Sample records for net capacity generation

  1. Managing nuclear predominant generating capacity

    SciTech Connect (OSTI)

    Bouget, Y.H.; Herbin, H.C.; Carbonnier, D.

    1998-07-01T23:59:59.000Z

    The most common belief, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires various actions be taken, ranging from a daily to a multi-annual perspective. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary.

  2. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical compounds composed of113) MonthlyP FNetNet

  3. World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...

    Open Energy Info (EERE)

    U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

  4. A California generation capacity market

    SciTech Connect (OSTI)

    Conkling, R.L.

    1998-10-01T23:59:59.000Z

    California, overconfident with its new Power Exchange spot market, seems unaware that it could be afflicted by the same turmoil that bludgeoned the Midwest in June. An electricity capacity market should be put in place before crisis strikes. This article outlines a framework for adding an electricity capacity market in California. The new market would not create a new bureaucracy but would function within the state`s now operational PX and independent system operator (ISO) mechanisms. It would be an open market, in which capacity would be traded transparently, with freedom of entree for all willing sellers and all willing buyers.

  5. Generating Code Structures for Petri NetBased Agent Interaction Protocols Using Net Components

    E-Print Network [OSTI]

    Hamburg.Universit√?¬§t

    Generating Code Structures for Petri Net­Based Agent Interaction Protocols Using Net Components@informatik.uni­hamburg.de July 31, 2003 Abstract In this paper we introduce a straight forward approach for generating Petri Net of net components which provide basic tasks and the structure for Petri Nets. Agent interaction protocol

  6. Generating Code Structures for Petri Net-Based Agent Interaction Protocols Using Net Components

    E-Print Network [OSTI]

    Hamburg.Universit√?¬§t

    Generating Code Structures for Petri Net-Based Agent Interaction Protocols Using Net Components@informatik.uni-hamburg.de March 31, 2004 Abstract In this paper we introduce a straight forward approach for generating Petri Net of net components which provide basic tasks and the structure for Petri Nets. Agent interaction protocol

  7. Energy and Capacity Valuation of Photovoltaic Power Generation in New York

    E-Print Network [OSTI]

    Perez, Richard R.

    Energy and Capacity Valuation of Photovoltaic Power Generation in New York Prepared by Richard of photovoltaic (PV) power generation for New York focuses on the value to utilities. Specifically, the report, will bridge the remaining 25% gap1 , making distributed PV a net benefit to New York utilities

  8. Net energy ratio of photobiohydrogen generation G. Burgessa

    E-Print Network [OSTI]

    Net energy ratio of photobiohydrogen generation G. Burgessa and J.G. FernŠndez the energy content, the operational energy inputs, and the net energy ratio (NER) of an industrial tubular photobioreactor used for the photosynthetic production of H2 by microalgae. The calculated H2 output

  9. Net Metering

    Broader source: Energy.gov [DOE]

    Montana's net-metering law, enacted in July 1999, applies to all customers of investor-owned utilities. Systems up to 50 kilowatts (kW) in capacity that generate electricity using solar, wind or...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    Rhode Island allows net metering for systems up to five megawatts (MW) in capacity that are designed to generate up to 100% of the electricity that a home or other facility uses. Systems that...

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power...

  12. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ≠ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  13. Global Installed Capacity of Coal Fired Power Generation to Reach...

    Open Energy Info (EERE)

    Global Installed Capacity of Coal Fired Power Generation to Reach 2,057.6 GW by 2019 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture Submitted by...

  14. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  15. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  16. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  17. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  18. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  19. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  20. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  1. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  2. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  3. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  4. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  5. Long-term need for new generating capacity

    SciTech Connect (OSTI)

    Bloomster, C.H.; Merrill, E.T.

    1987-03-01T23:59:59.000Z

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity by the year 2000. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will not be acceptable to society without solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Technology improvements and waste management practices must be pursued to mitigate environmental and safety impacts from electricity generation. 26 refs., 14 figs., 23 tabs.

  6. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. √? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  7. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    SciTech Connect (OSTI)

    Rose, James; Varnado, Laurel

    2009-04-01T23:59:59.000Z

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  8. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21T23:59:59.000Z

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  9. Temporal vs. Stochastic Granularity in Thermal Generation Capacity ...

    E-Print Network [OSTI]

    smryan

    2013-07-25T23:59:59.000Z

    [20] S. Jin, A. Botterud, S. Ryan, "Impact of demand response on thermal generation investment with high wind penetration,". Iowa State Univerity, Technical†...

  10. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01T23:59:59.000Z

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  11. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration†

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25T23:59:59.000Z

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  12. Did English generators play cournot? : capacity withholding in the electricity pool

    E-Print Network [OSTI]

    Green, Richard

    2004-01-01T23:59:59.000Z

    Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

  13. Long-term contracts for new investments in power generation capacity : pain or gain?

    E-Print Network [OSTI]

    Sakhrani, Vivek A. (Vivek Ashok)

    2010-01-01T23:59:59.000Z

    In recent years, a debate has ensued regarding the role of long-term power purchase agreements for securing investments in power generation capacity in organized wholesale markets. This thesis illuminates the issues ...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind,...

  15. Murray City Power- Net Metering Pilot Program

    Broader source: Energy.gov [DOE]

    Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10...

  16. Resistive wall tearing mode generated finite net electromagnetic torque in a static plasma

    SciTech Connect (OSTI)

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, M.; Qu, H. P.; Peng, X. D.; Wang, Z. H.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, Post Office Box 432, Chengdu 610041 (China)] [Southwestern Institute of Physics, Post Office Box 432, Chengdu 610041 (China); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2014-01-15T23:59:59.000Z

    The MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000)] is applied to numerically investigate the effect of the plasma pressure on the tearing mode stability as well as the tearing mode-induced electromagnetic torque, in the presence of a resistive wall. The tearing mode with a complex eigenvalue, resulted from the favorable averaged curvature effect [A. H. Glasser et al., Phys. Fluids 18, 875 (1975)], leads to a re-distribution of the electromagnetic torque with multiple peaking in the immediate vicinity of the resistive layer. The multiple peaking is often caused by the sound wave resonances. In the presence of a resistive wall surrounding the plasma, a rotating tearing mode can generate a finite net electromagnetic torque acting on the static plasma column. Meanwhile, an equal but opposite torque is generated in the resistive wall, thus conserving the total momentum of the whole plasma-wall system. The direction of the net torque on the plasma is always opposite to the real frequency of the mode, agreeing with the analytic result by Pustovitov [Nucl. Fusion 47, 1583 (2007)]. When the wall time is close to the oscillating time of the tearing mode, the finite net torque reaches its maximum. Without wall or with an ideal wall, no net torque on the static plasma is generated by the tearing mode. However, re-distribution of the torque density in the resistive layer still occurs.

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005, 2007, 2011, 2013, and 2015. Systems up to one megawatt (MW) in capacity that...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following...

  20. CARBON MANAGEMENT STRATEGIES FOR U.S. ELECTRICITY GENERATION CAPACITY: A VINTAGE-BASED APPROACH

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2004-06-01T23:59:59.000Z

    This paper examines the stock of fossil-fired power generation capacity in the United States within the context of climate change. At present, there are over 1,337 fossil-fired power generating units of at least 100 MW in capacity, that began operating between the early 1940s and today. Together these units provide some 453 GW of electric power. Launching a national program to accelerate the early retirement of this stock or tearing them down and undertaking near-term brownfield redevelopment with advanced power cycle technologies as a means of addressing their greenhouse gas emissions will not be a sensible option for all of these units. Considering a conservative 40-year operating life, there are over 667 existing fossil-fired power plants, representing a capacity of over 291 GW, that have at least a decades worth of productive life remaining. This paper draws upon specialized tools developed by Battelle to analyze the characteristics of this subset of U.S. power generation assets and explore the relationships between plant type, location, emissions, and vintage. It examines the use of retrofit carbon capture technologies, considering criteria such as the proximity of these power plants to geologic reservoirs, to assess the potential that geologic sequestration of CO2 offers these plants for managing their emissions. The average costs for retrofitting these plants and sequestering their CO2 into nearby geologic reservoirs are presented. A discussion of a set of planned U.S. fossil-fired power projects within this context is also included.

  1. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01T23:59:59.000Z

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  2. Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)

    SciTech Connect (OSTI)

    Heeter, J.; Bird, L.; Gelman, R.

    2014-10-01T23:59:59.000Z

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  3. Status of Net Metering: Assessing the Potential to Reach Program Caps

    SciTech Connect (OSTI)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01T23:59:59.000Z

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  4. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind...

  7. 2007 NET SYSTEM POWER REPORT STAFFREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings.............................................................................................. 4 Net System Power and Sources of California Electric Generation

  8. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  9. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15T23:59:59.000Z

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  10. FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    GENERATION by Mitchell A. Myhre A thesis submitted in partial fulfillment of the requirements for the degree and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor. Last but not least I would like to thank my wife Lisa for her love and support. #12;iv Table

  11. LADWP- Net Metering (California)

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  12. LADWP- Net Metering

    Broader source: Energy.gov [DOE]

    LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless...

  13. Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEI Community Biomass Power Generation

  14. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01T23:59:59.000Z

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  15. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAgeDieselDiesel prices up

  16. Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping

    E-Print Network [OSTI]

    Caruana, Rich

    Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping Rich Caruana is that backprop nets with excess hidden units generalize poorly. We show that nets with excess capacity generalize) Regardless of size, nets learn task subcomponents in similar sequence. Big nets pass through stages similar

  17. Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block

    SciTech Connect (OSTI)

    Tian, Jian; Motkuri, Radha K.; Thallapally, Praveen K.

    2010-09-01T23:59:59.000Z

    The self-assembly of a flexible tetrahedral linker tetrakis[4-(carboxyphenyl)oxamethyl]methane acid with various transition metals (Cu, Co and Mg) results in a 2D layered structure and 3D frameworks with PtS and adamantanoid topology. The PtS net exhibits permanent porosity as confirmed by BET and gas adsorption experiments.

  18. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01T23:59:59.000Z

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  19. Net Metering (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    Ontario's net metering regulation allows you to send electricity generated from renewable sources to the electrical grid for a credit toward your energy costs. Here's how it works. Your utility...

  20. Puerto Rico- Net Metering

    Broader source: Energy.gov [DOE]

    Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable...

  1. Net Metering (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    The NB Power Net Metering program provides customers with the option to connect their own environmentally sustainable generation unit to NB Power's distribution system. The program allows customers...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric...

