, Buildings, People and Policy Phase Determine Baseline, Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2009/11/01 Website http://www.nrel.gov/docs/fy10o References Definition of a 'Zero Net Energy' Community[1] Overview This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewable energy available within the community's built environment. It assists a community also by showing the importance of this classification by encouraging

209

Net-Zero Energy Residential Test Facility (NZERTF) ...  

Science Conference Proceedings (OSTI)

... NZERTF). NIST Unveils Net-Zero Energy Residential Test Facility to Improve Testing of Energy-Efficient Technologies. Welcome. ...

2013-11-04T23:59:59.000Z

210

Definition: Reduced Meter Reading Cost | Open Energy Information  

Open Energy Info (EERE)

Meter Reading Cost Jump to: navigation, search Dictionary.png Reduced Meter Reading Cost Advanced metering infrastructure (AMI) equipment eliminates the need to send someone to...

211

A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database over TCP/IP Network  

E-Print Network (OSTI)

4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database processing to allow the adequate information integration and resource control in the energy distribution the energy distribution enterprise information. Reading the electronic energy meters is made through

Borissova, Daniela

212

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available to... http:energy.govsavingsalabamasaves-revolving-loan-program-0 Rebate Net Metering '''''The MPSC is reviewing state interconnection and net metering policies in...

213

Smart meter deployments continue to rise - Today in Energy - U ...  

U.S. Energy Information Administration (EIA)

Utilities have incentives to install advanced meters for residential customers because automated meter reading and remote connect-disconnect options ...

214

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

with their free energy audit program. Meters were installedinstalled as part of an energy audit program. Users may be

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

215

Community Renewable Energy Success Stories Webinar: Net Zero Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Zero Energy Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories - Net Zero Energy Communities," originally presented on October 16, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Ken Kelly: Good afternoon, and welcome to today's webinar sponsored by the U.S. Department of Energy. This is Ken Kelly, and Courtney Kendall broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and logon. So while we wait, Courtney was going to go over some of the logistics and then we'll begin with today's webinar.

216

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

217

Energy balance framework for net zero energy buildings  

Science Conference Proceedings (OSTI)

Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons -- they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are ...

Ravi S. Srinivasan; Daniel P. Campbell; William W. Braham; Charlie D. Curcija

2011-12-01T23:59:59.000Z

218

Commercial building end-use energy metering inventory  

SciTech Connect

Pacific Northwest Laboratory conducted a comprehensive inventory of end-use metered data. The inventory did not discover many sources of metered end-use data; however, research into existing data bases and extensive discussions with professionals associated with building energy conservation have enabled a clear characterization to be developed of the types of metered data that are required to further energy conservation in commercial buildings. Based on the results of the inventory and this clarification of data requirements, the adequacy of existing data bases has been assessed, and recommendations have been developed for future federal data collection efforts. A summary of sources of existing metered end-use data is provided in Section 2.1 and its adequacy has been summarized. Collection of further end-use metered data is both desirable and valuable for many areas of building energy conservation research. Empirical data are needed to address many issues which to date have been addressed using only simulation techniques. The adequacy of using simulation techniques for various purposes needs to be assessed through comparison with measured data. While these data are expensive to acquire, it is cost-effective to do so in the long run, and the need is not being served by the private market. The preceding conclusion based on results from the inventory of existing data highlights two important facts: First, although the data are widely desired in the private sector, they are not widely available. Second, where suitable data are publicly available and contain the desired supporting information, their collection has generally been funded by government-sponsored research.

Heidell, J.A.; Mazzucchi, R.P.; Reilly, R.W.

1985-03-01T23:59:59.000Z

219

New Report Identifies Strategies to Achieve Net-Zero Energy ...  

Science Conference Proceedings (OSTI)

New Report Identifies Strategies to Achieve Net-Zero Energy Homes. From NIST Tech Beat: May 14, 2013. ...

2013-05-14T23:59:59.000Z

220

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Metering Sensitivity Analyses28 4.2.1. Impact of Sub-metering. The first sensitivity analysis examines the impact of sub-

Darghouth, Naim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado  

Science Conference Proceedings (OSTI)

This abbreviated report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project.

Dean, J.; Van Geet, O.; Simkus, S.; Eastment, M.

2012-04-01T23:59:59.000Z

222

OpenNet Training | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OpenNet Training OpenNet Training Enforcement Guidance Oversight Reporting Classification Classification Training Institute Official Use Only Information Unclassified Controlled...

223

How Would You Use a Smart Meter to Manage Your Energy Use? |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monday, Andrea told you about smart meters and how they can help you monitor your home's energy usage. How would you use a smart meter to manage your energy use? Each Thursday,...

224

Project: Measuring Performance of Net-Zero Energy Homes  

Science Conference Proceedings (OSTI)

Measuring Performance of Net-Zero Energy Homes Project. Summary: ... A key driver of energy use in residential buildings is occupant behavior. ...

2012-12-27T23:59:59.000Z

225

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Landfill Waste, and Zero Net Greenhouse Gas Emissions by 2020 Speaker(s): John Elliott Date: May 14, 2012 -...

226

Modelling of Turkey's net energy consumption using artificial neural network  

Science Conference Proceedings (OSTI)

The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using artificial neural network (ANN) technique in order to determine the future level of the energy consumption in Turkey. Two different models ... Keywords: Turkey, artificial neural networks, energy forecasting, energy sources, estimation, gross generation, net energy consumption

Adnan Sozen; Erol Arcaklioglu; Mehmet Ozkaymak

2005-04-01T23:59:59.000Z

227

Targeting Net Zero Energy for Military Installations (Presentation)  

Science Conference Proceedings (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

228

EPA Clean Energy-Environment Technical Forum Motivating Energy Efficiency with Metering Technologies  

E-Print Network (OSTI)

Advanced Metering Infrastructure (AMI) initiatives are gaining popularity in the states as an important tool to modernize the electricity grid, reduce peak demand and reach energy efficiency goals. Often called Smart Metering, AMI is part of the foundation for utilities to implement a new smart grid 1 that can minimize the need for additional power generation facilities and transmission lines. AMI uses

unknown authors

2008-01-01T23:59:59.000Z

229

Privacy-friendly energy-metering via homomorphic encryption  

Science Conference Proceedings (OSTI)

The first part of this paper discusses developments wrt. smart (electricity) meters (simply called E-meters) in general, with emphasis on security and privacy issues. The second part will be more technical and describes protocols for secure communication ... Keywords: homomorphic encryption, privacy, smart-metering

Flavio D. Garcia; Bart Jacobs

2010-09-01T23:59:59.000Z

230

Have You Used an Electric Meter to Measure Your Energy Use? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Have You Used an Electric Meter to Measure Your Energy Use? Have You Used an Electric Meter to Measure Your Energy Use? Have You Used an Electric Meter to Measure Your Energy Use? December 10, 2009 - 7:30am Addthis This week, you read about using an electric meter to measure and manage your energy use. Using a meter could make you more conscious of exactly what items are costing you the most money. Plus, it can be kind of fun to put actual numbers to the various items in your home. Have you used an electric meter to measure your energy use? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure

231

Community Renewable Energy Success Stories Webinar: Net Zero...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presentation will feature information on two communities that have developed net zero energy communities. U.C. Davis in California, and Kapolei in Hawaii. So let's just dive...

232

Net Zero Energy Military Installations: A Guide to Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John Barnett, Kari Burman, Josh Hambrick and Robert Westby Technical Report NREL...

233

Definition: Meter Data Management System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Dictionary.png Meter Data Management System A meter data management system (MDMS) collects and stores meter data from a head-end system and processes that meter data into information that can be used by other utility applications including billing, customer information systems, and outage management systems. The MDMS is a key resource for managing large quantities of meter data.[1] Related Terms system, outage management system References ↑ https://www.smartgrid.gov/category/technology/meter_data_management_system [[Ca LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tegory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Meter_Data_Management_System&oldid=50258

234

Smart Metering Pilot Program Inc SMPPI | Open Energy Information  

Open Energy Info (EERE)

Metering Pilot Program Inc SMPPI Metering Pilot Program Inc SMPPI Jump to: navigation, search Name Smart Metering Pilot Program, Inc. (SMPPI) Place Washington, DC Product SMPPI is a non-profit corporation composed of representatives of Pepco, the D.C. Public Service Commission, the D.C. Office of People's Counsel, the D.C. Consumer Utility Board, and the International Brotherhood of Electrical Workers Local 1900. References Smart Metering Pilot Program, Inc. (SMPPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Smart Metering Pilot Program, Inc. (SMPPI) is a company located in Washington, DC . References ↑ "Smart Metering Pilot Program, Inc. (SMPPI)" Retrieved from "http://en.openei.org/w/index.php?title=Smart_Metering_Pilot_Program_Inc_SMPPI&oldid=351192"

235

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

production(abovetheutilityratefor electricitysoldlocalenergycostsandutilityrate structures. NetZero1:BaseCaseInputs Theutilityratesusedshouldalsobe

Al-Beaini, S.

2010-01-01T23:59:59.000Z

236

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

details on the residential electricity rates offered by PG&Eis based on the residential retail electricity rates and net

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

237

Metered energy consumption and analysis of energy conservation techniques in desktop PCs and workstations  

E-Print Network (OSTI)

This thesis investigates potential energy savings due to the application of power managed PCS, monitors, and workstations. The basis of this effort includes electric metering of such equipment at six preliminary and one ...

Bosko, Kristie L. (Kristie Lee)

1996-01-01T23:59:59.000Z

238

TacNet Tracker - Energy Innovation Portal  

Technology Marketing Summary The TacNet Tracker is designed to transport information securely via portable handheld units without the need for fixed ...

239

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

a direct comparison of electricity bills between customersincludes both bill credits for electricity exported to thethe meter). Bill credits for PV electricity production in

Darghouth, Naim

2010-01-01T23:59:59.000Z

240

Definition: Meter Data Analysis System | Open Energy Information  

Open Energy Info (EERE)

would be separate from a Meter Data Management System.1 References https:www.smartgrid.govcategorytechnologymeterdataanalysissystem Ret LikeLike UnlikeLike You like...

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Secretary Chu Announces Five Million Smart Meters Installed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming the Nation's current electric grid into a more intelligent "smart" system involves a wide range of advanced technologies - including smart meters -that will...

