National Library of Energy BETA

Sample records for net energy billing

  1. Net Energy Billing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosomeofNeil

  2. Florida Residents See Energy Bill Reductions

    Broader source: Energy.gov [DOE]

    Indiantown nonprofit's home weatherization efforts help homeowners see drastic cuts in their energy bills.

  3. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  4. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National...

  5. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of...

  6. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergyBuildingsDepartment ofof

  7. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSysEnergyBuildingsDepartment

  8. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    The Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  9. Bill Gibbons | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,Department ofU.S.-ChinaBill

  10. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency...

    Office of Environmental Management (EM)

    On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements (201) October 8...

  11. ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111-228

    E-Print Network [OSTI]

    ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111. Fusion Energy Sciences (FES) would be funded at $384.0 million, a decrease of $42.0 million below the FY10 enacted level and $4.0 million above the budget request. FUSION ENERGY SCIENCES The Committee

  12. Bill Scanlon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department

  13. Bill Valdez | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy|| Department- Director of Workforce Management

  14. Bill Richardson | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,Department

  15. On-Bill Financing for Energy Efficiency Improvements: A Review...

    Energy Savers [EERE]

    Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program...

  16. PIA - FBI Billing System | Department of Energy

    Energy Savers [EERE]

    and Budget System Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Occupational Medicine - Assistant PIA, Idaho National Laboratory...

  17. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  18. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  19. Know Your Energy Bill! | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbine blades being deliveredof Energy astrack of

  20. Billings, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergyJump to: navigation,

  1. Billings, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergyJump to:

  2. ORNL 'deep retrofits' can cut home energy bills in half

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    . Deep energy retrofits are renovations to existing structures that use the latest in energyORNL 'deep retrofits' can cut home energy bills in half November 25, 2009 ORNL's Jeff Christian Ridge National Laboratory has announced plans to conduct a series of deep energy retrofit research

  3. Analysis ? Targeting Zero Net Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis - Targeting Zero Net Energy 2014 Building Technologies Office Peer Review Scott Horowitz, scott.horowitz@nrel.gov NREL Project Summary Timeline: Start date: 2010 Planned...

  4. ORNL 'deep retrofits' can cut home energy bills in half

    E-Print Network [OSTI]

    Pennycook, Steve

    of the costs--about $10 per square foot of living space--and agree to allow their post-retrofit energyORNL 'deep retrofits' can cut home energy bills in half November 25, 2009 ORNL's Jeff Christian Ridge National Laboratory has announced plans to conduct a series of deep energy retrofit research

  5. Learn how to develop your own net energy producing, alternative energy home.

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Learn how to develop your own net energy producing, alternative energy home. The program consists of images and description of the development of the Alternative Energy Program at SNC from 1971 lower utility bills as well as improving home comfort. Ben Solomon is a Professor of Alternative Energy

  6. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  7. Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462)

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462) Subsidy; · Authorizes guarantees for tax- equity and purchase power agreements that could be used for nuclear · Funds out. The nuclear industry has requested $122 billion in guarantees under Title XVII Loan Guarantees

  8. Case Studies—Financing Energy Improvements on Utility Bills

    Broader source: Energy.gov [DOE]

    Hosted by Technical Assistance Program (TAP), the State and Local Energy Efficiency Action Network (SEE Action), and Lawrence Berkeley National Laboratory's Electricity Market and Policy Group, this webinar was the second of a two-part webinar series focused on the new report, Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators.

  9. Money for Research, Not Energy Bills: Finding Energy and Cost Savings in

    E-Print Network [OSTI]

    , to meet national security, materials design, climate protection, and energy goals, among othersLBNL-4282E Money for Research, Not Energy Bills: Finding Energy and Cost Savings in High of California. #12;1 Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High

  10. Omnibus Energy Bill of 2013 (Maine)

    Broader source: Energy.gov [DOE]

    An Act To Reduce Energy Costs, Increase Energy Efficiency, Promote Electric System Reliability and Protect the Environment became law on July 2, 2013. This act, also known as the 2013 Maine Omnibus...

  11. MEASURING ENERGY CONSERVATION WITH UTILITY BILLS

    E-Print Network [OSTI]

    Deckel, Walter

    2013-01-01

    The total energy used both per square foot and per FTE hasTotal Energy Used Per Year Total Gross Square Feet The EUIsquare foot and per FTE, have increased markedly, The explanation of the first trend lies FIGURE 4 a.Distribution of Values of Energy

  12. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    7  Defining a Net?Zero Energy Net Zero Energy .A.     Defining a Net­Zero Energy Building  Due to the 

  13. Baltimore Vet Cuts Energy Bills With Solar

    Broader source: Energy.gov [DOE]

    Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs.

  14. PIA - FBI Billing System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EERE Infrastructure-EERE Reviewerof| Department

  15. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    6A2-45832. Golden, CO: National Renewable Energy Laboratory.of State Incentives for Renewable Energy). 2010. Map of NetAssociates. National Renewable Energy Laboratory (NREL).

  16. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota:Bonn |NJ

  17. Project Frog: Net Zero Energy Comparative Analysis

    E-Print Network [OSTI]

    Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School undertand how they perform. The net zero energy (NZE) platforms were installed as research prototypes, Kauai #12;Project Frog: Net Zero Energy Comparative Analysis Hawai`i Natural Energy Institute | School

  18. Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

  19. On-Bill Financing for Energy Efficiency Improvements Toolkit | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of Energy Improvements

  20. On-Bill Repayment Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of EnergyRepayment Programs

  1. Bill Robinson (Train2Build) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergy InformationBill

  2. Negotiation-Based Task Scheduling to Minimize User's Electricity Bills under Dynamic Energy Prices

    E-Print Network [OSTI]

    Pedram, Massoud

    Negotiation-Based Task Scheduling to Minimize User's Electricity Bills under Dynamic Energy Prices}@usc.edu Abstract--Dynamic energy pricing is a promising technique in the Smart Grid that incentivizes energy to minimize the electricity bill. A general type of dynamic pricing scenario is assumed where the energy price

  3. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  4. ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA code applied to buildings using residential billing data on electricity and natural gas, combined in the built environment, as buildings account for roughly 72% of electricity con- sumption, 39% of all energy

  5. Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing

    E-Print Network [OSTI]

    Pedram, Massoud

    Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost their electric bill. On the other hand optimizing the number and production time of power generation facilities lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which

  6. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Energy Savers [EERE]

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy...

  7. U.Commerce 6.0 | Bill+Payment 6.0.0 1997 -2012 TouchNet Information Systems, Inc. All rights reserved. | TouchNet Privacy Policy

    E-Print Network [OSTI]

    Hamburger, Peter

    U.Commerce 6.0 | Bill+Payment 6.0.0 ©1997 - 2012 TouchNet Information Systems, Inc. All rights, employers, etc.) the ability to access your account information. In compliance with the Family Educational Rights and Privacy Act of 1974 (FERPA), your student financial records may not be shared with a third

  8. E:\BILLS\H6.PP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP E:\BILLS\H6.PP E:\BILLS\H6.PP

  9. Live Webcast on the 2014 Farm Bill's Renewable Energy for America Program

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “The 2014 Farm Bill's Renewable Energy for America Program” on May 21, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  10. SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage

    E-Print Network [OSTI]

    Kurose, Jim

    SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

  11. ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill...

    Broader source: Energy.gov (indexed) [DOE]

    just outside Washington, D.C. Bill Gates, founder and chairman of Microsoft; Fred Smith, chairman, president and CEO of FedEx; and Lee Scott, former CEO of Wal-Mart; will...

  12. Zero Net Energy Myths and Modes of Thought

    E-Print Network [OSTI]

    Rajkovich, Nicholas B.

    2010-01-01

    mypp.html. ———. (2009). "Net-Zero Energy CommercialZero Net Energy Myths and Modes of Thought  Nicholas B.  AC02? 05CH11231. Page | i Zero Net Energy Myths and Modes of

  13. Collective Impact for Zero Net Energy Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Star Certified New Home Building America Goal: High-Performance Zero Net-Energy Ready New & Existing Homes ZNER NewExist. Home Low HERS Code New Home Building...

  14. Definition of a 'Zero Net Energy' Community

    SciTech Connect (OSTI)

    Carlisle, N.; Van Geet, O.; Pless, S.

    2009-11-01

    This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

  15. A Proposed Method for Improving Residential Heating Energy Estimates Based on Billing Data 

    E-Print Network [OSTI]

    Lee, A. D.; Hadley, D. L.

    1988-01-01

    empirical energy consumption data, however, provide a basis for alternative ways to estimate program effects that utilize the empirical data. The PRISM methodology uses relatively inexpensive billing and weather data to estimate base and temperature...

  16. Analysis of Five Selected Tax Provisions of the Conference Energy Bill of 2003

    Reports and Publications (EIA)

    2004-01-01

    This special report was undertaken at the January 29, 2004, request of Senator John Sununu to perform an assessment of five specific tax provisions of the Conference Energy Bill of 2003.

  17. Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost

    E-Print Network [OSTI]

    1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS. Environmental Energy Technologies Division September 2009 This work was supported by the Assistant Secretary

  18. Take a Vacation from Your Energy Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Intergovernmental Programs We are always talking about preparing our homes for energy efficiency and taking the right steps to decrease our carbon footprints as...

  19. Army Net Zero: Guide to Renewable Energy Conservation Investment...

    Office of Environmental Management (EM)

    Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects Army Net Zero: Guide to Renewable Energy Conservation Investment Program (ECIP) Projects...

  20. Best Practices for Controlling Capital Costs in Net Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy...

  1. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    for  any net energy consumption with solar panels, the cost solar orientation, the variability in  energy consumption 

  2. Energy Savings Week: Lowering Energy Bills with Efficient Home Heating |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |ToolAppliances | Department ofDepartment of

  3. Forsyth County Slashes Energy Bills with Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent Lamp BallastsActivities,JoiningEnergy

  4. June 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House

    E-Print Network [OSTI]

    and gas production, wind and solar energy, energy-efficient appliances and hybrid cars. The measureJune 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House By CARL HULSE WASHINGTON, June 28 - The Senate overwhelmingly passed broad energy legislation today, hoping its emphasis on both

  5. Billings County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy sEnergy

  6. SRP - Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.govFreedom

  7. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  8. Excerpts from Senate Report 109-084 ENERGY AND WATER APPROPRIATIONS BILL, 2006

    E-Print Network [OSTI]

    Excerpts from Senate Report 109-084 ENERGY AND WATER APPROPRIATIONS BILL, 2006 June 16, 2005 of the Department's missions in national security, energy security and economic security. Programs funded under after the enactment of this Act, with information critical to moving forward with the site selection

  9. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

  10. Grid Net | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformation RegionalGreenvironmentNet Jump to:

  11. Comparison groups on bills: Automated, personalized energy information

    E-Print Network [OSTI]

    Iyer, Maithili

    2008-01-01

    Summer Study on Energy Efficiency in Buildings. Berkeley,Summer Study on Energy Efficiency in Buildings. Berkeley,Summer Study on Energy Efficiency in Buildings. Berkeley,

  12. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    energy graph from the  BEopt software, superimposed with Figure 24).     Figure 23: BEopt zero?net?energy chart superimposed (red)  (NREL BEopt: Software for Identifying 

  13. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

  14. Secretary Bodman Promotes Energy Bill to Western Governors |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    further development of renewable energy; hydrogen powered fuel-cell vehicles; and clean-coal power generation. "The energy challenges facing our country today are greater than...

  15. Cutting the Federal Governments Energy Bill: An Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is clear from past Federal performance and documented success in the private sector that saving energy can save money. Investments in energy savings will not only reduce the...

  16. The BLOOMhouse:Zero Net Energy Housing 

    E-Print Network [OSTI]

    Garrison, M.; Krepart, R.; Randall, S.; Novoselac, A.

    2008-01-01

    The 2007 University of Texas Solar Decathlon House is called the BLOOMhouse because it represents the “seed” of new ideas for zero net energy housing. The University of Texas student team developed a prefabricated 7.9 kW stand-alone solar...

  17. Summary Impacts of Modeled Provisions of the 2003 Conference Energy Bill

    Reports and Publications (EIA)

    2004-01-01

    This service report was undertaken at the February 2, 2004, request of Senator John Sununu to perform an assessment of the Conference Energy Bill of 2003. This report summarizes the CEB provisions that can be analyzed using the National Energy Modeling System (NEMS) and have the potential to affect energy consumption, supply, and prices. The impacts are estimated by comparing the projections with the CEB provisions to the AEO2004 Reference Case.