  4. Abstract--The capacity of distributed generation (DG) is set to increase significantly with much of the plant connecting to

    E-Print Network [OSTI]

    Harrison, Gareth

    limiting network capability in absorbing new DG. Finally, it demonstrates the use of optimal power flow market. Index Terms-- distributed generation, optimal power flow, power distribution. I. INTRODUCTION O in England and Wales (18% in Scotland) is derived from renewable resources. With existing large hydro

  5. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  6. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE.&Gasolinein theElectric Power

  7. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical compounds composed of113) MonthlyP F

  8. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical compounds composed of113) MonthlyP F

  9. Working and Net Available Shell Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical compounds composed of113) MonthlyP FNet

  10. MathNet MathNet Mathematical

    E-Print Network [OSTI]

    MathNet MathNet MathNet Mathematical Preprint Servers Mathematical Preprint Servers Jonas Gomes Janeiro IMPA ­ Rio de Janeiro #12; MathNet MathNet MathNet Preprint Server Preprint Server . . What Atlas: Topology Atlas: http://www.unipissing.ca/topology/ http://www.unipissing.ca/topology/ #12; MathNet

  11. fi net

    E-Print Network [OSTI]

    Qian, Weihong

    Electronic Publishing House. All rights reserved. http://www.cnki.net #12;, , , ¬∑ ¬Ľ ¬Ľ , , , ¬°¬Ę ¬Ľ ¬°fi Journal Electronic Publishing House. All rights reserved. http://www.cnki.net #12;, ¬°¬£¬°¬£ , ¬Ľ , ¬Į ¬°/ ¬° , ¬°¬Ę ¬°¬Ę ¬© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

  12. Net Metering

    Broader source: Energy.gov (indexed) [DOE]

    Regulatory Policies Act of 1978 (PURPA) - Usually at utility's avoided cost (a wholesale rate) or a negotiated rate * New Mexico o REC Ownership: Utility owns RECs o Net...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal...

  14. Net Metering

    Broader source: Energy.gov [DOE]

    Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible...

  15. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under...

  16. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    Illinois enacted legislation in August 2007 (S.B. 680) requiring investor-owned utilities in Illinois to begin offering net metering by April 1, 2008. In May 2008, the Illinois Commerce Commissio...

  18. Net Metering

    Broader source: Energy.gov [DOE]

    NOTE: In December 15, 2014 the New York Public Service Commission (PSC) issued an order directing the investor owned utilities in the State to file net metering tariff revisions doubling the agg...

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    [http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

  1. Net Metering

    Broader source: Energy.gov [DOE]

    The North Carolina Utilities Commission (NCUC) requires the stateís three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW)...

  3. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

  4. Net Metering

    Broader source: Energy.gov [DOE]

    Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives.

  5. Net Metering

    Broader source: Energy.gov [DOE]

    '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].'''''...

  6. Net Metering

    Broader source: Energy.gov [DOE]

    '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1,...

  7. Net Metering

    Broader source: Energy.gov [DOE]

    '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the...

  8. Object Petri Nets Using the Nets-within-Nets Paradigm.

    E-Print Network [OSTI]

    Hamburg.Universit√?¬§t

    Object Petri Nets Using the Nets-within-Nets Paradigm. R√ľdiger Valk. revised version from J√∂rg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets: Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Compu- ter Science, pages 819-848. Springer-Verlag, Berlin

  9. Abstract--The aim of this paper is to present a new method for the allocation of new generation capacity, which takes into ac-

    E-Print Network [OSTI]

    Harrison, Gareth

    specifica- tions (e.g., thermal limits on transmission lines and transform- ers). Here, fault level capacity, which takes into ac- count fault level constraints imposed by protection equipment the estimation of fault currents. An iterative process allocates new capacity using Optimal Power Flow mechanisms

  10. Palau- Net Metering

    Broader source: Energy.gov [DOE]

    The Palau Net Metering Act of 2009 established net metering on the Island of Palau. Net metering was implemented in order to:

  11. Energy Generation Project Permitting (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Energy Generation Siting Policy Commission is mandated to survey best practices for siting approval of electric generation projects (all facilities except for net- and group-net-metered...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2050-EL-ORD Case 12-0250-EL-RDR]) to review the net...

  13. Message passing for integrating and assessing renewable generation in a redundant power grid

    SciTech Connect (OSTI)

    Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

  14. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

  15. Kansas- Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering...

  16. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled Nameplate Capacity of

  17. Hydro-Quťbec Net Metering (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    In line with Hydro-Quťbec's commitment to the environment and sustainable development, Hydro-Quťbec is supporting self-generation with a new rate offering: the net metering option. This option...

  18. Scotia Energy Electricity- Net Metering Program (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid.

  19. The economics of net metering Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    . In jurisdictions that permit net metering, the owners of these facilities (the customer-generators) can supply of financial compensation on the selection of generation equipment from the perspective of the customer that generate electricity intermittently (typically renewables such as wind and solar) need not be concerned

  20. The Goal of Net Zero

    E-Print Network [OSTI]

    Ronquillo, M.

    2014-01-01T23:59:59.000Z

    The Goal of Net Zero CATEE 2014 Clean Air Through Energy Efficiency Conference Andrew T. Cronberg, PE Interim Water Director City of Fort Worth, Texas November 19, 2014 Dallas, Texas ESL-KT-14-11-47 CATEE 2014: Clean Air Through Efficiency... Conference, Dallas, Texas Nov. 18-20 ē10 Journey to Net Zero began in the 1960ís ēDigester Gas fueled Engine Blowers & Generators ēSome heat recovery for anaerobic digesters ESL-KT-14-11-47 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas...

  1. MathNetMathNetMathNet Mathematical Preprint ServersMathematical Preprint Servers

    E-Print Network [OSTI]

    MathNetMathNetMathNet Mathematical Preprint ServersMathematical Preprint Servers Jonas GomesIMPA - Rio de Janeiro #12;MathNetMathNetMathNet Preprint ServerPreprint Server ·· What is a Preprint server;MathNetMathNetMathNet Preprint ServerPreprint Server ·· DatabaseDatabase ·· Store preprints

  2. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  14. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  15. Progress Energy- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering...

  16. Net Metering Rules (Arkansas)

    Broader source: Energy.gov [DOE]

    The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These...

  17. Duke Energy- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement...

  18. Optimal Capacity Conversion for Product Transitions Under High Service Requirements

    E-Print Network [OSTI]

    Li, Hongmin

    We consider the capacity planning problem during a product transition in which demand for a new-generation product gradually replaces that for the old product. Capacity for the new product can be acquired both by purchasing ...

  19. The scope of SaCoNet is to deal with the growing smart communications fields embedded in complex systems for a wide variety of applications in the future generation of network and cloud

    E-Print Network [OSTI]

    PolitŤcnica de Catalunya, Universitat

    emerging networks: sky of clouds, Internet of things, Smart Grids, Smart Cities, etc. The evolutionThe scope of SaCoNet is to deal with the growing smart communications fields embedded in complex technologies. SaCoNet focuses on how smart communications and ICT networks impact not only on network

  20. Property:NetProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit withTieredDoc Jump to:URLs

  1. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    diverse set of flexible traditional generation resourcessufficient flexible demand or generation capacity exists tosufficient flexible demand or generation capacity exists to

  2. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon, a 1

  3. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to:GenDelToGrid Jump

  4. SaskPower Net Metering (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our...

  5. Quantum computational tensor network on string-net condensate

    E-Print Network [OSTI]

    Tomoyuki Morimae

    2011-09-27T23:59:59.000Z

    The string-net condensate is a new class of materials which exhibits the quantum topological order. In order to answer the important question, "how useful is the string-net condensate in quantum information processing?", we consider the most basic example of the string-net condensate, namely the $Z_2$ gauge string-net condensate on the two-dimensional hexagonal lattice, and show that the universal measurement-based quantum computation (in the sense of the quantum computational webs) is possible on it by using the framework of the quantum computational tensor network. This result implies that even the most basic example of the string-net condensate is equipped with the correlation space that has the capacity for the universal quantum computation.

  6. Open versus closed loop capacity equilibria in electricity markets ...

    E-Print Network [OSTI]

    S. Wogrin

    2012-05-07T23:59:59.000Z

    May 7, 2012 ... Abstract: We consider two game-theoretic models of the generation capacity expansion problem in liberalized electricity markets. The first is an†...

  7. Net Energy Metering (NEM)

    Broader source: Energy.gov (indexed) [DOE]

    the Arizona Public Service Co. (APS) request for a charge on future rooftop solar panel installations connected to the grid under the state's net energy metering (NEM)...

  8. Net Energy Billing

    Broader source: Energy.gov [DOE]

    All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing...

  9. kpro-net.inf

    E-Print Network [OSTI]

    ... us and help promote the Kaypro as the best portable computer today. Any Sysop's wishing to join the K-Net please contact Steve Sanders through this system.

  10. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01T23:59:59.000Z

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  11. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Seabrook","Nuclear","NextEra Energy Seabrook LLC",1246.2 2,"Granite Ridge","Natural Gas","Granite...

  12. Computer Literacy Skills of Net Generation Learners

    E-Print Network [OSTI]

    Duke, Christopher

    2012-07-16T23:59:59.000Z

    Younger learners are widely considered to be technologically savvy and computer literate because of their lifelong exposure to ubiquitous technology. Educators often rely on that assumption to justify changes to institutional curricula, technology...

  13. Computer Literacy Skills of Net Generation Learners†

    E-Print Network [OSTI]

    Duke, Christopher

    2012-07-16T23:59:59.000Z

    -comparative examination of learner computer literacy skills prior to a college level computer literacy course found that both NGLs and non-NGLs exhibited inadequate computer literacy skill. A 1-way ANOVA indicated NGLs performed significantly better than non-NGLs on a...

  14. TOWARDS REACHING CONSENSUS IN THE DETERMINATION OF PHOTOVOLTAICS CAPACITY CREDIT

    E-Print Network [OSTI]

    Perez, Richard R.

    , 251 Fuller Rd Albany, NY, 12203 Perez@asrc.cestm.albany,edu Mike Taylor Solar Electric Power effort to reach consensus on the notion of capacity credit for solar power electrical generation capacity or capacity credit of a power plant quantifies the output of a power plant that effectively

  15. PSEG Long Island- Net Metering

    Broader source: Energy.gov [DOE]

    Although PSEG Long Islandís net metering policy is not governed by the Stateís net metering law, the provisions are similar to the State law. Net metering is available for residential, non-reside...

  16. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity MarketĒ, Power WorkingFelder (1996), ďShould Electricity Markets Have a Capacity

  17. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  18. Commons as insurance: safety nets or poverty traps? Philippe Delacote

    E-Print Network [OSTI]

    Langerhans, Brian

    Commons as insurance: safety nets or poverty traps? Philippe Delacote Economics Department, EUI. The aim of this paper is to consider the potential poverty-trap implications of this use. If the capacity, the introduction of an insurance scheme could be an exit to the poverty trap and relax pressure on the resource

  19. Table 16. Renewable energy generating capacity and generation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177

  20. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  1. Guam- Net Metering

    Broader source: Energy.gov [DOE]

    Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC]...

  2. Ashland Electric- Net Metering

    Broader source: Energy.gov [DOE]

    In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

  3. Timeline for Net Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x By July 31 of each Forecast Year, BPA publishes all Load Following customers' Net Requirements data for the two years of the upcoming Rate Period. 17.6.1 7312010 Yes...

