Powered by Deep Web Technologies
Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Net Interchange Schedule | Open Energy Information  

Open Energy Info (EERE)

Interchange Schedule Interchange Schedule Jump to: navigation, search Dictionary.png Net Interchange Schedule The algebraic sum of all Interchange Schedules with each Adjacent Balancing Authority.[1] Related Terms Balancing Authority, Adjacent Balancing Authority, Interchange, Interchange Schedule, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Net_Interchange_Schedule&oldid=502531" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

2

Net Interchange Schedule Forecasting of Electric Power Exchange for RTO/ISOs  

SciTech Connect (OSTI)

Neighboring independent system operators (ISOs) exchange electric power to enable efficient and reliable operation of the grid. Net interchange (NI) schedule is the sum of the transactions (in MW) between an ISO and its neighbors. Effective forecasting of the amount of actual NI can improve grid operation efficiency. This paper presents results of a preliminary investigation into various methods of prediction that may result in improved prediction accuracy. The methods studied are linear regression, forward regression, stepwise regression, and support vector machine (SVM) regression. The work to date is not yet conclusive. The hope is to explore the effectiveness of other prediction methods and apply all methods to at least one new data set. This should enable more confidence in the conclusions.

Ferryman, Thomas A.; Haglin, David J.; Vlachopoulou, Maria; Yin, Jian; Shen, Chao; Tuffner, Francis K.; Lin, Guang; Zhou, Ning; Tong, Jianzhong

2012-07-26T23:59:59.000Z

3

Table 6. Petroleum Net Imports, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 AEO 1997 3099 3245 3497 3665 3825 3975 4084 4190 4285 4380 4464 4552 4617 4654 4709 4760 AEO 1998 3303 3391 3654 3713 3876 4053 4137 4298 4415 4556 4639 4750 4910 4992 5087 AEO 1999 3380 3442 3888 4022 4153 4238 4336 4441 4545 4652 4780 4888 4999 5073 AEO 2000 3599 3847 4036 4187 4320 4465 4579 4690 4780 4882 4968 5055 5113

4

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

5

Table 7. Petroleum Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 7.58 7.45 7.12 6.82 6.66 7.09 AEO 1983 5.15 5.44 5.73 5.79 5.72 5.95 6.96 AEO 1984 4.85 5.11 5.53 5.95 6.31 6.59 8.65 AEO 1985 4.17 4.38 4.73 4.93 5.36 5.72 6.23 6.66 7.14 7.39 7.74 AEO 1986 5.15 5.38 5.46 5.92 6.46 7.09 7.50 7.78 7.96 8.20 8.47 8.74 9.04 9.57 9.76 AEO 1987 5.81 6.04 6.81 7.28 7.82 8.34 8.71 8.94 8.98 10.01 AEO 1989* 6.28 6.84 7.49 7.96 8.53 8.83 9.04 9.28 9.60 9.64 9.75 10.02 10.20 AEO 1990 7.20 7.61 9.13 9.95 11.02 AEO 1991 7.28 7.25 7.34 7.48 7.72 8.10 8.57 9.09 9.61 10.07 10.51 11.00 11.44 11.72 11.86 12.11 12.30 12.49 12.71 12.91 AEO 1992 6.86 7.42 7.88 8.16 8.55 8.80 9.06 9.32 9.50 9.80 10.17 10.35 10.56 10.61 10.85 11.00 11.15 11.29 11.50 AEO 1993 7.25 8.01 8.49 9.06

6

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

7

Improving UccNet-compliant B2B Supply-chain Applications Using a Context Interchange Framework  

E-Print Network [OSTI]

UccNet is a globally centralized B2B electronic data platform for storing trading product item information and hosted by the non-profit international standardization institute EAN-UCC. It is an emerging ...

Tu, Steven

2004-12-10T23:59:59.000Z

8

Effective placement of detectors at diamond interchanges  

E-Print Network [OSTI]

Most signalized interchanges in Texas are tight urban diamond interchanges of freeways having one-way frontage roads. At these interchanges, traffic actuated control with improper location of detectors may result in inefficient traffic operations...

Prabhakar, Dayakar

1994-01-01T23:59:59.000Z

9

Definition: Confirmed Interchange | Open Energy Information  

Open Energy Info (EERE)

Confirmed Interchange Confirmed Interchange Jump to: navigation, search Dictionary.png Confirmed Interchange The state where the Interchange Authority has verified the Arranged Interchange.[1] Related Terms Arranged Interchange, Interchange, Interchange Authority References ↑ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Confirmed_Interchange&oldid=480469" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863245953 Varnish cache server

10

Interchange format for hybrid systems: abstract semantics  

Science Journals Connector (OSTI)

In [1] we advocated the need for an interchange format for hybrid systems that enables the integration of design tools coming from many different research communities. In deriving such interchange format the main challenge is to define a language that, ...

Alessandro Pinto; Luca P. Carloni; Roberto Passerone; Alberto Sangiovanni-Vincentelli

2006-03-01T23:59:59.000Z

11

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

12

Guidelines for Provision and Interchange of Geothermal Data Assets...  

Energy Savers [EERE]

Guidelines for Provision and Interchange of Geothermal Data Assets Guidelines for Provision and Interchange of Geothermal Data Assets This document presents guidelines related to...

13

Definition: Interchange Schedule | Open Energy Information  

Open Energy Info (EERE)

Schedule Schedule Jump to: navigation, search Dictionary.png Interchange Schedule An agreed-upon Interchange Transaction size (megawatts), start and end time, beginning and ending ramp times and rate, and type required for delivery and receipt of power and energy between the Source and Sink Balancing Authorities involved in the transaction.[1] Related Terms Interchange transaction References ↑ Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Schedule&oldid=480572" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link

14

Interchange Format for Hybrid Systems: Abstract Semantics  

E-Print Network [OSTI]

of implicit equations [4, 5]. The language is object-oriented and objects can be instantiated inside otherInterchange Format for Hybrid Systems: Abstract Semantics Alessandro Pinto1 , Luca P. Carloni3 general enough to accommodate the translation across the various modeling approaches used in the ex

Carloni, Luca

15

Effectiveness of guidelines for retiming signalized diamond interchanges  

E-Print Network [OSTI]

OF SCIENCE May 1991 Major Subject: Civil Engineering EFFECTIVENESS OF GUIDELINES FOR RETIMING SIGNALIZED DIAMOND INTERCHANGES A Thesis by YVONNE DENISE IRVINE Approved as to style and content by: Daniel B. Fambro (Chair of Committee) Thomas Urbanik.... For the diamond interchange test, the participants were randomly assigned to two groups: the control group with no guidelines as reference or the second group, with the guidelines. The average scores on the diamond interchange test were compared using analysis...

Irvine, Yvonne Denise

1991-01-01T23:59:59.000Z

16

Guidelines for Provision and Interchange of Geothermal Data Assets  

Broader source: Energy.gov [DOE]

This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System.

17

A secure methodology for interchangeable services  

Science Journals Connector (OSTI)

Computing today requires the use of many software packages, but only a few packages are used on a daily basis. This infrequent usage pattern often does not justify purchasing full licenses and therefore motivates a need for a more flexible way to use and pay for the usage of software. This paper describes a design philosophy in which similar services provide the same interface to clients. Services based on this design are interchangeable, allow payment per use, handle payment conveniently and securely, are platform independent, and frequently do not require local installation. Clients can therefore easily utilize resources based on application needs and services available at the time that the application is executing. An example implementation using this methodology is also discussed.

Brian Fenicle; Tim Wahls

2004-01-01T23:59:59.000Z

18

INTERCHANGE RECONNECTION IN A TURBULENT CORONA  

SciTech Connect (OSTI)

Magnetic reconnection at the interface between coronal holes and loops, the so-called interchange reconnection, can release the hotter, denser plasma from magnetically confined regions into the heliosphere, contributing to the formation of the highly variable slow solar wind. The interchange process is often thought to develop at the apex of streamers or pseudo-streamers, near Y- and X-type neutral points, but slow streams with loop composition have been recently observed along fanlike open field lines adjacent to closed regions, far from the apex. However, coronal heating models, with magnetic field lines shuffled by convective motions, show that reconnection can occur continuously in unipolar magnetic field regions with no neutral points: photospheric motions induce a magnetohydrodynamic turbulent cascade in the coronal field that creates the necessary small scales, where a sheared magnetic field component orthogonal to the strong axial field is created locally and can reconnect. We propose that a similar mechanism operates near and around boundaries between open and closed regions inducing a continual stochastic rearrangement of connectivity. We examine a reduced magnetohydrodynamic model of a simplified interface region between open and closed corona threaded by a strong unipolar magnetic field. This boundary is not stationary, becomes fractal, and field lines change connectivity continuously, becoming alternatively open and closed. This model suggests that slow wind may originate everywhere along loop-coronal-hole boundary regions and can account naturally and simply for outflows at and adjacent to such boundaries and for the observed diffusion of slow wind around the heliospheric current sheet.

Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S. [Dipartimento di Fisica, Universita della Calabria, I-87036 Cosenza (Italy); Velli, M., E-mail: rappazzo@udel.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2012-10-10T23:59:59.000Z

19

Interchange formats for hybrid systems: review and proposal  

Science Journals Connector (OSTI)

Interchange formats have been the backbone of the EDA industry for several years. They are used as a way of helping the development of design flows that integrate foreign tools using formats with different syntax and, more importantly, different semantics. ...

Alessandro Pinto; Alberto L. Sangiovanni-Vincentelli; Luca P. Carloni; Roberto Passerone

2005-03-01T23:59:59.000Z

20

Definition: Dynamic Interchange Schedule Or Dynamic Schedule | Open Energy  

Open Energy Info (EERE)

Schedule Or Dynamic Schedule Schedule Or Dynamic Schedule Jump to: navigation, search Dictionary.png Dynamic Interchange Schedule Or Dynamic Schedule A telemetered reading or value that is updated in real time and used as a schedule in the AGC/ACE equation and the integrated value of which is treated as a schedule for interchange accounting purposes. Commonly used for scheduling jointly owned generation to or from another Balancing Authority Area.[1] Related Terms balancing authority, balancing authority area, smart grid References ↑ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Dynamic_Interchange_Schedule_Or_Dynamic_Schedule&oldid=502492

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

22

The ANSI/NIST-ITL Standard: Forensic Data Interchange  

E-Print Network [OSTI]

The ANSI/NIST-ITL Standard: Forensic Data Interchange #12;Existing Capabilities ANSI/NIST-ITL 1 to do? Dental Record Type-12 Supplement to ANSI/NIST-ITL 1-2011 WG formed; Draft Circulating Vote in 2013 Pattern Injury Supplement to Type-10 ANSI/NIST-ITL 1-2011 WG formed; Draft Circulating Vote

Perkins, Richard A.

23

Evaluation of traffic operations at diamond interchanges using advanced actuated control  

E-Print Network [OSTI]

This thesis documents an operational analysis of ographics. advanced actuated traffic control at signalized diamond interchanges. The study attempts to determine the benefits a "flexible'' phasing strategy provides to the interchange. Flexible...

Koonce, Peter John Vincent

1998-01-01T23:59:59.000Z

24

Theory of semicollisional drift-interchange modes in cylindrical plasmas  

SciTech Connect (OSTI)

Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime.

Hahm, T.S.; Chen, L.

1985-01-01T23:59:59.000Z

25

Residual turbulence from velocity shear stabilized interchange instabilities  

SciTech Connect (OSTI)

The stabilizing effect of velocity shear on the macroscopic, broad bandwidth, ideal interchange instability is studied in linear and nonlinear regimes. A 2D dissipative magnetohydrodynamic (MHD) code is employed to simulate the system. For a given flow shear, V Prime , linear growth rates are shown to be suppressed to below the shear-free level at both the small and large wavelengths. With increasing V Prime , the unstable band in wavenumber-space shrinks so that the peak growth results for modes that correspond to relatively high wavenumbers, on the scale of the density gradient. In the nonlinear turbulent steady state, a similar turbulent spectrum obtains, and the convection cells are roughly circular. In addition, the density fluctuation level and the degree of flattening of the initial inverted density profile are found to decrease as V Prime increases; in fact, unstable modes are almost completely stabilized and the density profile reverts to laminar when V Prime is a few times the classic interchange growth rate. Moreover, the turbulent particle flux diminishes with increasing velocity shear such that all the flux is carried by the classical diffusive flux in the asymptotic limit. The simulations are compared with measurements of magnetic fluctuations from the Maryland Centrifugal Experiment, MCX, which investigated interchange modes in the presence of velocity shear. The experimental spectral data, taken in the plasma edge, are in general agreement with the numerical data obtained in higher viscosity simulations for which the level of viscosity is chosen consistent with MCX Reynolds numbers at the edge. In particular, the residual turbulence in both cases is dominated by elongated convection cells. Finally, concomitant Kelvin-Helmholtz instabilities in the system are also examined. Complete stability to interchanges is obtained only in the parameter space wherein the generalized Rayleigh inflexion theorem is satisfied.

Hung, C. P.; Hassam, A. B. [University of Maryland at College Park, College Park, Maryland 20742 (United States)

2013-01-15T23:59:59.000Z

26

Strategies for improving traffic operations at oversaturated signalized diamond interchanges  

E-Print Network [OSTI]

street improvement goals should include improved traffic flow along with reductions in congestion, air pollution, and energy use, without major new construction. Super-street arterials, which are multi-lane arterials with limited access and a limited...STRATEGIES FOR IMPROVING TRAFFIC OPERATIONS AT OVERSATURATED SIGNALIZED DIAMOND INTERCHANGES A Thesis by GEORGE CURTIS HERRICK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Herrick, George Curtis

1992-01-01T23:59:59.000Z

27

f-RIF metamodel-centered fuzzy rule interchange in the Semantic Web  

Science Journals Connector (OSTI)

Abstract RIF (Rule Interchange Format), the rule interchange recommendation of the W3C (WWW Consortium), fails to represent and interchange fuzzy and nonmonotonic knowledge that pervades the Semantic Web. Whats more, current rule languages capable of representing fuzzy and nonmonotonic knowledge have heterogeneity in the aspects of syntaxes and semantics, which results in difficulties of communication among various systems. Therefore, in-depth studies on technologies of fuzzy rule interchange have become an important issue in the Semantic Web. Based on the above, we start with the investigation of general rule interchange format capable of interchanging fuzzy and nonmonotonic knowledge. First we propose f-RIF (fuzzy RIF), visually model f-RIF, and define its concrete syntax and semantics. Secondly, centered on f-RIF metamodel, we construct a fuzzy rule interchange architecture f-RIA (fuzzy Rule Interchange Architecture). The architecture supports fuzzy rule interchange between metamodels of different rule languages, and between abstract syntaxes and concrete syntaxes in the same rule languages. Thirdly, we deeply analyze the issue of information loss which is unavoidable in the process of fuzzy rule interchange, and present corresponding remedial measures to reduce adverse effects. Finally, we implement a prototype system f-RIA 1.0, and give experimental analyses. The constructed interchange architecture and the implemented prototype system can effectively solve the communication issue of current heterogeneous systems and enhance the capabilities of rules and rule systems in the aspects of representing and interchanging fuzzy and nonmonotonic knowledge. The current work lays a solid foundation on fuzzy rule reasoning in the Semantic Web.

Xing Wang; Z.M. Ma; Ji Chen; Xiangfu Meng

2014-01-01T23:59:59.000Z

28

E-Print Network 3.0 - american biotic interchange Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North... the Great American Interchange permitted the mixing of species between North and South America that formerly... the processes of biotic homogenization and biotic ......

29

Net Metering  

Broader source: Energy.gov [DOE]

In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became...

30

Net Metering  

Broader source: Energy.gov (indexed) [DOE]

No limit specified (Board of Public Utilities may limit to 2.5% of peak demand) 9 * California o Net Excess Generation (NEG): Credited to customer's next bill at retail rate. - At...

31

Net Metering  

Broader source: Energy.gov [DOE]

North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

32

Net Metering  

Broader source: Energy.gov [DOE]

[http://nebraskalegislature.gov/FloorDocs/101/PDF/Final/LB436.pdf LB 436], signed in May 2009, established statewide net metering rules for all electric utilities in Nebraska. The rules apply to...

33

Net Metering  

Broader source: Energy.gov [DOE]

Nevada's original net-metering law for renewable-energy systems was enacted in 1997 and amended in 2001, 2003, 2005 and 2007. Systems up to one megawatt (MW) in capacity that generate electricity...

34

Geothermal Energy and the Eastern US: Fifth technical information interchange meeting, Minutes  

SciTech Connect (OSTI)

The technical interchange meeting documented here is the fifth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.

None

1980-12-01T23:59:59.000Z

35

Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya  

E-Print Network [OSTI]

treated net (ITN) ownership, usage, and malaria transmissionand mortality. However, usage varies among households, andsuch variations in actual usage may seriously limit the

2011-01-01T23:59:59.000Z

36

Net modelling of energy mix among European Countries: A proposal for ruling new scenarios  

Science Journals Connector (OSTI)

European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries.

M. Dassisti; L. Carnimeo

2012-01-01T23:59:59.000Z

37

Evaluation of TexSIM for modeling traffic behavior at diamond interchanges  

E-Print Network [OSTI]

VITA 81 LIST OF FIGURES Figure Page 1 Typical Diamond Interchange Configurations and Movements 2 Three-Phase Control Strategies 3 TTI Four-Phase Sequence 4 Approach Numbering Scheme for TexSIM Coding 5 Pretimed 1 Interchange Layout and Phasing... Stopped Delay 26 Model Versus Pretimed 2 (7am - 9am) Field Data Stopped Delay 51 53 53 54 54 55 27 Model Versus Field Data Interior Left Turn Stopped Delay 56 28 EfFect of Loop Detector Size on Cycle Length 60 LIST OF TABLES Table 1 Study Sites...

Meadors, Allison Christine Cherry

2012-06-07T23:59:59.000Z

38

Routes to interchange mode turbulence and chaos in plasmas confined by a helical magnetic field  

E-Print Network [OSTI]

. The helical magnetic field lines introduce a periodicity condition for the flute modes in the verticalRoutes to interchange mode turbulence and chaos in plasmas confined by a helical magnetic field K in a laboratory plasma confined by a helical magnetic field [1], i.e. a toroidal plasma with a weak vertical

39

Interchangeability of gaseous fuels - The importance of the Wobbe-index  

SciTech Connect (OSTI)

The Wobbe-index is introduced as an important gas quality criterion when interchanging gaseous fuels for engines. Changes in fuel gas composition appear not to induce noticeable changes in air to fuel ratio and combustion velocity when the Wobbe-index remains the same. This implies that no re-adjustment of ignition timing and air to fuel ratio settings is required, then. The volumetric energy content, the explosion limits and the knock resistance of a mixture can vary to a moderate extent when the Wobbe-index is constant and the gas composition varies.

Klimstra, J.

1986-01-01T23:59:59.000Z

40

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

42

Nonlinear evolution of the resistive interchange mode in the cylindrical spheromak  

Science Journals Connector (OSTI)

Results are presented of a study of various aspects of the single helicity nonlinear development of the resistive interchange mode in the cylindrical spheromak. A formulation of the helically symmetric resistive magnetohydrodynamic (MHD) equations that partially separates the ideal MHD characteristics is developed. Mode saturation can occur because of the quasilinear flattening of the pressure profile in the vicinity of the mode rational surface. However this saturation process is defeated when the plasma overheats and in regions of the plasma where the shear is low. Finite fluid compression has significant and optimistic consequences on the long?term nonlinear behavior of this mode. For a tearing mode stable cylindrical spheromak equilibrium configuration with an axial beta value of 6% complete overlap of the m=1 islands occurs in about 3% of the resistive skin time for a magnetic Reynolds number of S=105. For typical parameters of the S?1 device at Princeton this time corresponds to nearly one millisecond.

J. DeLucia; S. C. Jardin

1984-01-01T23:59:59.000Z

43

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Massachusetts Program Type Net Metering Provider Department of Public Utilities In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) Class I, Class II, Class III net metering facilities In Massachusetts, there are several categories of net-metering facilities.