  18. Energy Efficiency & On-Bill Financing for Samll Business & Residential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

  19. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Department of Energy Secretary); Gates, Bill (Microsoft, Chairman); Podesta, John (Center for American Progress, Chair and Counselor)

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called 'Fireside Chat' that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

  20. EECBG Success Story: Forsyth County Slashes Energy Bills with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 - 10:00am Addthis A new energy management system in Forsyth Countys 52,057 square foot courthouse is expected to save about 9,000 annually. | Photo courtesy of Forsyth...

  1. New Jersey: Reducing Energy Bills for Camden's Families | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of EnergyDepartment of| Department

  2. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014Thermal Electric Solar

  3. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014Thermal Electric

  4. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014Thermal ElectricTribal

  5. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014Thermal

  6. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014ThermalInstitutional Savings

  7. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014ThermalInstitutional

  8. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating SolarEnergy2014ThermalInstitutionalFederal

  9. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosomeofNeilnet

  10. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosomeofNeilnetResidential

  11. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline

  12. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofit Residential Schools

  13. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofit Residential

  14. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofit ResidentialMunicipal

  15. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofit

  16. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofitLocal Government

  17. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofitLocal

  18. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofitLocalLocal Government

  19. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by PipelineNonprofitLocalLocal

  20. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by

  1. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar Thermal

  2. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar

  3. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar< Back

  4. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar<

  5. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar<< Back

  6. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric Solar<<

  7. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal Electric

  8. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal ElectricNonprofit

  9. Direct_Final_Rule_Bill.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof EnergyWASHINGTON, DC -State ||direct research

  10. Financing Tool Fits the Bill | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping into Funding for Energy Efficiency andfinancinghomeowners

  11. EECBG Success Story: Forsyth County Slashes Energy Bills with Upgrades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartment of Energy Finding Six-Figure

  12. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Efficiency and Renewable Energy (Solar Energy TechnologiesEfficiency and Renewable Energy (Solar Energy Technologiesto certain solar and other renewable generation projects

  13. Reduce Your Heating Bills with Better Insulation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSaSuperiorIf you pay your own

  14. On-Bill Financing and Repayment Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADAEnergyAFour RegionalOil8,137 OldFundsbill

  15. Consumer Tips for Lowering Your Utility Bill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumer Connection Jump to: navigation,

  16. Secretary Bodman Promotes Energy Bill to Western Governors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData DashboardSolar » SearchCompleted;Efforts | DepartmentEnergy

  17. Upping Efficiency Standards, Lowering Utility Bills | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartment of EnergyEducation |

  18. Apartment Hunting - Part II - Keeping those Energy Bills Down |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:wasProjectsreguarly

  19. On-Bill Financing for Energy Efficiency Improvements: A Review of Current

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,of Energy

  20. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Solar Energy Technologies Program) and the Office of ElectricitySolar Energy Technologies Program) and the Office of Electricitysolar photovoltaic electricity production, Center for the Study of Energy

  1. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Preprint, National Renewable Energy Laboratory, Golden, CO,of State Incentives for Renewable Energy (DSIRE), 2010. Mapand Sample Results, National Renewable Energy Laboratory,

  2. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    Inc. 2009. Distributed Renewable Energy Operating ImpactsDistributed PV for Residential Customers in California Prepared for the Office of Energy Efficiency and Renewable Energy

  3. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim R.

    2012-01-01

    Preprint, National Renewable Energy Laboratory, Golden, CO,State Incentives for Renewable Energy (DSIRE), 2010. Map ofResults, National Renewable Energy Laboratory, Golden, CO,

  4. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01

    Efficiency and Renewable Energy, Solar Technologies ProgramEfficiency and Renewable Energy Solar Technologies ProgramEfficiency and Renewable Energy, Solar Technologies Program

  5. A Methodology to Develop Monthly Energy Use Models From Utility Billing Data For Seasonally Scheduled Buildings: Application to Schools 

    E-Print Network [OSTI]

    Wang, W.

    1998-01-01

    TO DEVELOP MONTHLY ENERGY USE MODELS FROM UTILITY BILLING DATA FOR SEASONALLY SCHEDULED BUILDINGS: APPLICATION TO SCHOOLS A Thesis by WENYAN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1998 Major Subject: Mechanical Engineering A METHODOLOGY TO DEVELOP MONTHLY ENERGY USE MODELS FROM UTILITY BILLING DATA FOR SEASONALLY SCHEDULED BUILDINGS: APPLICATION TO SCHOOLS A Thesis by WENYAN WANG Submitted...

  6. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Dagher, L.; Plympton, P.

    2008-01-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As a local sponsor for HPwES, Austin Energy's HPwES program offers a complete home energy assessment and a list of recommendations for efficiency improvements, along with cost estimates. The owner can choose to implement only one or the complete set of energy conservation measures. Austin Energy facilitates the process by providing economic incentives to the homeowner through its HPwES Loan program and its HPwES Rebate program. In 2005, the total number of participants in both programs was approximately 1,400. Both programs are only available for improvements made by a participating HPwES contractor. The individual household billing data - encompassing more than 7,000 households - provided by Austin Energy provides a rich data set to estimate the impacts of its HPwES program. The length of the billing histories is sufficient to develop PRISM-type models of electricity use based on several years of monthly bills before and after the installation of the conservation measures. Individual household savings were estimated from a restricted version of a PRISM-type regression model where the reference temperature to define cooling (or heating degree days) was estimated along with other parameters. Because the statistical quality of the regression models varies across individual households, three separate samples were used to measure the aggregate results. The samples were distinguished on the basis of the statistical significance of the estimated (normalized) cooling consumption. A normalized measure of cooling consumption was based on average temperatures observed over the most recent nine-year period ending in 2006. This study provided a statistically rigorous approach to incorporating the variability of expected savings across the households in the sample together with the uncertainty inherent in the regression models used to estimate those savings. While the impact of the regression errors was found to be relatively small in these particular samples, this approach may be useful in future studies using individual household billing data. The median percentage savings for the largest sample of 6,000 households in the analysis was 32%, while the mean savings was 28%. Because the number of households in the sample is very large, the standard error associated with the mean percentage savings are very small, less than 1%. A conservative statement of the average savings is that is falls in the range of 25% to 30% with a high level of certainty. This preliminary analysis provides robust estimates of average program savings, but offers no insight into how savings may vary by type of conservation measure or whether savings vary by the amount of cooling electricity used prior to undertaking the measure. Follow-up researchers may want to analyze the impacts of specific ECMs. Households that use electricity for heating might also be separately analyzed. In potential future work several methodological improvements could also be explored. As mentioned in Section 2, there was no formal attempt to clean the data set of outliers and other abnormal patterns of billing data prior to the statistical analysis. The restriction of a constant reference temperature might also be relaxed. This approach may provide evidence as to whether any 'take-back' efforts are present, whereby thermostat settings are lowered during the summer months after the measures are undertaken (reflected in lower reference temperatures in the post-ECM period). A more extended analysis may also justify the investment in and use of the PRISM software package, which may provide more diagnostic measures with respect to the reference temperature. PRISM also appears to contain some built-in capability to detect outliers and other an

  7. Targeting Net Zero Energy for Military Installations (Presentation)

    SciTech Connect (OSTI)

    Burman, K.

    2012-05-01

    Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  8. OpenNet Training | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHighOffice ofProjectDepartment ofOpenNet Training

  9. Deep Energy Efficiency and Getting to Net Zero

    Broader source: Energy.gov [DOE]

    Presentation covers energy efficiency and getting to net zero and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  10. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    house.  The  building was built by a local manufacturer of prefabricated house)  Energy savings compared to other home s in the area:  Web?site: http://www.zerohouse.net/   Description:  zeroHouse is a prefabricated 

  11. 15 Ways to Save on Your Water Heating Bill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it...

  12. Resolving data center power bill disputes: the energy-performance trade-offs of consolidation

    E-Print Network [OSTI]

    Chatzipapas, Angelos; Pediaditakis, Dimosthenis; Rotsos, Charalampos; Mancuso, Vincenzo; Crowcroft, Jon; Moore, Andrew W.

    2015-06-09

    the energy consumption due to CPU activity in the estimate of each component’s energy consumption. Thereby, energy requirements can be expressed as follows: Ecpu = ?cpu(T, f, c, a), (1) Edisk = ?dr(T, f, c, cs, nc) + ?dw(T, f, c, cs, nc), (2) Enet = ?in(T, f... for each component. The resulting total energy estimation of the system is: Etotal = Ebase + Ecpu + Edisk + Enet + Emem (5) where Ei, ?i ? {total, base, cpu, disk, net,mem}, corresponds to the energy requirements for the whole system, the base- line...

  13. Net Balanced Floorplanning Based on Elastic Energy Model

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Net Balanced Floorplanning Based on Elastic Energy Model Wei Liu and Alberto Nannarelli Dept variations can introduce extra signal skew, it is desirable to have floorplans with balanced net delays based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used

  14. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    E-Print Network [OSTI]

    Marnay, Chris

    2011-01-01

    Rita Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay,Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay –Jail is unlikely to meet zero net energy in the near future.

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits...

  16. Progress Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of2ProfessionalDepartment

  17. Duke Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits atis from a Building AmericaDepartment

  18. Austin Energy - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIES AT THEEnergy < Back< Back

  19. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  20. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  1. Analyzing and Managing Bill Impacts of Energy Efficiency Programs. Principles and Recommendations

    SciTech Connect (OSTI)

    none,

    2011-07-01

    Provides policymakers with principles and recommendations to understand and manage concerns about bill and rate impacts resulting from requiring utilities to provide efficiency programs.

  2. Renewable Generation Effect on Net Regional Energy Interchange: Preprint

    SciTech Connect (OSTI)

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul; Jenkin, Thomas; Margolis, Robert

    2015-07-30

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affecting the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.

  3. San Antonio City Public Service (CPS Energy)- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to customers of CPS Energy. There is no aggregate capacity limit or maximum system size. There are also no commissioning fees or facilities charges for customers.

  4. October 16, 2012, Webinar: Net-Zero-Energy Communities

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view...

  5. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer���¢��������s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  6. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial...

  7. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    contentious issues related to net metering (E3 2010; IREC2010; IREC Freeing the grid 2012; ), there are surprisingly

  8. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    SciTech Connect (OSTI)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  9. How On-Bill Financing Unlocks Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - BuildingofDepartment ofHow Much Do YouOn-Bill

  10. Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories – Net Zero Energy Communities," originally presented on October 16, 2012.

  11. DIAGNOSING, BENCHMARKING AND TRANSFORMING THE LEED CERTIFIED FIU SIPA BUILDING INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB)

    E-Print Network [OSTI]

    Pala, Nezih

    with a score of 61.9590 kBTU per square foot. (The Environmental Protection Agency established kBTU per square foot as the key performance indicator for energy efficiency in its Energy Star rating program.) However INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB) Thomas Spiegelhalter Florida International University

  12. Microsoft Word - SEADOCS-#51420389-v7-POS_Energy_Northwest_Net_Billed_Bonds__2015.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete7 Assessment ofLana Cox (803) TO:1 of5 RPI2843

  13. 2012 ARPA-E Energy Innovation Summit Keynote Presentation (Bill Clinton, 42nd President of the United States)

    ScienceCinema (OSTI)

    Clinton, William J. (Bill) (42nd President of the United States)

    2012-03-21

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. Former President Bill Clinton, the 42nd President of the United States, gave the final keynote address of the 2012 Summit on February 29. He addressed the importance of government investment in research that will help move the world toward a cleaner and more secure energy future.

  14. Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators

    SciTech Connect (OSTI)

    2014-05-22

    Provides an overview of the current state of on-bill programs and provides actionable insights on key program design considerations for on-bill lending programs.

  15. Cut Your Power Bills 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1979-01-01

    CUT YOUR POWER BILLS Ralph W. Greenwood Manager, Electric Po\\yer & Steam Supply Union Carbide Corporation INTRODUCTION Electric power bills can often be reduced by careful attention to the inter-relationship between your plant operations... of work and determines the amount of fuel the utility must burn. One kW equals 3413 BTU. ~ hr. Before we analyze how a rate interacts with a customer's load profile, we need to see how a rate is con structed. Rate Design Custome~ Demand and Energy...

  16. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    between average residential demand (net of behind-the-meterhours of highest residential demand, 12 noon to 12 midnight,prices during peak residential demand. This reduction in the

  17. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

  18. A Dynamic and Context-Driven Benchmarking Framework for Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Pala, Nezih

    A Dynamic and Context-Driven Benchmarking Framework for Zero-Net- Energy Buildings Youngcheol Kang1 a significant portion of energy produced in the United States. In order to achieve Zero-Net-Energy (ZNE, there have been various efforts to design and develop zero-net-energy (ZNE) buildings. A ZNE building

  19. Net Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock,

    E-Print Network [OSTI]

    Kissock, Kelly

    per square foot of floor area per year using average 2005 industrial energy costs. Net cooling energyNet Energy Costs of Skylights Peter Kleinhenz, Rizwan Syed, and Kelly Kissock, University of Dayton, it is also useful to consider the net energy costs associated with skylights. This paper describes

  20. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  1. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect (OSTI)

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  2. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    SciTech Connect (OSTI)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

  3. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive...