242

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Landfill Waste, and Zero Net Greenhouse Gas Emissions by 2020 Speaker(s): John Elliott Date: May 14, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Andrea Mercado John will highlight sustainability efforts at UC Merced, particularly with respect to its Triple Zero Commitment to zero net energy, zero landfill waste, and climate neutrality by 2020. From a technical perspective, the campus zero net energy strategy relies primarily on energy efficiency, solar energy, and plasma gasification, along with various smart grid strategies. Zero waste efforts currently emphasize composting and control of purchasing to simplify recycling efforts. Campus efforts are only beginning to address climate neutrality beyond initial attainment of zero

243

BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint  

DOE Green Energy (OSTI)

A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

2005-04-01T23:59:59.000Z

244

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

customers in California. Energy Policy Database of Stateelectric power systems. Energy Policy 35, 28522861. Dobrow,solar power systems. Energy Policy 34, 17971806. Faruqui,

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

245

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Sullivan, K. , 2009. Renewable Energy Cost of GenerationBlack and Veatch. Renewable Energy Costs. Presented at theof renewable energies: A transaction-cost perspective.

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

246

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

in wholesale energy markets. Progress in Photovoltaics:The Economics of Energy Market Transformation Programs. TheCalifornia's current energy market, for example, allows

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

247

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Designing Austin Energys Solar Tariff Using a Distributedtwo-part tariff that recovers both energy and capacity costsa two-part tariff, however, when the energy charge is a (

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

248

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

to the additional procurement costs of wind energy, factored2009. The Cost of Transmission for Wind Energy: A Review ofcost per unit of delivered energy among studies of transmission projects to deliver wind energy

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

249

Effective Energy Metering of Solar Domestic Hot Water Systems for Inclusion in Green Power and Renewable Portfolio Standards.  

E-Print Network (OSTI)

??The goal of this metering experiment was to construct and validate a methodology to meter accurately, reliably, and affordably the amount of electrical energy offset (more)

Cleveland, Thomas Hilburn

2004-01-01T23:59:59.000Z

250

Non-invasive energy meter for fixed and variable flow systems ...  

An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising ...

251

Documentation of the Irvine Integrated Corridor Freeway Ramp Metering and Arterial Adaptive Control Field Operational Test  

E-Print Network (OSTI)

and LADOT. NET proceeds with ramp metering coding and thechanges. NET proceeds with ramp metering coding/testing and17: Ramp metering demonstration at NET. Caltrans extends the

McNally, M. G.; Moore, II, James E.; MacCarley, C. Arthur

2001-01-01T23:59:59.000Z

252

The BLOOMhouse:Zero Net Energy Housing  

E-Print Network (OSTI)

The 2007 University of Texas Solar Decathlon House is called the BLOOMhouse because it represents the seed of new ideas for zero net energy housing. The University of Texas student team developed a prefabricated 7.9 kW stand-alone solar-powered modular house that sits lightly on the land and forms the superstructure for photovoltaic technologies and a sustainable approach to the building envelope. The prefabricated house can be adapted to a specific site and modified for the needs of a different site within a different climatic zone, and client context. Recognizing that consumers look to Solar Decathlon entries for ideas of how to integrate renewable energy technologies into their own homes this house will serve as a working example to homeowners, homebuilders, and architects. The Solar Decathlon is an international initiative and University competition sponsored by the U.S. Department of Energy, designed to stimulate research, industry and education to advance renewable energy technologies, with a specific focus on building-integrated photovoltaics. Now entering its fourth cycle, the Decathlon provides a unique opportunity to envision, fabricate and test the possibilities of highly efficient modern dwellings. Our team of architecture and engineering faculty and students under the direction of Professor Michael Garrison, Professor Samantha Randall, Professor Atila Novoselac, and Lecturer Russell Krepart constructed a completely stand-alone solar-powered home that serves as a catalyst for change, leading the residential housing industry toward more sustainable practices while addressing the need for well designed, appropriately diverse, economically viable, and environmentally responsible housing. Through use of solar power and energy efficient design, this project offers homeowners the means to directly participate in the energy economy, moving from energy consumers to energy producers. The Solar Decathlon completion occurs every two years and is run by the National Renewable Energy Laboratory, which requires a portable structure of a fairly modest scale, with a dual prescription for both exhibition and inhabitation. The Program calls for the design to appeal to the normal modern American lifestyle of the general public -- the solar decathlon house is designed to support all the power needs of a typical household, including lighting, cooking, heating and cooling, and telecommunications. There should also be enough energy remaining to charge an electric vehicle for getting around. The competition requires the construction of the home "offsite". It should have a maximum dwelling footprint of 800 square feet, suitable for two people and mobile, so that it can be transported for a temporary exhibition "village," on the National Mall. The home has to be installed in four days, occupied and tested during the competition and then subsequently removed and shipped back to Austin. The University of Texas has participated in the competitions in 2002, 2005 and 2007.

Garrison, M.; Krepart, R.; Randall, S.; Novoselac, A.

2008-12-01T23:59:59.000Z

253

Millenial Net Inc | Open Energy Information  

Open Energy Info (EERE)

Millenial Net Inc Millenial Net Inc Jump to: navigation, search Name Millenial Net, Inc. Place Burlington, Massachusetts Zip MA 01803 Sector Services Product Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

American PowerNet | Open Energy Information  

Open Energy Info (EERE)

Name American PowerNet Place Pennsylvania Utility Id 49730 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 -...

255

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

case of wind electricity in Spain. Energy Policy 36, 3345case of wind electricity in Spain. Energy Policy 36, 3345wind penetrations will affect investment incentives in the GB electricity sector. Energy Policy

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

256

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

power development. Renewable Energy 33, 18541867. Caamao-SR-581-42303). National Renewable Energy Laboratory (NREL),State Incentives for Renewable Energy (DSIRE), 2010. Map of

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

257

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Energy Outlook 2011 with Projections to 2035. U.S. EnergyEnergy Outlook 2012 with Projections to 2035. U.S. Energycontemporaneous long-term projections of natural gas prices,

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

258

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

adopt, consisting of an energy market with price caps and adesign featuring an energy market with price If the TOU anddesigns (e.g. , an energy market with a price cap, combined

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

259

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

metering, the average price paid for PV generation under thecredits some or all PV production at prices based on thethe average MPR-based price at a 25% PV-to-load ratio and $

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

260

Vids4Grids: Smart Meters and Super Cables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grids: Smart Meters and Super Cables Grids: Smart Meters and Super Cables Vids4Grids: Smart Meters and Super Cables March 14, 2011 - 4:46pm Addthis This episode of Vids 4 Grids will take us to Itron's smart meter factory in West Union, SC where we will learn the role smart meters play in the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? Smart meters allow consumers to get real time information about their energy usage. Super cables help provide more reliable electricity to your home. In January we introduced you to the Vids4Grids project, a series of videos targeting students in high school and starting college. Through integration into curricula and online posting for open viewing, the project aims to increase awareness and create interest in power systems careers to help

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vids4Grids: Smart Meters and Super Cables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vids4Grids: Smart Meters and Super Cables Vids4Grids: Smart Meters and Super Cables Vids4Grids: Smart Meters and Super Cables March 14, 2011 - 4:46pm Addthis This episode of Vids 4 Grids will take us to Itron's smart meter factory in West Union, SC where we will learn the role smart meters play in the Smart Grid. Deborah J. Buterbaugh Energy Project Specialist at National Energy Technology Laboratory What does this mean for me? Smart meters allow consumers to get real time information about their energy usage. Super cables help provide more reliable electricity to your home. In January we introduced you to the Vids4Grids project, a series of videos targeting students in high school and starting college. Through integration into curricula and online posting for open viewing, the project aims to increase awareness and create interest in power systems careers to help

262

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Programs. The Energy Journal 20, 1564. Duke, R. , Williams,energy security or independence, local air quality issues, learning effects leading to future cost reductions, and economic development and jobs (Duke and

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

263

SolarNet | Open Energy Information  

Open Energy Info (EERE)

SolarNet SolarNet Jump to: navigation, search Name SolarNet Place Healdsburg, California Zip 95448 Sector Solar Product Solar project developer with subsidiaries involved in the distribution, installation and financing of solar projects. Coordinates 38.610645°, -122.868834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.610645,"lon":-122.868834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

2005a. Time- varying retail electricity prices: Theory andpractice. Electricity Deregulation: Choices and Challenges.efficiency of real-time electricity pricing. Energy Journal

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

265

Cyprus Smart metering demo (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Cyprus Smart metering demo (Smart Grid Project) Cyprus Smart metering demo (Smart Grid Project) Jump to: navigation, search Project Name Cyprus Smart metering demo Country Cyprus Coordinates 35.126411°, 33.429859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.126411,"lon":33.429859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilities. Net metering is available to customers who generate electricity using solar energy, geothermal energy, wind energy, biomass energy, ocean energy, hydrogen,...

267

Zero Net Energy Myths and Modes of Thought  

NLE Websites -- All DOE Office Websites (Extended Search)

(CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly...

268

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

energy) Natural gas Pumped Storage C Price Elasticity ofhydro power plants, pumped storage, and nuclear plants).the 2011 levels of pumped hydro storage (3.6 GW), which has

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

269

Demand Response and Smart Metering Policy Actions Since the Energy Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Smart Metering Policy Actions Since the Energy and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating Committ ee (DRCC) for the National Council on Electricity Policy (NCEP). The report focuses on State and Federal policy developments during the period from 2005 to mid-year 2008. It is an att empt to catalogue information on policy developments at both the federal and state level, both in the legislative and regulatory arenas. Demand Response and Smart Metering Policy Actions Since the Energy Policy

270

Definition: Net Interchange Schedule | Open Energy Information  

Open Energy Info (EERE)

Interchange Schedule Interchange Schedule Jump to: navigation, search Dictionary.png Net Interchange Schedule The algebraic sum of all Interchange Schedules with each Adjacent Balancing Authority.[1] Related Terms Balancing Authority, Adjacent Balancing Authority, Interchange, Interchange Schedule, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Net_Interchange_Schedule&oldid=502531" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

271

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft...