44

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

A NEW LED-LED PORTABLE CO2 GAS SENSOR BASED ON AN INTERCHANGEABLE MEMBRANE SYSTEM FOR INDUSTRIAL instrumentation. 1. INTRODUCTION CO2 is an important industrial gas for many different uses that include electrolytes [10;11]. The most popular sensors used for CO2 gas sensing in biotechnological applications

Lee, Hyowon

45

Development and evaluation of operational strategies for providing an integrated diamond interchange ramp-metering control system  

E-Print Network [OSTI]

. Therefore, there is a lack of both analysis tools and operational strategies for considering them as an integrated system. One drawback of operating the ramp-metering system and the diamond interchange system in isolation is that traffic from the ramp...

Tian, Zongzhong

2004-09-30T23:59:59.000Z

46

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

47

Timeline for Net Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17.5 7302010 Yes Biennially x By July 31 of each Forecast Year, BPA publishes all Load Following customers' Net Requirements data for the two years of the upcoming Rate...

48

Net Metering Resources  

Broader source: Energy.gov [DOE]

State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an incentive for private investment in distributed...

49

Ashland Electric- Net Metering  

Broader source: Energy.gov [DOE]

In 1996, Ashland adopted a net-metering program that includes simple interconnection guidelines. The program encourages the adoption of renewable-energy systems by committing the city to purchase,...

50

American Samoa- Net Metering  

Broader source: Energy.gov [DOE]

The American Samoa Power Authority (ASPA), a government-owned electric utility, is the only power provider in this U.S. territory of almost 70,000 people. ASPA's "Interconnection and Net Energy...

51

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Arkansas Program Type Net Metering Provider Arkansas Economic Development Commission In April 2001, Arkansas enacted legislation (HB 2325) directing the Arkansas Public Service Commission (PSC) to establish net-metering rules for certain renewable-energy systems.* The PSC approved final rules for net metering in July 2002. Subsequent legislation enacted in April 2007 (HB 2334) expanded the availability of net metering; increased the capacity

52

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

53

Kinetic stabilization of interchange modes in an axisymmetric mirror by large orbit radius thermal ions  

SciTech Connect (OSTI)

A dispersion functional analysis that includes the full kinetic effects of large Larmor radius thermal ions is applied to the problem of stability of an axisymmetric mirror to finite azimuthal mode number ({ital m}) interchange modes. Vlasov theory is used to describe the ions, which are imbedded in a background of fluid electrons. The dispersion functional is solved numerically, both for a trial function displacement, where only the growth rate is determined, and the general case, where both the displacement and the growth rate are determined. In the trial function case, it is found that finite Larmor radius (FLR) effects are recovered, with a significant reduction in the growth rate when ({rho}{sub {ital i}}/{ital L}){sup 2}{approx gt}{gamma}{sub MHD}/{Omega}{sub {ital i}}. In a general case, the growth rate is reduced, but not so strongly as in the trial function case. It is shown heuristically that FLR effects may be recovered from the analysis and that these effects increase with the phase-space decorrelation time of the thermal ion distribution.

Krall, J.; Seyler, C.E.; Sudan, R.N. (Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (US))

1991-04-01T23:59:59.000Z

54

Kinetic stabilization of interchange modes in an axisymmetric mirror by large orbit radius thermal ions  

Science Journals Connector (OSTI)

A dispersion functional analysis that includes the full kinetic effects of large Larmor radius thermal ions is applied to the problem of stability of an axisymmetric mirror to finite azimuthal mode number (m) interchange modes. Vlasov theory is used to describe the ions which are imbedded in a background of fluid electrons. The dispersion functional is solved numerically both for a trial function displacement where only the growth rate is determined and the general case where both the displacement and the growth rate are determined. In the trial function case it is found that finite Larmor radius (FLR) effects are recovered with a significant reduction in the growth rate when (? i /L)2?? MHD /? i . In a general case the growth rate is reduced but not so strongly as in the trial function case. It is shown heuristically that FLR effects may be recovered from the analysis and that these effects increase with the phase?space decorrelation time of the thermal ion distribution.

J. Krall; C. E. Seyler; R. N. Sudan

1991-01-01T23:59:59.000Z

55

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State New Mexico Program Type Net Metering Provider New Mexico Public Regulation Commission Net metering is available to all "qualifying facilities" (QFs), as defined by the federal Public Utility Regulatory Policies Act of 1978 (PURPA)*, which pertains to systems up to 80 megawatts (MW) in capacity. Previously, net metering in New Mexico was limited to systems up to 10 kilowatts (kW) in capacity. Net-metered customers are credited or paid for any monthly net excess generation (NEG) at the utility's avoided-cost rate. If a customer has net

56

BPA-2011-00698-FOIA Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 on an hourly timeframe. Response: 1. BPA has provided the responsive records on CD-ROM Please note these are net schedules, not actual metered interchange. This data does not...

57

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Washington State University Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power technologies (including fuel cells). All customer classes are eligible, and all utilities -- including municipal utilities and electric cooperatives -- must offer net metering.

58

,"U.S. Blender Net Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Input of Residuum (Thousand Barrels)","U.S. Blender Net Input of Gasoline Blending Components (Thousand Barrels)","U.S. Blender Net Input of Reformulated...

59

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Vermont Program Type Net Metering Provider Vermont Department of Public Service NOTE: Legislation enacted in May 2012 (HB475) further amends Vermont's net metering policy. Vermont's original net-metering legislation was enacted in 1998, and the law has been expanded several times subsequently. Any electric customer in Vermont may net meter after obtaining a Certificate of Public Good from the Vermont Public Service Board (PSB). Solar net metered systems 10 kilowatts

60

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State North Carolina Program Type Net Metering Provider North Carolina Utilities Commission The North Carolina Utilities Commission (NCUC) requires the state's three investor-owned utilities -- Duke Energy, Progress Energy and Dominion North Carolina Power -- to make net metering available to customers that own and operate systems that generate electricity using solar energy, wind energy, hydropower, ocean or wave energy, biomass resources, combined heat and

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Net Metering Provider Missouri Public Service Commission Missouri enacted legislation in June 2007 (S.B. 54)* requiring all electric utilities -- investor-owned utilities, municipal utilities and electric cooperatives -- to offer net metering to customers with systems up to 100 kilowatts (kW) in capacity that generate electricity using wind energy, solar-thermal energy, hydroelectric energy, photovoltaics (PV), fuel cells

62

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Water Wind Program Info State Maryland Program Type Net Metering Provider Maryland Public Service Commission Note: The program web site listed above links to the Maryland Public Service Commission's Net Metering Working Group page, which contains a variety of information resources related to the ongoing implementation of net metering in Maryland, such as meeting agendas, minutes, and draft utility tariffs.

63

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Program Info State District of Columbia Program Type Net Metering Provider DC Public Service Commission In the District of Columbia (DC), net metering is currently available to residential and commercial customer-generators with systems powered by renewable-energy sources, combined heat and power (CHP), fuel cells and microturbines, with a maximum capacity of 1 megawatt (MW). The term "renewable energy sources" is defined as solar, wind, tidal, geothermal, biomass, hydroelectric power and digester gas. In October 2008, the Clean

64

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State New Hampshire Program Type Net Metering Provider New Hampshire Public Utilities Commission New Hampshire requires all utilities selling electricity in the state to offer net metering to customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas, bio-oil or

65

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Virginia Program Type Net Metering Provider Virginia Department of Mines, Minerals, and Energy '''''Note: In March 2011, Virginia enacted HB 1983, which increased the residential net-metering limit to 20 kW. However, residential facilities with a capacity of greater than 10 kW must pay a monthly standby charge. The Virginia State Corporation Commission approved standby charges for transmissions and distribution components as proposed by Virginia Electric and Power Company (Dominion Virginia Power) on November 3, 2011.'''''

66

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Local Government Multi-Family Residential Nonprofit Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Net Metering Provider West Virginia Public Service Commission Net metering in West Virginia is available to all retail electricity customers. System capacity limits vary depending on the customer type and electric utility type, according to the following table. Customer Type IOUs with 30,000 customers or more IOUs with fewer than 30,000 customers, municipal utilities, electric cooperatives

67

QuarkNet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet: The science connection you've been waiting for! QuarkNet: The science connection you've been waiting for! The Opportunity: "Your program rejuvenates my soul. It connects me with a cadre of intelligent and excited educators. It reinvigorates my teaching and provides me avenues to extend and enliven the projects that I can offer my students. Without the Quarknet program I am sure that I would have left teaching years ago." The Players: High school students, teachers and physicsts working together on physics research projects exploring the hidden nature of matter, energy, space and time. The Questions: What are the origins of mass? Can the basic forces of nature be unified? How did the universe begin? How will it evolve? LHC & Fermilab Links For Teachers For Students CERN Homepage ATLAS Experiment

68

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Home Weatherization Water Program Info State New York Program Type Net Metering Provider New York State Department of Public Service Note: In October 2012 the New York Public Service Commission (PSC) issued an order directing Central Hudson Gas and Electric to file net metering tariff revisions tripling the aggregate net metering cap for most systems from 1% of 2005 peak demand (12 MW) to 3% of 2005 peak demand (36 MW). The PSC issued another order in June 2013 to raise the aggregate net metering cap

69

NetCDF at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NetCDF NetCDF NetCDF Description and Overview NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. This includes the libnetcdf.a library as well as the NetCDF Operators (NCO), Climate Data Operators (CDO), NCCMP, and NCVIEW packages. Files written with previous versions can be read or written with the current version. Using NetCDF on Cray System There are separate NetCDF installations provided by Cray and by NERSC. On Hopper and Edison, Cray installations are recommended because they are simpler to use. To see the available Cray installations and versions use the following command: module avail cray-netcdf To see the NERSC installations and versions use the following command:

70

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial General Public/Consumer Industrial Residential Fed. Government Local Government State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Oklahoma Program Type Net Metering Provider Oklahoma Corporation Commission Net metering has been available in Oklahoma since 1988 under Oklahoma Corporation Commission (OCC) Order 326195. The OCC's rules require investor-owned utilities and electric cooperatives under the commission's jurisdiction* to file net-metering tariffs for customer-owned renewable-energy systems and combined-heat-and-power (CHP) facilities up to 100 kilowatts (kW) in capacity. Net metering is available to all customer

71

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Ohio Program Type Net Metering Provider Ohio Public Utilities Commission '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2050-EL-ORD Case 12-0250-EL-RDR]) to review the net metering rules for investor-owned utilities. Details will be posted as more information is available.''''' Ohio's net-metering law requires electric distribution utilities to offer net metering to customers who generate electricity using wind energy, solar energy, biomass, landfill gas, hydropower, fuel cells or microturbines.

72

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Fed. Government Local Government Residential State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Hawaii Program Type Net Metering Provider Hawaii Public Utilities Commission NOTE: Kauai Island Electric Cooperative's (KIUC) net metering program has reached its capacity and has implemented a Net Energy Metering Pilot Program. Hawaii's original net-metering law was enacted in 2001 and expanded in 2004 by HB 2048, which increased the eligible capacity limit of net-metered systems from 10 kilowatts (kW) to 50 kW. In 2005, the law was further amended by SB 1003, which authorized the Hawaii Public Utilities Commission

73

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

74

Calculating and reporting changes in net heat of combustion of wood fuel  

SciTech Connect (OSTI)

There is often confusion when reporting net heat of combustion changes in wood fuel due to changes in moisture content (MC) of the fuel. This paper was written to identify and clarify the bases on which changes in net heat of combustion can be calculated. Formulae for calculating changes in net heat of combustion of wood fuel due to MC changes are given both on a per unit weight of fuel basis and on an actual gain basis. Examples which illustrate the difference in the two reporting approaches, as well as the importance of both approaches, are presented. (Refs. 7).

Harris, R.A.; McMinn, J.W.; Payne, F.A.

1986-06-01T23:59:59.000Z

75

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

7 DefiningaNet?ZeroEnergyNetZeroEnergy .A. DefiningaNetZeroEnergyBuilding Duetothe

Al-Beaini, S.

2010-01-01T23:59:59.000Z

76

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

77

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Minnesota Program Type Net Metering Provider Minnesota Department of Commerce '''''Note: H.F. 729, enacted in May 2013, includes many changes to Minnesota's net metering law. These changes are described above, but most will not take effect until rules are implemented at the PUC. The below summary reflects the current rules.''''' Minnesota's net-metering law, enacted in 1983, applies to all investor-owned utilities, municipal utilities and electric cooperatives. All "qualifying facilities" less than 40 kilowatts (kW) in capacity are

78

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Home Weatherization Wind Program Info State Pennsylvania Program Type Net Metering Provider Pennsylvania Public Utility Commission Note: In March 2012 the Pennsylvania Public Utilities Commission (PUC) issued a Final Order (Docket M-2011-2249441) approving the use of third-party ownership models (i.e., system leases or retail power purchase agreements) in conjunction with net metering. The Order allows these types of arrangements for net metered systems, subject to a restriction that the

79

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info State Illinois Program Type Net Metering Provider Illinois Commerce Commission '''''NOTE: Legislation enacted in 2011 and 2012 (S.B. 1652, H.B. 3036, and S.B. 3811) has changed several aspects of net metering in Illinois. For customers in competitive classes as of July 1, 2011, the law prescribes a dual metering and bill crediting system which does not meet the definition of net metering as the term is generally defined. Click here for information regarding competitive classes, and

80

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Iowa Program Type Net Metering Provider Iowa Utilities Board Iowa's statutes do not explicitly authorize the Iowa Utilities Board (IUB) to mandate net metering, but this authority is implicit through the board's enforcement of PURPA and Iowa Code § 476.41 ''et seq.'' Iowa's net-metering subrule, adopted by the IUB in July 1984, applies to customers that generate electricity using alternate energy production facilities (AEPs). Net metering is available to all customer classes of Iowa's two investor-owned utilities -- MidAmerican Energy and Interstate Power and

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider Louisiana Public Service Commission '''''Note: Ongoing proceedings related to net metering can be found in Docket R-31417.''''' Louisiana enacted legislation in June 2003 establishing net metering. Modeled on Arkansas's law, Louisiana's law requires investor-owned utilities, municipal utilities and electric cooperatives to offer net metering to customers that generate electricity using solar, wind, hydropower, geothermal or biomass resources. Fuel cells and microturbines that generate electricity entirely derived from renewable resources are

82

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Connecticut Program Type Net Metering Provider Public Utilities Regulatory Authority Connecticut's two investor-owned utilities -- Connecticut Light and Power Company (CL&P) and United Illuminating Company (UI) -- are required to provide net metering to customers that generate electricity using "Class I" renewable-energy resources, which include solar, wind, landfill gas, fuel

83

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kentucky Program Type Net Metering Provider Kentucky Public Service Commission In April 2008, Kentucky enacted legislation that expanded its net metering law by requiring utilities to offer net metering to customers that generate electricity with photovoltaic (PV), wind, biomass, biogas or hydroelectric systems up to 30 kilowatts (kW) in capacity. The Kentucky Public Service Commission (PSC) issued rules on January 8, 2009. Utilities had 90 days from that date to file tariffs that include all terms and conditions of their net metering programs, including interconnection.

84

Weekly Refiner Net Production  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production Refiner Net Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product/Region 11/08/13 11/15/13 11/22/13 11/29/13 12/06/13 12/13/13 View History Finished Motor Gasoline 2,168 2,300 2,336 2,359 2,462 2,368 2010-2013 East Coast (PADD 1) 54 53 52 67 71 67 2010-2013 Midwest (PADD 2) 696 745 722 711 798 790 2010-2013 Gulf Coast (PADD 3) 891 916 1,010 1,053 1,011 1,021 2010-2013 Rocky Mountain (PADD 4) 260 248 245 232 279 235 2010-2013 West Coast (PADD 5) 268 338 308 296 302 255 2010-2013 Reformulated 50 49 49 49 48 49 2010-2013 Blended with Ethanol 50 49 49 49 48 49 2010-2013 Other

85

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New Jersey Program Type Net Metering Provider New Jersey Board of Public Utilities New Jersey's net-metering rules apply to all residential, commercial and industrial customers of the state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives). Systems that generate electricity using solar, wind, geothermal, wave, tidal, landfill gas or sustainable biomass resources, including fuel cells (all "Class I" technologies under the state RPS), are

86

net generation | OpenEI  

Open Energy Info (EERE)

net generation net generation Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

87

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Net Metering Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Michigan Program Type Net Metering Provider Michigan Public Service Commission '''''The MPSC is reviewing state interconnection and net metering policies in [http://efile.mpsc.state.mi.us/efile/viewcase.php?casenum=15919&submit.x=... Case U-15919].''''' In October 2008, Michigan enacted legislation (P.A. 295) requiring the Michigan Public Service Commission (PSC) to establish a statewide net metering program for renewable-energy systems within 180 days. On May 26, 2009 the Michigan Public Service Commission (PSC) issued an order formally

88

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Colorado Program Type Net Metering Provider Colorado Public Utilities Commission [http://www.leg.state.co.us/clics/clics2009a/csl.nsf/fsbillcont3/571064D8... Senate Bill 51] of April 2009 made several changes, effective September 1, 2009, to the state's net metering rules for investor-owned utilities, as they apply to solar-electric systems. These changes include converting the maximum system size for solar-electric systems from two megawatts (MW) to 120% of the annual consumption of the site; redefining a site to include

89

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Net Metering < Back Eligibility Agricultural Commercial Industrial Residential Fed. Government General Public/Consumer Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State California Program Type Net Metering Provider California Public Utilities Commission California's net-metering law originally took effect in 1996 and applies to all utilities with one exception*. The law has been amended numerous times since its enactment, most recently by AB 327 of 2013. '''Eligible Technologies''' The original law applied to wind-energy systems, solar-electric systems and hybrid (wind/solar) systems. In September 2002, legislation (AB 2228)

90

Estimation of Regional Actual Evapotranspiration in the Panama Canal Watershed  

Science Journals Connector (OSTI)

The upper Ro Chagres basin is a part of the Panama Canal Watershed. The least known water balance...SEBAL...). We use an image from March 27, 2000, for estimation of the distribution of the regional actual evapo...

Jan M.H. Hendrickx; Wim G.M. Bastiaanssen; Edwin J.M. Noordman

2005-01-01T23:59:59.000Z

91

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active QuarkNet Centers Active QuarkNet Centers       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Centers on a Google Map @ the PTEC website Mentor List Sorted by: Last Name Institution Name First Year in Program Argonne National Laboratory - On sabbatical Black Hills State University Brown, Northeastern & Brandeis Universities Brookhaven National Laboratory, Columbia & Stony Brook Universities Chicago State University Colorado State University Fermilab & University of Chicago Florida Institute of Technology Florida International University Florida State University Hampton, George Mason, William & Mary Universities Idaho State University Indiana University - On sabbatical Johns Hopkins University

92

A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature  

E-Print Network [OSTI]

and the dynamic nature of heat transfer processes. Satellite remote sensing is a promising tool which has been] Satellite remote sensing is a promising technique for estimating global or regional evapotranspiration (ET). A simple and accurate method is essential when estimating ET using remote sensing data. Such a method

Li, Zhanqing

93

Net Metering | Open Energy Information  

Open Energy Info (EERE)

Metering Metering Jump to: navigation, search For electric customers who generate their own electricity, net metering allows for the flow of electricity both to and from the customer,– typically through a single, bi-directional meter. With net metering, when a customer’'s generation exceeds the customer’'s use, the customer's electricity flows back to the grid, offsetting electricity consumed by the customer at a different time. In effect, the customer uses excess generation to offset electricity that the customer otherwise would have to purchase at the utility’'s full retail rate. Net metering is required by law in most states, but some of these laws only apply to investor-owned utilities,– not to municipal utilities or electric cooperatives. [1] Net Metering Incentives

94

Grid Net | Open Energy Information  

Open Energy Info (EERE)

Net Net Jump to: navigation, search Name Grid Net Address 340 Brannan St Place San Francisco, California Zip 94107 Sector Efficiency Product Sells open, interoperable, policy-based network management software Website http://www.grid-net.com/ Coordinates 37.781265°, -122.393229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781265,"lon":-122.393229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

From DSM to DSM Net  

Science Journals Connector (OSTI)

The following sections describe the integration of the DSM planning model with process modeling approaches of Petri nets . First, the process correctness criteria for the Dynamic new-Product Design Process (D...

