Sample records for nepa process costs

  1. NEPA Policy Statement

    Broader source: Energy.gov [DOE]

    The NEPA process is a valuable planning tool and provides an opportunity to improve the Department of Energy decisions and build public trust. Reviews of the Department's NEPA program have shown...

  2. Integrating the NEPA 216 process with large-scale privatization projects under the US Department of Energy

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1994-05-01T23:59:59.000Z

    The US Department of Energy (DOE) is considering the possibility of replacing the existing Hanford Site 200 Are steam system through a privatization effort. Such an action would be subject to requirements of the National Environmental Policy Act (NEPA) of 1969. Section 216 of the Doe NEPA Implementation Procedures (216 Process) provides a specific mechanism for integrating the DOE procurement process with NEPA compliance requirements.

  3. Effective early planning and integration of NEPA into the decision-making process

    SciTech Connect (OSTI)

    Hannon, W.C.; Gensler, J.D. (Allen and Hamilton, Inc., Bethesda, MD (United States))

    1993-01-01T23:59:59.000Z

    This paper covers several key challenges and lessons learned in a federal agency assignment to educate the decision makers in NEPA and then to effectuate decisions early in the decision-making process based on the information derived from the NEPA process participants and documentation. Many of the key challenges faced by these federal decision makers stem, in part, from unfamiliarity with NEPA requirements and the benefits that can be derived by utilizing the process to support making an informed decision. Secondly, federal managers, at times believe that the process is a hindrance to accomplishing their mission. Lastly, there was a genuine belief that the public and other organizations within the agency should have no part in evaluating or commenting on the proposed action. Using the knowledge gained from drafting and reviewing EISs and EAs, Booz, Allen devised a systematic process that effectively: educated management on NEPA requirements; developed a management tool to guide and integrate the process; and encouraged the early and effective use of environmental and social information into all decision-making processes.

  4. Tribal Energy NEPA Fundamentals Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Tribal Energy NEPA Fundamentals Workshop is a three-day workshop for tribes to understand how to manage the National Environmental Policy Act (NEPA) process and implement the Council on...

  5. Examples of Benefits from the NEPA process for ARRA funded activities

    Broader source: Energy.gov [DOE]

    Efforts to implement the American Recovery and Reinvestment Act of 2009 (ARRA) include ensuring, and reporting on, timely NEPA reviews prepared in support of projects and activities funded under major provisions of ARRA. In addition to reporting on the status of the NEPA environmental reviews, agencies also report on the benefits of NEPA.

  6. File:09-FD-g - USFS NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:09-FD-g - USFS NEPA

  7. NEPA Lessons Learned Questionnaire

    Broader source: Energy.gov [DOE]

    A questionnaire to help aid the Office of NEPA Policy and Compliance in meeting its responsibility to foster continuing improvement of the Department of Energy's National Environmental Policy Act process.

  8. Guidance Regarding Actions That May Proceed During the NEPA Process...

    Energy Savers [EERE]

    gives examples of the types of actions that may proceed as interim actions, describes case studies, and outlines the steps in the EIS process for interim actions. Guidance...

  9. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEPA Compliance Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. Please send updates to...

  10. National Environmental Policy Act (NEPA) Categorically Excluded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management System NEPA National Environmental Policy Act (NEPA) Categorically Excluded Actions National Environmental Policy Act (NEPA) Categorically Excluded...

  11. Federal Agency NEPA Procedures

    Broader source: Energy.gov [DOE]

    Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

  12. NEPA Litigation Surveys

    Broader source: Energy.gov [DOE]

    CEQ publishes surveys on NEPA litigation on an annual basis. These surveys identify the number of cases involving a NEPA based cause of action, Federal agencies that were identified as a lead...

  13. NEPA Contracting Reform Guidance

    Broader source: Energy.gov (indexed) [DOE]

    on Environmental Quality), international and environmental law documents from the Indiana University Law Library, and other references (including the DOE NEPA Stakeholders...

  14. Federal NEPA Contacts

    Broader source: Energy.gov [DOE]

    CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

  15. U.S. DEPARTIVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETERlVIINATION RECIPIENT:County of Fairfax STATE: VA PROJECT Electric and hybrid vehicle incremental cost recovery TITLE: Funding Opportunity Announcement Number...

  16. National Environmental Policy Act (NEPA) | Department of Energy

    Energy Savers [EERE]

    Environmental Management System National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) Regulations and Links DOE NEPA Website NEPA Compliance Program...

  17. Council on Environmental Quality Collaboration in NEPA A Handbook...

    Energy Savers [EERE]

    Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners Council on Environmental Quality Collaboration in NEPA A Handbook for NEPA Practitioners...

  18. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    rig, etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope...

  19. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    of the State?" D D Any action that has potential impacts on Waters of the State' or wetland areas will require a separate NEPA Compliance Survey. Will the project area...