272

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

SciTech Connect

The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

2011-10-01T23:59:59.000Z

273

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

274

Building Energy Software Tools Directory: Degree Day .Net  

NLE Websites -- All DOE Office Websites (Extended Search)

Degree Day .Net Degree Day .Net Logo for Degree Day.net Website that generates heating and cooling degree days for locations worldwide. Degree days are commonly used in calculations relating to building energy consumption. Once you have chosen a weather station (of which there are thousands available) and specified the degree days you want (e.g. what base temperature, do you want them broken down in daily, weekly or monthly format), Degree Days.net will calculate your degree days, and give them to you as a CSV file that you can open directly in a spreadsheet. Screen Shots Keywords degree days, HDD, CDD Validation/Testing A comprehensive suite of automated tests have been written to test the software. Expertise Required Degree Days.net makes it very easy to specify and generate degree days, so

275

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

Targeting Net Zero Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy Laboratory Kate Anderson, Tony Markel, Mike Simpson, John Leahey, Caleb Rockenbaugh, Lars Lisell, Kari Burman, and Mark Singer October 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

276

ESB Smart Meter Projects (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

ESB Smart Meter Projects ESB Smart Meter Projects Country Ireland Headquarters Location Cork, Ireland Coordinates 51.897873°, -8.471087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.897873,"lon":-8.471087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

regulated utilities to file tariffs allowing net metering to customers that generate electricity... http:energy.govsavingsnet-metering-39 Rebate Requirements for Wind...

278

Collective Impact for Zero Net Energy Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collective Impact For ZNERH SAM RASHKIN Chief Architect, BTO Building America Annual Stakeholder Meeting April 30, 2013 Strategy for Social Change Collective Impact: The commitment of a group of important actors from different sectors to a common agenda for solving a specific social problem. "Collective Impact" by John Kania and Mark Kramer Stanford Social Innovation Review Winter 2011 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Examples of Collective Impact "Remarkable Exceptions" * Strive Public Education in Greater Cincinnati * Elizabeth River Project in Southeast Virginia * Shape Up Childhood Obesity Summerville, MA 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov

279

Pantex installs new meters to help to reduce energy consumption | National  

NLE Websites -- All DOE Office Websites (Extended Search)

meters to help to reduce energy consumption | National meters to help to reduce energy consumption | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new meters to help to ... Pantex installs new meters to help to reduce energy consumption Posted By Office of Public Affairs Project Manager Janice Clark gives a safety briefing.

280

Pantex installs new meters to help to reduce energy consumption | National  

National Nuclear Security Administration (NNSA)

meters to help to reduce energy consumption | National meters to help to reduce energy consumption | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new meters to help to ... Pantex installs new meters to help to reduce energy consumption Posted By Office of Public Affairs Project Manager Janice Clark gives a safety briefing.

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri River Energy Services Net Metering North Dakota Commercial Industrial Residential Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity...

282

Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings  

Science Conference Proceedings (OSTI)

Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying (Iris); Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

2011-05-24T23:59:59.000Z

283

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

284

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Although these devices have been studied for 30 years, they are not as well understood as the other end-uses due to their great variety and difficulty in collecting representative energy data for them. This talk describes a method for collecting device-level energy use data for these devices using a relatively low-cost wireless mesh networking technology. Over 600 meters were deployed across B90 and three homes to

285

Historic Railroad Building Goes Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

286

Historic Railroad Building Goes Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

287

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

SciTech Connect

A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

2009-09-01T23:59:59.000Z

288

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

SciTech Connect

A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

2009-09-01T23:59:59.000Z

289

Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

Science Conference Proceedings (OSTI)

This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

2011-08-17T23:59:59.000Z

290

DOE to Pursue Zero-Net Energy Commercial Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pursue Zero-Net Energy Commercial Buildings Pursue Zero-Net Energy Commercial Buildings DOE to Pursue Zero-Net Energy Commercial Buildings August 5, 2008 - 2:40pm Addthis National Renewable Energy Laboratory Announces Support for Clean Tech Open PALO ALTO, Calif. - U.S. Department of Energy (DOE) Deputy Assistant Secretary for Energy Efficiency David Rodgers today announced the launch of DOE's Zero-Net Energy Commercial Building Initiative (CBI) with establishment of the National Laboratory Collaborative on Building Technologies Collaborative (NLCBT). These two efforts both focus on DOE's ongoing efforts to develop marketable Zero-Net Energy Commercial Buildings, buildings that use cutting-edge efficiency technologies and on-site renewable energy generation to offset their energy use from the electricity

291

DOE to Pursue Zero-Net Energy Commercial Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pursue Zero-Net Energy Commercial Buildings Pursue Zero-Net Energy Commercial Buildings DOE to Pursue Zero-Net Energy Commercial Buildings August 5, 2008 - 2:40pm Addthis National Renewable Energy Laboratory Announces Support for Clean Tech Open PALO ALTO, Calif. - U.S. Department of Energy (DOE) Deputy Assistant Secretary for Energy Efficiency David Rodgers today announced the launch of DOE's Zero-Net Energy Commercial Building Initiative (CBI) with establishment of the National Laboratory Collaborative on Building Technologies Collaborative (NLCBT). These two efforts both focus on DOE's ongoing efforts to develop marketable Zero-Net Energy Commercial Buildings, buildings that use cutting-edge efficiency technologies and on-site renewable energy generation to offset their energy use from the electricity

292

Nevada Smart Meter Program Launches | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

weeks ago, Las Vegas-based NV Energy launched the pilot phase of a massive smart grid project aimed at helping residents manage their energy use, saving millions of dollars in...

293

Smart Meter Aware Domestic Energy Trading Agents Nicola Capodieci  

E-Print Network (OSTI)

energy at the cheapest price possible. The market also contains a third party authority, known demand, but only a fraction of it. The Gencos have the goal to sell energy optimizing price per unit, that is, since production costs do not grow linearly, they want to sell energy at the price yielding

Aiello, Marco

294

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

295

Energy Data Collection and Metering in Texas State Agencies  

E-Print Network (OSTI)

The State of Texas is probably the largest utility consumer in Texas. Each year, more than 130 separate agencies purchase some form of energy (electricity, natural gas, steam, and hot or chilled water). Annual energy bills for state agencies range from a few hundred dollars to over $20 million, and the total for all agencies is currently near $200 million. To keep pace with the trend of energy consumption in state facilities, the Governor's Energy Management Center (GEMC) requests agencies to mail in energy cost and consumption reports semiannually. This method of energy consumption reporting is proving inadequate, so the GEMC is investigating the use of computerized reporting to obtain this data from state facilities. Similarly, as energy retrofit projects at state facilities become funded, remote monitoring devices to track and document actual energy savings are being considered. A pilot project is underway in conjunction with a cogeneration feasibility study at Austin State Hospital in Austin, Texas. This paper will discuss past, present and future methods of energy data collection for state agencies, and the proposed method of monitoring retrofit projects.

Grigg, T. J.

1988-01-01T23:59:59.000Z

296

Energy Dependence of High Moments for Net-proton Distributions  

Science Conference Proceedings (OSTI)

High moments of multiplicity distributions of conserved quantities are predicted to be sensitive to critical fluctuations. To understand the effect of the non-critical physics backgrounds on the proposed observable, we have studied various moments of net-proton distributions with AMPT, Hijing, Therminator and UrQMD models, in which no QCD critical point physics is implemented. It is found that the centrality evolution of various moments of net-proton distributions can be uniformly described by a superposition of emission sources. In addition, in the absence of critical phenomena, some moment products of net-proton distributions, related to the baryon number susceptibilities in Lattice QCD calculations, are predicted to be constant as a function of the collision centrality. We argue that a non-monotonic dependence of the moment products as a function of the beam energy may be used to locate the QCD critical point.

Luo, Xiaofeng; Mohanty, Bedangadas; Ritter, Hans Georg; Xu, Nu

2010-07-07T23:59:59.000Z

297

Nissan and Centro partner to reduce energy cost 20% through improved metering  

NLE Websites -- All DOE Office Websites (Extended Search)

Centro Inc. Nissan Centro Inc. Nissan 321 Hill Avenue 983 Nissan Drive Nashville, TN 37210 Smyrna, TN 37167 Business: Flow Control Distributor & Representative Business: Automobile Manufacturing Brad Davis Chris Goddard Territory Manager Environmental Engineer Phone: 615-255-2220 Phone: 615-459-1633 Email: bdavis@centromemphis.com Email: chris.goddard@nissan-usa.com Nissan and Centro partner to reduce energy cost 20% through improved metering Project Scope Nissan wanted to precisely measure consumption by department in their Smyrna facility. For low pressure natural gas applications, Nissan sought a simple, reliable metering device with no moving parts. Centro determined that the Aaliant Target Flow meter and the Fox Thermal Mass Flow meter would meet

298

Tennessee Home to Energy Department's First Net-Zero-Energy Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Home to Energy Department's First Net-Zero-Energy Tennessee Home to Energy Department's First Net-Zero-Energy Building Tennessee Home to Energy Department's First Net-Zero-Energy Building July 13, 2010 - 8:07am Addthis Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Joshua DeLung Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak

299

Tennessee Home to Energy Department's First Net-Zero-Energy Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Home to Energy Department's First Net-Zero-Energy Tennessee Home to Energy Department's First Net-Zero-Energy Building Tennessee Home to Energy Department's First Net-Zero-Energy Building July 13, 2010 - 8:07am Addthis Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Joshua DeLung Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak

300

Semantic Decision Support Models for Energy Efficiency in Smart-Metered Homes  

Science Conference Proceedings (OSTI)

A promising approach to Smart Energy Grids is to empower communities of consumers with a novel role in the management of their electricity by sharing excess electricity and therefore becoming energy producers (prosumers). We achieve it using a framework ... Keywords: domain ontologies, smart meters, decision table, group decision making

Yan Tang; Ioana G. Ciuciu

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demand Response and Smart Metering Policy Actions Since the Energy Policy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.demandresponsesmartgrid.org/Resources/Documents/Final_NCEP_Report_ Equivalent URI: cleanenergysolutions.org/content/demand-response-and-smart-metering-po Language: English Policies: Regulations

302

Modeled and metered energy savings from exterior wall insulation  

SciTech Connect

Millions of single-family masonry (block) houses with slab foundations exist in the southern United States. In fact, approximately 50% of Florida`s six million residences are of concrete block construction. The block walls in these homes are usually uninsulated, and the technology for retrofitting wall insulation is not well developed. Two field tests were performed--one near Phoenix, Arizona and one in Cocoa, Florida--to measure the air-conditioning energy savings and demand reduction impact of applying an exterior insulation and finish system (EEFS) to the exterior of the block wall, and gain practical experience with retrofit application techniques and costs. One field test used a {open_quotes}site-fabricated{close_quotes} insulation system, while the other field test used a commercially available system. The field tests measured a savings of 9% in Arizona and less savings in Florida, and emphasized the impact indoor temperature settings have on cooling energy savings: exterior wall insulation on block homes will produce energy savings in Florida houses only if a low cooling thermostat setting is desirable. The field tests also highlighted an improved comfort benefit from the retrofit - namely, elimination of overheating in rooms with south and west exposures. The DOE-2. ID program was used to analyze the energy savings (air-conditioning and heating) and electric demand impact of applying an EIFS. Air-conditioning energy savings were estimated to be in the range of 8% to 10% in many southern U.S. regions. A 12% savings was predicted for Phoenix, Arizona and a savings of 1% to 4% was predicted for seacoast regions, particularly in Florida. These predictions were in good agreement with the measured values. Peak hour cooling energy savings were predicted to be more uniform throughout the country, generally in the range of %8 to %12.