Arie Karniel; Yoram Reich

2011-01-01T23:59:59.000Z

96

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuel Vehicles Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Delaware Program Type Net Metering Provider Delaware Public Service Commission In Delaware, net metering is available to any customer that generates electricity using solar, wind or hydro resources, anaerobic digesters, or fuel cells capable of being powered by renewable fuels. Grid-interactive electric vehicles are also eligible for net metering treatment for electricity that they put on the grid, although these vehicles do not themselves generate electricity. The maximum capacity of a net-metered system is 25 kilowatts (kW) for residential customers; 100 kW for farm customers on residential rates; two megawatts (MW) per meter for

97

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

98

Self-actualization as it relates to aerobic physical fitness  

E-Print Network [OSTI]

higher than the aerobic and archery group on the TC, Ex, and C scales. The archery group was significantly higher than the preaerobic and aerobic groups on the Fr and S scales. Females from the preaerobic group were significantly lower than archery... Inventory Sav Self-actualization values measures how well a person holds and lives by values of se 1f- ac tualizing people Ex Existentiality measures ability to flexibly apply self-actualizing values to one's own life Fr Feeling reactivity measures...

Russell, Kathryn Terese Vecchio

2012-06-07T23:59:59.000Z

99

2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION  

E-Print Network [OSTI]

Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

100

experiment actually sees," Smith says. "When we were  

E-Print Network [OSTI]

experiment actually sees," Smith says. "When we were finished, we got much more ­ a method in science depend on atoms and molecules moving," Smith says. "We want to create movies of molecules science development," Smith says.--Morgan McCorkle A theoretical technique developed at ORNL is bringing

Pennycook, Steve

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

COORDINATING ADVICE AND ACTUAL TREATMENT Thomas A. Russ  

E-Print Network [OSTI]

. Unfortunately, this information is not always immediately available. For example, the exact fluid infused via an intravenous line can only be determined after someone checks the infusion bottle to determine how much fluid differ in timing and exact amount from what is actually done. For example, an infusion order might call

Russ, Thomas A.

102

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Heating & Cooling Commercial Heating & Cooling Wind Program Info State Indiana Program Type Net Metering Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission (IURC) adopted rules for net metering in September 2004, requiring the state's investor-owned utilities (IOUs) to offer net metering to all electric customers. The rules, which apply to renewable energy resource projects [defined by IC 8-1-37-4(a)(1) - (8)] with a maximum capacity of 1 megawatt (MW), include the following

103

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agricultural Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Oregon Program Type Net Metering Oregon has established separate net-metering programs for the state's primary investor-owned utilities (PGE and PacifiCorp), and for its municipal utilities and electric cooperatives. '''PGE and PacifiCorp Customers''' The Oregon Public Utilities Commission (PUC) adopted new rules for net metering for PGE and PacifiCorp customers in July 2007, raising the individual system limit from 25 kilowatts (kW) to two megawatts (MW) for non-residential applications. (The rules do not apply to customers of Idaho

104

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Residential Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Wyoming Program Type Net Metering Provider Wyoming Public Service Commission Wyoming enacted legislation in February 2001 that established statewide net metering. The law applies to investor-owned utilities, electric cooperatives and irrigation districts. Eligible technologies include solar, wind, biomass and hydropower systems up to 25 kilowatts (kW) in capacity. Systems must be intended primarily to offset part or all of the customer-generator's requirements for electricity. Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits at the utility's avoided-cost

105

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

106

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

107

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

108

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption, Projected vs. Actual" Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO 1996",,,937,942,954,962,983,990,1004,1017,1027,1033,1046,1067,1070,1071,1074,1082,1087 "AEO 1997",,,,948,970,987,1003,1017,1020,1025,1034,1041,1054,1075,1086,1092,1092,1099,1104 "AEO 1998",,,,,1009,1051,1043.875977,1058.292725,1086.598145,1084.446655,1089.787109,1096.931763,1111.523926,1129.833862,1142.338257,1148.019409,1159.695312,1162.210815,1180.029785

109

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Consumption, Projected vs. Actual Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 AEO 1997 6636 6694 6826 6953 7074 7183 7267 7369 7461 7548 7643 7731 7793 7833 7884 7924 AEO 1998 6895 6906 7066 7161 7278 7400 7488 7597 7719 7859 7959 8074 8190 8286 8361 AEO 1999 6884 7007 7269 7383 7472 7539 7620 7725 7841 7949 8069 8174 8283 8351 AEO 2000 7056 7141 7266 7363 7452 7578 7694 7815 7926 8028 8113 8217 8288

110

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

111

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

112

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Institutional Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Arizona Program Type Net Metering Provider Arizona Corporation Commission Net metering is available to customers who generate electricity using solar, wind, hydroelectric, geothermal, biomass, biogas, combined heat and power (CHP) or fuel cell technologies. The ACC has not set a firm kilowatt-based limit on system size capacity; instead, systems must be sized to not exceed 125% of the customer's total connected load. If there is no available load data for the customer, the generating system may not

113

Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Wisconsin Program Type Net Metering Provider Public Service Commission of Wisconsin The Public Service Commission of Wisconsin (PSC) issued an order on January 26, 1982 requiring all regulated utilities to file tariffs allowing net metering to customers that generate electricity with systems up to 20 kilowatts (kW)* in capacity. The order applies to investor-owned utilities and municipal utilities, but not to electric cooperatives. All distributed-generation (DG) systems, including renewables and combined heat and power (CHP), are eligible. There is no limit on total enrollment.

114

QuarkNet at Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QuarkNet at Work Information for Active Mentors & Teachers     QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Information Active Centers Calendar Contacts Expectations: for Teachers, for Mentors Information on Other Funding Sources Program Overview Support: for Teachers, for Centers Staff Job Description Activities Essential Practices - Teaching with Inquiry (word.doc) Classroom Activities e-Labs: CMS - Cosmic Ray Boot Camp Project Activities Databases: Data Entry (password only) 2012 Center Reporting Resources Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit Print Bibliography - Online Resources Imaging Detector Principles of Professionalism for Science Educators - NSTA position

115

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

116

Idaho Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Idaho Power - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Idaho Power Company Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar, wind, hydropower, biomass or fuel cells; (2) limits residential systems to

117

Avista Utilities - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

118

SRP - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SRP - Net Metering SRP - Net Metering SRP - Net Metering < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Net Metering Provider SRP Salt River Project (SRP) modified an existing net-metering program for residential and commercial customers in November 2013. Net metering is now available to customers who generate electricity using photovoltaic (PV), geothermal, or wind systems up to 300 kilowatts (kW) in AC peak capacity. The kilowatt-hours (kWh) delivered to SRP are subtracted from the kWh delivered from SRP for each billing cycle. If the kWh calculation is net positive for the billing cycle, SRP will bill the net kWh to the customer under the applicable price plan, Standard Price Plan E-21, E-23, E-26,

119

Feasibility of Achieving Net-Zero-Energy Net-Zero-Cost  

E-Print Network [OSTI]

1 Feasibility of Achieving Net- Zero-Energy Net-Zero-Cost Homes I.S. Walker, Al-Beaini, SSimjanovic,JohnStanley,BretStrogen,IainWalker FeasibilityofAchieving ZeroNetEnergy,Zero NetCostHomes #12;4 ACKNOWLEDGEMENTS

120

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes 1 fey, 1David Feasibility of Achieving a ZeroNetEnergy, ZeroNetCost Homes 1 #12;2 ACKNOWLEDGEMENTS The material building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets  

Science Journals Connector (OSTI)

We recently introduced the concept of a Hyperbolic Dirac Net (HDN) for medical inference on the grounds that, while the traditional Bayes Net (BN) is popular in medicine, it is not suited to that domain: there are many interdependencies such that any ... Keywords: Bayes Net, Complex, Decision support system, Dirac, Expert system, Hyperbolic, Hyperbolic Dirac Net, Medical inference

Barry Robson

2014-08-01T23:59:59.000Z

122

Constrained CP-nets Steve Prestwich  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich , Francesca Rossi � , Kristen Brent Venable �, Toby Walsh 1, soft constraints, and CP-nets. We construct a set of hard constraints whose solutions are the optimal to represent preferences, we will consider CP-nets [6, 3], which is a quali- tative approach where preferences

Walsh, Toby

123

Constrained CP-nets Steve Prestwich1  

E-Print Network [OSTI]

Constrained CP-nets Steve Prestwich1 , Francesca Rossi2 , Kristen Brent Venable2 , Toby Walsh1 1, soft constraints, and CP nets. We construct a set of hard constraints whose solutions are the optimal. Among the many existing approaches to represent preferencess, we will consider CP nets [5,3], which

Rossi, Francesca

124

2007 NET SYSTEM POWER REPORT STAFFREPORT  

E-Print Network [OSTI]

-2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

125

The CloudNets Network Virtualization Architecture  

E-Print Network [OSTI]

Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

Schmid, Stefan

126

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Coal Consumption, Projected vs. Actual Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041 1054 1075 1086 1092 1092 1099 1104 AEO 1998 1009 1051 1044 1058 1087 1084 1090 1097 1112 1130 1142 1148 1160 1162 1180 AEO 1999 1040 1075 1092 1109 1113 1118 1120 1120 1133 1139 1150 1155 1156 1173 AEO 2000 1053 1086 1103 1124 1142 1164 1175 1184 1189 1194 1199 1195 1200 AEO 2001 1078 1112 1135 1153 1165 1183 1191 1220 1228 1228 1235 1240

127

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

128

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

129

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

130

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

131

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

132

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

133

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Petroleum Consumption, Projected vs. Actual" Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO 1995",,6398.45,6544.45,6555.4,6675.85,6745.2,6821.85,6887.55,6964.2,7048.15,7146.7,7245.25,7336.5,7405.85,7471.55,7537.25,7581.05,7621.2 "AEO 1996",,,6489.7,6526.2,6606.5,6708.7,6781.7,6854.7,6942.3,7008,7084.65,7175.9,7259.85,7329.2,7383.95,7449.65,7500.75,7544.55,7581.05 "AEO 1997",,,,6635.7,6694.1,6825.5,6953.25,7073.7,7183.2,7267.15,7369.35,7460.6,7548.2,7643.1,7730.7,7792.75,7832.9,7884,7924.15

134

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

135

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

136

Net Energy Billing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Billing Energy Billing Net Energy Billing < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Maine Program Type Net Metering Provider Maine Public Utilities Commission All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing for individual customers. Furthermore IOUs are required to offer net metering for shared ownership customers, while COUs may offer net metering to shared ownership

137

Kansas - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kansas - Net Metering Kansas - Net Metering Kansas - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Kansas Program Type Net Metering Provider Kansas Corporation Commission Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering applies to systems that generate electricity using solar, wind, methane, biomass or hydro resources, and to fuel cells using hydrogen produced by an eligible

138

Progress Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy - Net Metering Progress Energy - Net Metering Progress Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering Provider Progress Energy Carolinas In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

139

Net Metering Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Webinar Net Metering Webinar Net Metering Webinar June 25, 2014 11:00AM MDT Attendees will become familiar with the services provided by utility net metering and their importance in making projects cost-effective. The speakers will provide information based on case histories of how facilities that generate their own electricity from renewable energy sources can feed electricity they do not use back into the grid. Many states have net-metering laws with which utilities must comply. In states without such legislation, utilities may offer net-metering programs voluntarily or as a result of regulatory decisions. The webinar will cover the general differences between states' legislation and implementation and how the net-metering benefits can vary widely for facilities in different areas of

140

Duke Energy - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy - Net Metering Duke Energy - Net Metering Duke Energy - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an [http://dms.psc.sc.gov/pdf/matters/F05030FC-E19A-9225-B838F72EDF4557DC.pdf] order mandating net metering be made available by the regulating utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pose estimation of an uncooperative spacecraft from actual space imagery  

Science Journals Connector (OSTI)

This paper addresses the preliminary design of a spaceborne monocular vision-based navigation system for on-orbit-servicing and formation-flying applications. The aim is to estimate the pose of a passive space resident object using its known three-dimensional model and single low-resolution two-dimensional images collected on-board the active spacecraft. In contrast to previous work, no supportive means are available on the target satellite (e.g., light emitting diodes) and no a-priori knowledge of the relative position and attitude is available (i.e., lost-in-space scenario). Three fundamental mechanisms - perceptual organisation, true perspective projection, and random sample consensus - are exploited to overcome the limitations of monocular passive optical navigation in space. The preliminary design is conducted and validated making use of actual images collected in the frame of the PRISMA mission at about 700 km altitude and 10 m inter-spacecraft separation.

Simone D'Amico; Mathias Benn; John L. Jørgensen

2014-01-01T23:59:59.000Z

142

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

143

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

144

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

145

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

146

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

147

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

148

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

149

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

150

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

151

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

152

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

153

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

154

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

155

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

156

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

157

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

158

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

159

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

160

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Guam - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guam - Net Metering Guam - Net Metering Guam - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Wind Solar Home Weatherization Program Info Program Type Net Metering Provider Guam Energy Office Guam's Public Utilities Commission (PUC) reviewed net metering and interconnection during a regular meeting in February 2009 (Docket 08-10). Please contact the [http://www.guampuc.com/ Guam PUC] for the results of that docket review. In 2004, Guam enacted legislation requiring the Guam Power Authority (GPA) to allow net metering for customers with fuel cells, microturbines, wind energy, biomass, hydroelectric, solar energy or hybrid systems of these

162

Net Metering Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Net Metering Provider Arkansas Public Service Commission The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These rules are developed pursuant to the Arkansas Renewable Energy Development Act (Arkansas Code Annotated 23-18-603). These rules apply to all electric utilities.

163

TacNet Tracker - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Transmission Find More Like This Return to Search TacNet Tracker Handheld Tracking and Communications Device Sandia National Laboratories Contact SNL About This...

164

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect (OSTI)

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

165

E-Print Network 3.0 - actual results satellitenexperiment Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The actual case here corresponds to the minor windows (U0.5) case in Table 6. Table A1: Load and energy... .96) 6343.77 (3316.14) 933.65 (901.44) Major windows (Actual) Diff. - -...

166

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

for anynetenergyconsumptionwithsolarpanels,thecostenergygenerationtechnologies(suchassolarpanels).

Al-Beaini, S.

2010-01-01T23:59:59.000Z

167

Net pay evaluation: a comparison of methods to estimate net pay and net-to-gross ratio using surrogate variables  

E-Print Network [OSTI]

Net pay (NP) and net-to-gross ratio (NGR) are often crucial quantities to characterize a reservoir and assess the amount of hydrocarbons in place. Numerous methods in the industry have been developed to evaluate NP and NGR, depending on the intended...

Bouffin, Nicolas

2009-06-02T23:59:59.000Z

168

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

169

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

170

Active QuarkNet Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first active year) first active year)       QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Institution Contact e-mail Year Brown, Northeastern & Brandeis Universities Richard Dower - rick.dower@roxburylatin.org 1999 Fermilab & University of Chicago Chris Stoughton - stoughto@fnal.gov 1999 Florida State University Horst Wahl - wahl@hep.fsu.edu 1999 Indiana University Rick Van Kooten - rickv@paoli.physics.indiana.edu 1999 University of California - Santa Cruz Steve Ritz - ritz@scipp.ucsc.edu 1999 University of Notre Dame Dan Karmgard - Karmgard.1@nd.edu 1999 University of Oklahoma Michael Strauss - strauss@mail.nhn.ou.edu 1999 University of Rochester Kevin McFarland - ksmcf@pas.rochester.edu 1999

171

Puerto Rico - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Puerto Rico - Net Metering Puerto Rico - Net Metering Puerto Rico - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Program Type Net Metering Provider Autoridad de Energía Electrica de Puerto Rico Puerto Rico enacted net-metering legislation in August 2007, allowing customers of Puerto Rico Electric Power Authority (PREPA) to use electricity generated by solar, wind or "other" renewable-energy resources to offset their electricity usage. This law applies to residential systems with a generating capacity of up to 25 kilowatts (kW) and non-residential systems up to one megawatt (MW) in capacity.*

172

LADWP - Net Metering (California) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering (California) Net Metering (California) LADWP - Net Metering (California) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Net Metering Provider Los Angeles Department of Water and Power LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless an installation requires atypical metering equipment. In these cases the customer must cover the additional metering expenses. The customer must also pay any related interconnection fees. Excess kilowatt-hours (kWh) generated by the customer's system will be

173

Definition: Net Zero | Open Energy Information  

Open Energy Info (EERE)

Zero Zero Jump to: navigation, search Dictionary.png Net Zero A building, home, or community that offsets all of its energy use from renewable energy available within the community's built environment.[1] View on Wikipedia Wikipedia Definition A zero-energy building, also known as a zero net energy (ZNE) building, net-zero energy building (NZEB), or net zero building, is a building with zero net energy consumption and zero carbon emissions annually. Buildings that produce a surplus of energy over the year may be called "energy-plus buildings" and buildings that consume slightly more energy than they produce are called "near-zero energy buildings" or "ultra-low energy houses". Traditional buildings consume 40% of the total fossil fuel energy in the US and European Union and are significant

174

Zero Net Energy Myths and Modes of Thought  

E-Print Network [OSTI]

mypp.html. . (2009). "Net-Zero Energy CommercialZeroNetEnergyMythsandModesofThought NicholasB. AC02? 05CH11231. Page | i Zero Net Energy Myths and Modes of

Rajkovich, Nicholas B.

2010-01-01T23:59:59.000Z

175

Production-ecological modelling explains the difference between potential soil N mineralisation and actual herbage N uptake  

Science Journals Connector (OSTI)

Abstract We studied two different grassland fertiliser management regimes on sand and peat soils: above-ground application of a combination of organic N-rich slurry manure and solid cattle manure (SCM) vs. slit-injected, mineral N-rich slurry manure, whether or not supplemented with chemical fertiliser (non-SCM). Measurements of field N mineralisation as estimated from herbage N uptake in unfertilised plots were compared with (i) potential N mineralisation as determined from a standard laboratory soil incubation, (ii) the contribution of groups of soil organisms to N mineralisation based on production-ecological model calculations, and (iii) N mineralisation calculated according to the Dutch fertilisation recommendation for grasslands. Density and biomass of soil biota (bacteria, fungi, enchytraeids, microarthropods and earthworms) as well as net plant N-uptake were higher in the SCM input grasslands compared to the non-SCM input grasslands. The currently used method in Dutch fertilisation recommendations underestimated actual soil N supply capacity by, on average, 102kg Nha?1 (202 vs. 304kgha?1=34%). The summed production-ecological model estimate for N mineralisation by bacteria, fungi, protozoa, and enchytraeids was 87120% of the measured potential soil N mineralisation. Adding the modelled N mineralisation by earthworms to potential soil N mineralisation explained 98107% of the measured herbage N uptake from soil. For all grasslands and soil biota groups together, the model estimated 105% of the measured net herbage N uptake from soil. Soil biota production-ecological modelling is a powerful tool to understand and predict N uptake in grassland, reflecting the effects of previous manure management and soil type. The results show that combining production ecological modelling to predict N supply with existing soil N tests using aerobic incubation methods, can add to a scientifically based improvement of the N fertilisation recommendations for production grasslands.

Muhammad Imtiaz Rashid; Ron G.M. de Goede; Lijbert Brussaard; Jaap Bloem; Egbert A. Lantinga

2014-01-01T23:59:59.000Z

176

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Environmental Management (EM)

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

177

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Aspinall Courthouse: GSA's...

178

Nevada Renewable Energy Application For Net Metering Customers...  

Open Energy Info (EERE)

Renewable Energy Application For Net Metering Customers Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Renewable Energy Application For Net...

179

Best Practices for Controlling Capital Costs in Net Zero Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Controlling Capital Costs in Net Zero Energy Design and Construction - 2014 BTO Peer Review Best Practices for Controlling Capital Costs in Net Zero Energy Design and...

180

Community Renewable Energy Success Stories Webinar: Net Zero...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text...

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

US Crude Oil Production Surpasses Net Imports | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by...

182

Risk analysis of FORTUMs 560MWe net power plant retrofit to oxyfuel combustion  

Science Journals Connector (OSTI)

Through technical discussion of oxyfuel retrofit of MeriPoris supercritical power plant (565MWe net), it was recognized that a deep analysis of the risks associated with the retrofit solution would be necessary for learning more about oxycombustion technology and to clarify the actual risks. As the result of the risk analysis, it was concluded that oxyfuel retrofit and oxyfuel operation would only involve low magnitude risks. This paper describes methodology of the risk analysis and major results including mitigation methods of the risks.