  20. File:09-FD-e - DOE NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to: navigation,9-FD-c

  1. File:09-FD-f - DOD NEPA Process (2).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search FileNEPAProcess.pdf Jump to:

  2. NEPA/CERCLA/RCRA integration: Policy vs. practice

    SciTech Connect (OSTI)

    Hansen, R.P. (Hansen Environmental Consultants, Englewood, CO (United States)); Wolff, T.A. (Sandia National Lab., Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    Overwhelmed with environmental protection documentation requirements, a number of Federal agencies are grappling with the complexities of attempting to integrate'' the documentation requirements of the National Environmental Policy Act (NEPA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Resource Conservation and Recovery Act (RCRA). While there is some overlap between the general environmental policy objectives of NEPA, and the much more specific waste cleanup objectives of CERCLA and RCRA, there are also major differences and outright conflicts. This paper identifies both problems and opportunities associated with implementing emerging and evolving Federal agency policy regarding integration of the procedural and documentation requirements of NEPA, CERCLA, and RCRA. The emphasis is on NEPA/CERCLA/RCRA integration policy and practice at US Department of Energy (DOE) facilities. The paper provides a comparative analysis of NEPA, CERCLA, and RCRA processes and discusses special integration issues including scoping, development and analysis of alternatives, risk assessment, tiering, scheduling, and the controversy surrounding applicability of NEPA to CERCLA or RCRA cleanup activities. Several NEPA/CERCLA/RCRA integration strategy options are evaluated and an annotated outline of an integrated NEPA/CERCLA document is included.

  3. Process-Based Cost Modeling to Support Target Value Design

    E-Print Network [OSTI]

    Nguyen, Hung Viet

    2010-01-01T23:59:59.000Z

    S. (2002). “Construction Cost Data Workbook. ” Conference onas well as process- and cost data. Figure D.2 Product modelscollecting construction cost data, the cost of an installed

  4. DOE NEPA Compliance Officers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste CleanupDesignationsResearch InitiativeNEPA

  5. National Environmental Policy Act (NEPA) | Department of Energy

    Energy Savers [EERE]

    Coordination and Implementation International Electricity Regulation National Environmental Policy Act (NEPA) National Environmental Policy Act (NEPA) All Electricity...

  6. Process-Based Cost Modeling to Support Target Value Design

    E-Print Network [OSTI]

    Nguyen, Hung Viet

    2010-01-01T23:59:59.000Z

    Costing as a Tool for Process Improvement Evaluation. ”A. (2005). “Determination of Process Durations on VirtualR.G. (1987). “Cost Modeling: a Process-Modeling Approach”.

  7. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes 2012 DOE Hydrogen...

  8. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive...

  9. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  10. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect (OSTI)

    Badger, P.C.

    2002-11-20T23:59:59.000Z

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

  11. Ensuring cost effectiveness in the TAP process

    SciTech Connect (OSTI)

    Trego, A.L.

    1992-06-16T23:59:59.000Z

    The Training Accredition Program (TAP) at the Waste Isolation Division (WID) is discussed by the general manager. Cost effectiveness in the TAP process is made possible by saving through sharing which refers to the exchange and co-development of information and technology among Westinghouse Government owned-contractor operators and with other organizations. In 1990 a comprehensive management and supervisor training (MAST) program plan was devised and a MAST certification program of 31 self-paced written moduler was developed. This program has proven to be inexpensive to develop and implement when compared to classroom training. In addition, total quality is used as a tool to continuously improve work process. Continuous improvement requires continued evaluation of work process, such as TAP analysis and development in summary to make training at DOE facilities the most cost-effective training anywhere, we need to share, challenge conventional wisdom, and seek to continuously improve.

  12. NEPA Implementation Procedures: Appendices I, II, and III

    Broader source: Energy.gov [DOE]

    These appendices are intended to improve public participation and facilitate agency compliance with the National Environmental Policy Act (NEPA) and the Council on Environmental Quality's NEPA...

  13. NEPA/CERCLA/RCRA integration strategy for Environmental Restoration Program, Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Hansen, R.P. (International Technology Corp., Englewood, CO (United States))

    1992-10-01T23:59:59.000Z

    This report addresses an overall strategy for complying with DOE Order 5400.4 which directs that DOE offices and facilities integrate the procedural and documentation requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA) wherever practical and appropriate. Integration of NEPA and Resource Conservation and Recovery Act (RCRA) processes is emphasized because RCRA applies to most of the potential release sites at SNL, Albuquerque. NEPA, CERCLA, and RCRA precesses are comparatively analyzed and special integration issues are discussed. Three integration strategy options are evaluated and scheduling and budgeting needs are identified. An annotated outline of an integrated project- or site-specific NEPA/RCRA RFI/CMS EIS or EA is included as an appendix.

  14. NEPA litigation in the 1970s: a deluge or a dribble

    SciTech Connect (OSTI)

    Liroff, R.A.

    1981-04-01T23:59:59.000Z

    This article examines several facets of litigation under the National Environmental Policy Act of 1969 (NEPA) during the 1970s. It briefly describes congressional expectations regarding lawsuits and then focuses on number of cases, characteristics of plaintiffs and defendants, and factors prompting aggrieved parties to seek judicial relief. NEPA cases are also compared to other civil cases as a measure of NEPA's impact on the federal courts. The future amount of litigation under NEPA may ultimately be influenced by congressional decisions regarding the availability of judicial review of agency decisions. Since the Republicans have gained control of the US Senate, and the House of Representatives is now somewhat more conservative, legislative proposals to limit judicial review under NEPA may find more positive reception. Efforts to limit citizen redress in the courts would be unfortunate. Litigation is often a product of administrative failure to recognize the legitimacy of environmental and other relevant values in decision-making. Some litigation, therefore, is unavoidable, but responsiveness to relevant values in the administrative process, and development of carefully reasoned policies based on more than political ideology, are the best ways to minimize future NEPA litigation. 3 tables.