Ternes, M.; Parker, D.; McLain, H.; Barkaszi, S. Jr.

1996-09-01T23:59:59.000Z

303

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sb32bill2009091... SB 32 of 2009 and http:www.leginfo.ca.govpub11-12... http:energy.govsavingsfeed-tariff Rebate Net Metering California's net-metering law...

304

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 3210 of 11,722 results. Rebate Progress Energy- Net Metering In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made...

305

Application of net energy analysis to consumer technologies, February 1977  

SciTech Connect

Utilizing a net energy methodology that examines both direct and indirect energy consumption, this report determines the overall energy resource consumption effects of satisfying several selected consumer demands for energy: a residential demand for the provision of heat, cooling, and hot water; a transportation sector demand to power an automobile; and an industrial demand for process steam and electricity. Energy consumption is described through the use of trajectories that, in modular fashion, trace from in-situ resource to the particular final demand. This allows the analyst to examine changing fuel forms in the supply path as well as changing technology in the user-demand path. The beneficial effects of the developing residential energy-use technologies are quantified, the flexibility of the electric automobile with regard to resource use is demonstrated, and the overall energy savings via on-site power generation are detailed. In particular, the study demonstrates the usefulness of the net energy methodology as a tool for assessing the true implications for fossil reserves when substituting different energy sources.

Frabetti, A.J. Jr.

1977-01-01T23:59:59.000Z

306

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings  

DOE Green Energy (OSTI)

Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-01-01T23:59:59.000Z

307

Microsoft Word - DOE 2001 energy meter report, final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE TOPICAL REPORT For the reporting period: September 2000 - January 2002 Prepared by: E. Kelner T. E. Owen D. L. George A. Minachi M. G. Nored C. J. Schwartz March 2004 Prepared for: GAS RESEARCH INSTITUTE U.S. DEPARTMENT OF ENERGY GRI Contract No. 5097-270-3937 DOE Cooperative Agreement No. DE-FC21-96MC33033 GRI Project Manager DOE Technical Monitor Charles E. French James Ammer Pipeline Operations Gas Supply Projects Submitted by: SOUTHWEST RESEARCH INSTITUTE ® Mechanical and Fluids Engineering Division 6220 Culebra Road San Antonio, Texas, USA 78238-5166 ii This page is intentionally blank. iii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States

308

GEO NET Umweltconsulting GmbH | Open Energy Information  

Open Energy Info (EERE)

GEO NET Umweltconsulting GmbH GEO NET Umweltconsulting GmbH Jump to: navigation, search Name GEO-NET Umweltconsulting GmbH Place Hannover, Germany Zip 30161 Sector Wind energy Product Undertakes environmental planning and consulting in wind and other sectors. Part of the GEO-NET interdisciplinary technology-oriented research, consulting and service agency. Coordinates 52.372278°, 9.738157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.372278,"lon":9.738157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint  

SciTech Connect

Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-08-01T23:59:59.000Z

310

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goal: 70% energy savings (51%) * BigHorn Home Improvement Center-Colorado Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 15 Center...

311

Table 1.4b Primary Energy Exports by Source and Total Net Imports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 11 Table 1.4b Primary Energy Exports by Source and Total Net Imports

312

A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE) Title A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE) Publication Type Conference Paper...

313

Net primary energy balance of a solar-driven photo-electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net primary energy balance of a solar-driven photo-electrochemical water-splitting device Title Net primary energy balance of a solar-driven photo-electrochemical water-splitting...

314

Net Power Technology NP Holdings or NPH | Open Energy Information  

Open Energy Info (EERE)

Net Power Technology NP Holdings or NPH Net Power Technology NP Holdings or NPH Jump to: navigation, search Name Net Power Technology (NP Holdings or NPH) Place Chanchun, Jilin Province, China Sector Efficiency, Renewable Energy Product China-based company, focused on electricity storage systems based on zinc-bromide redox flow cells for renewable energy and energy efficiency applications. Coordinates 40.911701°, 45.354198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.911701,"lon":45.354198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network (OSTI)

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

316

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate. 3 figs.

Kopp, M.K.

1986-12-17T23:59:59.000Z

317

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

Kopp, Manfred K. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

318

City of Danville- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their...

319

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 12980 of 28,560 results. 71 - 12980 of 28,560 results. Rebate Montana Electric Cooperatives- Net Metering The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or... http://energy.gov/savings/montana-electric-cooperatives-net-metering Rebate U.S. Virgin Islands- Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy... http://energy.gov/savings/us-virgin-islands-net-metering Download Microsoft Word- AL2005-16.doc http://energy.gov/management/downloads/microsoft-word-al2005-16doc Rebate MidAmerican Energy (Electric)- Commercial EnergyAdvantage Rebate

320

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network (OSTI)

This paper analyzes two methods to reduce residential energy consumption for a Net Zero home in Austin, Texas. The first method seeks to develop a control algorithm that actively engages environmental conditioning. The home must preserve user-defined comfort while minimizing energy consumption. An optimization function governed by user input chooses the degree to which various comfort-defining systems are active, optimizing comfort while maintaining minimal energy usage. These systems include a geothermal heat pump and ceiling fans to effect convection, humidity, and dry bulb temperature. The second method reflects an analysis towards augmenting traditional home systems with modern and efficient counterparts. Electrochromic glass is used to attenuate heat transfer from outside the home envelope. A thermal chimney passively removes heat from the home while increasing convection. Replacing conventional incandescent bulbs with compact fluorescent and LED illumination reduces lighting energy waste.

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Definition: Net Energy For Load | Open Energy Information  

Open Energy Info (EERE)

It includes Balancing Authority Area losses but excludes energy required for storage at energy storage facilities.1 Related Terms energy, Balancing Authority, Balancing...

322

NREL: Department of Defense Energy Programs - Army Net Zero Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

with nine pilot projects to establish energy baselines, estimate energy efficiency and alternative energy potential, evaluate grid interconnection, and develop an implementation...

323

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report http:energy.govigdownloadsaudit-report-oas-l-04-06 Rebate Austin Energy- Net Metering (Texas) Austin Energy, the municipal utility of Austin Texas,...

324

Net-Zero Energy Buildings: A Classification System Based on Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options Shanti Pless and Paul Torcellini Technical Report NRELTP-550-44586 June 2010 Technical...

325

Geothermal energy to contribute to net-zero campus | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal energy to contribute to net-zero campus Geothermal energy to contribute to net-zero campus Geothermal energy to contribute to net-zero campus December 18, 2009 - 3:26pm Addthis Joshua DeLung What will the project do? The two power plants combined will create 1.3 MW of power. Combined, the plants will save the campus $500,000 annually. Of the handful of frontrunners in the scramble to become the nation's first net-zero college campus, the Oregon Institute of Technology may be one of the most unique. Sometime between 2011 and 2012, OIT plans to emerge from the pack as the only college campus in the U.S. to produce all of its own base load energy from a geothermal energy source, located deep in the ground beneath the campus in Klamath Falls. As a natural extension of that, the school also touts itself as a hub for

326

Building Scale vs. Community Scale Net-Zero Energy Performance  

SciTech Connect

Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

2010-06-30T23:59:59.000Z

327

Intelligent Controls for Net-Zero Energy Buildings  

SciTech Connect

The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: To develop rapid and scalable building information collection and modeling technologies that can obtain and process as-built building information in an automated or semiautomated manner. To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. To integrate and demonstrate low-cost building information modeling (BIM) technologies. To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

Li, Haorong; Cho, Yong; Peng, Dongming

2011-10-30T23:59:59.000Z

328

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROGRAM PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 1 gy y gy Buildings' Energy Use Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 2 Commercial Square Footage Projections g j 104 Plus ~38B ft. 2 new additions 72 82 66 Minus ~16B ft. 2 demolitions 66 Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 3 Source: EIA's Annual Energy Outlook 2009, Table 5. 2010 2003 2030 Projected Electricity Growth 2010 to 2025, by End-Use Sector (site quad) Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 4 Projected Increase in

329

Chapter 9, Metering Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Metering Cross- 9: Metering Cross- Cutting Protocols Dan Mort, ADM Associates, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 9 - 1 Chapter 9 - Table of Contents 1 Introduction ............................................................................................................................ 3 2 Metering Application and Considerations ............................................................................. 4 2.1 Identifying Scope ............................................................................................................. 4 2.2 Ensuring Precision and Verification ................................................................................ 4

330

Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations  

SciTech Connect

Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

2011-09-01T23:59:59.000Z

331

A Neutron Multiplicity Meter for Deep Underground Muon-Induced High Energy Neutron Measurements  

E-Print Network (OSTI)

We present the design of an instrument capable of measuring the high energy ($>$60 MeV) muon-induced neutron flux deep underground. The instrument is based on applying the Gd-loaded liquid-scintillator technique to measure the rate of high-energy neutrons underground based on the neutron multiplicity induced in a Pb target. We present design studies based on Monte Carlo simulations that show that an apparatus consisting of a Pb target of 200 cm by 200 cm area by 60 cm thickness covered by a 60 cm thick Gd-loaded liquid scintillator (0.5% Gd content) detector could measure, at a depth of 2000 meters of water equivalent, a rate of $70\\pm8$ (stat) events/year. Based on these studies, we also discuss the benefits of using a neutron multiplicity meter as a component of active shielding in such experiments.

R. Hennings-Yeomans; D. S. Akerib

2006-11-12T23:59:59.000Z

332

Zero Net Energy Myths and Modes of Thought  

SciTech Connect

The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

2010-09-20T23:59:59.000Z

333

Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy  

E-Print Network (OSTI)

charge exemptions and net metering policies) that recognizecharge exemptions and net metering policies) that recognize

Lipman, Timothy; Brooks, Cameron

2006-01-01T23:59:59.000Z

334

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network (OSTI)

net rents is smaller than the energy cost, suggesting that landlords find a benefit in avoiding metering.metering is problematic. Mooradian and Yang (2002) model the choice between gross and net

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

335

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) + , AEP Ohio - Renewable Energy Technology Program (Ohio) + , APS - Net Metering (Arizona) + , APS - Renewable...