  4. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a ďKnudsen heat capacityĒ as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  5. N=2 superconformal nets

    E-Print Network [OSTI]

    Sebastiano Carpi; Robin Hillier; Yasuyuki Kawahigashi; Roberto Longo; Feng Xu

    2014-11-21T23:59:59.000Z

    We provide an Operator Algebraic approach to N=2 chiral Conformal Field Theory and set up the Noncommutative Geometric framework. Compared to the N=1 case, the structure here is much richer. There are naturally associated nets of spectral triples and the JLO cocycles separate the Ramond sectors. We construct the N=2 superconformal nets of von Neumann algebras in general, classify them in the discrete series cnets with cnet representations.

  6. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    by State as of January 1, 2006 PDF 5 Refiners' Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2006 PDF 6 Operable Crude Oil and Downstream Charge...

  7. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Report June 2014 With Data as of January 1, 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by...

  8. Interconnection Standards for Small Generators

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) adopted "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in May 2005.* The FERC's...

  9. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B.B. Blevins Executive Director DISCLAIMER capacity targets. KEYWORDS Distributed generation, cogeneration, photovoltaics, wind, biomass, combined

  10. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  11. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  13. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  14. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  16. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  20. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16T23:59:59.000Z

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  2. If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity

    E-Print Network [OSTI]

    If current capacity were to be expanded so that all of the non-recycled municipal solid waste at Columbia University assessed the energy value of municipal solid waste that is currently sent to U so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we

  3. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  4. N. Mariana Islands- Net Metering

    Broader source: Energy.gov [DOE]

    Note: The Commonwealth Utility Corporation issued a moratorium on net metering. However, Public Law 18-62 signed September 6, 2014 states that net metering should be available to all residential...

  5. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering...

  6. SCE&G- Net Metering

    Broader source: Energy.gov [DOE]

    In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering...

  7. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  8. MaxNet: Faster Flow Control Convergence Bartek P. Wydrowski, Lachlan L. H. Andrew, Iven M. Y. Mareels.

    E-Print Network [OSTI]

    Andrew, Lachlan

    MaxNet: Faster Flow Control Convergence Bartek P. Wydrowski, Lachlan L. H. Andrew, Iven M. Y of Melbourne, Vic, 3010, Australia Ph. +61 3 8344 3816 Fax. +61 3 8344 6678 Abstract. MaxNet is a distributed generates the congestion signal that controls the source rate. This is unlike SumNet networks

  9. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30T23:59:59.000Z

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  10. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01T23:59:59.000Z

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  11. Quantum Channel Capacities

    E-Print Network [OSTI]

    Graeme Smith

    2010-07-16T23:59:59.000Z

    A quantum communication channel can be put to many uses: it can transmit classical information, private classical information, or quantum information. It can be used alone, with shared entanglement, or together with other channels. For each of these settings there is a capacity that quantifies a channel's potential for communication. In this short review, I summarize what is known about the various capacities of a quantum channel, including a discussion of the relevant additivity questions. I also give some indication of potentially interesting directions for future research.

  12. Petri Nets (for Planners) ICAPS 2009 --

    E-Print Network [OSTI]

    Haslum, Patrik

    Petri Nets (for Planners) ICAPS 2009 -- Introduction 1-Safe Petri Nets: Basic Definitions Transition Systems Petri Nets Petri Nets for Planning Unfolding Transition Systems Products and Petri Nets in Product Systems Directed Unfolding Planning via Unfolding & Concurrency From Planning Problem to Petri Net

  13. Sixth Northwest Conservation and Electric Power Plan Chapter 12: Capacity and Flexibility Resources

    E-Print Network [OSTI]

    ............................................................................................ 6 Flexibility Issues Raised By Wind Generation system capacity and flexibility a new priority. Wind generation needs back-up, flexible resources new wind generation with a more constrained hydrosystem, there are solutions. The first step

  14. Prediction methods for capacity of drag anchors in clayey soils

    E-Print Network [OSTI]

    Yoon, Yeo Hoon

    2002-01-01T23:59:59.000Z

    A drag anchor is a marine foundation element, which is penetrated into the seabed by dragging in order to generate a required capacity. The holding capacity of a drag anchor in a particular soil condition is developed by soil resistance acting...

  15. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01T23:59:59.000Z

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  16. Why Are We Talking About Capacity Markets? (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-06-01T23:59:59.000Z

    Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

  17. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

  18. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive.1 Optimum Electric-Power Generating Unit . . . . . . . . . . . . . . . . . . . . . . 8.7 Annual Capacity.21 Hydropower Generating Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 Largest Units

  19. A Monte Carlo Approach To Generator Portfolio Planning And Carbon...

    Open Energy Info (EERE)

    providing positive net annual energy generation. These technologies may include demand response, vehicle-to-grid systems, and large-scale energy storage. Authors Elaine...

  20. Road to Net Zero (Presentation)

    SciTech Connect (OSTI)

    Glover, B.

    2011-05-01T23:59:59.000Z

    A PowerPoint presentation on NREL's Research Support Facility (RSF) and the road to achieving net zero energy for new construction.

  1. Interleaving Semantics of Petri Nets Concurrency Theory

    E-Print Network [OSTI]

    √Ābrah√°m, Erika

    Interleaving Semantics of Petri Nets Concurrency Theory Interleaving Semantics of Petri Nets Joost/47 Interleaving Semantics of Petri Nets Overview 1 Introduction 2 Basic net concepts 3 The interleaving semantics of Petri nets 4 Sequential runs 5 Summary Joost-Pieter Katoen and Thomas Noll Concurrency Theory 2

  2. Weekly Blender Net Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected toallBlender Net

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report5

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Operable

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  8. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  9. Refinery Capacity Report Historical

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  10. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S.CapabilitiesCapacity Building

  11. Compensating Customer-Generators: A taxonomy describing methods of compensating

    E-Print Network [OSTI]

    Hughes, Larry

    , investment in grid-connected generation capacity is growing at a faster rate than off-grid applications (IEA

  12. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    SciTech Connect (OSTI)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01T23:59:59.000Z

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s model interconnection and net metering procedures.

  13. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material reduction, by requiring design entries to meet "zero net energy" and "zero net cost" criteria

  14. EHS-Net Cooling Study EHS-Net Cooling Study Protocol

    E-Print Network [OSTI]

    EHS-Net Cooling Study 1 EHS-Net Cooling Study Protocol 1. Title EHS-Net Cooling Study 2. Research (EHS-Net) special study. EHS-Net is a collaboration involving the Centers for Disease Control confirmed foodborne outbreaks in the US (unpublished FoodNet data). These data clearly indicate

  15. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

  16. 1, 275309, 2004 Net ecosystem

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    respiration rates are 5 Ķmol m-2 s-1 . Net annual sequestration of carbon (C) was estimated at 1.7 (Ī0.5) ton the short intense growing season. The associated cost to the sequestration of carbon may be another C ha-1 in 2001. The net carbon exchange of the forest was extremely sensitive to small changes

  17. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  18. Towards Discovering Data Center Genome Using Sensor Nets Microsoft Research

    E-Print Network [OSTI]

    Amir, Yair

    en- ergy consumption. Improving data center energy efficiency is a pressing issue with significant operators lack sufficient visibility into how heat is generated, distributed, and exchanged in data centersTowards Discovering Data Center Genome Using Sensor Nets Jie Liu Microsoft Research One Microsoft

  19. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix A PACIFIC NORTHWEST GENERATING RESOURCES

    E-Print Network [OSTI]

    and generating capacity of power plants located in the Northwest is shown in Figure A-1 Capacity and primary NORTHWEST GENERATING RESOURCES This Appendix describes the electric power generating resources describing individual projects. GENERATING CAPACITY Over 460 electricity generating projects are located

  20. Moving Towards Net-Zero Energy of Existing Building in Hot Climate†

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules. The program conducted on an existing institutional building intending to convert it into a Net...

  1. Capacity Markets 1 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    is the ability of the electric system to supply the aggregate electric power and energy requirements. There may be situations where the total generation is in fact sufficient, but the transmission between/or load control during peak periods), and/or storage. Maintaining adequacy has always been a primary

  2. Courtesy of Sandro Ierovante Distributed by WWW.LENSINC.NET

    E-Print Network [OSTI]

    Kleinfeld, David

    Courtesy of Sandro Ierovante Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12;Distributed by WWW.LENSINC.NET #12

  3. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

  4. SESILwww.nordSESIL.net NordSESIL.net

    E-Print Network [OSTI]

    #12;Nord SESILwww.nordSESIL.net Many communities in the Nordic region have: · remote locations · small populations · isolated energy systems · high enegy costs · high relative energy demands (heating

  5. Conformal nets II: conformal blocks

    E-Print Network [OSTI]

    Arthur Bartels; Christopher L. Douglas; Andrť Henriques

    2014-09-30T23:59:59.000Z

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  6. ransmission, rather than generation, is

    E-Print Network [OSTI]

    to expand transmission capacity adequately: Over 40 years, the amount of electricity generated in the United's power plants to its customers. It was never designed for getting power from any generator to anyT ransmission, rather than generation, is generally the con- straint preventing cus- tomers from

  7. 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every

  8. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  9. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01T23:59:59.000Z

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  10. Austin Energy- Net Metering (Texas)

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of...

  11. NET-ZERO CARBON MANUFACTURING AT NET-ZERO COST Dustin Pohlman

    E-Print Network [OSTI]

    Kissock, Kelly

    1 NET-ZERO CARBON MANUFACTURING AT NET-ZERO COST Dustin Pohlman Industrial Assessment Center energy in manufacturing plants that results in net-zero carbon emissions at net-zero costs. The paper begins by reviewing the economics of net- zero energy buildings and discussing why a different approach

  12. EHS-Net Tomato Handling Study EHS-Net Tomato Handling Study Protocol

    E-Print Network [OSTI]

    EHS-Net Tomato Handling Study 1 EHS-Net Tomato Handling Study Protocol I. Project Overview Title EHS-Net Tomato Handling Study Protocol Summary Few studies have examined in detail the nature Health Specialists Network (EHS-Net) special study. EHS- Net is a collaboration involving the Centers

  13. Defining a Standard Metric for Electricity Savings

    E-Print Network [OSTI]

    Koomey, Jonathan

    2009-01-01T23:59:59.000Z

    capacity for U.S. coal fired power generation is remarkablyfired capacity, net generation and coal consumed taken fromof their electricity generation comes from coal. LIMITATIONS

  14. Appendix A

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    6. Renewable energy generating capacity and generation (gigawatts, unless otherwise noted) Net summer capacity and generation Reference case Annual growth 2012-2040 (percent) 2011...

  15. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property isType"USGSMeanCapacity Jump to:

  16. Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    E-Print Network [OSTI]

    Graves, Patricia M; Ngondi, Jeremiah M; Hwang, Jimee; Getachew, Asefaw; Gebre, Teshome; Mosher, Aryc W; Patterson, Amy E; Shargie, Estifanos B; Tadesse, Zerihun; Wolkon, Adam; Reithinger, Richard; Emerson, Paul M; Richards, Frank O Jr

    2011-12-13T23:59:59.000Z

    Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use...