  15. NEPA FAQs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13NEPA

  16. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    is for the existing ORMAT geothermal processing unit that was used for testing during CRADA impacts? No 2007-083. The Original project consisted of the installation and 1 year...

  17. Process for Low Cost Domestic Production of LIB Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

  18. Minimum Cost Data Aggregation with Localized Processing for Statistical Inference

    E-Print Network [OSTI]

    Anandkumar, Animashree

    Minimum Cost Data Aggregation with Localized Processing for Statistical Inference Animashree--The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop, which implies that any Steiner- tree approximation can be employed for minimum cost fusion with the same

  19. Understanding the Costs of Business Process Management Technology

    E-Print Network [OSTI]

    Ulm, Universität

    Understanding the Costs of Business Process Management Technology Bela Mutschler and Manfred the interplay of technological, orga- nizational, and project-specific BPM cost factors as well as simulation. However, introduc- ing BPM approaches in enterprises is associated with significant costs. Though ex

  20. Benefits of Site-wide NEPA National Environmental Policy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) The purpose of this guidance...

  1. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L [ORNL; Li, Jianlin [ORNL; Daniel, Claus [ORNL

    2014-01-01T23:59:59.000Z

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  2. Statement of Work-National Environmental Policy Act (NEPA) Support...

    Office of Environmental Management (EM)

    Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental...

  3. Cost modeling in the integrated supply chain strategic decision process

    E-Print Network [OSTI]

    Robinson, Todd (Todd Christopher)

    2006-01-01T23:59:59.000Z

    This thesis is based on an internship at Honeywell Aerospace's Integrated Supply Chain (ISC) Leadership division. This work focuses on the role and use of analytical cost models in the strategy development process. The ...

  4. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy Savers [EERE]

    Addthis Related Articles Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Refining Bio-Oil alongside Petroleum Why Bio-Oil Turns...

  5. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  6. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  7. General Guidance on NEPA | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance on NEPA General Guidance on NEPA

  8. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-Print Network [OSTI]

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  9. Using Pinch Technology to Explore Trade-Offs Between Energy Cost, Capital Cost, Process Modifications, and Utility Selection 

    E-Print Network [OSTI]

    McMullan, A. S.

    1988-01-01T23:59:59.000Z

    on the total cost of installing and operatlng a process. Understanding the impact of these decisions in the context of the overall process can lead to significant savings in both capital and operating costs. Full investigation of these interactions through...

  10. The concepts of energy, environment, and cost for process design

    SciTech Connect (OSTI)

    Abu-Khader, M.M.; Speight, J.G. [CD & W Inc., Laramie, WY (United States)

    2004-05-01T23:59:59.000Z

    The process industries (specifically, energy and chemicals) are characterized by a variety of reactors and reactions to bring about successful process operations. The design of energy-related and chemical processes and their evolution is a complex process that determines the competitiveness of these industries, as well as their environmental impact. Thus, we have developed an Enviro-Energy Concept designed to facilitate sustainable industrial development. The Complete Onion Model represents a complete methodology for chemical process design and illustrates all of the requirements to achieve the best possible design within the accepted environmental standards. Currently, NOx emissions from industrial processes continue to receive maximum attention, therefore the issue problem of NOx emissions from industrial sources such as power stations and nitric acid plants is considered. The Selective Catalytic Reduction (SCR) is one of the most promising and effective commercial technologies. It is considered the Best Available Control Technology (BACT) for NOx reduction. The solution of NOx emissions problem is either through modifying the chemical process design and/or installing an end-of-pipe technology. The degree of integration between the process design and the installed technology plays a critical role in the capital cost evaluation. Therefore, integrating process units and then optimizing the design has a vital effect on the total cost. Both the environmental regulations and the cost evaluation are the boundary constraints of the optimum solution.

  11. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    SciTech Connect (OSTI)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01T23:59:59.000Z

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  12. NEPA Source Guide for the Hanford Site. Revision 1

    SciTech Connect (OSTI)

    Rued, W.J.

    1994-10-24T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a finding of no significant impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere.

  13. Template for Expedited National Environmental Policy Act (NEPA...

    Energy Savers [EERE]

    Energy Program Information Worksheet Template for Expedited NEPA Review of Certain Guidance for Energy Efficiency and Conservation Block Grant Program Recipients on Formula Grants...

  14. States with NEPA-like Environmental Planning Requirements

    Broader source: Energy.gov [DOE]

    Several states have environmental planning requirements that are similar to NEPA. These requirements are either State laws, regulations, or executive orders. Please click below for additional...

  15. Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR...

    Open Energy Info (EERE)

    to library Legal Document- Secondary Legal SourceSecondary Legal Source: Council on Environmental Quality (CEQ) NEPA Regulations: 40 CFR 1500 - 1518Legal Author CEQ Published NA...