336

Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado  

DOE Green Energy (OSTI)

This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

2012-03-01T23:59:59.000Z

337

Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options  

SciTech Connect

A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

Pless, S.; Torcellini, P.

2010-06-01T23:59:59.000Z

338

Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings  

E-Print Network (OSTI)

in future studies. Building Sub-metering Data A key questionincomplete building sub-metering data available, determiningIn recent years, a sub-metering project has been launched

Brown, Richard

2012-01-01T23:59:59.000Z

339

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

Results from a field-metering study Louis-Benoit Desroches,troubleshooting of several metering issues, and to Deborahas part of a MELs field metering study in collaboration with

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

340

NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)  

SciTech Connect

The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new green job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

342

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net...

343

Verifying energy savings with minimal metered data: The Hunter heat pump analysis  

SciTech Connect

In November 1992, Hunter Army Air Field (AAF) completed the installation of 489 air-source heat pumps -- a new heat pump and air-handling unit for each residence. The air-source heat pumps replaced older, less efficient, air-conditioning systems, fuel oil-fired furnaces, and fan coil units. Hunter AAF originally contacted to upgrade the old family housing heating, ventilating, and air-conditioning (HVAC) systems with high efficiency air-conditioning systems and natural gas furnaces, but an alternative proposal and following energy studies indicated that heat pumps were a more life-cycle cost-effective alternative. Six months after the heat pumps were installed, Hunter`s energy bills appeared to be increasing, not decreasing as expected. In early 1994, Pacific Northwest Laboratory` (PNL) began an analysis to determine if there were any energy savings resulting from the heat pump installation as predicted by previous energy studies. The problem is that the HVAC systems are not specifically submetered to support verifying the resulting energy savings and, as is the case with most federal facilities, even the homes are not individually metered. Savings verification needed to be accomplished with die existing and available metered data. This data consisted primarily of monthly electric submeter readings from the two housing subdivision meters, historical fuel oil delivery records for family housing, and monthly base-wide electric bills. The objective of the study is to verify the change in energy consumption in family housing and, to the extent possible, identify how much of the change in consumption is attributable to the new HVAC system and how much is probably attributable to other factors, such as the weather.

Parker, S.A.

1995-03-01T23:59:59.000Z

344

Largest American Net Zero Energy Campus Community Embraces Clean Energy  

Energy.gov (U.S. Department of Energy (DOE))

A new housing development on the UC Davis campus is planning to bring a new source of renewable energy to its community.

345

American Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

territory of the United States.1 Energy Incentives for American Samoa American Samoa - Net Metering (American Samoa) Utility Companies in American Samoa American Samoa Power...

346

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network (OSTI)

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

347

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

solarenergy,andenergystorage,technologiesareexpected23 EnergyStorageLorenzetal. 2008) EnergyStorageTechnologies In

Al-Beaini, S.

2010-01-01T23:59:59.000Z

348

Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lessons Learned from Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Michael Callahan, Kate Anderson, Sam Booth, Jessica Katz, and Tim Tetreault Technical Report NREL/TP-7A40-51598 Revised September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Michael Callahan, Kate Anderson, Sam Booth, Jessica Katz, and Tim Tetreault

349

The Use of Density Meters and Microprocessors for Energy Measurement and Control  

E-Print Network (OSTI)

ANSI/API 2530 shows how natural gas volume and weight flow rates may be calculated from the differential pressure across an in-line orifice plate. AGA Report No.5 uses these equations and known relationships between specific gravity and calorific value, to calculate the energy flow rate. Both publications point to weight flow rate as the simplest and most direct approach to energy flow rate and indicate much wider use for equations originally developed for natural gas. This paper discusses the advantages of density measurement and shows how a single, in-line density meter may be used with an easily programmed micro-processor to provide rapid, reliable, low-cost, on-line solutions to the flow and energy equations, without using specific gravity meters and calorimeters. Similar techniques enable computation of calorific values to produce a so-called "flameless calorimeter" and measurement and feed-forward control of fuel gas supplies for steam generators, process furnaces, etc., thereby improving combustion and process efficiencies and promoting energy savings. These techniques increase in value as fuel costs rise and as industry is forced to use more variable gas supplies.

Balls, B. W.; Agar, J.

1979-01-01T23:59:59.000Z

350

New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zero Net-Energy Facility: A Test Bed for Home Efficiency Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. David Lee Residential Program Supervisor, Building Technologies Program

351

Critique of a Freeway On-Ramp Metering Scheme and Broader Related Issues  

E-Print Network (OSTI)

Transpn. Res. NET (1996) System wide adaptive ramp meteringwell-known metering algorithms such as SWARM (NET, 1996),

Cassidy, Michael J.

2002-01-01T23:59:59.000Z

352

Metering Technology  

Science Conference Proceedings (OSTI)

Utilities are looking to replace meters that only measure kilowatt-hours with advanced meters with greater features and functions. This White Paper describes the smart metering technology that is already available or will be available in the near future. It also provides a high-level overview of the wired and wireless communication technologies used in the metering industry.

2008-06-20T23:59:59.000Z

353

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)  

SciTech Connect

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

2010-05-01T23:59:59.000Z

354

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

discussionon least?costenergyefficiencystrategiestheupfrontcostsand improvementsinenergyefficiency,bothCostEstimates 16 EnergyEfficiency

Al-Beaini, S.

2010-01-01T23:59:59.000Z

355

Federal Metering Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metering Requirements Metering Requirements FUPWG - May 23, 2013 Brad Gustafson Federal Energy Management Program 2 42 USC 8253 - ENERGY MANAGEMENT REQUIREMENT (e) Metering By October 1, 2012, in accordance with guidelines established by the Secretary under paragraph (2), all Federal buildings shall, for the purposes of efficient use of energy and reduction in the cost of electricity used in such buildings, be metered. Each agency shall use, to the maximum extent practicable, advanced meters or advanced metering devices that provide data at least daily and that measure at least hourly consumption of electricity in the Federal buildings of the agency. Not later than October 1, 2016, each agency shall provide for equivalent metering of natural gas and steam, in accordance with guidelines established by the Secretary

356

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

charge exemptions and net metering policies) that recognizeexemp- tions and net metering policies) that recognize and

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

357

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

DOE Green Energy (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

358

October 16, 2012, Webinar: Net-Zero-Energy Communities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 16, 2012, Webinar: Net-Zero-Energy Communities October 16, 2012, Webinar: Net-Zero-Energy Communities October 16, 2012, Webinar: Net-Zero-Energy Communities This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view the text version. Find more CommRE webinars. University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States The University of California-Davis' (UC Davis) West Village is a new housing development that will ultimately occupy about 200 acres near the campus. The development will have apartment buildings for nearly 3,000 students and approximately 500 single-family houses for both faculty and staff. Apartments for the first 800 students opened in August 2011 and an

359

Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice  

SciTech Connect

Until recently, large-scale, cost-effective net-zero energy buildings (NZEBs) were thought to lie decades in the future. However, ongoing work at the National Renewable Energy Laboratory (NREL) indicates that NZEB status is both achievable and repeatable today. This paper presents a definition framework for classifying NZEBs and a real-life example that demonstrates how a large-scale office building can cost-effectively achieve net-zero energy. The vision of NZEBs is compelling. In theory, these highly energy-efficient buildings will produce, during a typical year, enough renewable energy to offset the energy they consume from the grid. The NREL NZEB definition framework classifies NZEBs according to the criteria being used to judge net-zero status and the way renewable energy is supplied to achieve that status. We use the new U.S. Department of Energy/NREL 220,000-ft{sub 2} Research Support Facilities (RSF) building to illustrate why a clear picture of NZEB definitions is important and how the framework provides a methodology for creating a cost-effective NZEB. The RSF, scheduled to open in June 2010, includes contractual commitments to deliver a Leadership in Energy Efficiency and Design (LEED) Platinum Rating, an energy use intensity of 25 kBtu/ft{sub 2} (half that of a typical LEED Platinum office building), and net-zero energy status. We will discuss the analysis method and cost tradeoffs that were performed throughout the design and build phases to meet these commitments and maintain construction costs at $259/ft{sub 2}. We will discuss ways to achieve large-scale, replicable NZEB performance. Many passive and renewable energy strategies are utilized, including full daylighting, high-performance lighting, natural ventilation through operable windows, thermal mass, transpired solar collectors, radiant heating and cooling, and workstation configurations allow for maximum daylighting.

Torcellini, P.; Pless, S.; Lobato, C.; Hootman, T.

2010-01-01T23:59:59.000Z

360

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

the propertotalannualenergyusage. ThehotwaterusedTotalannualenergyuseof492kWh/yr[1][3] ? Peakpowerdrawof56Watts ? Constantoperation[4] Thisenergyusage

Al-Beaini, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)  

SciTech Connect

This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

2009-09-01T23:59:59.000Z

362

Definition of a 'Zero Net Energy' Community  

SciTech Connect

This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

Carlisle, N.; Van Geet, O.; Pless, S.

2009-11-01T23:59:59.000Z

363

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

364

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

365

What's New - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Green Pricing and Net Metering Programs 2010. Sep 24, 2012

366

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... (see map above). The terms for such net metering arrangements are typically embodied in a utility tariff.

367

Interconnection Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(S.B. 680) requiring the Illinois Commerce Commission (ICC) to establish standards for net metering and interconnection for renewable energy systems by April 1, 2008....

368

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

isproducedatthermalpowerplants,which typicallythermal)energyfromfuelsburnedatadistantpowerplant.

Al-Beaini, S.

2010-01-01T23:59:59.000Z

369

Net Zero Energy Military Installations: A Guide to Assessment and Planning  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

2010-08-01T23:59:59.000Z

370

Use of Metering for Facility and Whole Building Energy Analysis by the U.S. Depratment of Energy Federal Energy Management Program  

E-Print Network (OSTI)

This paper details how the U.S. Department of Energy, Federal Energy Management Program (FEMP) is applying metering technology to conduct empirically based analyses o f energy use by federal agencies. Continuing developments in sensors, data acquisition systems, microcomputers and monitoring protocols are reducing the costs of metering to the point that it is becoming "too cheap not to meter" energy and the determinants of energy use at federal facilities . This has widespread consequence for FEMP if one accepts the axiom that "one can't manage what one doesn't measure." Several recently completed and ongoing activities being managed by Pacific Northwest laboratory for FEMP are highlighted in this paper. This includes the metering of energy end uses for a research laboratory building to support a shared energy savings contract, analysis of utility billing records, climate, and characteristics data for entire military bases to prioritize energy use testing requirements, and enhancements to simplified energy analysis tools to help federal energy decision-makers identify and evaluate cost-effective energy savings opportunities.