Kati Kupila; Pauli Dernjatin; Risto Sormunen; Tadashi Sumida; Kenji Kiyama; Alain Briglia; Ivan Sanchez-Molinero; Arthur Darde

2011-01-01T23:59:59.000Z

183

E-Print Network 3.0 - actuales relacionadas con Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: actuales relacionadas con Page: << < 1 2 3 4 5 > >> 1 Departamento de Fsica (EPS) Universidad Carlos III de Madrid Summary: fsica relacionada con la implosin de los...

184

E-Print Network 3.0 - actuales clasificaciones del Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 30 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

185

E-Print Network 3.0 - actuales del sector Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 60 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

186

Millenial Net Inc | Open Energy Information  

Open Energy Info (EERE)

Millenial Net Inc Millenial Net Inc Jump to: navigation, search Name Millenial Net, Inc. Place Burlington, Massachusetts Zip MA 01803 Sector Services Product Millennial Net is a US-based developer of wireless sensor networking software, systems, and services. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

188

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

189

June 25 Webinar to Explore Net Metering  

Broader source: Energy.gov [DOE]

Register for the Net Metering webinar, which will be held on Wednesday, June 25, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

190

Addressing RESTful ADO.NET Data Services  

Science Journals Connector (OSTI)

If youre a developer, you probably want to learn everything about ADO.NET Data Services as quickly as possible so you can implement it in your company. However, as with most software development that is under...

2009-01-01T23:59:59.000Z

191

Definition of a 'Zero Net Energy' Community  

SciTech Connect (OSTI)

This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewables available within the community's built environment.

Carlisle, N.; Van Geet, O.; Pless, S.

2009-11-01T23:59:59.000Z

192

Introduction to ASP.NET Web API  

Science Journals Connector (OSTI)

The fact that you are reading this means you are interested in learning something about ASP.NET Web API (application programming interface). Perhaps you are ... to swim a bit deeper into the Web API waters; hence...

Tugberk Ugurlu; Alexander Zeitler; Ali Kheyrollahi

2013-01-01T23:59:59.000Z

193

AllNet: Ubiquitous Interpersonal Communication  

E-Print Network [OSTI]

AllNet: Ubiquitous Interpersonal Communication Edoardo Biagioni University of Hawaii at Mãnoa esb@hawaii (RSA, + AES for long msgs) ­ Then digitally signed I only decrypt if I can verify the signature

Biagioni, Edoardo S.

194

SIXTH FRAMEWORK PROGRAMME PRIORITY "ERA-NET"  

E-Print Network [OSTI]

Co-ordination Action to Establish a Hydrogen and Fuel Cell ERA-Net, Hydrogen Co- ordination Work.....................................................................34 4.5 Hydrogen conversion ­ Fuel cells......................................................................36 4.6 Application of hydrogen and fuel cell technology

195

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

net?zeroenergyhome (basedonthedefaultvalueswithSiemensSP75cellsinEnergyGaugesPVcalculation

Al-Beaini, S.

2010-01-01T23:59:59.000Z

196

Seismic Deployments and Experiments: PeruNet, GeoNet, and SeismoPhone.  

E-Print Network [OSTI]

Networked Sensing Seismic Deployments and Experiments:PeruNet: Installing a UCLA seismic line in Latin Americadata quality controll Seismic tomography to reveal slab

2009-01-01T23:59:59.000Z

197

Instructions for Submitting Document to OpenNet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Document to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't...

198

ARM - Measurement - Net broadband total irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsNet broadband total irradiance govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model

199

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

200

Chapter 17: Estimating Net Savings: Common Practices  

SciTech Connect (OSTI)

This chapter focuses on the methods used to estimate net energy savings in evaluation, measurement, and verification (EM&V) studies for energy efficiency (EE) programs. The chapter provides a definition of net savings, which remains an unsettled topic both within the EE evaluation community and across the broader public policy evaluation community, particularly in the context of attribution of savings to particular program. The chapter differs from the measure-specific Uniform Methods Project (UMP) chapters in both its approach and work product. Unlike other UMP resources that provide recommended protocols for determining gross energy savings, this chapter describes and compares the current industry practices for determining net energy savings, but does not prescribe particular methods.

Violette, D. M.; Rathbun, P.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SolarNet | Open Energy Information  

Open Energy Info (EERE)

SolarNet SolarNet Jump to: navigation, search Name SolarNet Place Healdsburg, California Zip 95448 Sector Solar Product Solar project developer with subsidiaries involved in the distribution, installation and financing of solar projects. Coordinates 38.610645°, -122.868834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.610645,"lon":-122.868834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Are net surfers ready for audio banners?  

Science Journals Connector (OSTI)

The internet is the fastest growing medium of all time. In this research, the potential effects of advertising music on net surfers' attitude and recall are investigated by means of an online experiment that took place on the internet, using audio banners and a banner without music, placed on existing websites. The results showed that, even though the net surfer of today is still stimulated insufficiently, from a musical point of view, in online advertisements, the presence of music, and particularly the presence of music with an expected tempo, has a positive affect on the click-through rate of the banner, as well as the attitude towards the advertising and the recall rate of the net surfer. The research aims to take a further step in the comprehension of online advertising music and its fundamental effects.

Caner Dincer

2008-01-01T23:59:59.000Z

203

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

and Operation in Zero-Net- Energy Buildings with Demandand Operation in Zero-Net-Energy Buildings with Demandhas launched the Zero-Net- Energy (ZNE) Commercial Building

Stadler, Michael

2009-01-01T23:59:59.000Z

204

XAFS Study of Phase-Change Recording Material Using Actual Media  

Science Journals Connector (OSTI)

The influence of the interface layer to the local structure for atomic arrangement of a GeBiTe phase-change material was investigated by using XAFS on the actual rewritable HD DVD...

Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro

205

E-Print Network 3.0 - actual del ultrasonido Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: : evolucin histrica y situacin actual. 8 l) Evaluacin de la capacidad de carga del Parque para los... Proyectos A lo largo del ao 2010 han estado vigentes 85...

206

E-Print Network 3.0 - anciano consideraciones actuales Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mitigacin de los efectos del cambio climtico y con... polticas De proseguir las emisiones de GEI a una tasa igual o superior a la actual, el calentamiento Source: Binette,...

207

E-Print Network 3.0 - actual terrestrial rabies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 56 innovati nNREL Advances a Unique Crystalline Silicon Solar Cell Summary: actually begins at another of the U.S. Department of Energy (DOE)...

208

E-Print Network 3.0 - actual del huemul Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 88 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

209

E-Print Network 3.0 - actual del franciscanismo Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 75 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

210

E-Print Network 3.0 - actual del control Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 30 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

211

E-Print Network 3.0 - actual del tabaquismo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 91 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

212

E-Print Network 3.0 - actual del no-acceso Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 73 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

213

E-Print Network 3.0 - actual del rabdomiosarcoma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 74 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

214

E-Print Network 3.0 - actual del estreptococo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 80 MTODO DE CENSO Y ESTIMA DE POBLACIN DEL PINZN AZUL DE GRAN CANARIA Summary: distribucin actual de la especie en Inagua, Ojeda y Pajonales. El...

215

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

216

Discrete Koenigs Nets and Discrete Isothermic Surfaces  

Science Journals Connector (OSTI)

......then any) of the four points , . (2) Let be...leads to These points satisfy the Moutard...circular net its lift into the light cone...Thereby conditions like points lie in a d-dimensional...then any) of the four points , . (2......

Alexander I. Bobenko; Yuri B. Suris

2009-01-01T23:59:59.000Z

217

.NET gadgeteer: a platform for custom devices  

Science Journals Connector (OSTI)

.NET Gadgeteer is a new platform conceived to make it easier to design and build custom electronic devices and systems for a range of ubiquitous and mobile computing scenarios. It consists of three main elements: solder-less modular electronic hardware; ...

Nicolas Villar; James Scott; Steve Hodges; Kerry Hammil; Colin Miller

2012-06-01T23:59:59.000Z

218

Rocky Mountain Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

219

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DocumentationReading netCDF, HDF, and GRIB Files DocumentationReading netCDF, HDF, and GRIB Files Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to Historical ARM Data More on Understanding and Finding ARM Data Data Quality Problem Reporting Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For

220

City of St. George - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of St. George - Net Metering City of St. George - Net Metering City of St. George - Net Metering < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Program Info State Utah Program Type Net Metering Provider City of St. George The St. George City Council adopted a [http://www.sgcity.org/wp/power/NetMeteringPolicy.pdf net-metering program for area utilities], including interconnection procedures, in October 2005.* The interconnection procedures include different requirements, based on system size, for systems up to 10 megawatts (MW). Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems. The net metering agreements currently available on the utility's web site only pertain to

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

222

New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New Jersey Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

223

Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

224

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

225

Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

226

Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Tennessee Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

227

Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

228

New York Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) New York Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

229

Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

230

Connecticut Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

231

Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

232

New Hampshire Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) New Hampshire Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

233

Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

234

Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

235

North Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

236

Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

237

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

238

California Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

239

Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

240

Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Pennsylvania Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

242

Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

243

Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Oregon Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

244

South Dakota Natural Gas LNG Storage Net Withdrawals (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

245

Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

246

Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Virginia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

247

Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

248

Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

249

Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

250

Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

251

South Carolina Natural Gas LNG Storage Net Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) South Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

252

Collective Impact for Zero Net Energy Homes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Collective Impact for Zero Net Energy Homes Collective Impact for Zero Net Energy Homes This presentation was delivered at the U.S. Department of Energy Building America meeting on...

253

Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania  

Science Journals Connector (OSTI)

Evaluation of three different ITN delivery strategies co-existing in Tanzania which enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population.

Rashid A Khatib; Gerry F Killeen; Salim MK Abdulla; Elizeus Kahigwa; Peter D McElroy; Rene PM Gerrets; Hassan Mshinda; Alex Mwita; S Patrick Kachur

2008-06-02T23:59:59.000Z

254

Porting the .NET Micro Framework A Microsoft Technical White Paper  

E-Print Network [OSTI]

Porting the .NET Micro Framework A Microsoft Technical White Paper December 10, 2007 AbstractShow-capable devices to port the .NET Micro Framework to new hardware platforms. This white paper introduces the .NET Micro Framework architecture with a view toward porting it to a new hardware platform. It then discusses

Hunt, Galen

255

heavy-snowfall area. The annual NEP (net ecosystem productiv-  

E-Print Network [OSTI]

Net includes temperate deciduous, coniferous and mixed forests. #12;FFPRI...FluxNet sites, Japan radiation radiation and air temperature was an important factor. In contrast, at the decidu- ous broad-leaved forests, Japan by Yoshikazu Ohtani Figure 1: Flux towers and forests in FFPRI FluxNet, Japan. The FFPRI Flux

256

Net Zero Energy Military Installations: A Guide to  

E-Print Network [OSTI]

Net Zero Energy Military Installations: A Guide to Assessment and Planning Samuel Booth, John;Technical Report Net Zero Energy Military NREL/TP-7A2-48876 Installations: A Guide to August 2010 Assessment .......................................................................................................................................1 1 Introduction: Net Zero Energy In DoD Context

257

NetGator: Malware Detection Using Program Interactive Challenges  

E-Print Network [OSTI]

NetGator: Malware Detection Using Program Interactive Challenges Brian Schulte, Haris Andrianakis, we present a scalable approach called Network Interrogator (NetGator) to detect network-based malware that attempts to exfiltrate data over open ports and protocols. NetGator operates as a transparent proxy using

Stavrou, Angelos

258

Estimating actual evapotranspiration for a coupled human environment system: sensitivity to drought  

E-Print Network [OSTI]

, the overall aim of this study is to quantify regional water consumption using remote sensing. More Remote sensing can estimate ET as a residual of the energy balance: Friction Velocity Roughness Length Aerodynamic Resistance Net radiation (Rn) Soil Heat Flux (G) T Hot & Cold Pixels Sensible Heat Flux (H

Hall, Sharon J.

259

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens  

E-Print Network [OSTI]

FishNet: Finding and Maintaining Information on the Net Paul De Bra 1 and Pim Lemmens Department whether links are still valid and whether documents they point to have been modified or moved. ffl Fish of a given set of (addresses of) documents. FishNet keeps track of the evolution of a domain of interest

De Bra, Paul

260

net zero | OpenEI Community  

Open Energy Info (EERE)

44 44 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229644 Varnish cache server net zero Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

262

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

263

Long Island Power Authority - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

264

Montana Electric Cooperatives - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Cooperatives - Net Metering Electric Cooperatives - Net Metering Montana Electric Cooperatives - Net Metering < Back Eligibility Commercial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Montana Program Type Net Metering Provider Montana Electric Cooperatives' Association The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or part by most of the 26 electric cooperatives in Montana. A map of the service areas of each of member cooperative is available on the MECA web site. To determine if a specific cooperative offers net metering, view the MECA

265

Farmington Electric Utility System - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

266

SCE&G - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SCE&G - Net Metering SCE&G - Net Metering SCE&G - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State South Carolina Program Type Net Metering In August 2009, the South Carolina Public Service Commission issued an order mandating net metering be made available by the regulated electric utilities; the order incorporates a net metering settlement signed by the individual interveners, the Office of Regulatory Staff and the three investor-owned utilities (IOUs). The order detailed the terms of net metering, including ownership of RECs, in South Carolina and standardized

267

Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach  

E-Print Network [OSTI]

We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central ($b\\leq 2.75$ fm) Pb+Pb/Au+Au collisions from $E_{lab}=2A$ GeV to $\\sqrt{s_{NN}}=200$ GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low $\\sqrt{s_{NN}}$.

Marlene Nahrgang; Tim Schuster; Michael Mitrovski; Reinhard Stock; Marcus Bleicher

2012-09-03T23:59:59.000Z

268

Gasoline direct injection: Actual trends and future strategies for injection and combustion systems  

SciTech Connect (OSTI)

Recent developments have raised increased interest on the concept of gasoline direct injection as the most promising future strategy for fuel economy improvement of SI engines. The general requirements for mixture preparation and combustion systems in a GDI engine are presented in view of known and actual systems regarding fuel economy and emission potential. The characteristics of the actually favored injection systems are discussed and guidelines for the development of appropriate combustion systems are derived. The differences between such mixture preparation strategies as air distributed fuel and fuel wall impingement are discussed, leading to the alternative approach to the problem of mixture preparation with the fully air distributing concept of direct mixture injection.

Fraidl, G.K.; Piock, W.F.; Wirth, M.

1996-09-01T23:59:59.000Z

269

A COGNITIVE-SYSTEMIC RECONSTRUCTION OF MASLOW'S THEORY OF SELF-ACTUALIZATION  

E-Print Network [OSTI]

A COGNITIVE-SYSTEMIC RECONSTRUCTION OF MASLOW'S THEORY OF SELF-ACTUALIZATION by Francis Heylighen1-order, cognitive-sys- temic framework. A hierarchy of basic needs is derived from the ur- gency of perturbations: material, cognitive and subjective. Material and/or cognitive incompetence during child- hood create

Toint, Philippe

270

SAMPLE GENERAL TERMS WHEN PURCHASING SERVICES* ACTUAL TERMS REQUIRED WILL BE DETERMINED BY CONTRACTS &  

E-Print Network [OSTI]

1 SAMPLE GENERAL TERMS WHEN PURCHASING SERVICES* ACTUAL TERMS REQUIRED WILL BE DETERMINED Contracts and Procurement (x4532) if you have questions regarding purchasing services. 1. Independent Status in an independent capacity and not as officers or employees or agents of the State of California. While Contractor

de Lijser, Peter

271

Grays Harbor PUD - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Grays Harbor PUD - Net Metering < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State District of Columbia Program Type Net Metering Provider Grays Harbor PUD Grays Harbor PUD's net-metering program differs slightly from what is required by Washington state law in that Grays Harbor PUD reimburses customers for net excess generation (NEG), at the end of each year, at 50% of the utility's retail rate. State law allows utilities to require customers to surrender NEG to the utility, without reimbursement, at the end of a 12-month billing cycle. Grays Harbor PUD has voluntarily gone

272

City of New Orleans - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of New Orleans - Net Metering City of New Orleans - Net Metering City of New Orleans - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Home Weatherization Program Info State Louisiana Program Type Net Metering Provider City Council Utilities Regulatory Office In May 2007, the New Orleans City Council adopted net-metering rules that are similar to rules adopted by the Louisiana Public Service Commission (PSC) in November 2005. The City Council's rules require Entergy New Orleans, an investor-owned utility regulated by the city, to offer net metering to customers with systems that generate electricity using solar energy, wind energy, hydropower, geothermal or biomass resources. Fuel

273

SaskPower Net Metering (Saskatchewan, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) SaskPower Net Metering (Saskatchewan, Canada) < Back Eligibility Commercial Agricultural Industrial Residential Savings Category Solar Buying & Making Electricity Program Info Funding Source SaskPower State Saskatchewan Program Type Net Metering Provider SaskPower Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our electrical grid. SaskPower will pay a one-time rebate, equivalent to 20% of eligible costs to a maximum payment of $20,000, for an approved and grid interconnected net metering project. The Net Metering Rebate is available to SaskPower, Saskatoon Light and Power and City of Swift Current electricity customers

274

Washington City Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington City Power - Net Metering Washington City Power - Net Metering Washington City Power - Net Metering < Back Eligibility General Public/Consumer Savings Category Solar Buying & Making Electricity Wind Program Info State Utah Program Type Net Metering Provider Washington City Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity using photovoltaic (PV) systems or wind-energy systems up to 10 kilowatts (kW) in capacity. At the customer's expense, the municipal utility will provide a single, bidirectional meter to measure the in-flow and out-flow of electricity at the customer's home. Systems are restricted to being sized to provide no more than 120% of the historic maximum monthly energy consumption of the

275

U.S. Virgin Islands - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

276

Murray City Power - Net Metering Pilot Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program Murray City Power - Net Metering Pilot Program < Back Eligibility Commercial General Public/Consumer Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Program Info State Utah Program Type Net Metering Provider Murray City Power Under a pilot program, Murray City Power offers net metering to customers that generate electricity using photovoltaic (PV), wind-electric or hydroelectric systems with a maximum capacity of 10 kilowatts (kW).* The utility will install and maintain a revenue meter capable of registering the bi-directional flow of electricity at the customer's facility. Any customer net excess generation (NEG) is carried over to the customer's next bill as a kilowatt-hour credit. Each April, any remaining NEG credits are

277

City of Brenham - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Brenham - Net Metering City of Brenham - Net Metering City of Brenham - Net Metering < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Nonprofit Residential Schools State Government Savings Category Bioenergy Wind Buying & Making Electricity Energy Sources Solar Program Info State Texas Program Type Net Metering Provider City of Brenham In September 2010, the City of Brenham passed an ordinance adopting net metering and interconnection procedures. Customer generators up to 10 megawatts (MW) are eligible to participate, although customer generators with systems 20 kilowatts (kW) or less are eligible for a separate rider and expedited interconnection. The utility will install and maintain a meter capable of measuring flow of electricity in both directions. Any net

278

Medicaid Implications for the Health Safety Net  

Science Journals Connector (OSTI)

...Medicaid helps to finance health and long-term care for more than 55 million low-income children and parents, people with severe disabilities, and elderly Americans, at an annual cost of nearly $300 billion to the federal and state governments. The program currently provides health coverage to 1 in 4 U.S... Medicaid is the nation's health safety net, but as Diane Rowland explains, its growing role and increasing costs in the face of state budgetary pressures and the federal deficit have made it a target for reform that could fundamentally reshape the ...

Rowland D.

2005-10-06T23:59:59.000Z

279

,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

280

,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode...

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Alaska Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

282

,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

283

,"U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","9302014" ,"Next...

284

,"New Jersey Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

285

,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

286

,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New...

287

Maritime Electric- Net Metering (Prince Edward Island, Canada)  

Broader source: Energy.gov [DOE]

In December 2005 The Renewable Energy Act and associated Regulations came into effect. A Government policy objective incorporated in the Act was the introduction of net metering for...

288

Transportation Security SensorNet: A Service Oriented Architecture  

E-Print Network [OSTI]

Transportation Security SensorNet: A Service Oriented Architecture for Cargo Monitoring Martin..................................................................................................................2 C. Service Oriented Architecture .................................................................4 B. Adobe - Service Oriented Architecture

Kansas, University of

289

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

290

,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","12...