  16. DRAFT NEPA Guidance on Consideration of the Effects of Climate...

    Broader source: Energy.gov (indexed) [DOE]

    agencies can improve their consideration of the effects of greenhouse gas (GHG) emissions and climate change in their evaluation of proposals for Federal actions under NEPA....

  17. NEPA Lessions Learned Quarterly Report - 4th Quarter FY 1998

    Broader source: Energy.gov (indexed) [DOE]

    what was required and why. For information about the Sandia National Laboratories New Mexico Site-wide EIS, contact Julianne Levings, NEPA Document Manager, at...

  18. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM

    Broader source: Energy.gov (indexed) [DOE]

    s, DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERM INATION RECIPIENT:University of Central Florida PROJECf TITLE : Florida Hydrogen Initiative 3 letter of...

  19. NEPA Lessons Learned Quarterly Report, First Quarter FY 2005...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Secure Transportation. Therefore, effective immediately, Debra Keeling, NNSA Service Center, will assume the DOE-Wide NEPA Contract Administrator duties. I will be...

  20. act nepa characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was amended by the Waste Isolation Pilot Plant Land Withdrawal Act. Katherine Biggs, Associate Director, NEPA Compliance Division, Office of Federal Activities. FR Doc....

  1. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl...

    Broader source: Energy.gov (indexed) [DOE]

    KS PROJECf TITLE: EECBG EE-OOOO727 KeC: Pittsburgh State University Ground Source Heat Pump Funding Opportunity Announcement Number Procurement Instrument Numr NEPA Control...

  2. Supporting Generic Cost Models for Wide-Area Stream Processing

    E-Print Network [OSTI]

    Cetintemel, Ugur

    Supporting Generic Cost Models for Wide-Area Stream Processing Olga Papaemmanouil #1 , Ugur C¸ etintemel 2 , John Jannotti 2 # Deparment of Computer Science, Brandeis University, Waltham, MA, USA 1 olga and increased availability of receptors that report physical or software events has led to the emergence

  3. Using Pinch Technology to Explore Trade-Offs Between Energy Cost, Capital Cost, Process Modifications, and Utility Selection

    E-Print Network [OSTI]

    McMullan, A. S.

    , energy cost, process modifications and utility selection. The application of Pinch' Technology to a Chemi-Thermo Mechanical Pulping process is used to illustrate the approach and the results. INTRODUCTION The general approach to process design.... AN EXAMPLE - THE CTMP PROCESS The Chemi-Thermo Mechanical Pulping (CTMP) process will be used as an example to illustrate how process modifications and utility selection impact total capital and operating costs. For each of the possible process...

  4. National Environmental Policy Act (NEPA) Process

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16

  5. NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government

    Broader source: Energy.gov [DOE]

    NEPA Success Stories: Celebrating 40 Years of Transparency and Open Government, Environmental Law Institute, 2010.

  6. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  7. NEPA source guide for the Hanford Site. Revision 2

    SciTech Connect (OSTI)

    Tifft, S.R.

    1995-09-27T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a Finding Of No Significant Impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere (i.e., local newspapers). The EA and EIS summaries are arranged in numerical order. To assist in locating a particular EA or EIS, the upper right comer of each page lists the number of the summary or summaries discussed on that page. Any draft EA or EIS is followed by a ``D.`` The EAs with nonstandard numbering schemes are located in Chapter 3.

  8. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12T23:59:59.000Z

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  9. Secure NEPA Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle| DepartmentAchievementEnergy ICCPSecure NEPA

  10. NEPA Litigation Surveys | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons LearnedNEPA

  11. DOE, NEPA, and YOU | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof EnergyDOE, NEPA, and

  12. Transmission/Nepa Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) JumpTradeWindPrepared asTransmissionNepa

  13. Designing and implementing a framework for process-oriented logistics-costs measurement

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Designing and implementing a framework for process-oriented logistics-costs measurement. Measurements of logistics costs are necessary for manufacturing companies to be able to evaluate the cost Friedrichshafen AG faced during the implementation of a process-oriented logistics-costs measurement framework

  14. Using the NEPA Requirements and Guidance - Search Index

    Office of Environmental Management (EM)

    file, right click on it, select "Extract all", extract it to any location on your computer or USB drive. 2. Locate and Open the extracted folder "NEPA Requirements and Guidance...

  15. Guidance on NEPA Review for Corrective Actions under the Resource...

    Energy Savers [EERE]

    and Recovery Act (RCRA) Guidance on NEPA Review for Corrective Actions under the Resource Conservation and Recovery Act (RCRA) This guidance results from the work of a Task Team...

  16. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01T23:59:59.000Z

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  17. American Recovery and Reinvestment Act of 2009 & NEPA

    Broader source: Energy.gov [DOE]

    Section 1609(c) requires a report to Congress on the status and progress of NEPA reviews for Recovery Act funded projects and activities. The President has assigned reporting responsibility to CEQ

  18. Office of NEPA Policy and Compliance, Staff Directory

    Broader source: Energy.gov [DOE]

    Office of NEPA Policy and Compliance, Staff Directory including phone number and areas of responsibility for the  Energy and Waste Management Unit, Western Energy and Waste Management Unit, and the...