Devine, K. D.; Mazzucchi, R. P.

1989-01-01T23:59:59.000Z

371

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

DOE). 12Sep2005. "EEREConsumer'sGuide:SizingandRenewableEnergy(EERE),whichmadethefollowinggenerationcosts. Figure16:EEREForecastedCostofPV

Al-Beaini, S.

2010-01-01T23:59:59.000Z

372

Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint  

DOE Green Energy (OSTI)

This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

2012-05-01T23:59:59.000Z

373

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

Thereisawoodstovebackupheating:80%efficiency,11remainingheatingrequirementiscoveredbya woodstoveheating13.3kWh/ma(calculatedsit eenergy) Energysourceelectricity,wood

Al-Beaini, S.

2010-01-01T23:59:59.000Z

374

Knoxville Energy Deal to Net Big Savings for Taxpayers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Knoxville Energy Deal to Net Big Savings for Taxpayers Knoxville Energy Deal to Net Big Savings for Taxpayers Knoxville Energy Deal to Net Big Savings for Taxpayers March 9, 2010 - 11:55am Addthis Knoxville’s energy improvements are expected to save the city $1.5 million a year in utility costs | Photo courtesy of the City Knoxville's energy improvements are expected to save the city $1.5 million a year in utility costs | Photo courtesy of the City Joshua DeLung Knoxville, Tennessee, will save millions of dollars and reduce its energy consumption and carbon emissions thanks to a $13 million deal with Massachusetts-based energy services company Ameresco. The project is structured as an Energy Services Performance Contract, which means that the energy savings realized by the city will fully pay for the cost of the upgrades.

375

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

PV:40highefficiencyBP_41/5solarpanels,generatingupefficiency,aswellas energygenerationtechnologies(suchassolarpanels). efficiency duetobuildingcodeconstraints(windturbineheight, solarpanel

Al-Beaini, S.

2010-01-01T23:59:59.000Z

376

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

GenerationIncentiveProgram:SolarPVCostsandIncentivegreentrianglesandthesolarPVbytheyellowcircles. ItisexpectedthatsolarPVwillmakeupforenergy

Al-Beaini, S.

2010-01-01T23:59:59.000Z

377

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

54 Table 5: Summary of Net MeteringDER Deployment Table 5: Summary of Net Metering Laws Summaryof State Net Metering Programs ( Current) Limit Limit on

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

378

Energy Balance Partitioning and Net Radiation Controls on Soil MoisturePrecipitation Feedbacks  

Science Conference Proceedings (OSTI)

A series of model runs using the University of Oklahomas Advanced Regional Prediction System (ARPS) were conducted to investigate the relative impacts of energy balance partitioning and net radiation on soil moistureprecipitation feedbacks in ...

Aubrey R. Jones; Nathaniel A. Brunsell

2009-01-01T23:59:59.000Z

379

Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy  

DOE Green Energy (OSTI)

The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

2009-12-31T23:59:59.000Z

380

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(PSC) to develop interconnection and net metering guidelines for all retail electric suppliers... http:energy.govsavingsinterconnection-standards-8 Rebate Jackson EMC-...

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Nebraska Agricultural Commercial Industrial Residential Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Nebraska Energy Office Solar and...

382

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govsavingscity-scottsdale-green-building-incentives Rebate City of St. George- Net Metering The St. George City Council adopted a http:www.sgcity.orgwppower...

383

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(i... http:energy.govsavingssce-non-residential-bill-financing-program Rebate SCE&G- Net Metering In August 2009, the South Carolina Public Service Commission issued an order...

384

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In December 2005, the Colorado Public Utilities Commission (PUC) adopted standards for net metering and interconnection, as required by Amendment 37, a renewable-energy ballot...

385

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Prepared under Task No. IDHW.9180

386

Net Zero Energy Military Installations: A Guide to Assessment and Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Zero Energy Military Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John Barnett, Kari Burman, Josh Hambrick and Robert Westby Technical Report NREL/TP-7A2-48876 August 2010 Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment and Planning Samuel Booth, John Barnett, Kari Burman, Josh Hambrick and Robert Westby Prepared under Task No. IDOD.1010 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

387

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and Robert Westby Technical Report NREL/TP-7A40-47991 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and

388

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net  

E-Print Network (OSTI)

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net of Energy #12;Energy Analysis Department Electricity Markets and Policy Group 2 Project Overview Context alternative compensation mechanisms #12;Energy Analysis Department Electricity Markets and Policy Group 3

389

Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems  

DOE Green Energy (OSTI)

The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

1980-04-01T23:59:59.000Z

390

Social Network of Smart-Metered Homes and SMEs for Grid-based Renewable Energy Exchange  

E-Print Network (OSTI)

AND MOTIVATION Traditional utility grids focus on three types of activity: namely electricity generation, transmission and distribution. The business model of traditional utility grids has focused on the interactions]. Smart meters are advanced meters, which are able (i) to collect data on consumers' electricity usage

Steels, Luc

391

Tips: Smart Meters and a Smarter Power Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid July 2, 2012 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. What are the key facts? Like the Internet, the Smart Grid will consist of controls, computers, automation, and new technologies and equipment working together to respond digitally to our quickly changing electric demand.

392

Clean energy funds: An overview of state support for renewable energy  

E-Print Network (OSTI)

in reference to net metering. Whether this definition willthe absence of statewide net metering. Several solar thermalinterest rates to 6%, net metering, and a New York state tax

Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

2001-01-01T23:59:59.000Z

393

You are now leaving Energy.gov | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rockymountainpower.netcontentdamrockymountainpowerdocEnvironmentEnvironmentalConcernsNetMeteringService...

394

Zero Net Energy Myths and Modes of Thought  

E-Print Network (OSTI)

total reduction in energy usage from a baseline condition toand longitudinal studies of energy usage. The primaryapproach was reducing energy usage in the residential sector

Rajkovich, Nicholas B.

2010-01-01T23:59:59.000Z

395

A State-of-the-Art Assessment of Zero Net Energy Homes  

Science Conference Proceedings (OSTI)

This Technical Update is a review of the state of the art of zero net energy homes (ZNEHs). A zero net energy home is one that produces as much energy as it uses on an annual basis, typically using a rooftop photovoltaic (PV) system on a very low energy building. The key to creating a ZNEH is to minimize the size of costly PV systems by maximizing the energy efficiency of the home and its end-use equipment. The focus here is on single-family houses, the residential segment for which most ZNEH research an...

2011-05-12T23:59:59.000Z

396

Fort Collins, Colorado on Track to Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins, Colorado on Track to Net Zero Fort Collins, Colorado on Track to Net Zero Fort Collins, Colorado on Track to Net Zero November 18, 2010 - 2:23pm Addthis Ian Hamos What does this mean for me? Using electricity during "peak periods" requires more fuel and creates more emissions to produce the same amount as energy as non-peak periods. By integrating demand-side resources, distributed and renewable power sources, and smart grid technologies, Fort Collins is creating a net Zero Energy District (ZED) -- potentially creating hundreds of permanent jobs and setting an example for cities nationwide. Just like traffic has peaks at rush hour, electricity demand rises and falls at particular times of day. During electricity's peak periods, power plants turn on gas-fired turbines and other supplemental energy

397

Metering and Monitoring Approaches for Verifying Energy Savings from Energy Conservation Retrofits: Experiences from the Field  

E-Print Network (OSTI)

This paper describes instrumentation approaches used in the verification of energy savings from industrial and large institutional energy conservation retrofits. Techniques for monitoring electricity, natural gas and thermal energy flows are presented. Insights gained from the actual in-field installation of monitoring equipment are shared and lessons learned are provided.

McBride, J. R.; Bohmer, C. J.; Lippman, R. H.

1995-04-01T23:59:59.000Z

398

Data:05fd3210-c4dd-4d31-9223-96975075062f | Open Energy Information  

Open Energy Info (EERE)

a 60-minute interval basis. Fixed Monthly Charge Includes a Renewable Energy Surcharge & Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

399

Workshop on Net Zero Energy High Performance Green ...  

Science Conference Proceedings (OSTI)

... to energy and climate change technologies, including renewable energy, nuclear power, carbon capture and sequestration, sustainable buildings ...

2008-07-21T23:59:59.000Z

400

Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas  

DOE Patents (OSTI)

A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

2008-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Property:Incentive/AggrCapLimit | Open Energy Information  

Open Energy Info (EERE)

AggrCapLimit AggrCapLimit Jump to: navigation, search Property Name Incentive/AggrCapLimit Property Type Text Description Aggregate Capacity Limit. Pages using the property "Incentive/AggrCapLimit" Showing 25 pages using this property. (previous 25) (next 25) A APS - Net Metering (Arizona) + 15 MW American Samoa - Net Metering (American Samoa) + 5% of utility's peak demand Ames Electric Department - Net Metering (Iowa) + Carried month to month at retail rate, granted to utility after 12 months Ashland Electric - Net Metering (Oregon) + No limit specified Aspen Electric - Net Metering (Colorado) + Credited to customer's next bill Austin Energy - Net Metering (Texas) + No limit specified (program will be re-evaluated after 1% of load is met) Avista Utilities - Net Metering (Idaho) + 0.1% of utility's peak demand in 1996 (in Idaho)

402

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

net metering May 15, 2012 Participation in electric net-metering programs increased sharply in recent years. May 9, ...

403

Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 July 2010 Main Street Net-Zero Energy Buildings: The Zero Energy Method in Concept and Practice Preprint Paul Torcellini, Shanti Pless, and Chad Lobato National Renewable Energy Laboratory Tom Hootman RNL Design Presented at the ASME 2010 4 th International Conference on Energy Sustainability Phoenix, Arizona May 17-22, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

404

CoreNet Global/Jones Lang LaSalle Sustainability survey | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

CoreNet Global/Jones Lang LaSalle Sustainability survey CoreNet Global/Jones Lang LaSalle Sustainability survey Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

405

Tips: Smart Meters and a Smarter Power Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid July 2, 2012 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. What are the key facts? Like the Internet, the Smart Grid will consist of controls, computers, automation, and new technologies and equipment working together to respond digitally to our quickly changing electric demand.