  4. New Zero Net-Energy Facility: A Test Bed for Home Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant...

  5. Wire-Net | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: EnergyIllinois:Winton, Minnesota: Energy Resources

  6. Collective Impact for Zero Net Energy Homes

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America meeting on April 29-30, 2013, in Denver, Colorado.

  7. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  8. EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy and Environment Div

    E-Print Network [OSTI]

    EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy the nation towards net-zero energy, high- performance buildings in a cost-effective manner while maintaining Goal: Net-Zero Energy, High-Performance Buildings Program; Sustainable and Energy-Efficient Materials

  9. High Performance Indoor Air Quality Specification for Net Zero Energy Homes

    E-Print Network [OSTI]

    High Performance Indoor Air Quality Specification for Net Zero Energy Homes White + GreenSpec SHEET PHOTOVOLTAIC PANELS #12;High Performance Indoor Air Quality Specification for Net Zero Energy Homes NIST GCR 14 Division provides scientific leadership to help the U.S. achieve its vision of net zero energy (NZE

  10. SolarNet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompanySolarLab Jump to:

  11. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2006-01-01

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  12. South Carolina - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000radiation, often6EnergyOctoberProgram |<

  13. Palau - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy On October 13,is a Request for Project<

  14. Millenial Net Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to:Utah:Millard,Ohio: EnergyMille

  15. Ontario’s Protocols for Evaluating the Energy and Bill Savings from Industrial Energy Efficiency Programs 

    E-Print Network [OSTI]

    Messenger, M.

    2007-01-01

    of the monitoring process. 22 International Performance Measurement and Verification Protocol Committee, Volume 1 Concepts and Options for Determining Energy and Water Savings : IPMVP Protocol series Revised.... 3 ASHRAE, Measurement of Energy and Demand Savings:ASHRAE guideline 14-2002 ( published in June of 2002) See chapter 6, Specific Approaches and IPMVP, Ibid, Volume 1 , Chapter 3, Basic Concepts Key Issue 3- Ensuring that the value...

  16. Toward zero net energy buildings : optimized for energy use and cost

    E-Print Network [OSTI]

    Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

  17. Iowa Shade Trees Bring Energy Bills Down, Beauty Up | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENTGDLB-115)CommentsDepartmentinEnergyused asVolunteers

  18. Bodman Statement on House Passage of Energy Bill | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLC |Energy AdvisorEnergySeptemberof

  19. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    Energy: Policy Considerations for Deploying Renewables (Information Paper). International Energy Agency, Paris, France.

  20. Net Metering Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosomeofNeilnet metering

  1. Idaho Power - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71 HydrogenComputerPetroleumDepartment23Department

  2. American PowerNet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to: navigation,OpenTechnologies

  3. Secretary of Energy's Statement on the Senate Passage of the Energy Bill |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1ResearchUniversityPrepared forProductioninResearchDepartment

  4. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

  5. Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar PowerTribes to DevelophostedDepartment of

  6. Energy Secretary Bodman Heads to West Virginia to Promote Energy Bill |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance Contracting

  7. Energy Secretary Bodman's Statement on House Passage of the Energy Bill |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance ContractingTourNuclearand

  8. Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeat & Cool »Characters(PartDepartment of Energy Tricks to

  9. A Home Cooling Strategy for Lower Energy Bills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgram | Department ofDepartment ofA Home

  10. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    2008. European renewable energy policy at crossroads—FocusÖlz, S. , 2011. Renewable Energy: Policy Considerations forR. , 2009. Which renewable energy policy is a venture

  11. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    Sullivan, K. , 2009. Renewable Energy Cost of GenerationBlack and Veatch. Renewable Energy Costs. Presented at theof renewable energies: A transaction-cost perspective.

  12. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    energy conservation and distributed generation from elimination of electricof intermittent electric generation technologies. Energyof intermittent electric generation technologies. Energy

  13. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy buildings reduce energy consumption and reduce dependence on non- renewable energy sources. · As interestThesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M

  14. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    power development. Renewable Energy 33, 1854–1867. Caamaño-SR-581-42303). National Renewable Energy Laboratory (NREL),State Incentives for Renewable Energy (DSIRE), 2010. Map of

  15. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    the amount of future renewable energy (RE) deployment is notrenewable energy: Is the whole less than the sum of its parts? Resource for the Futurefuture changes. For example, higher penetrations of renewable energy

  16. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    Beck, 2009. Distributed Renewable Energy Operating ImpactsDistributed PV Value Calculator. Presented at the Proceedings of World Renewable Energydistributed PV for residential customers in California. Energy Policy Database of State Incentives for Renewable Energy (

  17. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    and Public Economies of Renewable Electricity Generation.wind power development. Renewable Energy 33, 1854–1867.SR-581-42303). National Renewable Energy Laboratory (NREL),

  18. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    various levels of renewable and solar energy deployment,with high levels of renewable and solar energy, customer-to certain solar and other renewable generation projects

  19. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    SciTech Connect (OSTI)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  20. The Practical Applications of Net Energy Metering (NEM) By: Ken Linder and Katie Noland

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Applications of Net Energy Metering (NEM) By: Ken Linder and Katie Noland Recommendations: Currently the Net Energy Metering (NEM) law in accordance to Montana state policy caps the amount of energy reimbursable by utility companies for personal production of energy. The goal of the capstone class policy group is to put

  1. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    Efficiency and Renewable Energy (Solar Energy TechnologiesEfficiency and Renewable Energy, Solar Technologies ProgramSOLAR 2012 Conference Proceedings, for the World Renewable

  2. American PowerNet (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name:AmbataSkiesPowerNet (Maine) Jump

  3. GEO NET Umweltconsulting GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar JumpNetworkingGAOH Offshore JumpEnergyNET

  4. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    Margolis, R. , 2004. Are Photovoltaic Systems Worth More toeconomics of commercial photovoltaic systems in California.a grid-connected photovoltaic system. Renewable Energy 32,

  5. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    2005a. Time- varying retail electricity prices: Theory andpractice. Electricity Deregulation: Choices and Challenges.efficiency of real-time electricity pricing. Energy Journal

  6. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo...

  7. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    the costs of renewable energy procurement, the costs of theRE is the total costs of renewable energy procurement, r resThough the total costs of renewable energy procurement ( C

  8. Energy Modeling of Wireless Sensor Nodes Based on Petri Nets Ali Shareef, Yifeng Zhu

    E-Print Network [OSTI]

    Zhu, Yifeng

    energy- saving strategies in wireless sensor networks. Keywords-Wireless Sensor Networks, Petri NetsEnergy Modeling of Wireless Sensor Nodes Based on Petri Nets Ali Shareef, Yifeng Zhu Department}@eece.maine.edu Abstract--Energy minimization is of great importance in wire- less sensor networks in extending the battery

  9. Energy-efficient wireless communication net-work design is an important and challenging

    E-Print Network [OSTI]

    ABSTRACT Energy-efficient wireless communication net- work design is an important and challenging and perfor- mance. INTRODUCTION Energy-efficient wireless communication net- work design is an important, and optimization of wireless communication networks that achieves maximum performance under an energy constraint

  10. Zero Net Energy Myths and Modes of Thought

    SciTech Connect (OSTI)

    Rajkovich, Nicholas B.; Diamond, Rick; Burke, Bill

    2010-09-20

    The U.S. Department of Energy (DOE), the California Public Utilities Commission (CPUC), and a number of professional organizations have established a target of zero net energy (ZNE) in buildings by 2030. One definition of ZNE is a building with greatly reduced needs for energy through efficiency gains with the balance of energy needs supplied by renewable technologies. The push to ZNE is a response to research indicating that atmospheric concentrations of greenhouse gases have increased sharply since the eighteenth century, resulting in a gradual warming of the Earth?s climate. A review of ZNE policies reveals that the organizations involved frame the ZNE issue in diverse ways, resulting in a wide variety of myths and a divergent set of epistemologies. With federal and state money poised to promote ZNE, it is timely to investigate how epistemologies, meaning a belief system by which we take facts and convert them into knowledge upon which to take action, and the propagation of myths might affect the outcome of a ZNE program. This paper outlines myths commonly discussed in the energy efficiency and renewable energy communities related to ZNE and describes how each myth is a different way of expressing"the truth." The paper continues by reviewing a number of epistemologies common to energy planning, and concludes that the organizations involved in ZNE should work together to create a"collaborative rationality" for ZNE. Through this collaborative framework it is argued that we may be able to achieve the ZNE and greenhouse gas mitigation targets.

  11. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

  12. NREL: Technology Deployment - Net Zero Energy and Energy Security Measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated Across the Military Net

  13. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. THE POTENTIAL IMPACT OF INCREASED RENEWABLE ENERGY

  14. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    home s in the area:  Web?site: http://www.zerohouse.net/   Description:  zeroHouse is a prefabricated home was built using a Structural Insulated Panels (SIP) wall system.   Prefabricated 

  15. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    a levelized cost of energy (LCOE) of about $722/kW-yr, fromprocurement costs assume an LCOE of $0.10, $0.09, $0.15 persources are assumed to have an LCOE of $0.10/kWh. The LCOEs

  16. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect (OSTI)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  17. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    E-Print Network [OSTI]

    Sartor, Dale

    2011-01-01

    Efficiency and Renewable Energy, Building Technologiesof Energy’s National Renewable Energy Laboratory is also

  18. Clean Air Bill 

    E-Print Network [OSTI]

    Her Majesty's Stationary Office

    1955-01-01

    The object of this Bill is to implement the principal recommendations in the Report of the Committee on Air Pollution

  19. A Net Energy-based Analysis for a Climate-constrained Sustainable Energy Transition

    E-Print Network [OSTI]

    Sgouridis, Sgouris; Csala, Denes

    2015-01-01

    The transition from a fossil-based energy economy to one based on renewable energy is driven by the double challenge of climate change and resource depletion. Building a renewable energy infrastructure requires an upfront energy investment that subtracts from the net energy available to society. This investment is determined by the need to transition to renewable energy fast enough to stave off the worst consequences of climate change and, at the same time, maintain a sufficient net energy flow to sustain the world's economy and population. We show that a feasible transition pathway requires that the rate of investment in renewable energy should accelerate approximately by an order of magnitude if we are to stay within the range of IPCC recommendations.

  20. The Renewable Energy Guy: Q&A with TV's Bill Nye | Department...

    Broader source: Energy.gov (indexed) [DOE]

    scientist, engineer, comedian, author, and inventor-now works to spread the message of renewable energy, and regularly takes on projects to "green" his own Californian home. Nye...

  1. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  2. Pitch: "Reduce Your Bill" | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy OnPeter B.EnergyInPilgrim

  3. Using QECBs for Street Lighting Upgrades: Lighting the Way to Lower Energy Bills in San Diego

    Broader source: Energy.gov [DOE]

    Summarizes how the City of San Diego leveraged $13.1 million in qualified energy conservation bonds to increase the size of a street lighting upgrade project. Author: Lawrence Berkeley National Laboratory

  4. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    E-Print Network [OSTI]

    Marnay, Chris

    2011-01-01

    utility electricity bill from on-site PV generation Fuelutility electricity bill from fuel cell generation 5 of 12

  5. Moving Towards Net-Zero Energy of Existing Building in Hot Climate 

    E-Print Network [OSTI]

    2012-01-01

    This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules. The program conducted on an existing institutional building intending to convert it into a Net-Zero...

  6. Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

  7. Largest American Net Zero Energy Campus Community Embraces Clean Energy

    Broader source: Energy.gov [DOE]

    A new housing development on the UC Davis campus is planning to bring a new source of renewable energy to its community.

  8. 4 5division of engineering & applied science ENGenious ISSUE 10 2013 Decreasing the Energy Bill

    E-Print Network [OSTI]

    Haile, Sossina M.

    as to estimate the market value of this capacity. Specifi- cally, she studied the flexibility of thermally from electricity market operators in California and other states, she has developed an algorithm of California Homeowners Renewable energy sources used in the generation of electricity, such as wind and solar

  9. SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher iSlide 1 More Documents &1000 Independence< Back Eligibility< Back

  10. SCE - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTON PACIFICand< Back

  11. SDG&E - Non-Residential On-Bill Financing Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTONtransmissionCommercial

  12. On-Bill Financing: Reducing Cost Barriers to Energy Efficiency Improvements

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADAEnergyAFour RegionalOil8,137

  13. FIA-14-0015 - In the Matter of Bill Streifer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:forEnergy 39 - In the1 -7 -37 -2 -5

  14. FIA-15-0009 - In the Matter of Bill Streifer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:forEnergy 39 - In the1 -726 - In79

  15. New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of Energy FacilitiesCleantechthe openControllingDr.Freezers to

  16. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    s ite energyEnergy source: Solar thermal  system 60% , site energyEnergy source: solar thermal system 71%, solar thermal hot water system and PV array to offset all energy 

  17. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    SciTech Connect (OSTI)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Westby, R.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.