  17. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems.†

    E-Print Network [OSTI]

    Randerson, J. T; Chapin, F. S; Harden, J. W; Neff, J. C; Harmon, M. E

    2002-01-01T23:59:59.000Z

    and F A. Bazzaz. August 2002 NET ECOSYSTEM PRODUCTION 1993.Net exchange of CO2 in a mid-latitude forest. ScienceN. , and E. -D. Schulze. 1999. Net CO, and H,O fluxes from

  18. import java.io.IOException; import java.net.URI;

    E-Print Network [OSTI]

    Ricci, Laura

    import java.io.IOException; import java.net.URI; import java.util.Enumeration; import net.jxta.discovery.DiscoveryService; import net.jxta.document.AdvertisementFactory; import net.jxta.document.Element; import net.jxta.document.MimeMediaType; import net.jxta.document.StructuredDocument; import net.jxta.document.StructuredDocumentFactory; import

  19. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

  20. Unfolding the political capacities of design†

    E-Print Network [OSTI]

    DomŪnguez Rubio, Fernando; Foguť, Uriel

    2015-01-01T23:59:59.000Z

    obsession with Ďsmart citiesíówhich, from one perspective,+2012. +ďThe+Stupefying+Smart+City. Ē+ http://lsecities.net/

  1. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

  2. Dynamic Long-Term Modelling of Generation Capacity Investment and Capacity Margins

    E-Print Network [OSTI]

    Eager, Dan; Hobbs, Benjamin; Bialek, Janusz

    2012-04-25T23:59:59.000Z

    ). Total interest accumulated during construction is given by TIACx = ICx ? cxpx. Finally, DCx is the present worth of the decommissioning cost. Only nuclear projects have considerable decommissioning costs (estimated at 12% of px4); in the case of other... plant types the decommissioning liabilities are assumed to be offset by the salvage value of the assets [22]. Nuclear decommissioning is assumed to take 150 years and the equivalent incidence of capital outlay matrix contains 0.05 for the first 10...

  3. NetCDF at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNepheline crystallization inNetCDF NetCDF

  4. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Energy Concerns to Push Global Market to Grow at 8.1% CAGR from 2013 to 2019 Oil Shale Market is Estimated to Reach USD 7,400.70 Million by 2022 more Group members (32)...

  5. atp generation capacity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    corroborate asymmetry of catalysis in F0F1-ATP synthase. Zarrabi, Nawid; Diez, Manuel; Graeber, Peter; Wrachtrup, Joerg; Boersch, Michael 2007-01-01 188 Structure of the Bis(Mg2+...

  6. Economic Dispatch of Electric Generation Capacity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-Year 1 Winners Announced!EcoCAR

  7. A stochastic multiscale model for electricity generation capacity ...

    E-Print Network [OSTI]

    2011-04-21T23:59:59.000Z

    mand response requires a coupling of both the long and short term dynamics. ... Division, Massachusetts Institute of Technology, 77 Massachusetts Ave, Building ... or demand elasticity (a major objective of demand response programs).

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotalU.S.

  9. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotalU.S.Alabama"

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 Table 16.

  11. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 Table

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 TableIllinois"

  13. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1Massachusetts"

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri" ,"Plant","Primary energy

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri" ,"Plant","Primary

  18. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri" ,"Plant","PrimaryNebraska"

  19. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"

  20. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"Hampshire" ,"Plant","Primary

  1. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"Hampshire"

  2. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"Hampshire"Mexico"

  3. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"Hampshire"Mexico"Dakota"

  4. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland"Missouri"Hampshire"Mexico"Dakota"Ohio"

  5. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energy source","Operating

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energy

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhode Island"

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhode Island"Carolina"

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhode

  11. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhodeUnited States"

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhodeUnited States"Utah"

  13. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhodeUnited

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhodeUnitedVirginia"

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary energyRhodeUnitedVirginia"Washington"

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","Primary

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","PrimaryWyoming" ,"Plant","Primary

  18. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","PrimaryWyoming"

  19. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","PrimaryWyoming"Alaska"

  20. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon" ,"Plant","PrimaryWyoming"Alaska"Arizona"

  1. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"

  2. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary energy

  3. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary energyDistrict of

  4. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary energyDistrict ofFlorida"

  5. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary energyDistrict

  6. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary energyDistrictHawaii"

  7. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","Primary

  8. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","PrimaryIndiana"

  9. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut" ,"Plant","PrimaryIndiana"Iowa"

  10. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"

  11. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky" ,"Plant","Primary energy

  12. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky" ,"Plant","Primary

  13. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky" ,"Plant","PrimaryMinnesota"

  14. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky"

  15. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky"Carolina" ,"Plant","Primary

  16. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky"Carolina"

  17. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky"Carolina"Tennessee"

  18. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict ofOregon"Connecticut"Kentucky"Carolina"Tennessee"Wisconsin"

  19. Economic Dispatch of Electric Generation Capacity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction system is most economical

  20. Solar Photovoltaic Capacity F t P f d P li

    E-Print Network [OSTI]

    6/19/2013 1 Solar Photovoltaic ≠ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

  1. Construction of fractal nanostructures based on Kepler-Shubnikov nets

    SciTech Connect (OSTI)

    Ivanov, V. V., E-mail: valtalanov@mail.ru; Talanov, V. M. [South Russian State Technical University (Russian Federation)

    2013-05-15T23:59:59.000Z

    A system of information codes for deterministic fractal lattices and sets of multifractal curves is proposed. An iterative modular design was used to obtain a series of deterministic fractal lattices with generators in the form of fragments of 2D structures and a series of multifractal curves (based on some Kepler-Shubnikov nets) having Cantor set properties. The main characteristics of fractal structures and their lacunar spectra are determined. A hierarchical principle is formulated for modules of regular fractal structures.

  2. Market Design for Generation Adequacy: Healing Causes rather than Symptoms

    E-Print Network [OSTI]

    Roques, Fabien A

    for charging offpeak consumers with capacity costs by relating it to the reliability design criterion employed in planning for the capacity expansion of the power system, e.g. the loss of load probability (LOLP). Under optimal capacity planning the marginal... of the generating units, which represents a measure of the contribution of each generating unit to the reliability of the power system (Batlle et al., 2007). Frequent conflicts have arisen because of the rules of definition of firm capacity of hydro plants...

  3. Long Island Power Authority- Net Metering

    Broader source: Energy.gov [DOE]

    : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm...

  4. AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN

    E-Print Network [OSTI]

    NOTES AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN GULF SHRIMP FISHING VESSELS1 The major capital to the Gulf shrimp fishery. The purpose of this study is to estimate an econometric model of annual real net

  5. City of St. George- Net Metering

    Broader source: Energy.gov [DOE]

    The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The...

  6. RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS

    E-Print Network [OSTI]

    RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS With Revisions distributed photovoltaic (PV) installations in the Report is unclear and perhaps misleading. At the direction-generation is required. The CEC forecast assumed that 1,082 GWh will be self-generated by consumers from new PV

  7. Current Experience With Net Metering Programs Yih-huei Wan, NREL

    E-Print Network [OSTI]

    their consumption or install energy storage devices to maximize the value of their generation. The generating facility may be sized to match long-term energy consumption. On the other hand, customers with net purchase Boulevard Golden, Colorado, 80401-3393 USA PRESENTED AT WINDPOWER '98 Bakersfield, CA USA April 27 - May 1

  8. Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost

    E-Print Network [OSTI]

    1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

  9. Using WordNet to Extend FrameNet Coverage Richard Johansson and Pierre Nugues

    E-Print Network [OSTI]

    Nugues, Pierre

    Using WordNet to Extend FrameNet Coverage Richard Johansson and Pierre Nugues Department to address the prob- lem of sparsity in the FrameNet lexical database. The first method is based on the idea using a WordNet- based variant of the Lesk metric. The sec- ond method uses the sequence of synsets

  10. .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft¬ģ .NET technologies DePaul University's .NET Developer Program is designed to provide programmers with an intensive and comprehensive introduction to all essential aspects of the technologies, techniques and principles of Microsoft .NET

  11. Algebraic Higher-Order Nets: Graphs and Petri Nets as Tokens

    E-Print Network [OSTI]

    Mossakowski, Till - Deutschen Forschungszentrum f√ľr K√ľnstliche Intelligenz & Fachbereich 3

    Algebraic Higher-Order Nets: Graphs and Petri Nets as Tokens Kathrin Hoffmann1 and Till Mossakowski 2 BISS, Department of Computer Science University of Bremen Abstract. Petri nets and Algebraic High-Level Nets are well-known to model parallel and concurrent systems. In this paper, we introduce the concept

  12. Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes?

    E-Print Network [OSTI]

    Alpuente, María

    Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes. E-mail: fjoliver@dsic.upv.es. Abstract.We introduce a class of high level Petri nets, called reconfig- urable nets, that can dynamically modify their own structure by rewrit- ing

  13. Algebraic HigherOrder Nets: Graphs and Petri Nets as Tokens

    E-Print Network [OSTI]

    Mossakowski, Till - Deutschen Forschungszentrum f√ľr K√ľnstliche Intelligenz & Fachbereich 3

    Algebraic Higher­Order Nets: Graphs and Petri Nets as Tokens Kathrin Ho#mann 1 and Till Mossakowski 2 BISS, Department of Computer Science University of Bremen Abstract. Petri nets and Algebraic High­Level Nets are well­known to model parallel and concurrent systems. In this paper, we introduce the concept

  14. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  15. 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2006 NET SYSTEM POWER REPORT COMMISSIONREPORT April 2007 CEC-300 This report provides the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, § 398.1 - 398.5). The report also defines net system power

  16. Representations of Petri net interactions Pawel Sobocinski

    E-Print Network [OSTI]

    Sobocinski, Pawel

    Representations of Petri net interactions Pawel Soboci¬īnski ECS, University of Southampton, UK Abstract. We introduce a novel compositional algebra of Petri nets, as well as a stateful extension In part owing to their intuitive graphical representation, Petri nets [28] are of- ten used both

  17. Generalised Soundness of Workflow Nets is Decidable

    E-Print Network [OSTI]

    Sidorova, Natalia

    Generalised Soundness of Workflow Nets is Decidable Kees van Hee, Natalia Sidorova, and Marc investigate the decidability of the problem of generalised soundness for Workflow nets: ``Every marking with considering simple correctness criteria for Workflow nets and reduce them to the check of structural

  18. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NET SYSTEM POWER: A SMALL SHARE OF CALIFORNIA'S POWER MIX IN 2005 the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, ß 398.1 - 398.5). The report also defines net system power and explains how

  19. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  20. EXTENDED SIMPLE COLORED PETRI NETS: A TOOL FOR PLANT SIMULATION

    E-Print Network [OSTI]