406

Smart meter deployments continue to rise - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Smart meter data allowed the utility to reroute power to all but 200 customers in less than one ... consistent with being on time-of-use or interruptible tariffs. ...

407

Tips: Smart Meters and a Smarter Power Grid | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Grid July 2, 2012 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your...

408

Remarks at Net-Zero Energy Residential Test Facility Ribbon ...  

Science Conference Proceedings (OSTI)

... I want to thank our special guests: Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency at the Department of Energy; and Rick Fedrizzi ...

2012-09-21T23:59:59.000Z

409

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

Net Metering.15 3.1.3 Case 3: Net Metering with Advanced Technology Costshow greater penetration with net metering enhancements and

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

410

Data:28ed174f-19d3-4793-9c2d-96f7dc4bd843 | Open Energy Information  

Open Energy Info (EERE)

the specific consent of the Company. Fixed Monthly Charge Includes a Renewable Energy & Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

411

Data:08685977-2be5-416e-bf1d-6357f8ace146 | Open Energy Information  

Open Energy Info (EERE)

or for resale purposes. Fixed Monthly Charge Includes Renewable Energy Surcharge & Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

412

Data:E77ee437-e2fb-4dc7-9049-cb074e89f3e0 | Open Energy Information  

Open Energy Info (EERE)

to enter into a special contract. Fixed Monthly Charge Includes a Renewable Energy & Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

413

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

414

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

415

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

416

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

417

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

418

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

419

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

420

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

What's New - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... they can usually enter into a net-metering agreement with their utility.

422

Assessing the impacts of feed in tariffs and metering configuration (gross or net), on the payback period for an average solar PV system in metropolitan Melbourne.  

E-Print Network (OSTI)

??With an increasing customer focus on renewable energy and the perceived benefits from widespread solar photovoltaic (PV) generation there has been a rapid increase in (more)

Bailey, Darren

2009-01-01T23:59:59.000Z

423

NREL: TroughNet - Parabolic Trough Thermal Energy Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage Technology One advantage of parabolic trough power plants is their potential for storing solar thermal energy to use during non-solar periods and to dispatch...

424

Workshop to Identify Strategies to Get to Net Zero Energy ...  

Science Conference Proceedings (OSTI)

... 1 A Residential Energy Efficiency Meeting sponsored by DOE's Building America Building Technologies Program in July 2010 identified the ...

2013-07-02T23:59:59.000Z

425

Green Buildings: A Net-Zero Energy Research Agenda  

Science Conference Proceedings (OSTI)

... and Technology (NIST) played a key role in developing the report's goals for measurement science methods, energy efficiency technologies, indoor ...

2011-04-26T23:59:59.000Z

426

Measurement Science for Net-Zero Energy, High-Performance ...  

Science Conference Proceedings (OSTI)

... Proposed NIST Program. ... Facilitate embedded intelligence in building control systems to enable building energy-use reductions in real time; ...

2010-10-05T23:59:59.000Z

427

Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint  

SciTech Connect

The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

2013-03-01T23:59:59.000Z

428

Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

2009-10-01T23:59:59.000Z

429

O&M First! Facility Metering for Improved Operations, Maintenance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Facility Metering for Improved Operations, Maintenance, and Efficiency Metering and sub-metering of energy and resource use is a critical component of a comprehensive...

430

A State-of-the-Art Assessment of Zero Net Energy Grocery and Convenience Stores  

Science Conference Proceedings (OSTI)

Governmental policies worldwide are targeting zero net energy (ZNE) buildings. At the forefront of this drive is the U.S. Department of Energy (DOE) and the State of California. This report presents pathways to attain ZNE grocery stores by combining energy efficiency and renewable energy generation in various climates. Hundreds of efficiency measures covering refrigeration, HVAC, lighting, and building envelope were evaluated to determine how to develop cost-effective ZNE grocery stores. The report ...

2012-12-31T23:59:59.000Z

431

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) October 16, 2013 Municipal Energy Reduction Fund In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's municipal governments to invest in energy efficiency and alternative energy. A wide variety of energy-efficiency measures and alternative energy technologies are eligible, and the program is customizable, based on a municipality's needs. Loans are typically structured so that payments are made with money yielded by energy savings. October 16, 2013

432

Visually Impaired Transcript for Net-Zero Energy House Video  

Science Conference Proceedings (OSTI)

... piping in ceiling, a thermostat, an air duct with the words high velocity on it, solar panels on roof, computer connections, geothermal energy pipes ...

2012-09-21T23:59:59.000Z

433

Standards and Codes: Net-Zero Energy, High-Performance ...  

Science Conference Proceedings (OSTI)

... Dr. A. Hunter Fanney is an active member of ASME. He is an ASME Fellow and past Chairman of the ASME Solar Energy Division. ...

2011-11-17T23:59:59.000Z

434

Knoxville Energy Deal to Net Big Savings for Taxpayers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the City Joshua DeLung Knoxville, Tennessee, will save millions of dollars and reduce its energy consumption and carbon emissions thanks to a 13 million deal with...

435

Deep Energy Efficiency and Getting to Net Zero  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEEP ENERGY EFFICIENCY DEEP ENERGY EFFICIENCY AND GETTING TO ZERO Dave Hewitt Executive Director new buildings institute * Non-profit, think tank on commercial building energy efficiency * Formed in December 1997 * Funding - Sponsors: includes SCE, NEEA, NationalGrid, NYSERDA, CEC, SMUD - Contracts and Grants: EF, DDCF, Kresge, USGBC, CEC PIER, CPUC, etc. * Staff in Vancouver, Seattle, and White Salmon, Washington 4/26/2011 2 nature of our work Research, Building Science & Performance Design Guidance Leadership & Policy Intro key topics for today * What do we know about the features and actual energy use of high performance buildings? * What is possible in terms of energy performance in the near term? * How we can structure programs, policies and market actions to support deep efficiency?

436

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

for Renewables and Efficiency: Net Metering Policies SummaryDC residential distribution. Net-Metering Because the gridgrid-connected [33]. Net metering makes grid-connected PV

Garbesi, Karina

2012-01-01T23:59:59.000Z

437

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

impact of rate design and net metering on the bill savingselectricity rate through net metering. Given the uncertaintyunder two types of net metering, for each scenario. Results

Barbose, Galen

2013-01-01T23:59:59.000Z

438

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

of rate design and net metering on the bill savings fromelectricity rate through net metering. Given the uncertaintyunder two types of net metering, for each scenario. Results

Barbose, Galen

2013-01-01T23:59:59.000Z

439

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

33 4. Net Metering and Distributed42 4.16 Net Metering Statethat benefits from state net metering rules; and Generation

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

440

Meters | OpenEI  

Open Energy Info (EERE)

Meters Meters Dataset Summary Description The UK Department of Energy and Climate Change (DECC) releases annual statistics on domestic and non-domestic electricity and gas consumption (and number of meters) at the Middle Layer Super Output Authority (MLSOA) and Intermediate Geography Zone (IGZ) level (there are over 950 of these subregions throughout England, Scotland and Wales). Both MLSOAs (England and Wales) and IGZs (Scotland) include a minimum of approximately 2,000 households. The electricity consumption data data is split by ordinary electricity and economy7 electricity usage. Source UK Department of Energy and Climate Change (DECC) Date Released March 25th, 2010 (4 years ago) Date Updated Unknown Keywords Electricity Consumption gas Meters regional

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Saturation meter  

DOE Patents (OSTI)

A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

Gregurech, S.

1984-08-01T23:59:59.000Z

442

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

net metering May 15, 2012 Participation in electric net-metering programs increased sharply in recent years. May 9, 2012 Policies for compensating behind-the-meter ...

443

GCHP Results in Net-Zero Energy Residence in Japan  

E-Print Network (OSTI)

Gas Water Heater · Lighting Fixtures: LED · Solar Photo-voltaic System: 5.94kW · Home Energy (Q value) · Low-e Windows: · Natural Ventilation System: Ducted · Domestic Hot Water: Instantaneous · Advanced Ambient Light Sensor Control · Lithium Battery Storage System · Solar Thermal Heat Collector: 4m2

444

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network (OSTI)

used on farms, such as gasoline, diesel, LP gas (LPG), natural gas, and electricity, for the production of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol in manufacturing and marketing nitrogen fertilizer, (3) improving the quality of estimates for energy used

Patzek, Tadeusz W.

445

Quasi-Static Hydraulic Control Systems and Energy Savings Potential Using Independent Metering Four-Valve Assembly Configuration .  

E-Print Network (OSTI)

??In this research, the four valve independent metering configuration is to be investigated. The Independent metering concept will be emphasized and compared to spool valve (more)

Shenouda, Amir

2006-01-01T23:59:59.000Z

446

The Road to Net Zero (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Road to Net Zero The Road to Net Zero Bill Glover Deputy Laboratory Director and Chief Operating Officer The Sustainable Operations Summit May 16, 2011 NREL/PR-6A42-51124 NATIONAL RENEWABLE ENERGY LABORATORY Vision 2 NATIONAL RENEWABLE ENERGY LABORATORY * A showcase for sustainable, high-performance design o Incorporates the best in energy efficiency, environmental performance, and advanced controls using a "whole building" integrated design process * Serves as a model for cost-competitive, high-performance commercial buildings for the nation's design construction, operation, and financing communities 3 Research Support Facility Vision NATIONAL RENEWABLE ENERGY LABORATORY Design-Build Process 4 NATIONAL RENEWABLE ENERGY LABORATORY * Encourages innovation * Reduces owner's risk

447

Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy  

SciTech Connect

The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

2011-11-29T23:59:59.000Z

448

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

console usage and national energy consumption: Results fromNational Energy Consumption .Discussion National Energy Consumption Under the assumption

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

449

Net energy value of rapeseed oil infused into the duodenum of lactating cows  

E-Print Network (OSTI)

Net energy value of rapeseed oil infused into the duodenum of lactating cows M Vermorel1 Y. They followed a cross-over design, with (0 diet) or without (C diet) rapeseed oil. Oil (1000 g/d) was continuously infused into the duodenum for 4 wk after the lactation peak. Feces and urine were collected over 6

Recanati, Catherine

450

Comparison of Energy Source Estimates Derived from Atmospheric Circulation Data with Satellite Measurements of Net Radiation  

Science Conference Proceedings (OSTI)

The distributions of the net sources of atmospheric dry and latent energy are evaluated by the residual technique using the reanalyzed ECMWF FGGE level IIIb data for February and July 1979. Their sum (i.e., the residual estimate of the source of ...