  18. Energy Modeling of Processors in Wireless Sensor Networks based on Petri Nets

    E-Print Network [OSTI]

    Zhu, Yifeng

    Energy Modeling of Processors in Wireless Sensor Networks based on Petri Nets Ali Shareef, Yifeng, zhu }@eece.maine.edu Abstract Power minimization is a serious issue in wireless sensor networks are needed. This paper demonstrates that Petri nets are a viable option of modeling a processor. In fact

  19. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    collectors and the solar storage tank, with staple?up While solar energy, and energy storage, technologies are Solar Power Cost Outlook . 23  Energy Storage 

  20. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  1. University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy (CommRE) success stories UC Davis net zero energy community; energy efficiency in buildings; PV and photovoltaics.

  2. Lessons Learned from Net Zero Energy Assessments and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys o u t h e aLessie00

  3. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    s ite energyEnergy source: Solar thermal  system 60% , site energyEnergy source: solar thermal system 71%, energy generation  technologies, including both electric?only units (microhydro, small?scale wind, and solar photovoltaic),  and combined thermal?

  4. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River...

  5. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","...

  6. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2365.7 2,"PSEG Linden...

  7. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  8. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Energy source: Solar thermal  system 60% , electricity 40% Energy source: solar thermal system 71%, electricity 39%  solar energy will represent  only about 3 to 6 percent of installed electricity 

  9. Provencher/1 Bill Provencher

    E-Print Network [OSTI]

    Provencher, R. William

    Provencher/1 Bill Provencher Curriculum Vitae January 2007 4325 Bagley Parkway Department, University of California, Davis, 1991. Dissertation: A quantitative analysis of private property rightsScience: in press. MacPherson, Alex, Rebecca Moore and Bill Provencher. "A Dynamic Principal-Agent Model of Human

  10. Developing "MOU/CO-OP ENERGY EFFICIENCY PROGRAMS REPORTING FORM" to Satisfy Senate Bill 924 (82nd R) Reporting Requirements 

    E-Print Network [OSTI]

    Parker, P.; Baltazar, J.; Haberl, J.; Yazdani, B.; Zilbershtein, G.

    2012-01-01

    As mandated by the 82nd R Legislature (2011), Senate Bill 924, Utilities Code, Sections 39.9051 and 39.9052, beginning April 1, 2012, all electric cooperatives that had retail sales of more than 500,000 megawatt hours in 2005 and all municipally...

  11. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Solar Power Cost Outlook . 23  Energy Energy Analysis Office;  http://www.nrel.gov/analysis/ docs/cost_curves_2005.ppt  Solar Power Cost Outlook 

  12. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Energy source: Solar thermal  system 60% , electricity 40% the bathroom.    A solar thermal system is used consisting Energy source: solar thermal system 71%, electricity 39%  

  13. Net-energy analysis of a retrofit geothermal-heating system

    SciTech Connect (OSTI)

    Kauffman, D.; Houghton, A.V.; Kuo, W.S.

    1981-01-01

    A net energy analysis was carried out as part of a study of the potential engineering and economic feasibility for geothermal heating of the campus of the University of New Mexico in Albuquerque. The geothermal system design included production and disposal wells, surface facilities and retrofitting of eighteen existing buildings. For a 30-year project life, the net energy ratio was found to be about 7.1.

  14. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Energy Star.    Technical Systems  Wall System: The East energy intake as derived: South Glazing is 10.6%  0.50 on North 0.67 on sunspace (east East Star  Location: Borrego Sp rings, CA  Conditioned Floor Area: 1,920 ft 2   Annual Energy 

  15. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  16. Does Cognition Come at a Net Energy Cost in Ad Hoc Wireless LANs?

    E-Print Network [OSTI]

    Namboodiri, Vinod

    1 Does Cognition Come at a Net Energy Cost in Ad Hoc Wireless LANs? Anm Badruddoza, Vinod that are energy constrained. This work takes a first step in this direction for the ad hoc Wireless LAN scenario the importance of energy consumption in the devices that employ such techniques. Scanning for wireless spectrum

  17. Net energy of cellulosic ethanol from switchgrass M. R. Schmer*, K. P. Vogel*

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .S. to determine net energy and economic costs based on known farm inputs and harvested yields. In this report, we summarize the agricultural energy input costs, biomass yield, estimated ethanol output, greenhouse gas renewable than nonrenewable energy consumed. Switch- grass monocultures managed for high yield produced 93

  18. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    technologies (such as solar panels).   Combined with energy wind turbine height,  solar panel visibility, etc. ).   In consumption with solar panels, the cost may determine 

  19. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    C: Capital Costs for Electricity Generation Technologies to compare grid to PV generation costs.   Figure 16: EERE 24: On?site Energy Generation Cost Curves  Figure 25: 

  20. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    heat and  power turbine engines).   While solar energy, and combined heat and power turbine engines.   Biomass sources 

  1. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    stove backup  Domestic hot water 13.7 kWh/m²a (calculated site energyEnergy source: solar stove in each house.   Hot water is produced with two independent solar stove backup heating: 80% efficiency, 11 kW, 6?8 hours burn time.   The solar 

  2. Interview with Bill Quatman

    E-Print Network [OSTI]

    Diaz Moore, Keith

    2008-03-26

    Keith Diaz Moore speaks with Bill Quatman, an internationally recognized expert on "Design Build", a licensed architect, attorney with Shugart, Thomson and Kilroy and a Fellow with the American Institute of Architects, about the design-build process...

  3. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  4. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    PV: 40 high efficiency BP_41/5 solar panels, generating up efficiency, as well as  energy generation technologies (such as solar panels).   efficiency  due to building code constraints (wind turbine height,  solar panel 

  5. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

  6. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  7. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  8. GreenCraft Builders 2009 TimberCreek Net Zero Energy House Prototype

    SciTech Connect (OSTI)

    2010-08-24

    This case study describes strategy for achieving zero net energy by lowering building consumption through a high efficiency enclosure and mechanical as much as possible and using photovoltaic installation to generate the remaining amount of energy needed to operate the building over the course of a year.

  9. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Impact of Increased Renewable Energy Penetration Levels onof Energy Efficiency and Renewable Energy (Solar EnergyImpact of Increased Renewable Energy Penetration Levels on

  10. Property:WinterPeakNetCpcty | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to:SpatialResolutionWidth (m) Jump to:WinterPeakNetCpcty

  11. Net Power Technology NP Holdings or NPH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd JumpNesjavellir Geothermal Power Station Jump to:County,Net

  12. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  14. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV. We investigate the impact of a range of electricity market scenarios on retail electricity prices and rate structures, and the resulting effects on the value of bill savings from PV. The scenarios include various levels of renewable and solar energy deployment, high and low natural gas prices, the possible introduction of carbon pricing, and greater or lesser reliance on utility-scale storage and demand response. We examine the bill savings from PV with time-invariant, flat residential retail rates, as well as with time-varying retail rates, including time-of-use (TOU) rates and real-time pricing (RTP). In addition, we explore a flat rate with increasing-block pricing (IBP). We evaluate the bill savings from PV with net metering, as currently allowed in many states, as well as scenarios with hourly netting, a partial form of net metering. This scoping study is the first known effort to evaluate these types of interactions in a reasonably comprehensive fashion, though by no means have we considered every possible change to electricity market conditions, retail rate structures, or PV compensation mechanisms. It focuses solely on the private value of bill savings for residential PV and does not seek to quantify the broader social or economic cost or value of solar electricity. Our analysis applies assumptions based loosely on California’s electricity market in a future year (2030); however, it is neither intended to forecast California’s future market, nor are our conclusions intended to have implications specific only to the California market. That said, some of the findings are unique to our underlying assumptions, as described further within the main body of the report, along with other key limitations.

  15. Zero Net Energy Myths and Modes of Thought

    E-Print Network [OSTI]

    Rajkovich, Nicholas B.

    2010-01-01

    energy efficiency programs, the California Public Utilities Commission (CPUC) uses cost- effectiveness calculations

  16. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  17. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    SciTech Connect (OSTI)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  18. Knoxville Energy Deal to Net Big Savings for Taxpayers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Knoxville, Tennessee, will save millions of dollars and reduce its energy consumption and carbon emissions thanks to a $13 million deal with Massachusetts-based energy services company Ameresco.

  19. Energy Department Helps University of California Develop Net-Zero Campus

    Office of Energy Efficiency and Renewable Energy (EERE)

    With the help of $2.5 million in U.S. Department of Energy (DOE) funding, the University of California, Davis (UC Davis) built a net-zero community on its 130-acre West Village campus that provides housing for approximately 3,000 people in 662 apartments and 343 single-family homes.

  20. Net energy ratio of photobiohydrogen generation G. Burgessa

    E-Print Network [OSTI]

    of standard theory for tubular solar collectors. Small diameter reactors have a low NER as the mixing energy

  1. LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE

    E-Print Network [OSTI]

    -344-3957, vmf5@columbia.edu 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 SunLIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE Vasilis Fthenakis1,2 , Rick Betita2 , Mark Shields3 , Rob

  2. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  3. Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Brinkman, Bill (Director, DOE Office of Science)

    2012-03-14

    In this video Bill Brinkman, Director of DOE's Office of Science, introduces the session, "Leading Perspectives in Energy Research," at the 2011 EFRC Summit and Forum. During the introduction of the senior representatives from both the public and private sector, Dr. Brinkman explained the motivation for creating the Energy Frontiers Research Centers program. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  4. Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% reduction in energy use compared to 2009 International Residential Code.

  5. Zero Net Energy Homes Production Builder Business Case: California...

    Energy Savers [EERE]

    CaliforniaFlorida Production Builders - Building America Top Innovation Photo of a solar home. Building America's production builder partners have found that energy efficiency...

  6. Renewable Generation Effect on Net Regional Energy Interchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North-West Power Pool PV Photovoltaic power generation RE Renewable energy: PV andor wind RMPP Rocky Mountains Power Pool TEPPC Transmission Expansion Planning Policy Committee...

  7. Net Zero Energy Military Installations: A Guide to Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Recommendations U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen StorageDelivery Logistics...

  8. Energy Department Helps University of California Develop Net...

    Office of Environmental Management (EM)

    use and find out how to save electricity. Additional Projects UC Davis operates a Biogas Energy Project that uses a biodigester to convert about 25 to 50 tons of food and...

  9. QER- Comment of Bill Sackett

    Office of Energy Efficiency and Renewable Energy (EERE)

    Quadrennial Energy Review: The health of the people of our nation is a major vulnerability that must be addressed in any energy policy. Pollution produced by generating energy impacts our overall health. To encourage healthful sources of energy we have to make sure that the true costs of energy are paid up front. This means not allowing energy development that produces dangerous pollutants. Coal burning causes asthma and mercury poisoning and contributes to climate change that is not priced into energy generated by coal. Allowing liability exemptions to energy producers hides true costs. Nuclear power producers must be accountable for any radiation sickness that resulting from their operations. Fracking must not be exempted from safe drinking water regulations. Even more significant for oil and gas production, hazardous wastes (including methane) generated by exploration and production must be regulated under the Resource Conservation and Recovery Act (RCRA). (Pertinent to this, please enter into the Quadrennial Energy Review proceedings the attached first three pages of an article about RCRA. The full article can be found at http://npaper-wehaa.com/boulder-weekly/2014/03/13/?article=2174620.) Removing exemptions like these will allow clean forms of energy to predominate to the overall benefit of us all. Let us not be guilty of the moral cowardice of business as usual that will cause tremendous problems for future generations. Thank you, Bill Sackett

  10. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    StreamNet data will be used in future hydropower development. We also reviewed the F&W program draft, he by observing that the costs of today's fish and wildlife program are now 100 percent higher than they were

  11. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. The Potential Impact of Increased Renewable Energy

  12. Best Practices for Net Zero Energy Cost Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy andandBeforeofOhio87-2007EnergyBestBest

  13. N. Mariana Islands - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motion to Mr.ThisDepartment of34science

  14. El Paso Electric - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,Local Government Nonprofit Residential Schools Institutional

  15. Net energy ratio of photobiohydrogen generation G. Burgessa

    E-Print Network [OSTI]

    energy (Spath & Mann, 2004). As photosynthetic biohydrogen production is still at the laboratory photobioreactor used for the photosynthetic production of H2 by microalgae. The calculated H2 output production of hydrogen is the exploitation of the photosynthetic process of microbial algae in vivo ("photo

  16. PNC Financial Services - Net-Zero Energy Bank Branch

    SciTech Connect (OSTI)

    none,

    2013-03-01

    PNC has opened a zero-energy building that is 57% more efficient than ASHRAE 90.1-2004. Exterior features include shading to control glare from sunlight and photovoltaic solar panels to produce as much electricity as the building consumes annually.