    Coglio, Alessandro

    EXTENDED SIMPLE COLORED PETRI NETS: A TOOL FOR PLANT SIMULATION Antonio Camurri and Alessandro, I­16145 Genova, Italy {music, tokamak}@dist.unige.it ABSTRACT Extended Simple Colored Petri Nets (ESCP­nets) are a new class of High­level Petri Nets conceived as a good trade­off between Petri Nets (P­nets

  1. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10T23:59:59.000Z

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  2. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  3. FY 2002 Generation Audited Accumulated Net Revenues, February 10, 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIA - Request1 02/10/03 February

  4. FY 2003 Generation Audited Accumlated Net Revenues, March 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIA - Request1 02/10/03

  5. DIAGNOSING, BENCHMARKING AND TRANSFORMING THE LEED CERTIFIED FIU SIPA BUILDING INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB)

    E-Print Network [OSTI]

    Pala, Nezih

    INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB) Thomas Spiegelhalter Florida International University-neutral or Net-Zero-Energy buildings until 2030. (1) The topic of Net-Zero-Energy-Buildings (Net-ZEBs) has the performance with passive and active strategies towards a Net-Zero-Energy Building. (Fig. 1, 2) 1.1 SIPA

  6. Capacity Withholding in Restructured Wholesale Power Markets: An Agent-Based Test Bed Study

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Capacity Withholding in Restructured Wholesale Power Markets: An Agent-Based Test Bed Study test case imple- mented via the AMES Wholesale Power Market Test Bed to investigate strategic capacity withholding by generation compa- nies (GenCos) in restructured wholesale power markets under systematically

  7. Kampung Capacity Local Solutions for

    E-Print Network [OSTI]

    Kammen, Daniel M.

    utility customers. Using a hybrid energy resource optimization framework, we explore optimal configurationKampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak Energy Laboratory (RAEL) & Energy and Resources Group and Goldman School of Public Policy Release Date

  8. Data aggregation for capacity management

    E-Print Network [OSTI]

    Lee, Yong Woo

    2004-09-30T23:59:59.000Z

    This thesis presents a methodology for data aggregation for capacity management. It is assumed that there are a very large number of products manufactured in a company and that every product is stored in the database with its standard unit per hour...

  9. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01T23:59:59.000Z

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  10. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  11. The origin of net electric currents in solar active regions

    E-Print Network [OSTI]

    Dalmasse, K; Dťmoulin, P; Kliem, B; TŲrŲk, T; Pariat, E

    2015-01-01T23:59:59.000Z

    There is a recurring question in solar physics about whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Another source of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net vs. neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both {\\it direct} and {\\it return} currents, (2) induce very weak compression currents - not observed in 2.5D - in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current...

  12. (In press). In D. Buckingham (Ed.), Identity. MacArthur Series on Digital Media and Learning. Questioning The Generational Divide

    E-Print Network [OSTI]

    Herring, Susan

    (In press). In D. Buckingham (Ed.), Identity. MacArthur Series on Digital Media and Learning there is little doubt that young people will determine the future of digital media, if only by virtue of growing the "Net Generation," "NetGen," "Generation i," the "Digital Generation," or the "Millenials") socializes

  13. Want to Put an End to Capacity Markets? Think Real-Time Pricing

    SciTech Connect (OSTI)

    Reeder, Mark

    2006-07-15T23:59:59.000Z

    The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

  14. A microfabricated ElectroQuasiStatic induction turbine-generator

    E-Print Network [OSTI]

    Steyn, J. Lodewyk (Jasper Lodewyk), 1976-

    2005-01-01T23:59:59.000Z

    An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self ...

  15. , Analysis of U.S. Net Metering and Interconnection Policy

    SciTech Connect (OSTI)

    Haynes, Rusty; Cook, Chris

    2006-07-01T23:59:59.000Z

    Historically, the absence of interconnection standards has been one of the primary barriers to the deployment of distributed generation (DG) in the United States. Although significant progress in the development of interconnection standards was achieved at both the federal and state levels in 2005, interconnection policy and net-metering policy continue to confound regulators, lawmakers, DG businesses, clean-energy advocates and consumers. For this reason it is critical to keep track of developments related to these issues. The North Carolina Solar Center (NCSC) is home to two Interstate Renewable Energy Council (IREC) projects -- the National Interconnection Project and the Database of State Incentives for Renewable Energy (DSIRE). This paper will present the major federal and state level policy developments in interconnection and net metering in 2005 and early 2006. It will also present conclusions based an analysis of data collected by these two projects.

  16. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  17. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at customer sites to address peak load. 2 Using these resources could reduce required installed capacity and would increase the operating reserve margins for the network,...

  18. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26T23:59:59.000Z

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  19. Working and Net Available Shell Storage Capacity as of September 30, 2010

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicle

  20. Working and Net Available Shell Storage Capacity as of September 30, 2010

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gasand

  1. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

    2007-10-30T23:59:59.000Z

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  2. StreamNet, 1999-2000 Annual Report.

    SciTech Connect (OSTI)

    Schmidt, Bruce; Roger, Phil; Butterfield, Bart (Pacific States Marine Fisheries Commission, Gladstone, OR)

    2001-09-01T23:59:59.000Z

    The StreamNet Project is a cooperative project that provides basic fishery management data in a consistent format across the Columbia Basin region, with some data from outside the region. Specific categories of data are acquired from the multiple data generating agencies in the Columbia Basin, converted into a standardized data exchange format (DEF) and distributed to fish researchers, managers and decision makers directly or through an on-line data retrieval system (www.streamnet.org). The project is funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. This cooperative effort is composed of a region-wide project administered by the Pacific States Marine Fisheries Commission (PSMFC) that is responsible for project management, regional data management and data delivery (Region), plus seven contributing projects within the data generating entities: Columbia River Intertribal Fish Commission (CRITFC); Idaho Department of Fish and Game (IDFG); Montana Fish, Wildlife and Parks (MFWP); Oregon Department of Fish and Wildlife (ODFW); Shoshone-Bannock Tribes; U. S. Fish and Wildlife Service (FWS); and Washington Department of Fish and Wildlife (WDFW). The contributing projects are funded through the StreamNet contract but work within their respective agencies and are referred to here as the agency's StreamNet project (for example, ''IDFG StreamNet'' for Idaho's project). The StreamNet Project provides an important link in the chain of data flow in the Columbia Basin, with specific emphasis on data collected routinely over time by management agencies. Basic fish related data are collected in the field by the various state, tribal and federal agencies in the basin for purposes related to each agency's individual mission and responsibility. As a result, there often is a lack of standardization among agencies in field methodology or data management. To be able to utilize data for comparison or analysis over the entire basin from multiple agencies, it is necessary to standardize the data to the degree possible so that like-data are equivalent over jurisdictional lines. Since the data are not collected in a standardized way, StreamNet fulfills that role by acquiring the data sets and converting the data from all agencies into the standardized DEF. Where field methodologies differ to the degree that the data can not be made comparable, the data are presented as different data types. This way, data are converted only once and made available for research, management and administrative purposes instead of forcing each person needing basin wide data to attempt data standardization individually.

  3. CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS

    E-Print Network [OSTI]

    upon privately owned rights. This report has not been approved or disapproved by the California Energy eliminate the need for new peaking generation capacity and associated transmission and distribution capacity" authority as a way to achieve higher levels of cost-effective DR. The California Energy Action Plan II (EAP

  4. CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS

    E-Print Network [OSTI]

    upon privately owned rights. This report has not been approved or disapproved by the California Energy the need for new peaking generation capacity and associated transmission and distribution capacity's "load management" authority as a way to achieve higher levels of costeffective demand response

  5. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W. [Brookhaven National Lab., Upton, NY (United States); Bright, R.N. [Anylec Research, Inc., Bayport, NY (United States)

    1996-03-01T23:59:59.000Z

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  6. City of Danville- Net Metering

    Broader source: Energy.gov [DOE]

    A customer may begin operation of their renewable energy generator once the conditions of interconnection have been met. These include:

  7. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01T23:59:59.000Z

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  8. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  9. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  10. Zero-Safe Nets: Modeling Transactions via Transition Synchronization

    E-Print Network [OSTI]

    Bruni, Roberto

    Zero-Safe Nets: Modeling Transactions via Transition Synchronization Roberto Bruni and Ugo of the same zero-safe net. Zero-safe nets (ZS nets) have been introduced in [BM97] to provide a basic called stable places), ZS nets include a set of zero places. These are idealized resources that remain in

  11. Presented by SensorNet: The New Science of

    E-Print Network [OSTI]

    .S. Department of Energy DeNap_SensorNet_SC10 SensorNet Collection Processing DisseminationSecurity Knowledge requirements Regulations Technology Intelligent Real world #12;3 Managed by UT-Battelle for the U.S. Department of Energy DeNap_SensorNet_SC10 SensorNet SensorNet is ORNL's research in sensor network interoperability

  12. Partial Order Semantics of Types of Nets Robert Lorenz1

    E-Print Network [OSTI]

    Desel, Jörg

    Partial Order Semantics of Types of Nets Robert Lorenz1 , Gabriel Juh¬īas2 , and Sebastian Mauser3 1 of types of nets. Types of nets are a parametric definition of Petri nets originally developed for a general presentation of the synthesis of Petri nets from (step) transition systems. Partial order

  13. Structural and Dynamic Changes in Concurrent Systems: Reconfigurable Petri Nets

    E-Print Network [OSTI]

    Alpuente, María

    Structural and Dynamic Changes in Concurrent Systems: Reconfigurable Petri Nets Marisa Llorens subject to dynamic changes using extensions of Petri nets. We begin by introducing the notion of net rewriting system. In a net rewriting system, a system configuration is described as a Petri net and a change

  14. Executability of Scenarios in Petri Nets Robert Lorenz

    E-Print Network [OSTI]

    Desel, Jörg

    Executability of Scenarios in Petri Nets Robert Lorenz Lehrstuhl f¨ur Angewandte Informatik whether a scenario is an execution of a Petri net. This holds for a wide variety of Petri net classes, ranging from elementary nets to general inhibitor nets. Scenarios are given by causal structures

  15. Capacity expansion in contemporary telecommunication networks

    E-Print Network [OSTI]

    Sivaraman, Raghavendran

    2007-01-01T23:59:59.000Z

    We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

  16. Neural substrates of cognitive capacity limitations

    E-Print Network [OSTI]

    Buschman, Tim

    Cognition has a severely limited capacity: Adult humans can retain only about four items ďin mindĒ. This limitation is fundamental to human brain function: Individual capacity is highly correlated with intelligence measures ...