  19. Geothermal NEPA Database on OpenEI (Poster)

    SciTech Connect (OSTI)

    Young, K. R.; Levine, A.

    2014-09-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. They then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.

  20. Modular Process Equipment for Low Cost Manufacturing of High...

    Broader source: Energy.gov (indexed) [DOE]

    information Energy & Environmental Solutions Alternative Energy Products Overview 2 Cost of manufacturing Cycling lifetime of high capacity materials Prismatic cell...

  1. Exploring the Dynamic Costs of Process-aware Information Systems through Simulation

    E-Print Network [OSTI]

    Ulm, Universität

    Exploring the Dynamic Costs of Process-aware Information Systems through Simulation Bela Mutschler systems, case handling systems) is associated with high costs. Though cost evaluation has received utilizes si- mulation models for investigating costs related to PAIS engineering projects. We motivate

  2. Est. 6/09, Revised 6/13 Page 1 Processing Research Participant Costs

    E-Print Network [OSTI]

    Firestone, Jeremy

    Est. 6/09, Revised 6/13 Page 1 Processing Research Participant Costs Support, Patient Care. Participant Support Participant support costs are payments provided to a study participant or to a workshop. These costs are expressed as non-salary expenses and carry no facilities and administrative costs on the grant

  3. Cost of Handling Texas Citrus, Fresh and Processed, 1946-47. 

    E-Print Network [OSTI]

    Samuels, J. K. (James Kenneth); Fugett, Kenneth A.

    1949-01-01T23:59:59.000Z

    2 2 23, 95 79 Indirect 1 1 Warehousing & shipping 1 2 2 3 1 2 Total labor 13 11 a- 96 97 82- Other manufacturing cost 30 23 18 22 19 22- 101 Total processing & whse. cost 109 93 187 182 173- Administrative cost 13 1 35 10 128 Selling cost 2... case of 121404 cans of grape- fruit juice, and represented 62 percent of the total cost of processing (Table 10). Cans, cartons and labels are now the most expensive items in processing citrus juices because the cost of these items hasl risen...

  4. Electrochromic Windows: Process and Fabrication Improvements for Lower Total Costs

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2007-03-31T23:59:59.000Z

    The overall goal with respect to the U.S. Department of Energy (DOE) is to achieve significant national energy savings through maximized penetration of EC windows into existing markets so that the largest cumulative energy reduction can be realized. The speed with which EC windows can be introduced and replace current IGU's (and current glazings) is clearly a strong function of cost. Therefore, the aim of this project was to investigate possible improvements to the SageGlass{reg_sign} EC glazing products to facilitate both process and fabrication improvements resulting in lower overall costs. The project was split into four major areas dealing with improvements to the electrochromic layer, the capping layer, defect elimination and general product improvements. Significant advancements have been made in each of the four areas. These can be summarized as follows: (1) Plasma assisted deposition for the electrochromic layer was pursued, and several improvements made to the technology for producing a plasma beam were made. Functional EC devices were produced using the new technology, but there are still questions to be answered regarding the intrinsic properties of the electrochromic films produced by this method. (2) The capping layer work was successfully implemented into the existing SageGlass{reg_sign} product, thereby providing a higher level of transparency and somewhat lower reflectivity than the 'standard' product. (3) Defect elimination is an ongoing effort, but this project spurred some major defect reduction programs, which led to significant improvements in yield, with all the implicit benefits afforded. In particular, major advances were made in the development of a new bus bar application process aimed at reducing the numbers of 'shorts' developed in the finished product, as well as making dramatic improvements in the methods used for tempering the glass, which had previously been seen to produce a defect which appeared as a pinhole. (4) Improvements have also been made to the overall product to enhance the appearance and market acceptability. These include: (i) increasing the active electrochromic area to enable window manufacturers to install the SageGlass{reg_sign} IGU's into a variety of different framing systems, (ii) implementing a Pb free solder system for the electrical interconnections, (iii) development of a wire routing scheme to allow installation of SageGlass{reg_sign} units into a variety of different framing systems. This project has advanced the development of electrochromic glazing significantly, thereby advancing the introduction of the product and all the benefits of such a technology.

  5. Final Guidance on Improving the Process for Preparing Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    the Process for Preparing Efficient and Timely Environmental Reviews under the National Environmental Policy Act. The National Environmental Policy Act (NEPA) and CEQ Regulations...

  6. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31T23:59:59.000Z

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  7. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    SciTech Connect (OSTI)

    Finn, P.A.

    1985-01-01T23:59:59.000Z

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared.

  8. Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost ...

  9. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 9

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J. [and others] [and others

    1997-08-01T23:59:59.000Z

    This ninth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4.0 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. Not all of the sections have been updated for this revision. The following lists the updated sections: climate and meteorology; ecology (threatened and endangered species section only); culture, archaeological, and historical resources; socioeconomics; all of Chapter 6.

  10. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1992-12-01T23:59:59.000Z

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  11. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.] [ed.