  17. THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    used on farms, such as gasoline, diesel, LP gas (LPG), natural gas, and electricity, for the production plants. The major objectives of this report are to improve the quality of data and methodology used on the latest data on corn production and corn yield, (2) improving the quality of estimates for energy used

  18. Montana Electric Cooperatives - Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof EnergyGap Analysis |MonitoringWinners

  19. Innovation that Improves Safety, Efficiency of Energy Plant Operations Nets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department ofInfrastructure andInitiativesof

  20. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect (OSTI)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  1. Rocky Mountain Power - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From:Construction Industrial Agricultural Multifamily<

  2. SCE&G - Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIA HEADQUARTERSWASHINGTON PACIFICand<Local

  3. Historic Railroad Building Goes Net Zero | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK

  4. American PowerNet (District of Columbia) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to: navigation,OpenTechnologies Inc JumpAmerican

  5. American PowerNet (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to: navigation,OpenTechnologies Inc

  6. American PowerNet (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to: navigation,OpenTechnologies IncAmerican

  7. Grays Harbor PUD - Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current:5LoggingGraphene, HydrogenGrays

  8. Workplace Charging Challenge Partner: NetApp | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyof Energy JLANetApp Workplace Charging

  9. US Crude Oil Production Surpasses Net Imports | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof EnergyMeeting - March 2012 URTAC Meeting -US

  10. Army Net Zero: Guide to Renewable Energy Conservation Investment Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing, LLCorAreaEnergy Poneman(ECIP)

  11. Beam Energy Dependence of Moments of the Net-Charge Multiplicity Distributions in Au + Au Collisions at RHIC

    E-Print Network [OSTI]

    Balewski, Jan T.

    We report the first measurements of the moments—mean (M), variance (?[superscript 2]), skewness (S), and kurtosis (?)—of the net-charge multiplicity distributions at midrapidity in Au + Au collisions at seven energies, ...

  12. WHEC 16 / 13-16 June 2006 Lyon France Materials, geometry, and net energy ratio of tubular photobioreactors

    E-Print Network [OSTI]

    to be sustainable, methods to produce hydrogen relying on renewable sources of energy will be fundamental [1]. One this case the energy content of the H2 produced) and the energy content of all the materials with whichWHEC 16 / 13-16 June 2006 ­ Lyon France 1/12 Materials, geometry, and net energy ratio of tubular

  13. Developing "BUILDING/ FACILITY ENERGY CONSUMPTION DATA SHEET" for Political Subdivisions, Institutions of Higher Education, and State Agencies, to Satisfy Senate Bill 898 (82nd R) Reporting Requirements 

    E-Print Network [OSTI]

    Parker, P.; Baltazar, J.; Haberl, J.; Yazdani, B.; Zilbershtein, G.

    2012-01-01

    As mandated by the 82nd R Legislature (2011), Senate Bill 898, Health and Safety Code, Section 388.005, beginning September 1, 2011, each political subdivision, institution of higher education or state agency shall establish a goal to reduce...

  14. Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the

    E-Print Network [OSTI]

    Firestone, Jeremy

    Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

  15. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  16. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    Energy Efficiency and Renewable Energy. LINK Brown, M.A. andEfficiency and Renewable Energy). 2008. Energy Efficiencycultural barriers to renewable energy and energy efficiency

  17. Decision Support for Water Planning: the ZeroNet Water-Energy Initiative.

    SciTech Connect (OSTI)

    Rich, P. M. (Paul M.); Weintraub, Laura H. Z.; Ewers, Mary E.; Riggs, T. L. (Thomas L.); Wilson, C. J. (Cathy J.)

    2005-01-01

    Rapid population growth and severe drought are impacting water availability for all sectors (agriculture, energy, municipal, industry...), particularly in arid regions. New generation decision support tools, incorporating recent advances in informatics and geographic information systems (GIS), are essential for responsible water planning at the basin scale. The ZeroNet water-energy initiative is developing a decision support system (DSS) for the San Juan River Basin, with a focus on drought planning and economic analysis. The ZeroNet DSS provides a computing environment (cyberinfrastructure) with three major components: Watershed Tools, a Quick Scenario Tool, and a Knowledge Base. The Watershed Tools, based in the Watershed Analysis Risk Management Framework (WARMF), provides capabilities (1) to model surface flows, both the natural and controlled, as well as water withdrawals, via an engineering module, and (2) to analyze and visualize results via a stakeholder module. A new ZeroNet module for WARMF enables iterative modeling and production of 'what if' scenario libraries to examine consequences of changes in climate, landuse, and water allocation. The Quick Scenario Tool uses system dynamics modeling for rapid analysis and visualization for a variety of uses, including drought planning, economic analysis, evaluation of management alternatives, and risk assessment. The Knowledge Base serves simultaneously as the 'faithful scribe' to organize and archive data in easily accessible digital libraries, and as the 'universal translator' to share data from diverse sources and for diverse uses. All of the decision tools depend upon GIS capabilities for data/model integration, map-based analysis, and advanced visualization. The ZeroNet DSS offers stakeholders an effective means to address complex water problems.

  18. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    SciTech Connect (OSTI)

    Marnay, Chris; DeForest, Nicholas; Stadler, Michael; Donadee, Jon; Dierckxsens, Carlos; Mendes, Goncalo; Lai, Judy; Cardoso, Goncalo Ferreira

    2011-03-18

    A large project is underway at Alameda County's twenty-year old 45 ha 4,000-inmate Santa Rita Jail, about 70 km east of San Francisco. Often described as a green prison, it has a considerable installed base of distributed energy resources including a seven-year old 1.2 MW PV array, a four-year old 1 MW fuel cell with heat recovery, and efficiency investments. A current US$14 M expansion will add approximately 2 MW of NaS batteries, and undetermined wind capacity and a concentrating solar thermal system. This ongoing effort by a progressive local government with considerable Federal and State support provides some excellent lessons for the struggle to lower building carbon footprint. The Distributed Energy Resources Customer Adoption Model (DER-CAM) finds true optimal combinations of equipment and operating schedules for microgrids that minimize energy bills and/or carbon emissions without 2 of 12 significant searching or rules-of-thumb prioritization, such as"efficiency first then on-site generation." The results often recommend complex systems, and sensitivities show how policy changes will affect choices. This paper reports an analysis of the historic performance of the PV system and fuel cell, describes the complex optimization applied to the battery scheduling, and shows how results will affect the jail's operational costs, energy consumption, and carbon footprint. DER-CAM is used to assess the existing and proposed DER equipment in its ability to reduce tariff charges.

  19. The relationship between atmospheric convective radiative effect and net1 energy transport in the tropical warm pool2

    E-Print Network [OSTI]

    Hartmann, Dennis

    of the atmospheric cloud radiative effect in determining the magnitude of hor- izontal export of energy, they increase the re- quirement for the atmosphere to export energy from convective regions. Over the warmest that the increased energy export is supplied by the radiative heating from convection. The net cloud radiative effect

  20. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; Van Geet, O.; Simkus, S.; Eastment, M.

    2012-04-01

    This abbreviated report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project.

  1. Beam-energy and system-size dependence of dynamical net charge fluctuations 

    E-Print Network [OSTI]

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moira, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dictel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; LeVine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.

    2009-01-01

    REVIEW C 79, 024906 (2009) Beam-energy and system-size dependence of dynamical net charge fluctuations B. I. Abelev,8 M. M. Aggarwal,30 Z. Ahammed,47 B. D. Anderson,18 D. Arkhipkin,12 G. S. Averichev,11 Y. Bai,27 J. Balewski,22 O. Barannikova,8 L. S.... Barnby,2 J. Baudot,16 S. Baumgart,52 D. R. Beavis,3 R. Bellwied,50 F. Benedosso,27 R. R. Betts,8 S. Bhardwaj,35 A. Bhasin,17 A. K. Bhati,30 H. Bichsel,49 J. Bielcik,10 J. Bielcikova,10 B. Biritz,6 L. C. Bland,3 M. Bombara,2 B. E. Bonner,36 M. Botje,27 J...

  2. The Energy Impact of Urban Form: An Approach to Morphologically Evaluating the Energy Performance of Neighborhoods

    E-Print Network [OSTI]

    Ko, Ye Kang

    2012-01-01

    definitions of “net zero energy” : net-zero site energy,net-zero source energy, net-zero energy costsand net-zero energy emissions. Currently these definitions

  3. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    norm of energy behavior – Smart Energy Living,? Presentationand guides people to smart energy choices. Utilities haveMarket Segmentation for Smart Energy Practices (Chart

  4. Final Conservation Billing Credit Policy Supplement Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2014 Page 1 Final Conservation Billing Credit Policy Supplement Background and Need: This Conservation Billing Credit Policy Supplement describes how Bonneville Power...

  5. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Eligibility and Availability In 2004, Guam enacted legislation requiring the Guam Power Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, ...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is carried over to the... Eligibility:...

  7. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  8. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    Forecast ModelModel EBaseline Energy Efficiency ResourceEnergy Efficiency Resource Potential Assessment to accounting for future energy efficiency programs. Relevance: Producing a 20 year load forecast for the regionPotential Assessment Units & Baseline Unit Use RegionalRegional Portfolio ModelPortfolio Model Energy Efficiency

  9. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    . · Chapter 6: Generating Resources and Energy Storage Technologies: Hydroelectric Power, Existing Hydropower

  10. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    Performance with ENERGY STAR Program – New York The HomeCharges, operates the New York Energy $mart initiative. Thisprogram, run by the New York State Energy Research and

  11. S. 2166: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate, One Hundred Second Congress, Second Session, January 29, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Goals, least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Electric and electric-hybrid vehicle demonstration, infrastructure development, and conforming amendments, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal, coal technology, and electricity; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve.

  12. Beam-energy and system-size dependence of dynamical net charge fluctuations

    E-Print Network [OSTI]

    Sakuma, Tai

    We present measurements of net charge fluctuations in Au+Au collisions at ?[subscript s[superscript [NN

  13. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    for space heating. According to the Northwest Energy Efficiency Alliance (NEEA) 2011 Residential Building smoke attributed to energy efficiency measures. Staff expects this analysis will be informative that it is possible to quantify changes in wood smoke resulting from some electric energy efficiency measures

  14. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    to the Northwest Energy Efficiency Alliance (NEEA) 2011 Residential Building Stock Assessment, about 20 percent changes in wood smoke emissions attributed to energy efficiency measures. As noted at the last Power effects from resulting changes in wood smoke emissions caused by the introduction of an energy efficiency

  15. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    options for improving its energy future through the Idaho Strategic Energy Alliance (ISEA). The ISEA assistance programs Coordinate the Idaho Strategic Energy Alliance (ISEA) 2 #12;OER's Current Major's decision on Idaho citizens Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands OER provided

  16. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    with ENERGY STAR (HPwES) marketing with cooperativeperforming home energy improvements. Cooperative Marketingenergy improvement market in New York, HPwES cooperative

  17. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    2010. EECBG Pennsylvania Keystone HELP Program Webcast. U.S.JEEP) (page 97) 6. Keystone Home Energy Loan Program (through the program. Keystone Home Energy Loan Program –

  18. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    findings for costs: · In aggregate, regional utility investments in energy efficiency in 2013 were $375 cost to utilities of 2013 savings was just over $17 per megawatt hour (2006$). · Regional utility investments in energy efficiency averaged just over $28 per capita in 2013 compared to the national average

  19. Provencher/1 Bill Provencher

    E-Print Network [OSTI]

    Radeloff, Volker C.

    of hourly residential electricity demand equations to determine both own-price and cross-price demand prices on energy consumption and energy shifting; and (b) the impact on electricity consumption of a system of high price alerts communicated via email and text message. Project Manager and Lead

  20. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    year forecast of electricity demand and a resource plan for the development of conservation and generation to meet the demand at the lowest cost consistent with adequate and reliable electricity service economy, state energy offices, Bonneville, the Energy Trust of Oregon, non-utility program implementers

  1. Net Metering

    Broader source: Energy.gov [DOE]

    Note: Illinois is currently undergoing a rulemaking that would change its existing net metering rules. The proposed rules include provisions clarifying virtual net metering policies, facilitating...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009, which established net metering for customers of investor-owned utilities (IOUs). 