  17. FURTHER EXPERIMENTS IN FISHWAY CAPACITY, 1957

    E-Print Network [OSTI]

    capacity trials 7 Maximum entry and exit 7 Entry capacity 8 Maximum number of fish present in the fishway 8 on 16 and a mean depth of 6. 3 feet. Maximum observed entry and exit of salmonids are discussed

  18. EHS-Net Hand Hygiene Study EHS-Net Hand Hygiene Study Protocol

    E-Print Network [OSTI]

    EHS-Net Hand Hygiene Study 1 EHS-Net Hand Hygiene Study Protocol I. Project Overview Title EHS-Net Hand Hygiene Study Protocol Summary Good hand hygiene is of critical importance in preventing of personal hygiene policies and practices in food service establishments. The purpose of this study

  19. Voluntary Initiative: Partnering to Enhance Program Capacity...

    Energy Savers [EERE]

    to Enhance Program Capacity Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program...

  20. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    SciTech Connect (OSTI)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01T23:59:59.000Z

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

  1. Modeling of leachate generation in municipal solid waste landfills

    E-Print Network [OSTI]

    Beck, James Bryan

    1994-01-01T23:59:59.000Z

    and the inclusion of compaction effects and leachate generation and movement effects by Mehevec (1994) should provide the user with a tool for estimating leachate generation values and landfill capacity figures for a variety of initial design and operational...

  2. Can Science and Technology Capacity be Measured?

    E-Print Network [OSTI]

    Wagner, Caroline S; Dutta, Arindum

    2015-01-01T23:59:59.000Z

    The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

  3. Net alkalinity and net acidity 2: Practical considerations Carl S. Kirby a,*, Charles A. Cravotta III b,1

    E-Print Network [OSTI]

    Kirby, Carl S.

    Net alkalinity and net acidity 2: Practical considerations Carl S. Kirby a,*, Charles A. Cravotta of the sample. The Hot Acidity directly measures net acidity (=√?net alkalinity). Samples that had near-neutral p in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity

  4. Net Benefits to Agriculture from the Trinity River Project, Texas

    E-Print Network [OSTI]

    Fish, B.; Williford, G.; Elling, H.; Lacewell, R. D.; Hosch, P.; Griffin, W.; Reddell, D. L.; Hiler, E. A.; Bausch, W.

    by applying published seasonal flood damage factors and flood frequency as developed from a producer survey to annual gross returns. Annual net benefits were calculated as net returns with flood protection less net returns without flood protection...

  5. New constraints on Northern Hemisphere growing season net flux

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

  6. A .NET ASSEMBLY FOR EPICS SIMPLE CHANNEL ACCESS

    E-Print Network [OSTI]

    Timossi, Christopher A.

    2009-01-01T23:59:59.000Z

    Application Development Using .NETĒ, PCAPAC [5] H. NishimuraA .NET ASSEMBLY FOR EPICS SIMPLE CHANNEL ACCESS* C. Timossi,interface software using the .NET platform and the C#

  7. Particle Tracking and Simulation on the .NET Framework

    E-Print Network [OSTI]

    Nishimura, Hiroshi; Scarvie, Tom

    2006-01-01T23:59:59.000Z

    can use IronPython[10] to access .NET assemblies directly atTRACKING AND SIMULATION ON THE .NET FRAMEWORK * H. Nishimurathe effectiveness of the .NET framework by converting a C++

  8. EPICS SCA CLIENTS ON THE .NET X64 PLATFORM

    E-Print Network [OSTI]

    Timossi, Chris; Nishimura, Hiroshi

    2006-01-01T23:59:59.000Z

    EPICS SCA CLIENTS ON THE .NET X64 PLATFORM* C. Timossi 1 andAbstract We have developed a .NET assembly, which we callCa.dll) are categorized by .NET as unmanaged because they

  9. Supported by GreenNet-EU27

    E-Print Network [OSTI]

    Figueiredo Integration costs of wind due to changed system operation and investment decisions in GermanySupported by GreenNet-EU27 EIE/04/049/S07.38561 GreenNet-EU27 GUIDING A LEAST COST GRID INTEGRATION cost and grid extension cost caused by intermittent RES-E grid integration Derk Jan Swider (Ed

  10. THalumni.net Trinity Hall's online community

    E-Print Network [OSTI]

    Lasenby, Joan

    THalumni.net Trinity Hall's online community Joining THalumni.net allows members to: ∑ Check or location and send a private message to other Trinity Hall members. ∑ Join the careers directory if you or loca- tion and send Trinity Hall members a private message. ∑ Book and pay for events online and see

  11. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis P August 2002 Abstract A complete capacity fade analysis was carried out for Sony 18650 cells cycled the other losses. # 2002 Elsevier Science B.V. All rights reserved. Keywords: Capacity fade; Sony 18650

  13. Biogeosciences, 4, 597612, 2007 www.biogeosciences.net/4/597/2007/

    E-Print Network [OSTI]

    Boyer, Edmond

    of 6.1 TgC yr-1. Carbon sequestration was predominantly on public forestland, where the harvest rate (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous≠2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon

  14. Net Zero Design Yields Positive Results "Net zero" is used to describe a building designed to provide as

    E-Print Network [OSTI]

    Waliser, Duane E.

    Net Zero Design Yields Positive Results "Net zero" is used to describe a building designed federal buildings in the planning process as of 2020 or later must be designed to meet net zero standards

  15. Energy Department Helps University of California Develop Net...

    Energy Savers [EERE]

    Energy Transition Initiative Energy Department Helps University of California Develop Net-Zero Campus Energy Department Helps University of California Develop Net-Zero Campus...

  16. Best Practices for Controlling Capital Costs in Net Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy...

  17. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  18. Net Zero Waste - Tools and Technical Support ...and other observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Waste - Tools and Technical Support ...and other observations Net Zero Waste - Tools and Technical Support ...and other observations Presentation at Waste-to-Energy using...

  19. NREL: Continuum Magazine - Net-Zero Building Technologies Create...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Net-Zero Building Technologies Create Substantial Energy Savings Issue 6 Print Version Share this resource Net-Zero Building Technologies Create Substantial Energy Savings...

  20. Aspinall Courthouse: GSA's Historic Preservation and Net-Zero...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's...

  1. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy...

  2. U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary...

    Broader source: Energy.gov (indexed) [DOE]

    4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands,...

  3. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  4. assessing bed net: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Net Environmental Benefit Analysis: A New Assessment Methodology R. A. Efroymson 4 Assessing Debris Flow Hazard by Credal Nets A. Antonucci1 Computer Technologies and...

  5. Determining the Capacity Value of Wind: A Survey of Methods and Implementation; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Porter, K.

    2005-05-01T23:59:59.000Z

    This paper focuses on methodologies for determining the capacity value of generating resources, including wind energy and summarizes several important state and regional studies. Regional transmission organizations, state utility regulatory commissions, the North American Electric Reliability Council, regional reliability councils, and increasingly, the Federal Energy Regulatory Commission all advocate, call for, or in some instances, require that electric utilities and competitive power suppliers not only have enough generating capacity to meet customer demand but also have generating capacity in reserve in case customer demand is higher than expected, or if a generator or transmission line goes out of service. Although the basic concept is the same across the country, how it is implemented is strikingly different from region to region. Related to this question is whether wind energy qualifies as a capacity resource. Wind's variability makes this a matter of great debate in some regions. However, many regions accept that wind energy has some capacity value, albeit at a lower value than other energy technologies. Recently, studies have been published in California, Minnesota and New York that document that wind energy has some capacity value. These studies join other initiatives in PJM, Colorado, and in other states and regions.

  6. Bull. U. 5. F. C.1892. Fykc Nets. (To face page 299.) PLATELXXII. &-THE FYKE NETS AND FYKE-NET FISHERIES OF THE UNITED STATES,

    E-Print Network [OSTI]

    Bull. U. 5. F. C.1892. Fykc Nets. (To face page 299.) PLATELXXII. ti P W n W a Y .- W Y >LL a 0 0: n W Y tLL Y 0 0 n m #12;&-THE FYKE NETS AND FYKE-NET FISHERIES OF THE UNITED STATES, WITH NOTES ON THE FYKE NETS OF OTHER COUNTRIES. BY HUGH M. SMITH, M. D. DEFINITION OF THE FYKE NET. The inquirer who goes

  7. 2/1/2014 Miniature Windmill generating wind energy-wordlessTech http://wordlesstech.com/2014/01/14/miniature-windmill-generating-wind-energy/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    and affordable Better rates. Better service. Better Planet! 1Like ShareShareShareMore Wind Generator Motor comparestores.net Find Lowest Prices of August 2014. Home Wind Generators Up to 55% Off Follow us Search

  8. PV/cogeneration hybrid system nets large contract

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    Alpha Solarco Inc. announced on May 18, 1987 the signing of two $175 million exclusive development contracts with the Pawnee and Otoe-Missouria Tribes of Oklahoma to build two 70,000-kilowatt photovoltaic electric generating stations on Tribal lands in Oklahoma to supply Indian and other requirements. The projects, to be built in four phases, will each consists of 35,000 kilowatts of photovoltaic generating capacity to be supplied by the company's proprietary Modular Solar-Electric Photovoltaic Generator (MSEPG), and 35,000 kilowatts of gas-fired cogeneration. Alpha Solarco is starting to build and finance itself a 500-kilowatt demonstration plant as the initial step in the first project. This plant will be used to demonstrate that proven MSEPG design and technology can be integrated in electric utility systems, either as a base-load generator for small utilities, or as a peak-shaving device for large ones.

  9. Simulating net particle production and chiral magnetic current in a CP-odd domain

    E-Print Network [OSTI]

    Fukushima, Kenji

    2015-01-01T23:59:59.000Z

    We elucidate the numerical formulation to simulate net production of particles and anomalous currents with CP-breaking background fields which cause an imbalance of particles over anti-particles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to observe that the dynamical chiral magnetic current follows together with the net particle production. The produced particle density is quantitatively consistent with the axial anomaly, while the chiral magnetic current is suppressed by a delay before the the onset of the current generation.

  10. High-Level Nets with Nets and Rules as Tokens Kathrin Ho mann 1 , Hartmut Ehrig 1 , and Till Mossakowski 2

    E-Print Network [OSTI]

    Mossakowski, Till - Deutschen Forschungszentrum f√ľr K√ľnstliche Intelligenz & Fachbereich 3

    High-Level Nets with Nets and Rules as Tokens Kathrin Ho#11;mann 1 , Hartmut Ehrig 1 , and Till-Level net models following the paradigm \

  11. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30T23:59:59.000Z

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  12. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  13. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

  14. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  15. Quantum Capacities of Channels with small Environment

    E-Print Network [OSTI]

    Michael M. Wolf; David Perez-Garcia

    2006-07-11T23:59:59.000Z

    We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

  16. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01T23:59:59.000Z

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  17. Mid-Course Review: NetCDF in the Current

    E-Print Network [OSTI]

    architecture Improved performance Generic tools NetCDF-4 adoption Standards endorsements Gridspec APICDF/libcf, netCDF-Java, CDM, TDS, NcML, CF conventions Adopt, develop, and promote open standards, conventions for observational data Improve compatibility between netCDF APIs and OPeNDAP protocols Improve netCDF performance

  18. NON-DOUBLE-COUPLE EARTHQUAKES: NET FORCES AND UNCERTAINTIES

    E-Print Network [OSTI]

    Foulger, G. R.