    1992-12-01T23:59:59.000Z

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  12. Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process

    E-Print Network [OSTI]

    Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

  13. Waste processing cost recovery at Los Alamos National Laboratory--analysis and recommendations

    SciTech Connect (OSTI)

    Booth, Steven Richard [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit ofwaste. Therefore, the fixed cost ends at the point just before waste begins 'to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the total distributed direct shares from generators plus the unit cost times actual volumes processed.

  14. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  15. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  16. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01T23:59:59.000Z

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  18. Reference: RGL 81-02 Subject: NEPA-CORPS EIS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Reference: RGL 81-02 Subject: NEPA-CORPS EIS Title: REVIEW OF ANOTHER AGENCY'S EIS Issued: 03/17/81 Expires: 12/31/83 Originator: DAEN-CWO-N Description: EIS WILL ONLY BE PREPARED WHEN CORPS PERMIT ACTION sentence of paragraph 23 of Appendix B to 33 CFR 230, a draft and final supplement to another agency's EIS

  19. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

    1998-06-16T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  20. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  1. Hanford Site National Environmental Policy Act (NEPA) characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1988-09-01T23:59:59.000Z

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  2. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

    1996-01-01T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  3. National Environmental Policy Act (NEPA) Source Guide for the Hanford Site

    SciTech Connect (OSTI)

    JANSKY, M.T.

    2000-09-01T23:59:59.000Z

    This Source Guide will assist those working with the National Environmental Policy Act (NEPA) of 1969 to become more familiar with the environmental assessments (EA) and environmental impact statements (EIS) that apply to specific activities and facilities on the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each document and the decision made by the U.S. Department of Energy (DOE) or its predecessor agencies, the U.S. Atomic Energy Commission (AEC) and the U.S. Energy Research and Development Administration (ERDA). The summary includes the proposed action alternatives and current status of the proposed action. If a decision officially was stated by the DOE, as in a finding of no significant impact (FONSI) or a record of decision (ROD), and the decision was located, a summary is provided. Not all federal decisions, such as FONSIs and RODs, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs might have been published elsewhere (i.e., local newspapers).

  4. U.S. DEPARThfENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETElUrINATION RECIPIENT: Marquette University PROJECT TITLE : Anaerobic Biotechnology for Renewable Energy Page 1 of2 STATE;...

  5. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEM ENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    MANAGEM ENT CENTER NEPA DETER.1.fiNATION Pagelof4 REC IPIENT: University of Hawaii STATE : HI PROJECT TITLE: Hawaii National Marine Renewable Energy Center Funding Opportunity...

  6. U.S. DEP_·UUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DEPUUMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:University of Central Florida PROJECf TITLE: PV Manufacturing Consortium Page 1 of2 STATE: Fl...

  7. U.S. DEPARTlIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    DETnu.fiNATION RECIPIENT:Clemson University PROJECf TITLE: BioEthanol Collaborative Page 1 of2 STATE: SC Funding Opportunity Announement Number Procurement Instrument Number NEPA...

  8. U.S. DEPARTIVEENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DE 'URA TTNATION RECIPIENT:Texas Tech University STATE: TX PROJECT TITLE : Great Plains Wind Power Test Facility Funding...

  9. u.s. DEPARThrFm OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    of Commerce STATE: WA PROJECf TITLE : State of Washington Stale Energy Program Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID...

  10. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    ." ,., U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:TRAVIS COUNTY TEXAS PROJECT TITLE: County of Travis, Texas 700 Lavaca Street...

  11. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAG EMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERMINATION RECIPIENT:City of Virginia Beach PROJECT TITLE: Virginia Beach Wind Turbine Demonstration Project Page I of2 STATE: VA Funding Opportunity Announcement Number...

  12. u.s. DEPARTMENT OF ENERGĄ EERE rROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DETERMINATION RECIPIENT :University of Delaware STATE: DE PROJECT TITLE: Wind Turbine Infrastructure for Green Energy and Research on Wind Power in DE Funding Opportunity...

  13. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1Rl...

    Broader source: Energy.gov (indexed) [DOE]

    OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETl1RlIINATION RECIPIENT:New Mexico Energy, Minerals & Natural Resources Department PROJECT TITLE: SEP ARRA City of...

  14. Hanford Site National Environmental Policy Act (NEPA) Characterization

    SciTech Connect (OSTI)

    Rohay, A.C.; Fosmire, C.J.; Neitzel, D.A.; Hoitink, D.J.; Harvey, D.W.; Antonio, E.J.; Wright, M.K.; Thorne, P.D.; Hendrickson, P.L.; Fowler, R.A.; Goodwin, S.M.; Poston, T.M.

    1999-09-28T23:59:59.000Z

    This document describes the US Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents being prepared by DOE contractors. No conclusions or recommendations are provided. This year's report is the eleventh revision of the original document published in 1988 and is (until replaced by the 12th revision) the only version that is relevant for use in the preparation of Hanford NEPA; SEPA and CERCLA documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomic; occupational safety, and noise. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100,200,300, and other Areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) is essentially a definitive NEPA Chapter 6.0, which describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. People preparing environmental assessments and EISs should also be cognizant of the document entitled ''Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements'' published by the DOE Office of NEPA Oversight. Pacific Northwest National Laboratory (PNNL) staff prepared individual sections of this document, with input from other Site contractors. More detailed data are available from reference sources cited or from the authors. The following sections of the document were reviewed by the authors and updated with the best available information through June 1999: Climate and Meteorology; Ecology; Cultural, Archaeological, and Historical Resources; Socioeconomics; and All of Chapter 6.