291

Chapter 23: Estimating Net Savings: Common Practices. The Uniform...  

Energy Savers [EERE]

an understanding of the relationship between efficiency levels embedded in base-case load forecasts and the additional net reductions from programs. * Assessing the degree to which...

292

The Intersection of Net Metering and Retail Choice: An Overview...  

Office of Environmental Management (EM)

five different theoretical models describing different ways competitive suppliers and utilities provide net metering options for their customers. They then provided case studies to...

293

Deep Energy Efficiency and Getting to Net Zero  

Broader source: Energy.gov [DOE]

Presentation covers energy efficiency and getting to net zero and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

294

FY 2002 Generation Audited Accumulated Net Revenues, February...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 021003 February 2003 Bonneville Power Administration Power Business Line FY 2002 Generation Audited Accumulated Net Revenues for Financial- Based Cost Recovery Adjustment...

295

FY 2003 Generation Audited Accumlated Net Revenues, March 2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 2004 Bonneville Power Administration Power Business Line FY 2003 Generation (PBL) Audited Accumulated Net Revenues for Financial-Based Cost Recovery Adjustment Clause (FB...

296

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

297

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

SciTech Connect (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

298

The Multiple Peril Crop Insurance Actual Production History (APH) Insurance Plan  

E-Print Network [OSTI]

Economics, Professor and Extension Economist? Management, The Texas A&M System; and Extension Agricultural Economist, Kansas State University Agricultural Experiment Station and Cooperative Extension Service. The U.S. Dept. of Agriculture?s (USDA) Risk..., levels of coverage, price elections, applicable premium rates and subsidy amounts. The special provisions list program calendar dates and contain general and special statements that may further define, limit or modify coverage. MPCI?s Actual...

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-07T23:59:59.000Z

299

Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites  

SciTech Connect (OSTI)

.A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

2009-03-09T23:59:59.000Z

300

Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

Jantzen, C.M.; Peeler, D.K. [Westinghouse Savannah River Co., Aiken, SC (United States); Gilliam, T.M.; Bleier, A.; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1996-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout  

SciTech Connect (OSTI)

Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

1998-03-03T23:59:59.000Z

302

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Transactions and Zero-Safe Nets Roberto Bruni and Ugo Montanari Dipartimento di Informatica present an approach to the modeling of transactions based on zero-safe nets. They extend ordinary PT nets be uniformly adapted to zero-safe nets. In particular, we show that each zero-safe net has two associated PT

Bruni, Roberto

303

A Method for Correcting Catches of Fish Larvae For the Size Selection of Plankton Nets  

E-Print Network [OSTI]

corrected by determining the ratio between a stan- dard net and a test net with either zero extrusion or. . zero avoidance. However, when avoidance of the test net with zero extrusion or when extrusion through test net with zero avoidance differs from the stan- dard net, then the usual method of correcting

304

Department of Defense Net Assessment Summer 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Randall Luthi, President www.noia.org Randall Luthi, President www.noia.org National Ocean Industries Association The Future of OCS After Macondo 2011 EIA Conference Washington, DC April 26, 2011 NOIA represents the full spectrum of U.S. businesses that produce energy offshore Last year's view through the crystal ball was far different than today's * A year ago, the off shore oil and gas industry was poised to come out of the economic doldrums * Spurred by earlier deep water discoveries, the future looked promising * The Obama Administration actually proposed opening new areas on the Atlantic coast for exploration Deepwater Horizon April 20, 2010 Washington's Reaction and Response Images Compel

305

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

and Energy Management in Zero-Net-Energy Buildings Michaeland Energy Management in Zero-Net-Energy Buildings 1 Michaelgoal of achieving zero-net-energy commercial buildings (

Stadler, Michael

2010-01-01T23:59:59.000Z

306

ARM - Reading netCDF, HDF, and GRIB Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataReading netCDF, HDF, and GRIB Files govDataReading netCDF, HDF, and GRIB Files Reading netCDF, HDF, and GRIB Files netCDF Files Most ARM data are stored in netCDF format. This format allows for the definition of data fields and storage of operational information in the header of the file. All ARM netCDF files are in UTC time and represent time as "seconds since January 1, 1970,'' which is called the "epoch time.'' For example, an epoch time of 1 means "Thu Jan 1 00:00:01 1970''; an epoch time of 992794875 is "Sun Jun 17 16:21:15 2001.'' To learn more about how to convert epoch time, see Time in ARM netCDF Data Files. More information on the netCDF format and tools is available from UCAR at http://www.unidata.ucar.edu/packages/netcdf/index.html. HDF Files Some data files also contain one or more measurements distributed over a

307

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman  

E-Print Network [OSTI]

Shapes of geodesic nets. Alexander Nabutovsky and Regina Rotman August 14, 2006 Abstract Let M n infinitely many geometrically distinct geodesic nets on this manifold. We will also show that either the length of a shortest pe­ riodic geodesic is bounded in terms of the volume of a manifold M n

Nabutovsky, Alexander

308

Bayes Net Toolbox practical Charles Fox, University of Sheffield  

E-Print Network [OSTI]

this network (which is a Directed Acyclic graph, or 'DAG'), we create an adjacency matrix: N = 4 %the number of nodes in the network dag = zeros(N,N) %connectivity matrix for the net (directed acyclic graph) C = 1 matlab >>cd bayesnet >>cd FullBNT1.0.4/ >>addpath(genpathKPM(pwd)) Creating your first Bayes net

Barker, Jon

309

CP-nets and Nash equilibria Krzysztof R. Apt  

E-Print Network [OSTI]

CP-nets and Nash equilibria Krzysztof R. Apt ¢¡ £¤¡ ¥ , Francesca Rossi ¦ , and Kristen Brent, the Netherlands Department of Pure and Applied Mathematics, University of Padova, Italy Abstract. CP instead of payoff functions. We show then that the optimal outcomes of a CP-net are ex- actly the Nash

Rossi, Francesca

310

Translating Orc Features into Petri nets and the Join Calculus #  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus # Roberto Bruni 1 , Hern@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

311

Translating Orc Features into Petri nets and the Join Calculus  

E-Print Network [OSTI]

Translating Orc Features into Petri nets and the Join Calculus Roberto Bruni1, Hern´an Melgratti2@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk Abstract. Cook and Misra's Orc is an elegant language the key novel features of Orc by comparing it with variations of Petri nets. The comparison shows that Orc

Bruni, Roberto

312

ORIGINAL ARTICLE Quantification of net primary production of Chinese  

E-Print Network [OSTI]

ORIGINAL ARTICLE Quantification of net primary production of Chinese forest ecosystems with spatial Abstract Net primary production (NPP) of terrestrial ecosystems provides food, fiber, construction materials, and energy to humans. Its demand is likely to increase substantially in this century due

Zhang, Tonglin

313

Artificial Neural Nets and Cylinder Pressures in Diesel  

E-Print Network [OSTI]

Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis * Gopi O diagnosis system for a diesel engine, which uses artificial neural nets to identify faults on the basis­temporal representation of cylinder pressures. Draw cards and power cards are regularly assessed for the condition

Sharkey, Amanda

314

HYPER-I-NET: European Research Network on Hyperspectral Imaging  

E-Print Network [OSTI]

sensor design and cal- ibration/validation [3], [4] to advanced data processing [5]­ [8], and science-I-NET), a recently started Marie Curie Research Training Network. The project is designed to build-I-NET is at the confluence of heterogeneous disciplines, such as sensor design including optics and electronics, aerospace

Plaza, Antonio J.

315

Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?  

E-Print Network [OSTI]

from the gas balance at night (when GPP is zero) and then GPP is calculated from Eq. 2. This gas COMMENTARY Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Gary M. Lovett ABSTRACT Net ecosystem production (NEP), defined as the difference between gross primary production

Berkowitz, Alan R.

316

Petri nets for modelling metabolic pathways: a survey  

Science Journals Connector (OSTI)

In the last 15 years, several research efforts have been directed towards the representation and the analysis of metabolic pathways by using Petri nets. The goal of this paper is twofold. First, we discuss how the knowledge about metabolic pathways can ... Keywords: Metabolic pathways, Petri nets, Qualitative and quantitative analysis, Tools

Paolo Baldan; Nicoletta Cocco; Andrea Marin; Marta Simeoni

2010-12-01T23:59:59.000Z

317

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

318

NREL: TroughNet - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Resources Data and Resources This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and component testing Also see our publications on parabolic trough power plants. Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources Industry Partners Power Plant Data Solar Data Models & Tools System & Component Testing FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

319

NREL: TroughNet - Email Updates - Subscribe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Email Updates - Subscribe Email Updates - Subscribe Subscribe to receive email updates about parabolic trough technology, including: Status on R&D and deployment projects Workshops and other events New publications New data and resources. Please provide and submit the following information. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

320

Austin Energy - Net Metering (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) Austin Energy - Net Metering (Texas) < Back Eligibility Commercial Savings Category Bioenergy Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State Texas Program Type Net Metering Provider Austin Energy Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of renewable includes solar*, wind, geothermal, hydroelectric, wave and tidal energy, biomass, and biomass-based waste products, including landfill gas. Systems must be used primarily to offset a portion or all of a customer's on-site electric load. Metering is accomplished using a single meter capable of registering the

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Energy Software Tools Directory: Degree Day .Net  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degree Day .Net Degree Day .Net Logo for Degree Day.net Website that generates heating and cooling degree days for locations worldwide. Degree days are commonly used in calculations relating to building energy consumption. Once you have chosen a weather station (of which there are thousands available) and specified the degree days you want (e.g. what base temperature, do you want them broken down in daily, weekly or monthly format), Degree Days.net will calculate your degree days, and give them to you as a CSV file that you can open directly in a spreadsheet. Screen Shots Keywords degree days, HDD, CDD Validation/Testing A comprehensive suite of automated tests have been written to test the software. Expertise Required Degree Days.net makes it very easy to specify and generate degree days, so

322

Notices F. NTIA Consultations With FirstNet on  

Broader source: Energy.gov (indexed) [DOE]

6 Federal Register 6 Federal Register / Vol. 77, No. 162 / Tuesday, August 21, 2012 / Notices F. NTIA Consultations With FirstNet on the State and Local Implementation Grant Program Requirements As previously discussed, the Act directs NTIA to consult with FirstNet to establish the requirements of the State and Local Implementation Grant Program not later than 6 months after the date of the Act's enactment, or by August 22, 2012. The Act also required that FirstNet be established no later than August 20, 2012. The Act's framework, which essentially placed the creation of FirstNet and the development of the grant program requirements on parallel tracks, proved challenging for NTIA as it attempted to fulfill the statutory mandate to consult with FirstNet in establishing the State and Local

323

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) |  

Broader source: Energy.gov (indexed) [DOE]

Scotia Energy Electricity - Net Metering Program (Nova Scotia, Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) Scotia Energy Electricity - Net Metering Program (Nova Scotia, Canada) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Multi-Family Residential Residential Schools Savings Category Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Nova Scotia Program Type Net Metering Provider Nova Scotia Power, Inc Nova Scotia Power Inc. Net Metering allows residential and commercial customers to connect small, renewable energy generating units to the provincial power grid. Generating units that produce renewable energy such as wind, solar, small hydro or biomass can be added to homes or businesses with the addition of a bi-directional meter. This meter monitors the electricity generated by the

324

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Achieving UC Merced's Triple Zero Commitment: Zero Net Energy, Zero Landfill Waste, and Zero Net Greenhouse Gas Emissions by 2020 Speaker(s): John Elliott Date: May 14, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Andrea Mercado John will highlight sustainability efforts at UC Merced, particularly with respect to its Triple Zero Commitment to zero net energy, zero landfill waste, and climate neutrality by 2020. From a technical perspective, the campus zero net energy strategy relies primarily on energy efficiency, solar energy, and plasma gasification, along with various smart grid strategies. Zero waste efforts currently emphasize composting and control of purchasing to simplify recycling efforts. Campus efforts are only beginning to address climate neutrality beyond initial attainment of zero

325

Definition of a Zero Net Energy Community | Open Energy Information  

Open Energy Info (EERE)

Definition of a Zero Net Energy Community Definition of a Zero Net Energy Community Jump to: navigation, search Name Net Zero Agency/Company /Organization National Renewable Energy Laboratory Partner Nancy Carlisle, Otto Van Geet, Shanti Pless Focus Area Energy Efficiency, Buildings, People and Policy Phase Determine Baseline, Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2009/11/01 Website http://www.nrel.gov/docs/fy10o References Definition of a 'Zero Net Energy' Community[1] Overview This document provides a definition for a net zero-energy community. A community that offsets all of its energy use from renewable energy available within the community's built environment. It assists a community also by showing the importance of this classification by encouraging

326

Fact #837: September 8, Gap between Net Imports and Total Imports...  

Broader source: Energy.gov (indexed) [DOE]

7: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Fact 837: September 8, Gap between Net Imports and Total Imports of Petroleum is Widening Net...

327

A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)  

E-Print Network [OSTI]

Rita Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay,Jail Creeps Towards Zero Net Energy (ZNE) Chris Marnay Jail is unlikely to meet zero net energy in the near future.

Marnay, Chris

2011-01-01T23:59:59.000Z

328

E-Print Network 3.0 - adding wire nets Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of applications. What is the 1-Wire Net? The 1-Wire net... architecture that uses a resistor pull-up to a nominal 5V supply at the master. A 1-Wire net-based system... interfaces...

329

DIAGNOSING, BENCHMARKING AND TRANSFORMING THE LEED CERTIFIED FIU SIPA BUILDING INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB)  

E-Print Network [OSTI]

, the energy score is not benchmarked against the AIA and DOE 2030 Challenge to make buildings carbon-neutral INTO A NET-ZERO-ENERGY BUILDING (NET-ZEB) Thomas Spiegelhalter Florida International University-Department of Construction Management Miami, FL 33174 e-mail: yckang@fiu.edu Nezih Pala FIU- Department of Electrical

Pala, Nezih

330

NetSeed User Manual NetSeed is a toolkit for identifying the seed set of networks, available as an online tool  

E-Print Network [OSTI]

of Washington and is available online at http://elbo.gs.washington.edu/tools/NetSeed/. NetSeed>Web NetSeed>Web allows researchers to calculate the seed set of a network online and requires only a web browser. The NetSeed>Web and functional analysis options. Overview of use To determine the seed set of a network using NetSeed>Web

Borenstein, Elhanan

331

ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM  

SciTech Connect (OSTI)

Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: ? Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. ? Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

Martino, C.

2014-05-28T23:59:59.000Z

332

Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum...  

Broader source: Energy.gov (indexed) [DOE]

6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing Fact 736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The...

333

NREL: News - NREL and Army Validate Energy Savings for Net Zero...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a net zero energy initiative that includes all of its installations across the state. Fort Bliss (Texas) and Fort Carson (Colo.) are piloting integrated net zero energy, water,...

334

Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59 19.72 20.97 22.34 23.81 25.26 26.72 28.22 29.87 31.51 33.13 34.82 36.61 38.48 40.48

335

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

336

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

337

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

338

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

339

File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Theoretical vs Actual Data Lesson Plan .pdf Jump to: navigation, search File File history File usage Metadata File:Theoretical vs Actual Data Lesson Plan .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 257 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:33, 3 January 2014 Thumbnail for version as of 09:33, 3 January 2014 1,275 × 1,650, 2 pages (257 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula

340

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08 21.50 21.98 22.44 22.94 23.50 24.12 AEO 1996 1994 16.81 16.98 17.37 17.98 18.61 19.27 19.92 20.47 20.97 21.41 21.86 22.25 22.61 22.97 23.34 23.70 24.08

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste  

SciTech Connect (OSTI)

This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included caustic leaching for Al removal solids crossflow filtration through the cell unit filter (CUF) stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF oxidative leaching using sodium permanganate for removing Cr solids filtration with the CUF follow-on solids washing and filtration through the CUF ion exchange processing for Cs removal evaporation processing of waste stream recycle for volume reduction combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

2009-01-01T23:59:59.000Z

342

PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE  

SciTech Connect (OSTI)

Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

2011-11-01T23:59:59.000Z

343

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

344

,"Weekly Blender Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Blender Net Production" Blender Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Blender Net Production",20,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodb_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodb_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:19 AM"

345

,"Weekly Refiner Net Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Net Production" Refiner Net Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Refiner Net Production",21,"Weekly","12/13/2013","6/4/2010" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","pet_pnp_wprodr_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_wprodr_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 10:39:21 AM"

346

QuarkNet Workshop: Beyond Human Error  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Error Human Error QuarkNet Workshop for High School Science Teachers 8:30 am to 4:00 pm, August 1 -3, 2012 at Fermi National Accelerator Laboratory This was a three-day workshop for high school science teachers. Measurement and error are key ingredients for all science applications. Both align with the Next Generation Science Standards, but many high school students struggle to understand the importance of error analysis and prevention. Over the three days we examined multiple experiments going on at Fermilab and discussed the ways that scientists take measurements and reduce error on these projects. Participants met and worked with scientists from Fermilab and University of Chicago to look at how error analysis takes place at Fermilab and bridged those ideas into high school classes. Teachers discussed lesson plans available at Fermilab and their own methods of teaching error analysis. Additionally, participants heard from high school students who participated in summer research as they presented their findings and linked students' learning back to the teachers' understanding of error recognition and analysis.

347

Largest American Net Zero Energy Campus Community Embraces Clean Energy |  

Broader source: Energy.gov (indexed) [DOE]

Largest American Net Zero Energy Campus Community Embraces Clean Largest American Net Zero Energy Campus Community Embraces Clean Energy Largest American Net Zero Energy Campus Community Embraces Clean Energy April 9, 2012 - 4:10pm Addthis Based on its sustainable design, UC Davis' new net zero energy community is designed to generate as much energy as it consumes. | Video courtesy of the University of California at Davis. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? UC Davis is planning to incorporate a biodigester -- a source of renewable energy -- into plans for its new housing development. The biodigester will turn organic waste into electricity. The organic waste is burned and produces biogas that a turbine converts into electricity. A new housing development on the University of California at Davis (UC

348

Grid Net, Inc. Comments to DOE RFI 2010-11129  

Broader source: Energy.gov (indexed) [DOE]

Net, Inc. Comments to DOE RFI 2010-11129 2010 Net, Inc. Comments to DOE RFI 2010-11129 2010 DOE RFI 2010-11129 NBP RFI: Communications Requirements Titled "Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy" Submitted by Grid Net, Inc. July 12, 2010 Attention: Maureen C. McLaughlin, Senior Legal Advisor to the General Counsel Grid Net, Inc. Comments to DOE RFI 2010-11129 2010 Summary and Highlights Thank you for the opportunity to provide comments for the Department of Energy RFI 2010-11129, our detailed responses to your questions are below for your consideration. The key points we'd like to get

349

Generation of a Consistent Terrestrial Net Primary Production Data Set  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation of a Consistent Terrestrial Net Generation of a Consistent Terrestrial Net Primary Production Data Set Final Report NASA Reference Number TE/99-0005 May 3, 2001 Richard J. Olson and Jonathan M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6407 This project, "Generation of a Consistent Terrestrial Net Primary Production Data Set", is a coordinated, international effort to compile global estimates of terrestrial net primary productivity (NPP) for parameterization, calibration, and validation of NPP models. The project (NASA Reference Number TE/99-0005) was funded by the National Aeronautics and Space Administration (NASA), Office of Earth Science, Terrestrial Ecology Program under Interagency Agreement number 2013-M164-A1, under

350

Estimated Annual Net Change in Soil Carbon per US County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimated Annual Net Change in Soil Carbon per US County These data represent the estimated net change (Megagram per year) in soil carbon due to changes in the crop type and tillage intensity. Estimated accumulation of soil carbon under Conservation Reserve Program (CRP)lands is included in these estimates. Negative values represent a net flux from the atmosphere to the soil; positive values represent a net flux from the soil to the atmosphere. As such, soil carbon sequestration is represented here as a negative value. The method of analysis is based on empirical relationshipsbetween land management and soil carbon. The method for modeling land management and estimating soil carbonchange, used to generate these data, is described in the following publication:

351

City of Danville - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Danville - Net Metering Danville - Net Metering City of Danville - Net Metering < Back Eligibility Commercial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Program Info State Virginia Program Type Net Metering For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their renewable fuel generator to the Utility's facilities. Renewable fuel generators with capacity over 25 kW are required to submit forms no later than 60 days prior to planned interconnection. The Utility will review and determine whether the requirements for Interconnection have been met. More information on this

352

Community Renewable Energy Success Stories Webinar: Net Zero Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Zero Energy Net Zero Energy Communities (text version) Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories - Net Zero Energy Communities," originally presented on October 16, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Ken Kelly: Good afternoon, and welcome to today's webinar sponsored by the U.S. Department of Energy. This is Ken Kelly, and Courtney Kendall broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and logon. So while we wait, Courtney was going to go over some of the logistics and then we'll begin with today's webinar.