    NON-DOUBLE-COUPLE EARTHQUAKES: NET FORCES AND UNCERTAINTIES G.R. Foulger, B.R. Julian University-980) to include net forces in the mechanisms. Net forces are theoretically required to describe earthquakes) waves cannot resolve sources such as vertical dipoles. When source mechanisms include net forces, even

  19. A Theory of Operational Equivalence for Interaction Nets

    E-Print Network [OSTI]

    Fern√°ndez, Maribel

    A Theory of Operational Equivalence for Interaction Nets Maribel Fern‚??andez 1 and Ian Mackie 2 1. In this paper we apply these (now standard) techniques to interactions nets, a graphical programming language in interaction nets since it can be applied to untyped systems, thus all systems of interaction nets are captured

  20. Rewriting Logic as a Unifying Framework for Petri Nets

    E-Print Network [OSTI]

    Meseguer, José

    Rewriting Logic as a Unifying Framework for Petri Nets Mark-Oliver Stehr, Jos#19;e Meseguer as a unifying framework for a wide range of Petri nets models. We treat in detail place/transition nets that \\Petri nets are monoids" suggested by Meseguer and Montanari we de#12;ne a rewriting semantics that maps

  1. Putting high-level Petri nets to work in industry

    E-Print Network [OSTI]

    van der Aalst, Wil

    Putting high-level Petri nets to work in industry W.M.P. van der Aalst Department of Mathematics Petri nets exist for over 30 years. Especially in the last decade Petri nets have been put into practice extensively. Thanks to several useful ex- tensions and the availability of computer tools, Petri nets have

  2. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energ...

  3. SIXTH FRAMEWORK PROGRAMME PRIORITY "ERA-NET"

    E-Print Network [OSTI]

    Co-ordination Action to Establish a Hydrogen and Fuel Cell ERA-Net, Hydrogen Co- ordination Work.....................................................................34 4.5 Hydrogen conversion ­ Fuel cells......................................................................36 4.6 Application of hydrogen and fuel cell technology

  4. Definition of a 'Zero Net Energy' Community

    SciTech Connect (OSTI)

    Carlisle, N.; Van Geet, O.; Pless, S.

    2009-11-01T23:59:59.000Z

    This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

  5. Microsoft Word - Net Requirements Transparency Process_09302014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 As part of its Net Requirements Transparency process, on July 31, 2014 BPA published the SliceBlock and Block customers' FY2013 and forecast FY2015 Total Retail Load (TRL) and...

  6. City of New Orleans- Net Metering

    Broader source: Energy.gov [DOE]

    In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules...

  7. Freeze-out conditions from net-proton and net-charge fluctuations at RHIC

    E-Print Network [OSTI]

    Paolo Alba; Wanda Alberico; Rene Bellwied; Marcus Bluhm; Valentina Mantovani Sarti; Marlene Nahrgang; Claudia Ratti

    2014-07-21T23:59:59.000Z

    We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.

  8. Nebraska Nuclear Profile - Cooper

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooper" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. Missouri Nuclear Profile - Callaway

    U.S. Energy Information Administration (EIA) Indexed Site

    Callaway" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Louisiana Nuclear Profile - Waterford 3

    U.S. Energy Information Administration (EIA) Indexed Site

    Waterford 3" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  11. Michigan Nuclear Profile - Fermi

    U.S. Energy Information Administration (EIA) Indexed Site

    Fermi" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. New Hampshire Nuclear Profile - Seabrook

    U.S. Energy Information Administration (EIA) Indexed Site

    Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Michigan Nuclear Profile - Donald C Cook

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald C Cook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  17. Virginia Nuclear Profile - North Anna

    U.S. Energy Information Administration (EIA) Indexed Site

    North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  18. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  19. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. California Nuclear Profile - Diablo Canyon

    U.S. Energy Information Administration (EIA) Indexed Site

    Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. Tennessee Nuclear Profile - Sequoyah

    U.S. Energy Information Administration (EIA) Indexed Site

    Sequoyah" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  3. Pennsylvania Nuclear Profile - PPL Susquehanna

    U.S. Energy Information Administration (EIA) Indexed Site

    PPL Susquehanna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Florida Nuclear Profile - St Lucie

    U.S. Energy Information Administration (EIA) Indexed Site

    St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Pennsylvania Nuclear Profile - Limerick

    U.S. Energy Information Administration (EIA) Indexed Site

    Limerick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. South Carolina Nuclear Profile - Catawba

    U.S. Energy Information Administration (EIA) Indexed Site

    Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Virginia Nuclear Profile - Surry

    U.S. Energy Information Administration (EIA) Indexed Site

    Surry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Iowa Nuclear Profile - Duane Arnold Energy Center

    U.S. Energy Information Administration (EIA) Indexed Site

    Duane Arnold Energy Center" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  9. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  12. Arizona Nuclear Profile - Palo Verde

    U.S. Energy Information Administration (EIA) Indexed Site

    Palo Verde" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. South Carolina Nuclear Profile - H B Robinson

    U.S. Energy Information Administration (EIA) Indexed Site

    H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  14. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Ohio Nuclear Profile - Davis Besse

    U.S. Energy Information Administration (EIA) Indexed Site

    Davis Besse" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  17. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  18. Minnesota Nuclear Profile - Prairie Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  19. North Carolina Nuclear Profile - Brunswick

    U.S. Energy Information Administration (EIA) Indexed Site

    Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. New Jersey Nuclear Profile - Oyster Creek

    U.S. Energy Information Administration (EIA) Indexed Site

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  2. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  3. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. North Carolina Nuclear Profile - Harris

    U.S. Energy Information Administration (EIA) Indexed Site

    Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Pennsylvania Nuclear Profile - Three Mile Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. North Carolina Nuclear Profile - McGuire

    U.S. Energy Information Administration (EIA) Indexed Site

    McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. New York Nuclear Profile - James A Fitzpatrick

    U.S. Energy Information Administration (EIA) Indexed Site

    James A Fitzpatrick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. South Carolina Nuclear Profile - V C Summer

    U.S. Energy Information Administration (EIA) Indexed Site

    V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  11. Ohio Nuclear Profile - Perry

    U.S. Energy Information Administration (EIA) Indexed Site

    Perry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Georgia Nuclear Profile - Edwin I Hatch

    U.S. Energy Information Administration (EIA) Indexed Site

    Edwin I Hatch" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Pennsylvania Nuclear Profile - Peach Bottom

    U.S. Energy Information Administration (EIA) Indexed Site

    Peach Bottom" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. Michigan Nuclear Profile - Palisades

    U.S. Energy Information Administration (EIA) Indexed Site

    Palisades" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01T23:59:59.000Z

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  16. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05T23:59:59.000Z

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  17. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  18. .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft¬ģ .NET technologies DePaul University's .NET Web Developer Program is designed to provide, techniques and principles of Microsoft .NET. The program stresses an understanding of the relevant

  19. Mitochondrial Respiratory Capacity Is a Critical Regulator

    E-Print Network [OSTI]

    respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response. In response to antigen (Ag) and costimulation, CD8+ T cells undergo a developmental program characterized- ating in response to Ag, it is thought that quiescent T cells (e.g., naive and memory T cells), like

  20. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30T23:59:59.000Z

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  1. Meta-analysis of net energy return for wind power systems Ida Kubiszewski a,*, Cutler J. Cleveland b

    E-Print Network [OSTI]

    Vermont, University of

    . Global installed annual wind capacity grew by more than 31 percent from 1997 to 2007 as seen in the global annual installed wind power capacity graph created by the Global Wind Energy Council (Fig. 1 the impressive growth, wind energy still accounts for a small fraction of total installed power generation

  2. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26T23:59:59.000Z

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  3. Property:PotentialHydropowerCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump to:

  4. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation, search

  5. Property:PotentialOnshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump

  6. Property:Project Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, search Property NameInstalled Capacity

  7. Capacity Decay Mechanism of Microporous Separator?Based All?Vanadium Redox Flow Batteries and its Recovery

    SciTech Connect (OSTI)

    Li, Bin; Luo, Qingtao; Wei, Xiaoliang; Nie, Zimin; Thomsen, Edwin C.; Chen, Baowei; Sprenkle, Vincent L.; Wang, Wei

    2014-02-01T23:59:59.000Z

    For all vanadium redox flow batteries (VRBs) with porous separators as membranes, convection effect is found to play a dominant role in the capacity decay of the cells over cycling by investigating the relationship between electrical performances and electrolyte compositions at both positive and negative sides. Although the concentration of total vanadium ions hardly changes at both sides over cycling, the net transfer of solutions from one side to another and thus asymmetrical valance of vanadium ions at both sides lead to the capacity fading and lower energy efficiency, which is confirmed to result from the hydraulic pressure differential at both sides of separators. In this paper, the hydraulic pressures of solutions at both sides can be in-situ monitored, and regulated by varying the gas pressures in electrolyte tanks. It is found that the capacity can be stabilized and the net transfer of solutions can be prevented by slightly tailoring the hydraulic pressure differential at both sides of separators, which, however, doesnít work for Nafion membranes, suggesting the negligible convection factor in flow cells using Nafion membranes. Therefore, the possibility of porous separators allows long-term running for VRBs without capacity loss, highlighting a new pathway to develop membranes used in VRBs.

  8. NetCDF-4: Combining the Strengths of NetCDF and HDF5

    E-Print Network [OSTI]

    and simplicity of netCDF ≠ Generality and performance of HDF5 ∑ Preserve format and API compatibility for net Standardization ∑ DOD Joint Technical Architecture "Emerging" standard for Application Specific Data Interchange;Community Standards Based on HDF5 ∑ HDF-EOS5 ∑ DOE Defense Labs libsheaf (meshes) ∑ Nexus (neutron

  9. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01T23:59:59.000Z

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  10. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect (OSTI)

    Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

    1997-11-01T23:59:59.000Z

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  11. NMAC 17.9.569 Interconnection of Generating Facilities with a...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 17.9.569 Interconnection of Generating Facilities with a Rated Capacity Greater than 10 MWLegal...

  12. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17T23:59:59.000Z

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  13. Feedback Capacity of the Compound Channel

    E-Print Network [OSTI]

    Shrader, Brooke E.

    In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

  14. Inventories and capacity utilization in general equilibrium

    E-Print Network [OSTI]

    Trupkin, Danilo Rogelio

    2009-05-15T23:59:59.000Z

    The primary goal of this dissertation is to gain a better understanding, in thecontext of a dynamic stochastic general equilibrium framework, of the role of inventories and capacity utilization (of both capital and labor) and, in particular...

  15. Expandability, reversibility, and optimal capacity choice

    E-Print Network [OSTI]

    Dixit, Avinash K.

    1997-01-01T23:59:59.000Z

    We develop continuous-time models of capacity choice when demand fluctuates stochastically, and the firm's opportunities to expand or contract are limited. Specifically, we consider costs of investing or disinvesting that ...