  15. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 8

    SciTech Connect (OSTI)

    Neitzel, D.A. [ed.] [ed.; Bjornstad, B.N.; Fosmire, C.J.; Fowler, R.A. [and others] [and others

    1996-08-01T23:59:59.000Z

    This eighth revision of the Hanford Site National Environmental Policy Act (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Chapters 4 and 6 in Hanford Site-related NEPA documents. Chapter 4 (Affected Environment) includes information on climate and meteorology, geology, hydrology, ecology, historical, archaeological and cultural resources, socioeconomics, and noise. Chapter 6 (Statutory and Regulatory Requirements) provides the preparer with the federal and state regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site. The following sections were updated in this revision: climate and meteorology; ecology (threatened and endangered species section only); historical; archaeological and cultural resources; and all of chapter 6. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the hanford Site and its past activities by which to evaluate projected activities and their impacts.

  16. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01T23:59:59.000Z

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  17. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.] ed.; Baker, D.A.; Chamness, M.A. [and others] and others

    1995-09-01T23:59:59.000Z

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  18. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    SciTech Connect (OSTI)

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01T23:59:59.000Z

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  19. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect (OSTI)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01T23:59:59.000Z

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  20. Integrating a life-cycle assessment with NEPA: Does it make sense?

    SciTech Connect (OSTI)

    ECCLESTON, C.H.

    1998-09-03T23:59:59.000Z

    The National Environmental Policy Act (NEPA) of 1969 provides the basic national charter for protection of the environment in the US. Today NEPA has provided an environmental policy model which has been emulated by nations around the world. Recently, questions have been raised regarding the appropriateness and under what conditions it makes sense to combine the preparation of a NEPA analysis with the International Organization for Stnadardization (ISO) - 14000 Standards for Life-Cycle Assessment (LCA). This paper advantages a decision making tool consisting of six discrete criteria which can be employed by a user in reaching a decision regarding the integration of NEPA analysis and LCA. Properly applied, this tool should reduce the risk that a LCA may be inappropriately prepared and integrated with a NEPA analysis.

  1. Award-Winning Etching Process Cuts Solar Cell Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    NREL scientists have invented the 'black silicon' nanocatalytic wet-chemical etch, an inexpensive, one-step process that literally turns the solar cells black, allowing them to absorb more than 98% of incident sunlight. The process costs just a few cents per watt of solar-cell power-producing capacity. Increases in manufactured cell efficiencies of up to 0.8% are possible because of the reduced reflectance of black silicon. This would reduce silicon solar module costs by $5-$10 per module.

  2. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    SciTech Connect (OSTI)

    Grethlein, H.E.; Dill, T.

    1993-04-30T23:59:59.000Z

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  3. Development of a right-of-way cost estimation and cost estimate management process framework for highway projects

    E-Print Network [OSTI]

    Lucas, Matthew Allen

    2009-05-15T23:59:59.000Z

    .............................................................. 31 Results: ROW Estimation State of Practice ................................... 31 Critical Issues ....................................................................... 32 Overview of Current Practice... ............................................... 35 Analysis: Critical Review of Practices ........................................... 41 General ROW Cost Estimation Procedure ........................... 42 ROW Cost Estimation...

  4. GO 2009 Annual NEPA Planning Summary | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGO 2009 Annual NEPA Planning Summary GO

  5. LM Annual NEPA Planning Summary 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15 LM 05-15 NEPA

  6. Golden Reading Room: NEPA Categorical Exclusions | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPA Categorical Exclusions

  7. Golden Reading Room: Other NEPA Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPA CategoricalDepartmentOther

  8. Office of NEPA Policy and Compliance | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T OEnergyOfficeEnergyNEPA

  9. NEPA Contracting Reform Guidance (December 1996) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of EnergyNEPA

  10. NEPA Determination: LM-12-11 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-121 NEPA

  11. NEPA Determination: LM-12-12 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-121 NEPA-12

  12. NEPA Determination: LM-13-13 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13 NEPA

  13. NEPA-Related Public Involvement | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013NEPA-Related Public Involvement

  14. Property:NEPA Decision Url | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMinCategoricalExclusionNEPA

  15. Geothermal NEPA Workshop at GRC | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place:Georgia Department of NaturalNEPA

  16. Template for Expedited NEPA Review of Certain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeamDevelopmentDevelopingNEPA Review of Certain

  17. Template for Expedited National Environmental Policy Act (NEPA) Review of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergyTeamDevelopmentDevelopingNEPA Review of

  18. NEPA Contracting Reform Guidance (December 1996) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThis paper09 Lessons LearnedNEPA

  19. Office of NEPA Policy and Compliance | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,Intelligence and CounterintelligenceNEPA Policy and

  20. Questions and Answers about National Environmental Policy Act (NEPA) Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified EnergyDepartment ofOrder No.about NEPA Compliance