353

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

354

Fermilab | Newsroom | Press Releases | September 27, 2012: QuarkNet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notre Dame were two of the initial QuarkNet centers. Marge Bardeen, head of the Fermilab Education Office, started the Fermilab center 15 years ago. Her vision was to inspire and...

355

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

356

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

357

Petri Net Based Research of Home Automation Communication Protocol  

Science Journals Connector (OSTI)

The popularity of home automation has been increasing greatly in recent years. ... distributed, uncertain or randomized protocol model) of home automation, many questions concerned. For instance, is ... net to de...

Guangxuan Chen; Yanhui Du; Panke Qin; Jin Du

2013-01-01T23:59:59.000Z

358

October 16, 2012, Webinar: Net-Zero-Energy Communities  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view...

359

Transformation Nets -A Runtime Model for Transformation Languages  

E-Print Network [OSTI]

Transformation Nets - A Runtime Model for Transformation Languages Johannes Schoenboeck Institute transformation languages. Although numerous approaches are available, they lack convenient facilities for supporting debugging and understand- ing of the transformation logic. This is not least because

Hochreiter, Sepp

360

Robust manufacturing system design using petri nets and bayesian methods  

E-Print Network [OSTI]

robust design configuration, designers need accurate methods to model various uncertainties and efficient ways to search for feasible configurations. The dissertation work uses a multi-objective Genetic Algorithm (GA) and Petri net based modeling...

Sharda, Bikram

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

362

Predicted and actual productions of horizontal wells in heavy-oil fields  

Science Journals Connector (OSTI)

This paper discusses the comparison of predicted and actual cumulative and daily oil production. The predicted results were obtained from the use of Joshi's equation, wherein, the effects of anisotropy and eccentricity were included. The cumulative production obtained from the use of equations developed by Borisov, Giger, Renard and Dupuy resulted in errors in excess of 100%, thus, they were not considered applicable for predicting cumulative and daily flows of heavy oils in horizontal wells. The wells considered in this analysis varied from 537 to 1201 metres with corresponding well bores of 0.089 to. 0.110 m. Using Joshi's equation, the predicted cumulative oil-production was within a 20% difference for up to 12 months of production for long wells and up to 24 months for short wells. Short wells were defined as those being under 1000 m.

Peter Catania

2000-01-01T23:59:59.000Z

363

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

364

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

365

Submitted to ApJ Letters, June 29, 2005 Are Presolar Silicon Carbide Grains from Novae Actually from Supernovae?  

E-Print Network [OSTI]

Submitted to ApJ Letters, June 29, 2005 Are Presolar Silicon Carbide Grains from Novae Actually stellar nucleosynthesis and mixing. The best-studied presolar phase, silicon carbide (SiC), exhibits

Nittler, Larry R.

366

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network [OSTI]

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

367

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng  

E-Print Network [OSTI]

Modeling Mobile Agent Systems with High Level Petri Nets Dianxiang Xu and Yi Deng School-based approach for architectural modeling of mobile agent systems. Agent template (net) is proposed to model as a component, consisting of mobility environment (system net), agent templates (agent nets), and internal

368

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

, the Elastic Net can yield a sparse esti- mate with more than n non-zero weights (Efron et al., 2004). One canExploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander Lorbert- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane- ously performs

Blei, David M.

369

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari  

E-Print Network [OSTI]

Executing Transactions in Zero-Safe Nets ? Roberto Bruni and Ugo Montanari Dipartimento di in distributed systems by using zero-safe nets, which extend pt nets with a simple mechanism for transition synchronization. In particular, starting from the zero-safe net that represents a certain system, we give

Bruni, Roberto

370

Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net  

E-Print Network [OSTI]

. Furthermore, un- like the Lasso, the Elastic Net can yield a sparse esti- mate with more than n non-zero477 Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net Alexander to regression regulariza- tion called the Pairwise Elastic Net is pro- posed. Like the Elastic Net, it simultane

Low, Steven H.

371

Extending the Zero-Safe approach to Coloured, Recon gurable and Dynamic Nets ?  

E-Print Network [OSTI]

Extending the Zero-Safe approach to Coloured, Recon#12;gurable and Dynamic Nets ? Roberto Bruni their execution). Starting from zero-safe nets | a well-studied extension of Place/Transition Petri nets | we show how the zero-safe approach can be smoothly applied to a hierarchy of nets of increasing

Bruni, Roberto

372

Instructions for Submitting Documents to OpenNet  

Broader source: Energy.gov (indexed) [DOE]

Submitting Documents to OpenNet Submitting Documents to OpenNet Requesting an account to submit documents to OpenNet If you plan to load documents to OpenNet, you must have an OpenNet Logon Name and Password. If you don't already have one, go to the OpenNet web site at: http://www.osti.gov/opennet. 1. Click on the LOGIN link on the top right. 2. Read the information and check the "I agree..." box. 3. Click on the "Request data submission access..." link at the bottom of the page. 4. Fill out the form. One of the required fields is the Site Input Code field. This field provides a drop down list of DOE Sites. All users with the same Site Input Code can edit all the records for that site. If your Site Code is not in the list or you need a site code more specific to your office than those listed,

373

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

374

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

375

Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts  

SciTech Connect (OSTI)

In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles. Using data collected from Volts enrolled in The EV Project, this paper compares the real-world UF of two groups of Chevrolet Volts to estimated UF's based on J2841. The actual observed fleet utility factors (FUF) for the MY2011/2012 and MY2013 Volt groups studied were observed to be 72% and 74%, respectively. Using the EPA CD ranges, the method prescribed by J2841 estimates a FUF of 65% and 68% for the MY2011/2012 and MY2013 Volt groups, respectively. Volt drivers achieved higher percentages of distance traveled in EV mode for two reasons. First, they had fewer long-distance travel days than drivers in the national travel survey referenced by J2841. Second, they charged more frequently than the J2841 assumption of once per day - drivers of Volts in this study averaged over 1.4 charging events per day. Although actual CD range varied widely as driving conditions varied, the average CD ranges for the two Volt groups studied matched the EPA CD range estimates, so CD range variation did not affect FUF results.

John Smart; Thomas Bradley; Stephen Schey

2014-04-01T23:59:59.000Z

376

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006.  

E-Print Network [OSTI]

Jordan Boyd-Graber, Christiane Fellbaum, Daniel Osherson, and Robert Schapire. Adding Dense, Weighted, Connections to WordNet. Proceedings of the Global WordNet Conference, 2006. @inproceedings{Boyd of the Global {WordNet} Conference}, Author = {Jordan Boyd-Graber and Christiane Fellbaum and Daniel Osherson

Boyd-Graber, Jordan

377

Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado  

SciTech Connect (OSTI)

To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

378

ARM - Time in ARM NetCDF Files  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govDataTime in ARM NetCDF Files govDataTime in ARM NetCDF Files Page Contents Introduction Time Zones Epoch Time Time Variables Conversion Examples and Hints Perl Example C Example Fortran Example IDL Example Notes on Generating Epoch Times Contact Information Time in ARM NetCDF Files Introduction This document explains most of the issues related to the use of time in ARM netCDF data files. Time Zones All ARM netCDF files are in UTC. Note that this has some implications for solar-based data; we tend to split our files at midnight, but the sun is still up at 0000 UTC at SGP in the late spring and summer, and all the time at TWP. This means a given solar arc may be broken across two different files. That's just the way it is; using local time in ARM files would have been a bigger mess. Note that splitting files at 0000 UTC is not an ARM standard, and many

379

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

380

Historic Railroad Building Goes Net Zero | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero Historic Railroad Building Goes Net Zero July 29, 2010 - 5:16pm Addthis Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Richmond and Chesapeake Bay Railway Car Barn will serve as an example of green building in the community. | Photo by Julie Wescott Weissend Lindsay Gsell What are the key facts? Former electric railroad barn uses less energy than it generates. Historic building has solar and geothermal energy systems. Construction company receiving federal and state tax credits. Dovetail Construction Company saw a unique challenge - and opportunity - with a neglected 1880s-era Richmond and Chesapeake Bay Railway Car Barn.

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

382

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

383

A modified greedy channel router with net assignment at the left edge  

E-Print Network [OSTI]

the vertical constraint graph is updated by the algorithm. At the first iteration, since netl, net3, and net5 end at zone 1, and net6 starts from zone 2, L becomes ( 1, 3, 5 ) and R becomes ( 6 ) at step s3 and s4 respectively. 15 TABLE I. Zone..., 7 5, 6 9 5, 6, 9 3, 8 (c) 4, 10 - - Track 1 1 7 ? ? Track 2 5, 6, 9 - - Track 3 Track4-- 2 3, 8 - - Track 5 Fig. 8. Illustration of algorithm. 17 At step s5, either netl and net6 or net3 and net6 can not be merged because the merging...

Oh, Chuldong

2012-06-07T23:59:59.000Z

384

Demand response compensation, net Benefits and cost allocation: comments  

SciTech Connect (OSTI)

FERC's Supplemental Notice of Public Rulemaking addresses the question of proper compensation for demand response in organized wholesale electricity markets. Assuming that the Commission would proceed with the proposal ''to require tariff provisions allowing demand response resources to participate in wholesale energy markets by reducing consumption of electricity from expected levels in response to price signals, to pay those demand response resources, in all hours, the market price of energy for such reductions,'' the Commission posed questions about applying a net benefits test and rules for cost allocation. This article summarizes critical points and poses implications for the issues of net benefit tests and cost allocation. (author)

Hogan, William W.

2010-11-15T23:59:59.000Z

385

Net?exchange analysis of the Earth greenhouse effect increase  

Science Journals Connector (OSTI)

In this paper we propose an analysis of the greenhouse effect on the basis of a net?exchange formulation for clear sky atmospheres. This formulation allows access to exchanges beetwen the differents elements of the atmosphere (gas layers the ground and space). When the greenhouse gas concentration increases we first use a simple configuration to analyse the variations of analytic monochromatic net exchange rates. The same type of analysis is then applied to the Earth atmosphere for a clear?sky middle latitude summer configuration with an increase in water vapour of 20% at all altitudes.

Nicolas Meilhac; Jean?Louis Dufresne; Vincent Eymet; Richard Fournier

2009-01-01T23:59:59.000Z

386

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Targeting Net Zero Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy Laboratory Kate Anderson, Tony Markel, Mike Simpson, John Leahey, Caleb Rockenbaugh, Lars Lisell, Kari Burman, and Mark Singer October 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

387

The Building Energy Report Card is used to compare the actual annual energy consumption of buildings to a  

E-Print Network [OSTI]

The Building Energy Report Card is used to compare the actual annual energy consumption Thermal Unit (Btu). For convenience, this annual energy consumption is expressed as thousands of Btus (i of buildings to a State of Minnesota "target." This target represents the amount of energy that would

Ciocan-Fontanine, Ionut

388

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project  

E-Print Network [OSTI]

General Project Sequence The following are typical steps on many projects. Actual required steps may vary from project to project depending upon the scope, complexity, and specific features. Time periods indicated will vary depending on the nature of the project and needs of the user group

Mather, Patrick T.

389

An experimental and computational leakage investigation of labyrinth seals with rub grooves of actual size and shape  

E-Print Network [OSTI]

to that of a modified convex wall geometry. The test facility is a 33 times enlargement of the actual seal. The pressure drop leakage rate and flow visualization digital images for the standard geometry seal were measured at various Reynolds numbers...

Ambrosia, Matthew Stanley

2001-01-01T23:59:59.000Z

390

GEO NET Umweltconsulting GmbH | Open Energy Information  

Open Energy Info (EERE)

GEO NET Umweltconsulting GmbH GEO NET Umweltconsulting GmbH Jump to: navigation, search Name GEO-NET Umweltconsulting GmbH Place Hannover, Germany Zip 30161 Sector Wind energy Product Undertakes environmental planning and consulting in wind and other sectors. Part of the GEO-NET interdisciplinary technology-oriented research, consulting and service agency. Coordinates 52.372278°, 9.738157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.372278,"lon":9.738157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Massachusetts Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (Million Cubic Feet) Net Withdrawals (Million Cubic Feet) Massachusetts Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -3,383 2,585 -1,618 -700 2,734 45 593 -2,043 -1,644 -6,447 1990's 308 -3,967 -1,844 -2,368 -6,820 -3,134 -5,364 -3,517 -7,243 -2,447 2000's -7,518 350 767 4,359 1,584 3,129 156 -1,560 -1,694 -1,221 2010's -963 -753 -1,384 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Net Withdrawals of Liquefied Natural Gas from Storage Massachusetts Liquefied Natural Gas Additions to and Withdrawals

392

Using GeoWordNet for Geographical Information Retrieval  

E-Print Network [OSTI]

- ambiguated and assigned their coordinates on the world map. Documents are first searched for by means of a term-based search method, and then re-ranked according to the geographical information. The results knowledge at keyword level in the Lucene1 search engine, focusing on the use of the WordNet [3] ontology

Rosso, Paolo

393

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem  

E-Print Network [OSTI]

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

White, Luther

394

AVOIDANCE OF TOWED NETS BY THE EUPHAUSIID NEMATOSCELIS MEGALOPS 1  

E-Print Network [OSTI]

problem. Avoidance is variable, depending upon such factors as time of day; light regime; size, shape to the approach of the net at a greater distance. Other theoretical predictions which depend upon the assumption and Holland 1968; Wiebe 1971). This factor is perhaps the most im- portant determinant of the accuracy of abun

395

Network Planning Aspects of the HeliNet Telecommunications Architecture  

E-Print Network [OSTI]

Network Planning Aspects of the HeliNet Telecommunications Architecture Zs. Pándi*°, T. V. Do*, Cs. Király* *Department of Telecommunications, Budapest University of Technology and Economics Magyar Tudósok of a telecommunication infrastructure based on HAVE (High Altitude Very long Endurance) unmanned solar aerodynamic

Do, Tien Van

396

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network [OSTI]

1 THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY) Hosein Shapouri*, U.S. Department of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol to produce ethanol and byproducts. The results indicate that corn ethanol has a positive energy balance, even

Patzek, Tadeusz W.

397

Ladder Metamodeling & PLC Program Validation through Time Petri Nets  

E-Print Network [OSTI]

Ladder Metamodeling & PLC Program Validation through Time Petri Nets Darlam Fabio Bender1,2, Benoît for Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial computer used to automate the sequential, state-dependent logic in- herent in the program design [1]. Not found bugs in PLC programs

Paris-Sud XI, Université de

398

Transportation Security SensorNet: a service-oriented  

E-Print Network [OSTI]

Transportation Security SensorNet: a service-oriented architecture for cargo monitoring Martin solution of developing a service-oriented architecture (SOA) for cargo monitoring and its individual and handovers. Tracking trade is difficult to manage in different formats and legacy applications Web services

Kansas, University of

399

Zero-Safe Nets: Modeling Transactions via Transition Synchronization  

E-Print Network [OSTI]

Montanari Dipartimento di Informatica, Universit#18;a di Pisa, Italia P/T Petri nets [Rei85] are unanimously- visible to external observers, while stable markings, which just consist of tokens in stable places, de#12 at some stable marking, evolves through hidden states (i.e., markings with some tokens in zero places

Bruni, Roberto

400

The Net Environmental Effects of Carbon Dioxide Reduction Policies  

E-Print Network [OSTI]

of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Predicting Daily Net Radiation Using Minimum Climatological Data1  

E-Print Network [OSTI]

Predicting Daily Net Radiation Using Minimum Climatological Data1 S. Irmak, M.ASCE2 ; A. Irmak3 ; J for predicting daily Rn have been widely used. However, when the paucity of detailed climatological data with National Weather Service climatological datasets that only record Tmax and Tmin on a regular basis. DOI: 10

402

Sam, Booth, Targeting Net Zero DoD Project Review  

Broader source: Energy.gov (indexed) [DOE]

15,000 20,000 Square F eet 0 500 1,000 1,500 2,000 O f B uildings 0 100 200 300 400 EUI ---60.00 ---40.00 ---20.00 0.00 20.00 40.00 60.00 % C hange E UI 2 0032010 Net zero...

403

RESEARCH Open Access Spatial variation of net radiation and its  

E-Print Network [OSTI]

RESEARCH Open Access Spatial variation of net radiation and its contribution to energy balance the uncertainties of carbon, water, and energy measurements and has thus hampered the urgent research of scaling up closures in grassland ecosystems Changliang Shao1,2 , Linghao Li2 , Gang Dong3 and Jiquan Chen1,2* Abstract

Chen, Jiquan

404

The Statewide Benefits Of Net-Metering In California  

E-Print Network [OSTI]

on the costs and benefits of NEM to the Governor and Legislature. 4 Id. 5 California Solar Future: Growing to the total, "bundled" energy rate, which includes not only the cost of generation, but transmission of 2013 3 See Net Energy Metering Cost-Effectiveness Evaluation, Energy and Environmental Economics, Inc

Kammen, Daniel M.

405

A pattern recognition approach to geophysical inversion using neural nets  

Science Journals Connector (OSTI)

......applying current processing technology to R,,. In the case of...establishment of both inter- and intranet weights. Although the different...current artificial intelligence technology. The output section would...will show that neural net technology has achieved remarkable successes......

Art Raiche

1991-06-01T23:59:59.000Z

406

Using Colored Petri Nets to Construct Coalescent Hidden Markov Models  

E-Print Network [OSTI]

. Recently a new analysis method, CoalHMMs, has been developed, that makes it computationally feasible the analysis models needed. In this paper we de- scribe how to use colored stochastic Petri nets to build Coal to whole-genome analysis. CoalHMMs model the dependence of the genealogies (tree relationships) between

Mailund, Thomas

407

Fact #838: September 15, 2014 Net Imports of Petroleum were Only...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: September 15, 2014 Net Imports of Petroleum were Only 33% of U.S. Consumption in 2013 Fact 838: September 15, 2014 Net Imports of Petroleum were Only 33% of U.S. Consumption in...

408

REMARKS ON THE BOX PROBLEM. Nets Hawk Katz, Elliot Krop, Mauro Maggioni  

E-Print Network [OSTI]

REMARKS ON THE BOX PROBLEM. Nets Hawk Katz, Elliot Krop, Mauro Maggioni Washington University §0 by a National Science Foundation grant Typeset by AMS-TEX 1 #12;2 NETS HAWK KATZ, ELLIOT KROP, MAURO MAGGIONI

Maggioni, Mauro

409

U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fish and Wildlife Service Moves toward Net-Zero Buildings U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings This fact sheet is an overview of the U.S. Fish and...

410

The BikeNet mobile sensing system for cyclist experience mapping  

Science Journals Connector (OSTI)

We describe our experiences deploying BikeNet, an extensible mobile sensing system for cyclist experience mapping leveraging opportunistic sensor networking principles and techniques. BikeNet represents a multifaceted sensing system and explores personal, ... Keywords: applications, bicycling, recreation, systems

S. B. Eisenman; E. Miluzzo; N. D. Lane; R. A. Peterson; G-S. Ahn; A. T. Campbell

2007-11-01T23:59:59.000Z

411

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES  

E-Print Network [OSTI]

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES ........................................................................................................ 2 2.2 Net Basin Supplies . . . . . . . . . . . 4 Table lb.--Lag-Zero Cross Covariances and Cross Correlations Among Great Lakes Annual Connecting

412

Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project  

E-Print Network [OSTI]

Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project Sponsor: Columbia. Principal goals are to assess survival and straying at adulthood. Net pens are proposed as a low cost

413

SEARLE SCHOLARS PROGRAM (http://www.searlescholars.net/go.php?id=23)  

E-Print Network [OSTI]

SEARLE SCHOLARS PROGRAM (http://www.searlescholars.net/go.php?id=23) The University of Pittsburgh at http://www.searlescholars.net/go.php?id=49. The University is invited to submit one nomination

Sibille, Etienne

414

Status of Net Metering: Assessing the Potential to Reach Program Caps (Poster)  

SciTech Connect (OSTI)

Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

Heeter, J.; Bird, L.; Gelman, R.