  3. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  4. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    In 2009, Transformations, Inc. partnered with U.S. Department of Energy (DOE) Building America team Building Science Corporation (BSC) to build new net zero energy houses in three developments in Massachusetts. The company has been developing strategies for cost-effective super-insulated homes in the New England market since 2006. After years of using various construction techniques, it has developed a specific set of assemblies and specifications that achieve a 44.9% reduction in energy use compared with a home built to the 2009 International Residential Code, qualifying the houses for the DOE's Challenge Home. The super-insulated houses provide data for several research topics in a cold climate. BSC studied the moisture risks in double stud walls insulated with open cell spray foam and cellulose. The mini-split air source heat pump (ASHP) research focused on the range of temperatures experienced in bedrooms as well as the homeowners' perceptions of equipment performance. BSC also examined the developer's financing options for the photovoltaic (PV) systems, which take advantage of Solar Renewable Energy Certificates, local incentives, and state and federal tax credits.

  5. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  6. Net Energy Payback and CO{sub 2} Emissions from Three Midwestern Wind Farms: An Update

    SciTech Connect (OSTI)

    White, Scott W.

    2006-12-15

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO{sub 2} analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO{sub 2} analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO{sub 2} emissions, in tonnes of CO{sub 2} per GW{sub e}h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.

  7. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Dakin, Davis Energy Group Michael Koenig, American Honda Motor Company ABSTRACT The evolution of heat-pump design uses multiple systems and fuels to provide thermal services, the emerging generation of heat-pump

  8. H. R. 1301: A bill to implement the National Energy Strategy Act, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, March 6, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill contains the following: Title I - Residential, commercial, and Federal energy use: consumer and commercial products, and Federal energy management; Title II - Natural gas: natural gas pipeline regulatory reform, natural gas import/export deregulation, and structural reform of the Federal Energy Regulatory Commission; Title III - Oil: Alaska coastal plain oil and gas leasing, Naval Petroleum Reserve leasing, and oil pipeline deregulation; Title IV - Electricity generation and use: Public Utility Holding Company Act reform, and power marketing administration repayment reform; Title V - Nuclear power: licensing reform, nuclear waste management; Title VI - Renewable energy: PURPA size cap and co-firing reform, and hydroelectric power regulatory reform; Title VII - Alternative fuel: alternative and dual fuel vehicle credits, and alternative transportation fuels; Title VIII - Innovation and technology transfer; Title IX - Tax incentives.

  9. Focus Series: OREGON-On Bill Financing Program: On-Bill Financing...

    Broader source: Energy.gov (indexed) [DOE]

    Focus Series: OREGON-On Bill Financing Program: On-Bill Financing Brings Lenders and Homeowners On Board. Focus Series: Oregon More Documents & Publications Better Buildings...

  10. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    reduction in electricity consumption given how consumers have expressed their selection, the competition is often more thermodynamically efficient than using electricity generated from natural gas, its economic with respect to the relative price of natural gas and electricity, space and/or water heating energy use

  11. Engineering, Financial and Net Energy Performance, and Risk Analysis for Parabolic Trough Solar Power Plants 

    E-Print Network [OSTI]

    Luo, Jun

    2014-08-08

    An investigation was conducted to determine how technology innovations, potential risks, plant configuration and size, operating strategy, and financial incentives affect the electricity output, financial payback, and net ...

  12. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  13. University Valedictorians Bill Jennings 1923

    E-Print Network [OSTI]

    Velev, Orlin D.

    University Valedictorians Name Year Bill Jennings 1923 Lamar Moss 1933 Vic Shelburne 1945 Eustace Lithgo 2008 Lindsey Robinson 2008 Clay Wright 2008 William Barnes 2009 Henryk Orlik 2009 Peiwen Thor 2009 Elizabeth Butler 2010 Raleigh Davis 2010 Farshid Jafarpour 2010 Lara Jazmin 2010 Stephen Morton 2010 Scott

  14. BILL BELLEVILLE Nature Writer & Filmmaker

    E-Print Network [OSTI]

    Fernandez, Eduardo

    a BILL BELLEVILLE Nature Writer & Filmmaker Peace of Blue: Water Journeys SHIRLEY POMPONI FAU Shorelines: The New Reality FEB 4 a MEGAN DAVIS FAU Harbor Branch Discover: From Estuaries to the Deep Blue is sponsored by: DENNIS HANISAK KRISTEN DAVIS BEN METZGER FAU Harbor Branch Indian River Lagoon Observatory

  15. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    energy efficiency, solar photovoltaics (PV), and direct loadenergy efficiency, solar photovoltaics (PV), and direct loadAnnouncements Solar Photovoltaics Residential Conservation

  16. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

    E-Print Network [OSTI]

    STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; J. Balewski; A. Banerjee; Z. Barnovska; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderóndela Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; D. Grosnick; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; R. Haque; J. W. Harris; J. P. Hays-Wehle; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; W. Korsch; L. Kotchenda; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; L. M. Lima; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. G. Munhoz; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; A. Peterson; P. Pile; M. Planinic; J. Pluta; D. Plyku; N. Poljak; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2013-09-23

    We report the beam energy (\\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\\sigma), skewness (S), and kurtosis (\\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\\sigma and \\kappa\\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

  17. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    Sharma, Monika

    2008-01-01

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the net charge dynamical fluctuations measure $\

  18. Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    B. I. Abelev; M. M. Aggarwal; Z. Ahammed; B. D. Anderson; D. Arkhipkin; G. S. Averichev; Y. Bai; J. Balewski; O. Barannikova; L. S. Barnby; J. Baudot; S. Baumgart; D. R. Beavis; R. Bellwied; F. Benedosso; R. R. Betts; S. Bhardwaj; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; M. Bombara; B. E. Bonner; M. Botje; J. Bouchet; E. Braidot; A. V. Brandin; S. Bueltmann; T. P. Burton; M. Bystersky; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; J. Callner; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; S. U. Chung; R. F. Clarke; M. J. M. Codrington; J. P. Coffin; T. M. Cormier; M. R. Cosentino; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; M. Daugherity; T. G. Dedovich; M. DePhillips; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; F. Du; J. C. Dunlop; M. R. Dutta Mazumdar; W. R. Edwards; L. G. Efimov; E. Elhalhuli; M. Elnimr; V. Emelianov; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; P. Fachini; R. Fatemi; J. Fedorisin; A. Feng; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; L. Gaillard; D. R. Gangadharan; M. S. Ganti; E. Garcia-Solis; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; B. Grube; S. M. Guertin; K. S. F. F. Guimaraes; A. Gupta; N. Gupta; W. Guryn; B. Haag; T. J. Hallman; A. Hamed; J. W. Harris; W. He; M. Heinz; S. Heppelmann; B. Hippolyte; A. Hirsch; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; R. S. Hollis; H. Z. Huang; T. J. Humanic; G. Igo; A. Iordanova; P. Jacobs; W. W. Jacobs; P. Jakl; F. Jin; P. G. Jones; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; M. Kaplan; D. Keane; A. Kechechyan; D. Kettler; V. Yu. Khodyrev; J. Kiryluk; A. Kisiel; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; M. Kopytine; L. Kotchenda; V. Kouchpil; P. Kravtsov; V. I. Kravtsov; K. Krueger; C. Kuhn; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; M. J. LeVine; C. Li; Y. Li; G. Lin; X. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; J. Liu; L. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; T. Ludlam; D. Lynn; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. S. Matis; Yu. A. Matulenko; T. S. McShane; A. Meschanin; J. Millane; M. L. Miller; N. G. Minaev; S. Mioduszewski; A. Mischke; J. Mitchell; B. Mohanty; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; C. Nepali; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; H. Okada; V. Okorokov; D. Olson; M. Pachr; S. K. Pal; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; M. Planinic; J. Pluta; N. Poljak; N. Porile; A. M. Poskanzer; B. V. K. S. Potukuchi; D. Prindle; C. Pruneau; N. K. Pruthi; J. Putschke; I. A. Qattan; R. Raniwala; S. Raniwala; R. L. Ray; A. Ridiger; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; M. J. Russcher; V. Rykov; R. Sahoo; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; M. Sarsour; J. Schambach; R. P. Scharenberg; N. Schmitz; J. Seger; I. Selyuzhenkov; P. Seyboth; A. Shabetai; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; X-H. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; R. Snellings; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; A. Stadnik; T. D. S. Stanislaus; D. Staszak; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; M. Tokarev; T. A. Trainor; V. N. Tram; A. L. Trattner; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; N. van der Kolk; M. van Leeuwen; A. M. Vander Molen; R. Varma; G. M. S. Vasconcelos; I. M. Vasilevski; A. N. Vasiliev; F. Videbaek; S. E. Vigdor; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; W. T. Waggoner; F. Wang; G. Wang; J. S. Wang; Q. Wang; X. Wang; X. L. Wang; Y. Wang; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; J. Wu; Y. Wu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; P. Yepes; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; H. Zhang; S. Zhang; W. M. Zhang; Y. Zhang; Z. P. Zhang; Y. Zhao; C. Zhong; J. Zhou; R. Zoulkarneev; Y. Zoulkarneeva; J. X. Zuo

    2008-07-21

    We present measurements of net charge fluctuations in $Au + Au$ collisions at $\\sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $\\sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $\\sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $\

  19. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    SciTech Connect (OSTI)

    Anderson, R.; Roberts, D.

    2008-11-01

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  20. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  1. Energy-efficiency and environmental policies & income supplements in the UK: Their evolution and distributional impact in relation to domestic energy bills

    E-Print Network [OSTI]

    Chawla, Mallika; Pollitt, Michael G.

    2012-12-14

    efficiency of houses; this research draws attention towards the need for definitive evidence on the ways in which energy suppliers charge policy costs from their domestic customers. This would facilitate in making the future policies more empirically grounded...

  2. Evaluation of Texas-Farmer Choices For The 2014 U.S. Farm Bill 

    E-Print Network [OSTI]

    Mazurkiewicz, Stephanie Diane

    2015-07-29

    The 2014 Farm Bill eliminated direct payments to farmers in favor of two alternative safety net programs; Price Loss Coverage (PLC) and Agriculture Risk Coverage (ARC). Farmers must make a one-time, irrevocable choice of PLC, a county ARC program...

  3. NET-ZERO CARBON MANUFACTURING AT NET-ZERO COST Dustin Pohlman

    E-Print Network [OSTI]

    Kissock, Kelly

    energy in manufacturing plants that results in net-zero carbon emissions at net-zero costs. The paper begins by reviewing the economics of net- zero energy buildings and discussing why a different approach on the energy intensity of manufacturing and recognizes that on-site net-zero energy is not consistent

  4. Cost Control Best Practices for Net Zero Energy Building Projects: Preprint

    SciTech Connect (OSTI)

    Leach, M.; Pless, S.; Torcellini, P.

    2014-02-01

    For net zero energy (NZE) buildings to become the norm in commercial construction, it will be necessary to design and construct these buildings cost effectively. While industry leaders have developed workflows (for procurement, design, and construction) to achieve cost-effective NZE buildings for certain cases, the expertise embodied in those workflows has limited penetration within the commercial building sector. Documenting cost control best practices of industry leaders in NZE and packaging those strategies for adoption by the commercial building sector will help make the business case for NZE. Furthermore, it will promote market uptake of the innovative technologies and design approaches needed to achieve NZE. This paper summarizes successful cost control strategies for NZE procurement, design, and construction that key industry users (such as building owners, architects, and designers) can incorporate into their everyday workflows. It will also evaluate the current state of NZE economics and propose a path forward for greater market penetration of NZE buildings. By demonstrating how to combine NZE technologies and design approaches into an overall efficiency package that can be implemented at minimal (zero, in certain cases) incremental capital cost, the domain of NZE design and construction can be expanded from a niche market to the commercial construction mainstream.

  5. Kaupuni Village: A closer look at the first net-zero energy affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is comprised of 19 single-family homes and a community center. Not only are the structures built to be net-zero, but the entire community was built as a fully self-sufficient...

  6. Tennessee Home to Energy Department's First Net-Zero-Energy Building

    Broader source: Energy.gov [DOE]

    Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak Ridge, Tennessee. It's just one of many buildings at the various Energy Department national labs scattered across the country - or so it seems.

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing...