  16. Developing High Capacity, Long Life Anodes

    Broader source: Energy.gov (indexed) [DOE]

    more than 1000 mAhg with poor cyleability. * The formation of Sn x Co y C z and MO composite could lead to the increase in the capacity, reduce the amount of cobalt in the...

  17. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

  18. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  19. Chapter 17: Estimating Net Savings: Common Practices

    SciTech Connect (OSTI)

    Violette, D. M.; Rathbun, P.

    2014-09-01T23:59:59.000Z

    This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM&V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to particular program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings, but does not prescribe particular methods.

  20. Net-Baryon Physics: Basic Mechanisms

    E-Print Network [OSTI]

    J. Alvarez-Muniz; R. Conceicao; J. Dias de Deus; M. C. Espirito Santo; J. G. Milhano; M. Pimenta

    2007-11-12T23:59:59.000Z

    It is well known that, in nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As the baryon number is conserved, the net-baryon $B-\\bar{B}$ retains information on the energy-momentum carried by the incoming nuclei. A simple but consistent model for net-baryon production in high energy hadron-hadron, hadron-nucleus and nucleus-nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with both data and existing models. These results show that a good description of the main features of net-baryon data is possible on the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.

  1. Conformal nets III: fusion of defects

    E-Print Network [OSTI]

    Arthur Bartels; Christopher L. Douglas; Andrť Henriques

    2015-02-21T23:59:59.000Z

    Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

  2. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  3. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01T23:59:59.000Z

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  4. Building Scale vs. Community Scale Net-Zero Energy Performance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

    2010-06-30T23:59:59.000Z

    Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case Ė a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

  5. Compositional construction and analysis of Petri net systems†

    E-Print Network [OSTI]

    Rojas, Isabel C.

    Most Petri net (PN) based modelling formalisms represent the system modelled as a flat net. This may not clearly reflect the elements that participate in the system and the way they communicate or interact. It can also ...

  6. UMTC Climate Action Plan: Roadmap to Net Zero

    E-Print Network [OSTI]

    Minnesota, University of

    UMTC Climate Action Plan: Roadmap to Net Zero Emissions Co-chairs of UMTC Sustainability Committee changes ∑ Goal: Develop a plan for achieving net zero greenhouse gas emissions #12;UMTC Greenhouse Gas

  7. NetPal: A Dynamic Network Administration Knowledge Base

    E-Print Network [OSTI]

    Milios, Evangelos E.

    NetPal: A Dynamic Network Administration Knowledge Base Ashley George, Adetokunbo Makanju system designed to assist network administra- tors in their troubleshooting tasks, in recall- ing hosting environments, Net- pal summarises network data and and supports retrieval of relevant

  8. Net Zero Energy Military Installations: A Guide to Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Net Zero Energy Military Installations: A Guide to Assessment and Planning Net Zero Energy Military Installations: A Guide to Assessment and Planning In 2008, DoD and DOE defined a...

  9. Zero Net Energy Myths and Modes of Thought

    E-Print Network [OSTI]

    Rajkovich, Nicholas B.

    2010-01-01T23:59:59.000Z

    buildings, see the Zero Energy Buildings Database at http://2009). "Net-Zero Energy Commercial Buildings Initiative."a target of zero net energy (ZNE) in buildings by 2030. One

  10. Fabrication of Carbide-Particle-Reinforced Titanium AluminideMatrix Composites by Laser-Engineered Net Shaping

    E-Print Network [OSTI]

    DuPont, John N.

    -temperature applications in the automotive, aerospace, and power-generation industries.[1] The TiAl-based alloys have-Engineered Net Shaping WEIPING LIU and J.N. DuPONT TiAl-based titanium aluminide alloys and their composites of the Ti-6Al-4V alloy. I. INTRODUCTION TITANIUM aluminide alloys based on TiAl and their com- posites

  11. Broadcast Capacity in Multihop Wireless Networks Alireza Keshavarz-Haddad Vinay Ribeiro Rudolf Riedi

    E-Print Network [OSTI]

    Riedi, Rudolf H.

    Broadcast Capacity in Multihop Wireless Networks Alireza Keshavarz-Haddad Vinay Ribeiro Rudolf of multihop wireless networks which we define as the maximum rate at which broadcast packets can be generated of source nodes or the dimension of the network. 1. INTRODUCTION In wireless networks, broadcast plays

  12. Secret-Key Agreement Capacity over Reciprocal Fading Channels: A Separation Approach

    E-Print Network [OSTI]

    Khisti, Ashish

    1 Secret-Key Agreement Capacity over Reciprocal Fading Channels: A Separation Approach Ashish: akhisti@comm.utoronto.ca Abstract--Fundamental limits of secret-key agreement over reciprocal wireless source generation. The resulting secret-key involves contributions of both channel sequences and source

  13. 36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

  14. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30T23:59:59.000Z

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  15. ,"Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3January3a. JanuaryB

  16. Biomass Power Generation Market - Global & U.S. Industry Analysis...

    Open Energy Info (EERE)

    the country. In terms of both installed capacity and power generation, the direct combustion segment accounted for the major market share in 2013 and is expected to continue to...

  17. Economic Development from New Generation and Transmission in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,937,831 over the age of 16 (Census 2011b). 3 2 Project Scenario This analysis considers potential new wind and natural gas electricity generation capacity in Wyoming as well as...

  18. http://www.revistaecosistemas.net/articulo.asp?Id=724 INVESTIGACIN

    E-Print Network [OSTI]

    Vermont, University of

    Inventarios Forestales (BIOTREE-NET) en Mesoamérica: avances, retos y perspectivas futuras L. Cayuela 1, L

  19. The BLOOMhouse:Zero Net Energy Housing

    E-Print Network [OSTI]

    Garrison, M.; Krepart, R.; Randall, S.; Novoselac, A.

    The 2007 University of Texas Solar Decathlon House is called the BLOOMhouse because it represents the ďseedĒ of new ideas for zero net energy housing. The University of Texas student team developed a prefabricated 7.9 kW stand-alone solar-powered...

  20. Bayes Nets Representation: joint distribution and conditional

    E-Print Network [OSTI]

    Mitchell, Tom

    Bayes Nets Representation: joint distribution and conditional independence Yi Zhang 10-701, Machine joint distribution of BNs Infer C. I. from factored joint distributions D-separation (motivation) 2 structure All about the joint distribution of variables ! Conditional independence assumptions are useful

  1. NET-ZERO ENERGY HIGH PERFORMANCE

    E-Print Network [OSTI]

    Farritor, Shane

    , University of Nebraska­Lincoln · Denise Kuehn, Manager, Demand Side and Sustainable Management, Omaha Public was that the largest potential for enhancing energy supplies in this country is making buildings more efficient. "-- Harvey Perlman, UNL Chancellor #12;Net-Zero Energy, High-Performance Green Buildings | 1 INTRODUCTION

  2. High-capacity hydrogen storage in lithium and sodium amidoboranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

  3. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  4. Is there life in other markets? BPA explores preschedule capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can diminish the federal hydropower system's capacity to balance supply and demand for power. The process allowed BPA to explore an untested capacity market this spring to acquire...

  5. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE...

  6. RULES FOR CONGESTION MANAGEMENT EVALUATION OF AVAILABILITY OF CAPACITY AND

    E-Print Network [OSTI]

    RULES FOR CONGESTION MANAGEMENT EVALUATION OF AVAILABILITY OF CAPACITY AND POSSIBILITIES.............................................................12 4.4 Available trading capacity in the market

  7. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for...

  8. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  9. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  10. Employee-Driven Initiative Increases Treatment Capacity, Reduces...

    Energy Savers [EERE]

    Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands June 30,...

  11. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  12. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01T23:59:59.000Z

    near†zeroĒ†energy†definitions†exist. †† EnEV†Compliant†to†differing†definitions†of†zero† energy,†methods†for†cost†to†the†ďnet†zeroĒ†definitions,†a†range†of†ďlow†energyĒ†or†ď

  13. Net Zero Energy Military Installations: A Guide to

    E-Print Network [OSTI]

    Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John;Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment .......................................................................................................................................1 1 Introduction: Net Zero Energy In DoD Context

  14. ERDCTR-14-2 Army Net Zero Program

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ERDCTR-14-2 Army Net Zero Program Composting Assessment for Organic Solid Waste at Fort Polk/client/default. #12;Army Net Zero Program ERDC TR-14-2 April 2014 Composting Assessment for Organic Solid Waste for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net

  15. Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal;NZERTF Gaithersburg, MD 3 Objectives Demonstrate Net-Zero Energy for a home similar in nature: ∑ Demonstrate Net-Zero Energy Usage ∑ Measure All Building Loads (Sensible and Latent) ∑ Operate Dedicated

  16. Materials and Methods Strain construction, materials, and Net1 mutagenesis

    E-Print Network [OSTI]

    Shou, Wenying

    Materials and Methods Strain construction, materials, and Net1 mutagenesis All strains used and destruction boxes (Clb2C2DK100)HA3 was used in over-expression experiments with Clb2 (1). Net1 mutant constructs were created as previously described (2). Briefly, a wild type NET1-myc9 epitope tagged construct

  17. SELECTIVITY OF TOWED-NET SAMPLERS RICHARD A. BARKLEY'

    E-Print Network [OSTI]

    SELECTIVITY OF TOWED-NET SAMPLERS RICHARD A. BARKLEY' ABSTRACf The ideal sampler for plankton theoretical analysis of one aspect of selectivity, avoidance of towed-net samplers. The theory is evaluated against three sets of paired samples obtained by different nets at different speeds to provide absolute

  18. HEALTH NET PHARMACY BENEFITS Plan codes WEE, WKK, WQQ1

    E-Print Network [OSTI]

    Mullins, Dyche

    HEALTH NET PHARMACY BENEFITS Plan codes WEE, WKK, WQQ1 The following is a brief description of your Health Net Pharmacy benefits. PRESCRIPTIONS BY MAIL If your prescription is for a maintenance medication III. For complete information, log on as a Health Net member at www.healthnet.com > View prescription

  19. PNGT'04 Preliminary Version A congruence for Petri nets

    E-Print Network [OSTI]

    Sobocinski, Pawel

    PNGT'04 Preliminary Version A congruence for Petri nets Vladimiro Sassone University of Sussex Pawel Soboci¬īnski Universit`a di Pisa Abstract We introduce a way of viewing Petri nets as open systems. This is done by considering a bicategory of cospans over a category of p/t nets and embeddings. We derive

  20. True Concurrency Semantics of Petri Nets (I) Concurrency Theory

    E-Print Network [OSTI]

    √Ābrah√°m, Erika

    True Concurrency Semantics of Petri Nets (I) Concurrency Theory True Concurrency Semantics of Petri Nets (I) Joost-Pieter Katoen and Thomas Noll Lehrstuhl f√ľr Informatik 2 Software Modeling and Thomas Noll Concurrency Theory 1/48 True Concurrency Semantics of Petri Nets (I) Overview 1 Introduction