Carl Fortelius; Eero Holopainen

1990-06-01T23:59:59.000Z

451

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

452

Data:4df80def-10ea-4727-8fea-b37697dbf97a | Open Energy Information  

Open Energy Info (EERE)

may be required to enter into a special contract. Fixed Monthly Charge Includes a Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

453

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electric cooperatives -- to offer net metering to customers with systems up to 100 kilowatts (kW) in capacity that generate electricity using wind energy, solar-thermal energy,...

454

Evaluation Framework and Tools for Distributed Energy Resources  

E-Print Network (OSTI)

independence. Yet absent net metering laws and/or otherto the installer, and even net metering does not accurately

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

2003-01-01T23:59:59.000Z

455

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

and energy savings potential of video game consoles in thethe energy efficiency of video game consoles. NaturalVideo game console usage and national energy consumption:

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

456

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

I. Azevedo. 2012, Electricity consumption and energy savingsMcKenney. 2007. Energy consumption by consumer electronicsK. Roth. 2011. Energy Consumption of Consumer Electronics in

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

457

Moving Towards Net-Zero Energy of Existing Building in Hot Climate  

E-Print Network (OSTI)

This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules. The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of three phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase implements a Building Management System (BMS) whereas the third phase considers the installation of photovoltaic modules in the building roof to provide considerable portion of the energy consumption in the building. The first phase results in an energy conservation of 6.5% of the building consumption. The second phase yields further reduction of the building energy consumption by about 55.4%. The average payback period of most energy conservation measures is about half year. In the third phase, approximately 27% of the total energy consumption with a payback period of less than 9 years and a saving of about 160 tone/year of CO2 emission can be accomplished.

Unknown author

2012-01-01T23:59:59.000Z

458

Advanced Metering Infrastructure  

SciTech Connect

The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

NONE

2007-10-15T23:59:59.000Z

459

Policies for compensating behind-the-meter generation vary by ...  

U.S. Energy Information Administration (EIA)

Net metering tariffs enable customers to use the electricity they generate in excess of their consumption at certain times to offset ... Size or type of power ...

460

Data:E69dff73-41f3-4039-afcb-17a06bdb1b27 | Open Energy Information  

Open Energy Info (EERE)

date: 20120401 End date if known: Rate name: Schedule 84 - Customer Energy Production Net Metering Sector: Description: Source or reference: http:www.idahopower.comAboutUs...

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data:Ba6110db-d7e6-4920-9249-1ce9f48e3199 | Open Energy Information  

Open Energy Info (EERE)

Electric Member Corp Effective date: End date if known: Rate name: SCHEDULE NEM-14 NET ENERGY METERING SCHEDULE Sector: Description: Source or reference: Source Parent:...

462

Data:11a2064b-77a6-4a5f-b395-2aee1390c1cd | Open Energy Information  

Open Energy Info (EERE)

may be required to enter into a special contract. Fixed Monthly Charge Includes a Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

463

Data:Ed6379ef-d3b1-41d8-8c27-dcf2ecbbe21b | Open Energy Information  

Open Energy Info (EERE)

10 Hp, without the specific consent of the Company. Fixed Monthly Charge Includes a Energy Optimization Surcharge The Company's Net Metering Program is available on a first...

464

Data:4e494399-0515-4efe-a9c1-626930d4b98e | Open Energy Information  

Open Energy Info (EERE)

of the Company. Fixed Monthly Charge Includes Renewable Energy Surcharge The Company's Net Metering Program is available on a first come, first served basis until the nameplate...

465

Optical watthour meter digitizer  

SciTech Connect

As concern about energy conservation and energy-use efficiency increases, a simple and inexpensive instrument that would provide accurate, reliable and high-resolution data on electrical energy usage should find widespread application in research and industrial facilities. An instrument that would also provide one or more outputs compatible with a wide range of digital data acquisition systems would be especially appropriate, since the use of automatic data logging equipment is now common, even in small-scale and low-budget operations. An optical watthour meter digitizer was developed which meets these criteria. Based on the induction-type watthour meter, the digitizer provides an output pulse for a fixed amount of energy use. The digitizer senses the motion of the rotor disc of the meter by optically detecting passage of a nonreflective area painted on the underside of the disc. The passage of such area initiates a logic-compatible output pulse that can be used to measure power or energy usage in a variety of ways. The accuracy of the measurement is determined by the watthour meter. The resolution of the measurement is determined by the K/sub h/ constant (in watthours per revolution) of the meter and the number of equally spaced targets painted on the disc. The resolution of this device can be as small as a fraction of a watthour; the resolution of the manually read register on a watthour meter is typically a fraction of a kilowatthour. Several digitizers were fabricated, bench-tested, and installed in the field for long-term performance testing. All are performing satisfactorily.

Andrews, W.H.

1980-10-01T23:59:59.000Z

466

Beam energy and centrality dependence of the statistical moments of the net-charge and net-kaon multiplicity distributions in Au+Au collisions at STAR  

E-Print Network (OSTI)

In part to search for a possible critical point (CP) in the phase diagram of hot nuclear matter, a Beam Energy Scan was performed at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory. The STAR experiment collected significant Au+Au data sets at beam energies, $\\sqrt{{\\rm s}_{\\rm NN}}$, of 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. Lattice and phenomenological calculations suggest that the presence of a CP might result in divergences of the thermodynamic susceptibilities and correlation length. The statistical moments of the multiplicity distributions of particles reflecting conserved quantities, such as net-charge and net-strangeness, are expected to depend sensitively on these correlation lengths, making them attractive tools in the search for a possible critical point. The centrality and beam-energy dependence of the statistical moments of the net-charge multiplicity distributions will be discussed. The observables studied include the lowest four statistical moments (mean, variance, skewness, kurtosis) and the products of these moments. The measured moments of the net-kaon multiplicity distributions will also be presented. These will be compared to the predictions from approaches lacking critical behavior, such as the Hadron Resonance Gas model and Poisson statistics.

Daniel McDonald; for the STAR Collaboration

2012-10-26T23:59:59.000Z

467

Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes  

SciTech Connect

The US Department of Energy's Building America residential systems research project uses an analysis-based systems research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analytical approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-saving goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-01-01T23:59:59.000Z

468

A State of the Art Assessment of Zero Net Energy Commercial Office Buildings  

Science Conference Proceedings (OSTI)

This report provides a review of the state of the art of zero net energy commercial office buildings (ZNEOs). It includes information on current policy and customer business drivers for ZNEO development, design methodologies and building technologies used to achieve ZNEO performance, and on utility grid, regulatory policy, and business model impacts and requirements associated with large-scale ZNEO adoption. It also includes case studies of ZNEOs covering a range of building sizes and locations throughou...

2011-12-09T23:59:59.000Z

469

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 30950 of 31,917 results. 41 - 30950 of 31,917 results. Rebate Net Metering Note: In March 2012 the Pennsylvania Public Utilities Commission (PUC) issued a Final Order (Docket M-2011-2249441) approving the use of third-party ownership models (i.e., system leases or retail... http://energy.gov/savings/net-metering-32 Rebate Net Metering NOTE: Legislation enacted in May 2012 (HB475) further amends Vermont's net metering policy. http://energy.gov/savings/net-metering-35 Rebate Renewables Portfolio Standard New Hampshire's renewable portfolio standard (RPS), established in May 2007, requires the state's electricity providers -- with the exception of municipal utilities -- to acquire by 2025 renewable... http://energy.gov/savings/renewables-portfolio-standard-6 Rebate Renewables Portfolio Standard

470

Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings  

E-Print Network (OSTI)

References US DOE. 2009 Buildings Energy Databook. U.S.measurements. Energy and Buildings. Vol. 40. 2008. pp. RothSavings Potential in 2008 by Building Type. TIAX LLC, 2010.

Brown, Richard

2012-01-01T23:59:59.000Z

471

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

of usage nationwide, we can estimate total national energythe total combined energy use. 3. Average usage over alltotal game console usage, this suggests that an appreciable fraction of console energy

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

472

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

473

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

474

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

475

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

476

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

477

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

478

Data:F2ec84ec-df8b-499c-8629-a0e1de6caf71 | Open Energy Information  

Open Energy Info (EERE)

if known: Rate name: Net Metering Sector: Description: The rate used to determine the dollar amount paid for net energy purchased by the Cooperative shall be based upon the...

479

Sun meter  

DOE Patents (OSTI)

A simple, inexpensive device for measuring the radiation energy of the sun impinging on the device. The measurement of the energy over an extended period of time is accomplished without moving parts or tracking mechanisms.

Younskevicius, Robert E. (Largo, FL)

1978-01-01T23:59:59.000Z

480

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 30310 of 31,917 results. 01 - 30310 of 31,917 results. Rebate Net Energy Billing All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing... http://energy.gov/savings/net-energy-billing Rebate Net Metering New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal... http://energy.gov/savings/net-metering-24 Rebate RPS Customer-Sited Tier Regional Program Note: The first proposal deadline was recently extended from November 8, 2012 to December 5, 2012. Subsequent proposal deadlines remain unchanged. http://energy.gov/savings/rps-customer-sited-tier-regional-program

Note: This page contains sample records for the topic "net energy metering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Using information systems to improve energy efficiency: Do smart meters make a difference?  

Science Conference Proceedings (OSTI)

The large-scale generation of electricity is a major contributor to increasing levels of greenhouse gas emissions, putting pressure on the industry to reduce its environmental impacts. Electricity utility companies are looking to two strategies to help ... Keywords: Demand-side management, Energy efficiency, Energy informatics, Green IS, Information processing, Information waste, Smart grid, Sustainability

Jacqueline Corbett

2013-11-01T23:59:59.000Z

482

Interconnection Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Interconnection Standards Interconnection Standards < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Energy Sources Solar Program Info State Vermont Program Type Interconnection Provider Vermont Public Service Board Vermont has adopted separate interconnection standards for net-metered energy systems that are 150 kW or less, and for all other distributed-generation (DG) systems. '''Interconnection Standards for Net-Metered Systems 150 kW or less''' Vermont requires electric utilities to offer net metering to all customers with photovoltaic (PV) systems, wind-energy systems, fuel cells or

483

Electricity meterings as an integral part of an energy conservation program  

E-Print Network (OSTI)

Energy management has always been an issue for facility managers, but is now coming under increased scrutiny as businesses become more concerned with greenhouse gas emissions and their environmental footprint. Contemporary ...

Follette, David J. (David Junichi)

2010-01-01T23:59:59.000Z

484