  8. Under the recently passed American Recovery and Reinvestment Bill of 2009, the Department of Energy would receive approximately $40 billion for various energy programs and initiatives, including:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed|Department ofInspector General - Recovery Act

  9. Design Approach and Performance Analysis of a Small Integrated Heat Pump (IHP) for Net Zero Energy Homes (ZEH)

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL; Murphy, Richard W [ORNL; Baxter, Van D [ORNL

    2008-01-01

    This paper describes the design and performance analysis of a variable-capacity heat pump system developed for a small [1800ft2 (167 m2)] prototype net ZEH with an average design cooling load of 1.25 tons (4.4 kW) in five selected US climates. The heat pump integrates space heating and cooling, water heating, ventilation, and humidity control (humidification and dehumidification) functions into a single integrated heat pump (IHP) unit. The design approach uses one small variable-capacity compressor to meet all the above functions in an energy efficient manner. Modal performance comparisons to an earlier IHP product are shown relative to the proposed new design for net ZEH application. The annual performance analysis approach using TRNSYS in conjunction with the ORNL Heat Pump Design Model is discussed. Annual performance projections for a range of locations are compared to those of a base system consisting of separate pieces of equipment to perform the same functions. The ZEH IHP is projected to reduce energy use for space heating & cooling, water heating, dehumidification, and ventilation for a net ZEH by about 50% compared to that of the base system.

  10. Geothermal energy to contribute to net-zero campus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration2008developers

  11. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    SciTech Connect (OSTI)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  12. Road to Net Zero (Presentation)

    SciTech Connect (OSTI)

    Glover, B.

    2011-05-01

    A PowerPoint presentation on NREL's Research Support Facility (RSF) and the road to achieving net zero energy for new construction.

  13. Bill Wilcox and Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer Graphene Gets a BandgapBill Gibbonsand Y-12

  14. NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

  15. DOE Challenge Home: Zero Net-Energy Ready Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of EnergyCyrusLegacy CleanupMayCHALLENGEDOE ChallengeHome:

  16. Net-Zero Energy Retail Store Debuts in Illinois | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal

  17. DOE to Pursue Zero-Net Energy Commercial Buildings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE ZeroofBatteriesHybridNational Renewable

  18. An Optimization Framework for Data Centers to Minimize Electric Bill under Day-Ahead Dynamic Energy Prices While Providing Regulation Services

    E-Print Network [OSTI]

    Pedram, Massoud

    of renewable energy to reduce their power drawn from the Power Grid, the intermittency of renewable energy balancing [15], and use of electrical energy storage systems [14], [15]. Due to monetary costs renewable energy sources (green energy) into the power grid facilities. For example, according to the US

  19. Greenhouse Gas Initiatives - Analysis of McCain-Lieberman Bill S.280 ‘The ClimateStewardship and Innovation Act of 2007’ Using the National Energy Modeling System 

    E-Print Network [OSTI]

    Ellsworth, C.

    2008-01-01

    . One of the critical questions to be addressed is the implications for various energy sources and technologies and the impact on energy prices to end users. This paper reports on the impacts of pending GHG legislation on energy supply, demand...

  20. A Methodology to Identify Monthly Energy Use Models from Utility Bill Data for Seasonally Scheduled Buildings: Application to K-12 Schools 

    E-Print Network [OSTI]

    Wang, W.; Claridge, D. E.; Reddy, T. A.

    1998-01-01

    The measured energy savings from retrofits in buildings is often determined as the difference between the energy consumption predicted by a baseline model and the measured energy consumption during the post retrofit period. Most baseline models...

  1. Assembly Bill No. 1881 CHAPTER 559

    E-Print Network [OSTI]

    projects, condominium projects, planned developments, and stock cooperatives. This bill would provide or more public hearings, to take specified action to reduce the wasteful, uneconomic, inefficient

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  3. Presented by SensorNet: The New Science of

    E-Print Network [OSTI]

    .S. Department of Energy DeNap_SensorNet_SC10 SensorNet Collection Processing DisseminationSecurity Knowledge requirements Regulations Technology Intelligent Real world #12;3 Managed by UT-Battelle for the U.S. Department of Energy DeNap_SensorNet_SC10 SensorNet SensorNet is ORNL's research in sensor network interoperability

  4. On the Use of Integrated Daylighting and Energy Simulations to Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti, R.; Pless, S.; Torcellini, P.

    2010-08-01

    This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration to achieve aggressive energy savings. Through a case study example, we examine the ways daylighting -- and daylighting simulation -- drove the design of a large net-zero energy project. We give a detailed review of the daylighting and electric lighting design process for the National Renewable Energy Laboratory's Research Support Facility (RSF), a 220,000 ft2 net-zero energy project the author worked on as a daylighting consultant. A review of the issues involved in simulating and validating the daylighting performance of the RSF will be detailed, including daylighting simulation, electric lighting control response, and integration of Radiance simulation data into the building energy model. Daylighting was a key strategy in reaching the contractual energy use goals for the RSF project; the building's program, layout, orientation and interior/furniture design were all influenced by the daylighting design, and simulation was critical in ensuring these many design components worked together in an integrated fashion, and would perform as required to meet a very aggressive energy performance goal, as expressed in a target energy use intensity.

  5. 1 Data from Farrell et al 2006; GHG based on IPCC 100a; Net energy = fuel energy (MJ L-1) -energy input (MJ) A survey of the literature, by NREL, indicates that there are > 60 ethanol studies

    E-Print Network [OSTI]

    Pennycook, Steve

    ; Net energy = fuel energy (MJ L-1) - energy input (MJ) ·A survey of the literature, by NREL, indicates year hourly simulation 3. Can predict ozone 3. Align AQ modeling to NREL's LCA model 1. Additional NREL Role ­ Develop air pollutant emissions inventory for all processes in NREL LCA model · PM

  6. New Jersey Natural Gas- SAVEGREEN Residential On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides an On-Bill Repayment Program (OBRP) for $2,500 up to $10,000 at 0% APR with no fees, points, or closing cost for energy...

  7. Clinical Research Billing University of Maryland Baltimore

    E-Print Network [OSTI]

    Weber, David J.

    documents in accordance with research billing rules #12;Why is this important? · Office of the Inspector General (OIG) work plans regularly include clinical research billing in its top compliance initiatives related to the failure to accurately and completely report support from other financial sources

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-CityEnergyNet Energy Billing All of

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-CityEnergyNet Energy Billing All

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-CityEnergyNet Energy Billing

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-CityEnergyNet Energy BillingDollar

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy Billing AllNet

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunity RenewableEnergyNetSustainableNet metering isEnergyEnergy Billing All

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunity RenewableEnergyNetSustainableNet metering isEnergyEnergy Billing

  15. Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems

    E-Print Network [OSTI]

    Chambers, S. D; Randerson , J. T.; Beringer, J.; Chapin , F. S

    2005-01-01

    EFFECTS ON SURFACE ENERGY EXCHANGE forest: Evidence from1998), Energy balance storage terms in a mixed forest,and energy exchanges of a boreal black spruce forest, J.

  16. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    environmental, food security and energy goals to maximizeen- vironmental and energy-security im- peratives. However,rural development and energy-security objectives, and con-

  17. Seeing Savings from an ESPC Project in Fort Polk's Utility Bills

    SciTech Connect (OSTI)

    Shonder, J.A.

    2005-03-08

    Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

  18. Ohio Homeowner Reaps Benefits of Saving Energy

    Broader source: Energy.gov [DOE]

    Carol Bintz’s first year of energy bills totaled less than half of the average American family’s annual energy bill of nearly $2,100.

  19. New Advanced Refrigeration Technology Provides Clean Energy,...

    Office of Environmental Management (EM)

    Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for...

  20. Net Zero Waste - Tools and Technical Support ...and other observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Waste - Tools and Technical Support ...and other observations Net Zero Waste - Tools and Technical Support ...and other observations Presentation at Waste-to-Energy using...

  1. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Energy Savers [EERE]

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  2. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  3. Net Metering

    Broader source: Energy.gov [DOE]

    The ACC requires that net metering charges be assessed on a non-discriminatory basis. Any new or additional charges that would increase an eligible customer-generator's costs beyond those of other...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ...

  5. An assessment of the net value of CSP systems integrated with thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mehos, M.; Jorgenson, J.; Denholm, P.; Turchi, C.

    2015-05-01

    Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  6. Fort Collins, Colorado on Track to Net Zero | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFort Collins, Colorado on Track to Net Zero Fort

  7. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | DepartmentXIII--SMART GRID SEC.QuadrennialTank FarmsGasTargeting Net

  8. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  9. New Independent Analysis Confirms Climate Bill Costs About a...

    Energy Savers [EERE]

    Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day August 4, 2009 -...

  10. Office of Personnel Management (OPM) Billing System PIA, Office...

    Energy Savers [EERE]

    Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-City of SanNetEnergy Billing All of

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-City of SanNetEnergy Billing All

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-City of SanNetEnergy Billing

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar Easements PartiesIllinoisNetState EnergyTVA-City of SanNetEnergy BillingNOTE:

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunityEnergy Trust of Oregon Of theConserFund LoanNetEnergy Billing AllNet

  16. City.Net IES: A sustainability-oriented energy decision support system

    E-Print Network [OSTI]

    Adepetu, Adedamola

    A city's energy system processes, as well as the interactions of the energy system with other systems in a city are imperative in creating a comprehensive energy decision support system due to the interdependencies between ...

  17. Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations

    E-Print Network [OSTI]

    Abelev, B.I.; STAR Collaboration

    2009-01-01

    Chandigarh 160014, India Variable Energy Cyclotron Centre,India University of Texas, Austin, Texas 78712, USA Institute of High EnergyIndia Kent State University, Kent, Ohio 44242, USA Particle Physics Laboratory (JINR), Dubna, Russia Laboratory for High Energy (

  18. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    en- vironmental and energy-security im- peratives. However,rural development and energy-security objectives, and con-to mit- estation and energy security vary by igate climate

  19. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    chillers, energy storage, or solar-based technologies areand the huge solar thermal and heat storage system adoptionon expensive solar-based equipment and energy storage

  20. Assembly Bill No. 1340 CHAPTER 692

    E-Print Network [OSTI]

    , and prices. The bill would also permit any person required to submit this information to request gasoline sold unbranded by the refiner, blender, or importer. (2) Major marketers shall report on petroleum

  1. Assembly Bill No. 109 CHAPTER 313

    E-Print Network [OSTI]

    law defines "full fuel-cycle assessment" or "life-cycle assessment" for the purposes, specific activities. This bill would recast the definition of "full fuel-cycle assessment" or "life

  2. Custody transfer enhanced by electronic billing system

    SciTech Connect (OSTI)

    Knox, R.M.

    1986-10-20

    Transcontinental Gas Pipe Line (TGPL) Corp. engineers have developed an electronic billing system for custody transfer that can reduce the cost of doing business and improve the accuracy of transfer measurements. The system accurately measures gas flow and quality, transmits gas data to a central facility, provides a capability to review the collected data, prepares bills based upon these data, and reduces staffing associated with the data collection and billing process. On-line flow computers are keys to this electronic billing system. These computers, referred to as remote terminal units (RTU's), are currently in service at TGPL at more than 30 locations with 30 more locations due to be on-line within 6 months and an additional 40 locations due within 15 months. These RTU's will be obtaining gas data from metering stations located in New York, New Jersey, Pennsylvania, Maryland, Virginia, North Carolina, Georgia, Louisiana, and Texas.

  3. On Productions of Net-baryons in Central Au-Au Collisions at RHIC Energies

    E-Print Network [OSTI]

    Chen, Ya-Hui; Liu, Fu-Hu

    2015-01-01

    The transverse momentum and rapidity distributions of net-baryons (baryons minus anti-baryons) produced in central gold-gold (Au-Au) collisions at 62.4 and 200 GeV are analyzed in the framework of a multisource thermal model. Each source in the model is described by the Tsallis statistics to extract the effective temperature and entropy index from the transverse momentum distribution. The two parameters are used as input to describe the rapidity distribution and to extract the rapidity shift and contribution ratio. Then, the four types of parameters are used to structure some scatter plots of the considered particles in some three-dimensional (3D) spaces at the stage of kinetic freeze-out, which are expected to show different characteristics for different particles and processes. The related methodology can be used in the analyzes of particle production and event holography, which are useful for us to better understand the interacting mechanisms.

  4. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  5. H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

  6. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    County Energy Center","Natural Gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3443 4,"Crystal River","Coal","Duke Energy Florida,...

  7. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    and energy ARMs for use in the RPM. Relevance In order legitimately compare alternative resource strategies) tests each resource strategy to determine whether it meets both energy and capacity adequacy requirements. That is, it ensures that the power supply is sufficiently surplus in energy and capacity

  8. Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

    SciTech Connect (OSTI)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

    2010-12-01

    The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

  9. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    of Carbon Tax on Combined Heat and Power Adoption by ain energy-efficient combined heat and power equipment, whilegeneration with combined heat and power (CHP) applications

  10. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    E-Print Network [OSTI]

    Marnay, Chris

    2011-01-01

    Building Energy System Selection and Operation,” paper to be presented at Microgen’II: Second International Confer-ence of Microgeneration and

  11. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    each","Hydroelectric","PUD No 1 of Chelan County",1253.9 5,"Columbia Generating Station","Nuclear","Energy Northwest",1132 6,"Boundary","Hydroelectric","City of Seattle -...