2014-10-01T23:59:59.000Z

415

Status of Net Metering: Assessing the Potential to Reach Program Caps  

SciTech Connect (OSTI)

Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

Heeter, J.; Gelman, R.; Bird, L.

2014-09-01T23:59:59.000Z

416

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

net metering, and policies for supporting solar deployment.net metering, and policies for supporting solar deployment.Energy Policy, 36: MRW & Associates. 2007. Solar PV and

Darghouth, Naim

2010-01-01T23:59:59.000Z

417

Petri Nets and the Real World Ekkart Kindler and Frank Nillies  

E-Print Network [OSTI]

extended Petri nets by a simple but powerful concept for interactively animating systems as a 3D the simulation of tokens of the Petri net with these objects in the virtual 3D-world. In this paper, we take of the real world. This way, a Petri net can be used as a controller of some plant. In principle, this idea

Kindler, Ekkart

418

Dynamics of Airfoil Separation Control Using Zero-Net Mass-Flux Forcing  

E-Print Network [OSTI]

Dynamics of Airfoil Separation Control Using Zero-Net Mass-Flux Forcing Reni Raju and Rajat Mittal, Gainesville, Florida 32611 DOI: 10.2514/1.37147 Zero-net mass-flux jet based control of flow separation over using zero-net mass-flux actuation can either control/delay boundary layer separation or lead to global

Mittal, Rajat

419

Simple Models of Zero-Net Mass-Flux Jets for Flow Control Simulations  

E-Print Network [OSTI]

Simple Models of Zero-Net Mass-Flux Jets for Flow Control Simulations Reni Raju Dynaflow Inc for modeling the dynamics of zero- net mass-flux (ZNMF) actuators, the computational costs associated-flow model. 1. INTRODUCTION Zero-net mass-flux (ZNMF) actuators or "synthetic jets" have potential

Mittal, Rajat

420

TriopusNet: Automating Wireless Sensor Network Deployment and Replacement in Pipeline Monitoring  

E-Print Network [OSTI]

TriopusNet: Automating Wireless Sensor Network Deployment and Replacement in Pipeline Monitoring sensor net- work system for autonomous sensor deployment in pipeline monitoring. TriopusNet works by automatically releasing sensor nodes from a centralized repository located at the source of the water pipeline

Chu, Hao-hua

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tinkering with Turtles An Overview of NetLogo's Extensions API  

E-Print Network [OSTI]

Tinkering with Turtles An Overview of NetLogo's Extensions API Forrest Stonedahl, Daniel KornhauserLogo Extensions API provides facilities for programmers to ex- tend the NetLogo language by creating user with the JVM). While the NetLogo Extensions API has quietly existed for several years, recent changes have

Wilensky, Uri

422

Actual Crimes Reported For: Offense Type (includes attempts) 2010 2011 2012 2010 2011 2012 2010 2011 2012  

E-Print Network [OSTI]

0 0 0 0 0 Referral 0 0 0 0 0 0 0 0 0 Drug Law Violations Arrest 0 3 4 0 1 0 0 4 4 Referral 0 0 0 0 0 0 0 0 0 Liquor Law Violations Arrest 0 0 0 0 0 0 0 0 0 Referral 0 0 0 0 0 0 0 0 0 OSU-Tulsa Campus Crime Statistics Act. Number of Arrests/Referrals for Select Offenses #12;Actual Crimes Reported For

Veiga, Pedro Manuel Barbosa

423

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

424

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

425

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

426

Microsoft Word - QuarkNet Friday Flyer.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flyer, March 15, 2013 SPECIAL EDITION Flyer, March 15, 2013 SPECIAL EDITION QuarkNet Workshops Since 1999, QuarkNet has introduced teachers to inquiry-based investigations using particle physics data. Select workshops from this menu for your center programs. Contacts can answer your questions and schedule a workshop. Teaching and Learning Workshop (2-3 days) - Contact Tom: jordant@fnal.gov This workshop introduces teachers to inquiry-based resources that incorporate particle physics content. We tailor this workshop to the needs and interests of the center and provide teachers with investigations that can be used in a high school classroom. The following workshops prepare teachers to facilitate data analysis for students, from scaffolding to investigation and reporting using different datasets.

427

Neural net application to transmission line fault detection and classification  

E-Print Network [OSTI]

NEURAL NET APPLICATION TO TRANSMISSION LINE FAULT DETECTION AND CLASSIFICATION A Thesis by IGOR RIKALO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approve as to style... Applicanon to Transmission Line Fault Detection and Classification. (December 1994) Igor Rikalo, B. S. University of Sarajevo Chair of Advisory Committee: Dr. Mladen Kezunovic Today, in electric power systems, a large amount of data is made readily...

Rikalo, Igor

2012-06-07T23:59:59.000Z

428

Nuclear matter at high temperature and low net baryonic density  

SciTech Connect (OSTI)

We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

Costa, R. S.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud, 150 Urca 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J. C. T. [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana, s/n, 69310-270, Boa Vista, RR (Brazil); Rodrigues, H. [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana, 249 Maracana 20271-110, Rio de Janeiro, RJ (Brazil); Chiapparini, M. [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524 Maracana, Rio de Janeiro, RJ (Brazil)

2010-11-12T23:59:59.000Z

429

Table 11.2 Electricity: Components of Net Demand, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Electricity: Components of Net Demand, 2010; 2 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million Kilowatthours. Sales and Net Demand Economic Total Onsite Transfers for Characteristic(a) Purchases Transfers In(b) Generation(c) Offsite Electricity(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 91,909 Q 1,406 194 93,319 20-49 86,795 81 2,466 282 89,060 50-99 90,115 215 2,593 1,115 91,808 100-249 124,827 347 11,375 5,225 131,324 250-499 116,631 2,402 24,079 5,595 137,516 500 and Over 225,242 6,485 91,741 20,770 302,699 Total 735,520 9,728 133,661 33,181 845,727 Employment Size Under 50

430

Net Power Technology NP Holdings or NPH | Open Energy Information  

Open Energy Info (EERE)

Net Power Technology NP Holdings or NPH Net Power Technology NP Holdings or NPH Jump to: navigation, search Name Net Power Technology (NP Holdings or NPH) Place Chanchun, Jilin Province, China Sector Efficiency, Renewable Energy Product China-based company, focused on electricity storage systems based on zinc-bromide redox flow cells for renewable energy and energy efficiency applications. Coordinates 40.911701°, 45.354198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.911701,"lon":45.354198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect (OSTI)

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

432

RadNet: Open network protocol for radiation data  

SciTech Connect (OSTI)

Safeguards instrumentation is increasingly being incorporated into remote monitoring applications. In the past, vendors of radiation monitoring instruments typically provided the tools for uploading the monitoring data to a host. However, the proprietary nature of communication protocols lends itself to increased computer support needs and increased installation expenses. As a result, a working group of suppliers and customers of radiation monitoring instruments defined an open network protocol for transferring packets on a local area network from radiation monitoring equipment to network hosts. The protocol was termed RadNet. While it is now primarily used for health physics instruments, RadNet`s flexibility and strength make it ideal for remote monitoring of nuclear materials. The incorporation of standard, open protocols ensures that future work will not render present work obsolete; because RadNet utilizes standard Internet protocols, and is itself a non-proprietary standard. The use of industry standards also simplifies the development and implementation of ancillary services, e.g. E-main generation or even pager systems.

Rees, B.; Olson, K. [Los Alamos National Lab., NM (United States); Beckes-Talcott, J.; Kadner, S.; Wenderlich, T.; Hoy, M.; Doyle, W. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Koskelo, M. [Canberra Industries, Meriden, CT (United States)

1998-12-31T23:59:59.000Z

433

Table 11.1 Electricity: Components of Net Demand, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1.1 Electricity: Components of Net Demand, 2010; 1.1 Electricity: Components of Net Demand, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Electricity Components; Unit: Million Kilowatthours. Total Sales and Net Demand NAICS Transfers Onsite Transfers for Code(a) Subsector and Industry Purchases In(b) Generation(c) Offsite Electricity(d) Total United States 311 Food 75,652 21 5,666 347 80,993 3112 Grain and Oilseed Milling 16,620 0 3,494 142 19,972 311221 Wet Corn Milling 7,481 0 3,213 14 10,680 31131 Sugar Manufacturing 1,264 0 1,382 109 2,537 3114 Fruit and Vegetable Preserving and Specialty Foods 9,258 0 336 66 9,528 3115 Dairy Products 9,585 2 38 22 9,602 3116 Animal Slaughtering and Processing 20,121 15 19 0 20,155 312 Beverage and Tobacco Products

434

On the impact of on-chip inductance on signal nets under the influence of power grid noise  

Science Journals Connector (OSTI)

It has been well recognized that the impact of on-chip inductance on some critical nets, such as clock nets, is significant and cannot be ignored in delay modeling for these nets. However, the impact of on-chip inductance on signal nets in general is ... Keywords: on-chip inductance, power grid, very large scale integration (VLSI)

Tom Chen

2005-03-01T23:59:59.000Z

435

Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement  

SciTech Connect (OSTI)

Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image-guided radiation therapy procedure.

Matsubara, Kana, E-mail: matsubara-kana@hs.tmu.ac.jp [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan); Kohno, Ryosuke [National Cancer Center Hospital East, Chiba (Japan); National Cancer Center Research Institute, Chiba (Japan); Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo [National Cancer Center Hospital East, Chiba (Japan); Saitoh, Hidetoshi [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan)

2013-07-01T23:59:59.000Z

436

www.free4vn.org oldroad www.vsofts.net oldroadwww.free4vn.org oldroad  

E-Print Network [OSTI]

www.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www.vsofts.net oldroadwww.free4vn.org oldroad #12;www

Giridhar, K.

437

Hydro-Québec Net Metering (Quebec, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) < Back Eligibility Commercial Agricultural Residential Savings Category Buying & Making Electricity Solar Program Info Funding Source Hydro-Quebec State Quebec Program Type Net Metering In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option reflects a broad approach to energy efficiency. It is both environmentally friendly and advantageous for self-generators seeking to optimize their energy management. Net metering provides a way to act on convictions by using renewable energy and state-of-the-art technology to truly take control of consumption

438

V-002: EMC NetWorker Module for Microsoft Applications Lets Remote Users  

Broader source: Energy.gov (indexed) [DOE]

2: EMC NetWorker Module for Microsoft Applications Lets Remote 2: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords V-002: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords October 15, 2012 - 6:00am Addthis PROBLEM: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords PLATFORM: EMC NetWorker Module for Microsoft Applications 2.2.1, 2.3 prior to build 122, 2.4 prior to build 375 ABSTRACT: EMC NetWorker Module for Microsoft Applications Two Vulnerabilities REFERENCE LINKS: EMC Identifier: ESA-2012-025 Secunia Advisory SA50957 SecurityTracker Alert ID: 1027647 CVE-2012-2284 CVE-2012-2290 IMPACT ASSESSMENT: Medium DISCUSSION:

439

TRI.NET data engine for EPA Toxics Release Inventory | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRI.NET data engine for EPA Toxics Release Inventory TRI.NET data engine for EPA Toxics Release Inventory Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data TRI.NET data engine for EPA Toxics Release Inventory Dataset Summary Description TRI.NET ("T-R-I-dot-net") is a new application developed by EPA to help you analyze Toxics Release Inventory (TRI) information. This application is capable of easily and quickly performing complex queries to help you understand TRI information. It is especially useful for analysts who need a highly interactive environment in order to refine their queries and analyses in an efficient and productive way. TRI.NET makes heavy use of mashups using the latest mapping technologies to help visualize where TRI releases are occurring.

440

V-002: EMC NetWorker Module for Microsoft Applications Lets Remote Users  

Broader source: Energy.gov (indexed) [DOE]

2: EMC NetWorker Module for Microsoft Applications Lets Remote 2: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords V-002: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords October 15, 2012 - 6:00am Addthis PROBLEM: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords PLATFORM: EMC NetWorker Module for Microsoft Applications 2.2.1, 2.3 prior to build 122, 2.4 prior to build 375 ABSTRACT: EMC NetWorker Module for Microsoft Applications Two Vulnerabilities REFERENCE LINKS: EMC Identifier: ESA-2012-025 Secunia Advisory SA50957 SecurityTracker Alert ID: 1027647 CVE-2012-2284 CVE-2012-2290 IMPACT ASSESSMENT: Medium DISCUSSION:

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

442

NREL: TroughNet - Parabolic Trough Technology Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Overview Technology Overview Parabolic trough solar power technology offers an environmentally sound and increasingly cost-effective energy source. Here you'll find overviews about the following parabolic trough power plant technologies: Solar Field Collector balance of system Concentrator structure Mirrors Receivers Thermal Energy Storage Molten-salt heat transfer fluid Storage media Storage systems Power Plant Systems Direct steam generation Fossil-fired hybrid backup Power cycles Wet and dry cooling Operation and maintenance For more detailed, technical information, see our publications on parabolic trough power plant technology. Printable Version TroughNet Home Technologies Solar Field Thermal Energy Storage Power Plant Systems Market & Economic Assessment Research & Development

443

Table E13.1. Electricity: Components of Net Demand, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Electricity: Components of Net Demand, 1998;" 1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Electricity Components;" " Unit: Million Kilowatthours." " ",," "," ",," " ,,,,"Sales and","Net Demand","RSE" "Economic",,,"Total Onsite","Transfers","for","Row" "Characteristic(a)","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)","Factors" ,"Total United States"

444

Aspinall Courthouse: GSA's Historic Preservation and Net-Zero Renovation Case Study  

SciTech Connect (OSTI)

The federal government is mandated with improving efficiency of buildings, incorporating renewable energy, and achieving net-zero energy operations where possible. These challenges led GSA to consider aligning historic preservation renovations with net-zero energy goals. The Wayne N. Aspinall Federal Building and U.S. Courthouse (Aspinall Courthouse), in Grand Junction, Colorado, is an example of a renovation project that aimed to accomplish both historic preservation and net-zero energy goals.

Chang, R.; Hayter, S.; Hotchkiss, E.; Pless, S.; Sielcken, J.; Smith-Larney, C.

2014-10-01T23:59:59.000Z

445

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network [OSTI]

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

446

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

447

Community Renewable Energy Success Stories Webinar: Net Zero Energy Communities (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories Net Zero Energy Communities," originally presented on October 16, 2012.

448

Physiological response of Kemp's ridley sea turtles (Lepidochelys kempii) to entanglement net capture.  

E-Print Network [OSTI]

??Kemp's ridley sea turtles (Lepidochelys kempii) were captured in entanglement nets near Sabine Pass, Tx/La, during May through August, 1996 and 1997. Serial blood samples (more)

Hoopes, Lisa Ann

2012-01-01T23:59:59.000Z

449

Atmos. Chem. Phys., 11, 16031619, 2011 www.atmos-chem-phys.net/11/1603/2011/  

E-Print Network [OSTI]

Atmos. Chem. Phys., 11, 1603­1619, 2011 www.atmos-chem-phys.net/11/1603/2011/ doi:10.5194/acp-11-1603

Meskhidze, Nicholas

450

FirstNet Request for Information and Public Notice Review for Tribal Communities Webinar  

Broader source: Energy.gov [DOE]

FirstNet is hosting a webinar for tribal communities on how to respond to their request for information and the importance of your feedback.

451

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend","Hydroelectric","USCE-Missouri...

452

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern...

453

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE...

454

E-Print Network 3.0 - assessing bed net Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: assessing bed net Page: << < 1 2 3 4 5 > >> 1 Modeling decadal bed material sediment flux based on stochastic Michael Bliss Singer and Thomas Dunne Summary: ; published...

455

Atmos. Chem. Phys., 13, 99759996, 2013 www.atmos-chem-phys.net/13/9975/2013/  

E-Print Network [OSTI]

Atmos. Chem. Phys., 13, 9975­9996, 2013 www.atmos-chem-phys.net/13/9975/2013/ doi:10.5194/acp-13-9975

Meskhidze, Nicholas

456

Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator  

SciTech Connect (OSTI)

In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

2011-11-11T23:59:59.000Z

457

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Oconee","Nuclear","Duke Energy Carolinas, LLC",2538 2,"Cross","Coal","South Carolina Public Service...

458

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

459

Carbon dioxide emissions and net primary production of Russian terrestrial ecosystems  

Science Journals Connector (OSTI)

?Determination of the C balance is of considerable importance when forecasting climate and environmental changes. Soil respiration and biological productivity of ecosystems (net primary production; NPP) are th...

V. N. Kudeyarov; I. N. Kurganova

1998-07-01T23:59:59.000Z

460

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Hay Road","Natural Gas","Calpine Mid-Atlantic Generation LLC",1130 2,"Indian River Generating...

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

462

Making appropriate comparisons of estimated and actual costs of reducing SO{sub 2} emissions under Title IV  

SciTech Connect (OSTI)

A current sentiment within some parts of the environmental policy community is that market-based regulatory approaches such as emissions trading have proven so effective that actual costs will be only a small fraction of what ex ante cost estimation procedures would project. With this line of reasoning, some have dismissed available cost estimates for major proposed new regulations, such as the new PM and ozone NAAQS, as not meaningful for policy decisions. The most commonly used evidence in support of this position is the experience with SO{sub 2} reductions under Title IV of the 1990 Clean Air Act Amendments. In Title IV, a market for emissions allowances has been used to achieve reductions in sulfur dioxides (SO{sub 2}) to ameliorate acid rain. It is commonly asserted today that the cost of achieving the SO{sub 2} emissions reductions has been only one-tenth or less of what Title IV was originally expected to cost. This paper demonstrates that, to the contrary, actual costs for SO{sub 2} reductions remain roughly in line with original estimates associated with Title IV. Erroneous conclusions about Title IV`s costs are due to inappropriate comparisons of a variety of different measures that appear to be comparable only because they are all stated in dollars per ton. Program cost estimates include the total costs of a fully-implemented regulatory program. The very low costs of Title IV that are commonly cited today are neither directly reflective of a fully implemented Title IV, (which is still many years away) nor reflective of all the costs already incurred. Further, a careful review of history finds that the initial cost estimates that many cite were never associated with Title IV. Technically speaking, people are comparing the estimated control costs for the most-costly power plant associated with earlier acid rain regulatory proposals with prices from a market that do not directly reflect total costs.

Smith, A.E. [DFI/Aeronomics Inc., Washington, DC (United States)

1998-12-31T23:59:59.000Z

463

Why E-government Usage Lags Behind: Explaining the Gap Between Potential and Actual Usage of Electronic Public Services in the Netherlands  

Science Journals Connector (OSTI)

Most of the EU-15 countries illustrate a gap between potential usage and actual usage of electronic public services. Using a model ... the case of current Dutch electronic governmental service usage. Motivational...

Alexander van Deursen; Jan van Dijk; Wolfgang Ebbers

2006-01-01T23:59:59.000Z

464

Northern pike bycatch in an inland commercial hoop net fishery: effects of water temperature and net tending frequency on injury, physiology, and survival  

SciTech Connect (OSTI)

In lakes and rivers of eastern Ontario (Canada) commercial fishers use hoop nets to target a variety of fishes, but incidentally capture non-target (i.e., bycatch) gamefish species such as northern pike (Esox lucius). Little is known about the consequences of bycatch in inland commercial fisheries, making it difficult to identify regulatory options. Regulations that limit fishing during warmer periods and that require frequent net tending have been proposed as possible strategies to reduce bycatch mortality. Using northern pike as a model, we conducted experiments during two thermal periods (mid-April: 14.45 0.32 C, and late May: 17.17 0.08 C) where fish were retained in nets for 2 d and 6 d. A 0 d control group consisted of northern pike that were angled, immediately sampled and released. We evaluated injury, physiological status and mortality after the prescribed net retention period and for the surviving fish used radio telemetry with manual tracking to monitor delayed post-release mortality. Our experiments revealed that injury levels, in-net mortality, and post-release mortality tended to increase with net set duration and at higher temperatures. Pike exhibited signs of chronic stress and starvation following retention, particularly at higher temperatures. Total mortality rates were negligible for the 2 d holding period at 14 C, 14% for 6 d holding at 14 C, 21% for 2 d holding at 17 C, and 58% for 6 d holding at 17 C. No mortality was observed in control fish. Collectively, these data reveal that frequent net tending, particularly at warmer temperatures, may be useful for conserving gamefish populations captured as bycatch in inland hoop net fisheries.

Colotelo, Alison HA; Raby, Graham D.; Hasler, Caleb T.; Haxton, Tim; Smokorowski, Karen; Blouin-Demers, Gabriel; Cooke, Steven J.

2013-01-01T23:59:59.000Z

465

Six years of monitoring the effectiveness of a barrier net at the Ludington Pumped Storage Plant on Lake Michigan  

SciTech Connect (OSTI)

Annually, since 1989, Consumers Power Company and Detroit Edison Company have installed and maintained a seasonal barrier net in Lake Michigan at their jointly owned Ludington Pumped Storage Plant. Each year, Barnes-Williams Environmental Consultants, Inc. has evaluated the effectiveness of the barrier net as a deterrent to fish passage by sampling the fish populations inside and outside of the installed net barrier using variable mesh gill nets. Barrier net effectiveness indices, for fish species and sizes susceptible to capture by the sampling gear, have been developed based upon the difference in relative abundance between comparable outside and inside gill net catches. Knowledge gained each year on barrier net design, installation, and maintenance has been used to modify subsequent barrier net designs and operation procedures to maximize barrier net effectiveness. Initially, barrier net effectiveness, described as the percentage of fish prohibited from entering the barrier net enclosure, was estimated at 34.0% and 37.6% in 1989 and 1990 respectively. The barrier net was substantially redesigned and effectiveness increased to 84.2%, 77.5%, 77.6%, and 89.4% in 1991, 1992, 1993, and 1994 respectively. The seasonal barrier net at the Ludington Plant has been shown to be effective as a deterrent to fish passage.

Guilfoos, E.R.; Williams, R.W.; Rouke, T.E. [Barnes-Williams Environmental Consultants, Inc., Binghamton, NY (United States)] [and others

1995-12-31T23:59:59.000Z

466

QuarkNet Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

QuarkNet Reports QuarkNet Reports High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Charges/Reports QuarkNet Reports Print Text Size: A A A RSS Feeds FeedbackShare Page DOE/NSF Status Review of QuarkNet .pdf file (54KB) (May 2006) DOE/NSF Status Review of QuarkNet (May 2005) - no report available DOE/NSF Status Review of QuarkNet .pdf file (67KB) (March 2004) DOE/NSF Status Review of the QuarkNet Project, .pdf file (46KB) (February 2003) DOE/NSF Status Review of QuarkNet Project .pdf file (74KB) (December 2001) Last modified: 3/18/2013 10:33:55 AM Share Page Share with Facebook Facebook External link Share with Twitter Twitter External link Share with Google Bookkmarks Google Bookmarks External link

467

NetStep: a micro-stepped distributed network simulation Olivier Dalle  

E-Print Network [OSTI]

NetStep: a micro-stepped distributed network simulation framework Olivier Dalle Laboratoire I3S UMR This paper presents NetStep, a prototype for the distributed simulation of very large scale network simulations, such as the simulation of peer-to-peer applications. We use sim- ulation micro-steps as a means

Paris-Sud XI, Université de

468

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China  

E-Print Network [OSTI]

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

469

Aligning an Italian WordNet with a Lexicographic Dictionary: Coping with limited data  

E-Print Network [OSTI]

, for word sense alignment between MultiWordNet and a lexicographic dictio- nary, Senso Comune De Mauro, when having few sense descriptions (MultiWordNet) and no structure over senses (Senso Comune De Mauro the Senso Comune De Mauro (SCDM), thus providing Ital- ian with a more complete and robust version of MWN

470

NET-SYNTHESIS: A software for synthesis, inference and simplification of signal transduction networks  

E-Print Network [OSTI]

NET-SYNTHESIS: A software for synthesis, inference and simplification of signal transduction of Illinois at Chicago, Chicago, IL 60607 ABSTRACT Summary: We present a software for combined synthesis induced cell death in large granular lymphocyte leukemia. Availability: NET-SYNTHESIS is freely

Albert, Réka

471

NetInf Mobile Node Architecture and Mobility Management based on LISP Mobile Node  

E-Print Network [OSTI]

NetInf Mobile Node Architecture and Mobility Management based on LISP Mobile Node Muhammad Shoaib an architecture for Network of Information mobile node (NetInf MN). It bears characteristics and features of basic a virtual node layer for mobility management in the Network of Information. Therefore, by adopting

Paris-Sud XI, Université de

472

A scientific data processing framework for time series NetCDF data  

Science Journals Connector (OSTI)

The Atmospheric Radiation Measurement (ARM) Data Integrator (ADI) is a framework designed to streamline the development of scientific algorithms that analyze, and models that use time-series NetCDF data. ADI automates the process of retrieving and preparing ... Keywords: Atmospheric science, Data management, NetCDF, Observation data, Scientific data analysis, Scientific workflow, Time-series

Krista Gaustad, Tim Shippert, Brian Ermold, Sherman Beus, Jeff Daily, Atle Borsholm, Kevin Fox

2014-10-01T23:59:59.000Z

473

Deficiency Zero Petri Nets and Product Form Jean Mairesse, HoangThach Nguyen  

E-Print Network [OSTI]

Deficiency Zero Petri Nets and Product Form Jean Mairesse, Hoang­Thach Nguyen LIAFA, Universit@liafa.jussieu.fr Abstract Consider a Markovian Petri net with race policy. The marking pro­ cess has a ``product form places of terms depending only on the local marking. First we observe that the Deficiency Zero Theorem

Recanati, Catherine

474

Deficiency Zero Petri Nets and Product Form Jean Mairesse, Hoang-Thach Nguyen  

E-Print Network [OSTI]

Deficiency Zero Petri Nets and Product Form Jean Mairesse, Hoang-Thach Nguyen LIAFA, Universit@liafa.jussieu.fr Abstract Consider a Markovian Petri net with race policy. The marking pro- cess has a "product form places of terms depending only on the local marking. First we observe that the Deficiency Zero Theorem

Paris-Sud XI, Université de

475

Atmos. Chem. Phys., 11, 27652786, 2011 www.atmos-chem-phys.net/11/2765/2011/  

E-Print Network [OSTI]

above the level of zero net radiative heating, which is estimated to be 15 km in the tropics, the airAtmos. Chem. Phys., 11, 2765­2786, 2011 www.atmos-chem-phys.net/11/2765/2011/ doi:10.5194/acp-11 Continent region. The frequency distribution of high clouds from models and observations is calculated using

Meskhidze, Nicholas

476

Atmos. Chem. Phys., 12, 683691, 2012 www.atmos-chem-phys.net/12/683/2012/  

E-Print Network [OSTI]

is usually defined by the level of zero net radiative heat- ing. Above this level air tends to riseAtmos. Chem. Phys., 12, 683­691, 2012 www.atmos-chem-phys.net/12/683/2012/ doi:10.5194/acp-12 measure- ments of CALIPSO and Aura/MLS we calculated the cor- relation of water vapor, ice water content

Meskhidze, Nicholas

477

The net carbon footprint of a newly created boreal hydroelectric reservoir  

E-Print Network [OSTI]

The net carbon footprint of a newly created boreal hydroelectric reservoir Cristian R. Teodoru,1 of a boreal hydroelectric reservoir (Eastmain-1 in northern Québec, Canada). This is the result of a large. Citation: Teodoru, C. R., et al. (2012), The net carbon footprint of a newly created boreal hydroelectric

Long, Bernard

478

Sex in advertising: dioecy alters the net benefits of attractiveness in Sagittaria latifolia (Alismataceae)  

Science Journals Connector (OSTI)

...Royal Society 22 September 2006 research-article Sex in advertising: dioecy alters the net benefits of attractiveness in Sagittaria...S. latifolia Adobe PDF - rspb20063599supp1.pdf Sex in advertising: dioecy alters the net benefits of attractiveness in Sagittaria...

2006-01-01T23:59:59.000Z

479

NAO influence on net sea ice production and exchanges in the Arctic region: a numerical study  

E-Print Network [OSTI]

ice cover suppresses the development of thermal insulation during the ice formation processNAO influence on net sea ice production and exchanges in the Arctic region: a numerical study Aixue The variability of net sea ice production and sea ice exchange between the Arctic and its adjacent seas

Hu, Aixue

480

NAO influence on net sea ice production and exchanges in the Arctic region  

E-Print Network [OSTI]

insulation during the ice formation process. The North Atlantic Oscillation (NAO) related atmosphericNAO influence on net sea ice production and exchanges in the Arctic region Aixue Hu, Claes Rooth and Rainer Bleck February 18, 2003 Abstract The variability of the net sea ice production and the sea ice

Hu, Aixue

Note: This page contains sample records for the topic "net actual interchange" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NAO influence on net sea ice production and exchanges in the Arctic region  

E-Print Network [OSTI]

suppresses the development of thermal insulation during the ice formation process. The North AtlanticNAO influence on net sea ice production and exchanges in the Arctic region Aixue Hu National Center of the net sea ice production and the sea ice exchanges between the Arctic and its adjacent seas are studied

Hu, Aixue

482

Impact of satellite based PAR on estimates of terrestrial net primary productivity  

E-Print Network [OSTI]

of the satellite- based estimates of PAR for modelling terrestrial primary productivity. 1. Introduction The global energy is referred to as net primary production (NPP). For terrestrial ecosystems GPP and NPP are givenImpact of satellite based PAR on estimates of terrestrial net primary productivity RACHEL T. PINKER

Montana, University of

483

A TIME-DERIVATIVE NEURAL NET ARCHITECTURE -AN ALTERNATIVE TO THE  

E-Print Network [OSTI]

this architecture by utilizing temporal context inthe form of time delays. In this 'On kave From Computer Systems;architecture,the input to a neuron at a given time is computed as a weightedsum of not only the present outputsA TIME-DERIVATIVE NEURAL NET ARCHITECTURE -AN ALTERNATIVE TO THE TIME-DELAY NEURAL NET ARCHITECTURE

484

Technische Universitt Berlin -Intelligent Networks Group The CloudNets Network Virtualization  

E-Print Network [OSTI]

and creates bridge interfaces Configures VLAN tags on ports Provisions virtual machines Database OL0 graph with demand/"with the sun") [3]. Non-critical CloudNets can be migrated to locations where resources are abundant and energy is cheap (move against First, the new CloudNet is mapped using a fast heuristic

Schmid, Stefan

485

MesoNet: A Mesoscopic Simulation Model of a Router-Level Internet-like Network  

E-Print Network [OSTI]

MesoNet: A Mesoscopic Simulation Model of a Router-Level Internet- like Network MesoNet is a mesoscopic (medium scale) simulation model of a router-level Internet-like network. The model, written in SLX transfer and associated multiplier on file size. During simulation, model state is captured at each user

486

Aquatic Botany 69 (2001) 313324 Are Phragmites-dominated wetlands a net source or  

E-Print Network [OSTI]

, P.O. Box 8602, Riccarton, Christchurch, New Zealand Abstract Phragmites australis wetlands act.V. All rights reserved. Keywords: Carbon cycling; Gas transport; Methane emission; Phragmites australisAquatic Botany 69 (2001) 313­324 Are Phragmites-dominated wetlands a net source or net sink

Brix, Hans

487

ORNL DAAC, Net Primary Productivity Data, Feb. 5, 2003  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compilation Available Compilation Available The ORNL DAAC announces the release of a Net Primary Productivity (NPP) compilation that brings together individual detailed site NPP data from the ORNL DAAC holdings in a form that is especially useful for comparative study and ecosystem modeling. "NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996" offers NPP estimates, vegetation type, and climate information for 53 sites in the ORNL DAAC archive. Selection of the sites was originally based on the availability of consistent NPP and biomass data from the literature. The data set encompasses 34 grasslands, 14 tropical forest sites, and 5 boreal forest sites. Half of the sites include estimates of belowground NPP. Visit the NPP project page to access the NPP data and documentation

488

Intelligent Controls for Net-Zero Energy Buildings  

SciTech Connect (OSTI)

The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: To develop rapid and scalable building information collection and modeling technologies that can obtain and process as-built building information in an automated or semiautomated manner. To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. To integrate and demonstrate low-cost building information modeling (BIM) technologies. To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

Li, Haorong; Cho, Yong; Peng, Dongming

2011-10-30T23:59:59.000Z

489

Analysis: Targeting Zero Net Energy- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Scott Horowitz, National Renewable Energy Laboratory Development of whole-house zero energy ready solutions requires accurate models for a full range of enclosure and equipment technologies. The primary goal of this project is to provide an accurate analysis for Building America program planning, emerging technologies, and net zero energy packages for new construction and existing homes by using cost-based optimization and detailed, physics-based EnergyPlus simulations for the residential sector. The projects objectives include improving consistency, accuracy, and data exchange in whole-house energy analysis through two primary activities: (1) residential technology modeling in EnergyPlus, and (2) an empirically based method of testing in BeOpt.

490

Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings  

Broader source: Energy.gov (indexed) [DOE]

PROGRAM PROGRAM The Drive for Net-Zero Energy Commercial Buildings Drury B. Crawley, Ph.D. U.S. Department of Energy Energy Efficiency and Renewable Energy Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 1 gy y gy Buildings' Energy Use Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 2 Commercial Square Footage Projections g j 104 Plus ~38B ft. 2 new additions 72 82 66 Minus ~16B ft. 2 demolitions 66 Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 3 Source: EIA's Annual Energy Outlook 2009, Table 5. 2010 2003 2030 Projected Electricity Growth 2010 to 2025, by End-Use Sector (site quad) Net-Zero Energy Commercial Building Initiative commercialbuildings.energy.gov 4 Projected Increase in

491

October 16, 2012, Webinar: Net-Zero-Energy Communities | Department of  

Broader source: Energy.gov (indexed) [DOE]

October 16, 2012, Webinar: Net-Zero-Energy Communities October 16, 2012, Webinar: Net-Zero-Energy Communities October 16, 2012, Webinar: Net-Zero-Energy Communities This webinar was held October 16, 2012, and provided information on net-zero-energy communities in California and Hawaii. Download the presentations below, watch the webinar (WMV 159 MB), or view the text version. Find more CommRE webinars. University of California Davis West Village: The Largest Planned Net Zero Energy Community in the United States The University of California-Davis' (UC Davis) West Village is a new housing development that will ultimately occupy about 200 acres near the campus. The development will have apartment buildings for nearly 3,000 students and approximately 500 single-family houses for both faculty and staff. Apartments for the first 800 students opened in August 2011 and an

492

New Zero Net-Energy Facility: A Test Bed for Home Efficiency | Department  

Broader source: Energy.gov (indexed) [DOE]

Zero Net-Energy Facility: A Test Bed for Home Efficiency Zero Net-Energy Facility: A Test Bed for Home Efficiency New Zero Net-Energy Facility: A Test Bed for Home Efficiency September 17, 2012 - 2:34pm Addthis Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. Deputy Assistant Secretary for Energy Efficiency Kathleen Hogan joined representatives from the National Institute of Standards and Technology (NIST) and state and local elected officials to celebrate the opening of the new zero net-energy residential test laboratory. | Photo courtesy of NIST. David Lee Residential Program Supervisor, Building Technologies Program

493

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

494

Tennessee Home to Energy Department's First Net-Zero-Energy Building |  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Home to Energy Department's First Net-Zero-Energy Tennessee Home to Energy Department's First Net-Zero-Energy Building Tennessee Home to Energy Department's First Net-Zero-Energy Building July 13, 2010 - 8:07am Addthis Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Joshua DeLung Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak

495

Tennessee Home to Energy Department's First Net-Zero-Energy Building |  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Home to Energy Department's First Net-Zero-Energy Tennessee Home to Energy Department's First Net-Zero-Energy Building Tennessee Home to Energy Department's First Net-Zero-Energy Building July 13, 2010 - 8:07am Addthis Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Norman Durfee, project manager at Oak Ridge National Laboratory, stands in front of Building 3156, the first DOE retrofit office building to receive a net-zero designation. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Joshua DeLung Building 3156 stands on the campus of Oak Ridge National Laboratory in Oak

496

DOE to Pursue Zero-Net Energy Commercial Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pursue Zero-Net Energy Commercial Buildings Pursue Zero-Net Energy Commercial Buildings DOE to Pursue Zero-Net Energy Commercial Buildings August 5, 2008 - 2:40pm Addthis National Renewable Energy Laboratory Announces Support for Clean Tech Open PALO ALTO, Calif. - U.S. Department of Energy (DOE) Deputy Assistant Secretary for Energy Efficiency David Rodgers today announced the launch of DOE's Zero-Net Energy Commercial Building Initiative (CBI) with establishment of the National Laboratory Collaborative on Building Technologies Collaborative (NLCBT). These two efforts both focus on DOE's ongoing efforts to develop marketable Zero-Net Energy Commercial Buildings, buildings that use cutting-edge efficiency technologies and on-site renewable energy generation to offset their energy use from the electricity

497

Hydro-Québec Net Metering (Quebec, Canada) | Open Energy Information  

Open Energy Info (EERE)

Hydro-Québec Net Metering (Quebec, Canada) Hydro-Québec Net Metering (Quebec, Canada) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Quebec, Canada Applies to Utility Hydro-Quebec Name Hydro-Québec Net Metering (Quebec, Canada) Policy Type Net Metering Affected Technologies Geothermal Electric, Solar Photovoltaics Active Policy Yes Implementing Sector Utility Funding Source Hydro-Quebec Primary Website http://www.hydroquebec.com/self-generation/index.html Summary In line with Hydro-Québec's commitment to the environment and sustainable development, Hydro-Québec is supporting self-generation with a new rate offering: the net metering option. This option reflects a broad approach to

498

U-108: Net4Switch ipswcom ActiveX Control Buffer Overflow Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

8: Net4Switch ipswcom ActiveX Control Buffer Overflow 8: Net4Switch ipswcom ActiveX Control Buffer Overflow Vulnerability U-108: Net4Switch ipswcom ActiveX Control Buffer Overflow Vulnerability February 22, 2012 - 8:00am Addthis PROBLEM: A vulnerability was reported in Net4Switch ipswcom ActiveX Control, which can be exploited by malicious people to compromise a user's system. PLATFORM: Net4Switch ipswcom ActiveX Control 1.x ABSTRACT: The vulnerability is caused due to a boundary error within the "CxDbgPrint()" function (cxcmrt.dll) when creating a debug message string. reference LINKS: Vendor Advisory Secunia Advisroy 48125 No CVE references. IMPACT ASSESSMENT: High Discussion: The vulnerability is caused due to a boundary error within the "CxDbgPrint()" function (cxcmrt.dll) when creating a debug message string.

499

DOE to Pursue Zero-Net Energy Commercial Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pursue Zero-Net Energy Commercial Buildings Pursue Zero-Net Energy Commercial Buildings DOE to Pursue Zero-Net Energy Commercial Buildings August 5, 2008 - 2:40pm Addthis National Renewable Energy Laboratory Announces Support for Clean Tech Open PALO ALTO, Calif. - U.S. Department of Energy (DOE) Deputy Assistant Secretary for Energy Efficiency David Rodgers today announced the launch of DOE's Zero-Net Energy Commercial Building Initiative (CBI) with establishment of the National Laboratory Collaborative on Building Technologies Collaborative (NLCBT). These two efforts both focus on DOE's ongoing efforts to develop marketable Zero-Net Energy Commercial Buildings, buildings that use cutting-edge efficiency technologies and on-site renewable energy generation to offset their energy use from the electricity

500

Beam Energy and System Size Dependence of Dynamical Net Charge Fluctuations  

SciTech Connect (OSTI)

We present measurements of net charge fluctuations in Au + Au collisions at {radical}s{sub NN} = 19.6, 62.4, 130, and 200 GeV, Cu + Cu collisions at {radical}s{sub NN} = 62.4, 200 GeV, and p + p collisions at {radical}s = 200 GeV using the dynamical net charge fluctuations measure {nu}{sub {+-},dyn}. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N{sub ch} scaling, but display approximate 1/N{sub part} scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

STAR Coll

2008-07-21T23:59:59.000Z