  12. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    ion","Nuclear","Exelon Nuclear",2277 4,"Quad Cities Generating Station","Nuclear","Exelon Nuclear",1819 5,"Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1775...

  13. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach Nuclear Plant","Nuclear","NextEra Energy Point Beach LLC",1197 3,"Pleasant Prairie","Coal","Wisconsin...

  14. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    SciTech Connect (OSTI)

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    There is no stated limit on the aggregate capacity of net-metered systems in a utility's service territory. Any net excess generation (NEG) during a monthly billing period is...

  16. The economics of net metering Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    jurisdictions, energy suppliers1 are required by law to accept any electricity generated by a customer-generator's consumption and generation are known. Whether an energy supplier purchases electricity from a customer the billing period; thereafter, the energy supplier has the option of purchasing the excess generation

  17. The Impact of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid

    SciTech Connect (OSTI)

    Dirks, James A.

    2010-08-16

    Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Wide-spread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time of day rates or real time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

  18. An Exploration of Impacts of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid

    SciTech Connect (OSTI)

    Dirks, James A.

    2010-07-01

    Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity, which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Widespread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time-of-day rates or real-time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

  19. DOE Tour of Zero: The Garbett's Net Zero-Energy Home at Rosecrest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Garbett Homes Addthis 1 of 11 This high-performance home built by Garbett Homes near Salt Lake City, Utah, is a certified U.S. DOE Zero Energy Ready Home. 2 of 11 The...

  20. Energy Balance Partitioning and Net Radiation Controls on Soil Moisture – Precipitation Feedbacks

    E-Print Network [OSTI]

    Jones, Aubrey R.; Brunsell, Nathaniel A.

    2009-01-14

    stream_size 63174 stream_content_type text/plain stream_name Brunsell_2009_Energy-balance-partitioning.pdf.txt stream_source_info Brunsell_2009_Energy-balance-partitioning.pdf.txt Content-Encoding UTF-8 Content-Type text... turbulence, with coarser resolutions unable to capture turbulent motions, which are necessary for convective processes. The ability of the model to capture boundary layer turbulence will alter the dynamics of soil moisture–precipitation feedback...

  1. Kaupuni Village: A closer look at the first net-zero energy affordable

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9:EnergyKathryn Grant About

  2. Net-Zero Campus at University of California, Davis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of Energy Nationwide:Natural

  3. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    Issue on Microgrids and Energy Management 3. Marnay, C. , G.Issue on Microgrids and Energy Management 15. PG&E tariffs (Issue on Microgrids and Energy Management Figures Figure 1.

  4. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

  5. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of PV panels, solar thermal equipment, and storage systems.chiller, energy storage, or solar-based technologies areexpensive solar-based equipment and energy storage Intercept

  6. Krannert Energy Club BillBivinsis

    E-Print Network [OSTI]

    Ginzel, Matthew

    technically and economically. ·The technology integration provides for simultaneous production of natural gas;bytheUS DepartmentofCommerce,USEnviron- mentalProtectionAgency,USMilitary, andincountriessuchastheUnited StatesChina of consumption of a 25 mile radius of the facility. ·The modular design provides for shop fabrication and site

  7. Bill McMillan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc

  8. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect (OSTI)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  9. Analysis: Targeting Zero Net Energy - 2014 BTO Peer Review | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiencyEnergyDepartmentTransportation

  10. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    sectors, while the economy grew by 2 percent annually. Retail electricity revenues grew faster than sales public utilities and IOUs average revenues per unit of electricity sales. In 2013, the IOUs average electricity sales revenue trends. Looking at a seven-year history, energy sales remained stable throughout all

  11. Phil Rockefeller W. Bill Booth

    E-Print Network [OSTI]

    by Fuel/Resource Type MWa in 2020, 2025, 2030 & 2035 and Graph of Distribution Across All Futures by Deciles Energy Efficiency " Hydro " Natural Gas " Coal " Wind " Utility Scale Solar PV " Distributed Solar of Capacity by Resource Type & Year Across All Futures by Deciles Resources Acquired Based on Economics MW

  12. The Net Zero Energy Residential Test Facility, located at the National Institute of Standards

    E-Print Network [OSTI]

    and storage tank capacity · Closed loop system · Capable of providing hot water and/or solar assist to earth will enable: · Improvement and validation of models used to predict annual energy production of solar systems · Development of the measurement science to characterize "as-installed" performance of various space

  13. Utility Building Analysis Billing Period: NOV -2013

    E-Print Network [OSTI]

    ELECTRICITY Consumption MUNICIPAL WATER Consumption 8 CCF STEAM Consumption CHILLED WATER Consumption GAS Building Analysis Billing Period: NOV - 2013 032 JACKSON HALL: 150,393 Square Feet ELECTRICITY Consumption,550 Square Feet ELECTRICITY Consumption 114,185 KWHRS MUNICIPAL WATER Consumption 1,423 CCF STEAM Consumption

  14. The Balanced Billing Cycle Vehicle Routing Problem

    SciTech Connect (OSTI)

    Groer, Christopher S [ORNL; Golden, Bruce [University of Maryland; Edward, Wasil [American University

    2009-01-01

    Utility companies typically send their meter readers out each day of the billing cycle in order to determine each customer s usage for the period. Customer churn requires the utility company to periodically remove some customer locations from its meter-reading routes. On the other hand, the addition of new customers and locations requires the utility company to add newstops to the existing routes. A utility that does not adjust its meter-reading routes over time can find itself with inefficient routes and, subsequently, higher meter-reading costs. Furthermore, the utility can end up with certain billing days that require substantially larger meter-reading resources than others. However, remedying this problem is not as simple as it may initially seem. Certain regulatory and customer service considerations can prevent the utility from shifting a customer s billing day by more than a few days in either direction. Thus, the problem of reducing the meterreading costs and balancing the workload can become quite difficult. We describe this Balanced Billing Cycle Vehicle Routing Problem in more detail and develop an algorithm for providing solutions to a slightly simplified version of the problem. Our algorithm uses a combination of heuristics and integer programming via a three-stage algorithm. We discuss the performance of our procedure on a real-world data set.

  15. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28Mar [Compatibility Mode] | Department

  16. DEVELOPMENT OF A SMALL INTEGRATED HEAT PUMP (IHP) FOR NET ZERO ENERGY HOMES

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Craddick, William G [ORNL

    2008-01-01

    An IHP prototype was developed and tested over a range of operating modes and conditions. Test data was used to validate a detailed analysis model and the validated analytical tool was used to calculate the yearly performance of air- and ground-source IHP system designs optimized for R-410A in five major US cities. For the air-source IHP version, the simulation results showed ~46-67% energy savings depending upon location. For the ground-source IHP version, the simulation showed over 50% savings in all locations.

  17. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  18. Redbird Red Habitat for Humanity Net Zero Energy Home Project Summary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: JuliaDepartment-8-2008RSSa WebcastADepartmentStation at

  19. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermal ElectricNonprofit|

  20. Zero Net Energy Homes Production Builder Business Case: California/Florida

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWooden Rooftops | DepartmentMay 2014Production

  1. FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER

    E-Print Network [OSTI]

    Keeton, William S.

    FOREST MONITORING AT THE MARSH-BILLINGS-ROCKEFELLER NATIONAL HISTORICAL PARK. of the Interior, University of Vermont, National Park Service, Rubenstein School of Environment Marsh-Billings-Rockefeller and Natural Resources National Historical Park #12;Forest Monitoring at the Marsh

  2. On Bill Financing: SDG&E/SoCalGas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about On-Bill Financing used by Southern California Gas Company and the different options the program offers.

  3. Florida Prepaid College Request not to bill Florida Prepaid

    E-Print Network [OSTI]

    Meyers, Steven D.

    Florida Prepaid College Request not to bill Florida Prepaid Effective Spring 2010, The University of South Florida (USF) will automatically bill for all Florida Prepaid College Students that are enrolled of University credits remaining in your prepaid balance. If for any reason you do not want the USF to bill

  4. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of Carbon Tax on Combined Heat and Power Adoption by ain energy-efficient combined heat and power (CHP) equipment,generation with combined heat and power (CHP) applications

  5. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and energy ratings of a flow battery are independent of eachcapacity electrical flow battery thermal n/a n/a source:$/kWh) thermal storage 30 flow battery 220$/kWh and 2125$/kW

  6. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by EndAnnual",2014Annual",2014Totale.1. Net1. Net

  7. Net Energy Metering (NEM)

    Broader source: Energy.gov (indexed) [DOE]

    facilities on the military installation does not exceed 50% of the highest daily peak demand for electricity at that military installation over the course of the preceding...

  8. Achieving Net Zero: Climate Change & Sustainability

    E-Print Network [OSTI]

    Rose, Michael R.

    Achieving Net Zero: Climate Change & Sustainability University of California, Irvine #12 & Energy Services Coordinator, Facilities Management Tanya Harris - A/P Administrative Specialist in environmental stewardship for decades. Operational staff began implementing progressive programs for energy

  9. IAEA-CN-SO/G-I-l THE NET PROJECT

    E-Print Network [OSTI]

    . The objective of NET is to demonstrate fusion energy production in an apparatus which meets the basic design PARAMETERS The NET objective is to demonstrate fusion energy production in an apparatus which meets the basic-Planck-Institut ftir Plasmaphysik, Garching, Federal Republic of Germany Abstract THE NET PROJECT: AN OVERVIEW

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy Billing All of

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy Billing All

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy Billing

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy BillingNOTE: In

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-SierraEnergy TrustNet Metering NewEnergy BillingNOTE:

  15. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S. DOEEnergy StorageTricks Lead to Cost-Saving

  16. NetCDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience4.21 4.43EnergyAuthor: MonthlyNetCDF

  17. Bill Allcock | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium and ChronicBestBeyondBigger's NotBilayerBill

  18. Negotiation-Based Task Scheduling and Storage Control Algorithm to Minimize User's Electric Bills under Dynamic Prices

    E-Print Network [OSTI]

    Pedram, Massoud

    , snazaria, pedram}@usc.edu Abstract--Dynamic energy pricing is a promising technique in the Smart Grid the electricity bill. A general type of dynamic pricing scenario is assumed where the energy price is both time-based iterative approach has been proposed for joint residential task scheduling and energy storage control

  19. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    SciTech Connect (OSTI)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  20. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    SciTech Connect (OSTI)

    Parker, D.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  1. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation CBEI: Demonstrating On-Bill...

  2. ILU 2.0beta1 Reference Manual Bill Janssen

    E-Print Network [OSTI]

    Janssen, Bill

    Brotsky, David Brownell, Bruce Cameron, George Carrette, Philip Chou, Daniel W. Connolly, Antony Courtney, Doug Cutting, Mark Davidson, Jim Davis, Larry Edelstein, Paul Everitt, Bill Fenner, Josef Fink

  3. Deep Borehole Disposal of Nuclear Waste. Arnold, Bill Walter...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Waste. Arnold, Bill Walter; Brady, Patrick Vane. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear...

  4. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and display building energy data. iii Glossary Energy1) How to interpret energy data, to improve efficiency andutility bills or interval energy data. Longitudinal Cross-

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-Alternative Energy RevolvingRuralPlumas-Sierra REC-ConnecticutNew Jersey'sEnergy Billing AllNet

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunityEnergy Trust of Oregon Of theConserFund LoanNetEnergy Billing All of

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunityEnergy Trust of Oregon Of theConserFund LoanNetEnergy Billing All

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunityEnergy Trust of Oregon Of theConserFund LoanNetEnergy Billing

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolarCommunityEnergy Trust of Oregon Of theConserFund LoanNetEnergy BillingState

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar EasementsLocalLow-InterestNet MeteringEnergyClean Energy On-Bill Financing By

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar EasementsLocalLow-InterestNet MeteringEnergyClean Energy On-Bill Financing

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar EasementsLocalLow-InterestNet MeteringEnergyClean Energy On-Bill

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar EasementsLocalLow-InterestNet MeteringEnergyClean Energy On-BillNevada's

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress-AlternativeSolar EasementsLocalLow-InterestNet MeteringEnergyClean Energy On-BillNevada'sNOTE:

  16. Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

  17. Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure), Department of Defense (DoD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823LaboratoryU.S.ArkansasARMY NET ZERO

  18. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by EndAnnual",2014Annual",2014Totale.1. Net1.

  19. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by EndAnnual",2014Annual",2014Totale.1.. Net

  20. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by EndAnnual",2014Annual",2014Totale.1.. Net3 and