  1. A Cost-Benefit Analysis of Data Processing Architectures for the Smart Grid

    E-Print Network [OSTI]

    Langendoen, Koen

    A Cost-Benefit Analysis of Data Processing Architectures for the Smart Grid Akshay Uttama Nambi S the full poten- tial of Smart Grid applications. Smart grids utilize ICT entities to enhance efficiency certain infor- mation management requirements has hindered large scale smart grid deployments

  2. innovati nAward-Winning Etching Process Cuts Solar Cell Costs

    E-Print Network [OSTI]

    innovati nAward-Winning Etching Process Cuts Solar Cell Costs In general, when it comes to photovoltaic (PV) solar cells, the higher their efficiency, the higher their price tag. To increase cell-efficiency crystalline silicon solar cells based on an innovative antireflection approach that promises to significantly

  3. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    SciTech Connect (OSTI)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-11-01T23:59:59.000Z

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne`s preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior`s Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture`s Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas.

  4. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect (OSTI)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01T23:59:59.000Z

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  5. Nepa/404 integrated process—a case study

    E-Print Network [OSTI]

    Frazier, Mary D

    2001-01-01T23:59:59.000Z

    Marble and Century Engineering personnel began the wetland delineation and the aquatic fauna survey in the fall

  6. DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGY ScienceDNSComments

  7. CEQ Issues Guidance on Improving NEPA Process Efficiency | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 PeerUnited States

  8. Guidance Regarding Actions That May Proceed During the NEPA Process:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber2008 |of3011-2002

  9. DOE Policy on NEPA Process Transparency and Openness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) |Reservation |Plan for

  10. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    SciTech Connect (OSTI)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01T23:59:59.000Z

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  11. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1991-12-01T23:59:59.000Z

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  12. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    SciTech Connect (OSTI)

    Cushing, C.E. [ed.

    1991-12-01T23:59:59.000Z

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  13. Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79

    SciTech Connect (OSTI)

    NONE

    1989-07-01T23:59:59.000Z

    Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

  14. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    SciTech Connect (OSTI)

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31T23:59:59.000Z

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  15. US. DEPARTMENT OF ENERGY EE RE PROJ ECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Number DE-FOA-OOOOO13-000002 Procurement Instrument Number DE -EEOOOO795.003 NEPA Control Number GF0-0000795-003 cm Number G0795 Based on my review of the information...

  16. u.s. DEPARTI\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    CENTER NEPA DETElUIINATION RECIPIENT:State of Wisconsin SEP ARRA EE0000163-McCain Foods USA PROJECT TITLE: Waste Digester Biogas Recovery System Page 1 of2 STATE: WI Funding...

  17. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    lAIA1) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPINT:Arizona Geological Survey PROJECT TITLE: Siale Geological Survey Contributions to the...

  18. DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DI...

    Broader source: Energy.gov (indexed) [DOE]

    DFPARThIFN'I OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DIrnu.nNATION RECIPIENT:Kansas Corporation Commission - Renewable Energy Subgrant PROJECT T ITLE : City of Chanute GSHP...

  19. Consideration of Cumulative Impacts in EPA Review of NEPA Documents, EPA Office of Federal Activities

    Broader source: Energy.gov [DOE]

    The purpose of this guidance is to assist EPA reviewers of NEPA documents in providing accurate, realistic, and consistent comments on the assessment of cumulative impacts. The guidance focuses on...

  20. EERE PROJECT MA.NAGEMENT CENTER NEPA DFTFIU.1INATION PROJECT

    Broader source: Energy.gov (indexed) [DOE]

    NEPA DFTFIU.1INATION PROJECT TITLE: EECBG DE-EEOOOO727 Atchison Library Ground Source Heat Pump Page 1 of2 STATE : KS Funding Opportunity Announcement Number Procurement Instrument...

  1. Form:NEPA Doc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a Marine and

  2. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    2012-11-01T23:59:59.000Z

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based system demonstrates significant advantages compared to the MEA system.

  3. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V.G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamadallah Bearat

    2005-10-01T23:59:59.000Z

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our first year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. Synergistic control of these parameters offers the potential for further improvements in carbonation reactivity. A new sonication exfoliation system incorporating a novel sealing system was developed to carry out the sonication studies. Our initial studies that incorporate controlled sonication have not yet lead to a significant improvement in the extent of carbonation observed. Year 2 studies will emphasize those approaches that offer the greatest potential to cost effectively enhance carbonation, as well as combined approaches that may further enhance carbonation. Mechanistic investigations indicate incongruent dissolution results in the observed silica-rich passivating layer formation. Observations of magnesite nanocrystals within the passivating layers that form indicate the layers can exhibit significant permeability to the key reactants present (e.g., Mg{sup 2+}, H{sup +}, H{sub 2}O, CO{sub 2}, and HCO{sub 3} -). Atomistic modeling supports the observation of robust passivating layers that retain significant permeability to the key reaction species involved. Studies in Year 2 will emphasize the impact that controlled aqueous speciation and activity and slurry-flow dynamics have on the mechanisms that control carbonation reactivity and the potential they offer to substantially reduce olivine mineral sequestration process cost.

  4. New membranes could speed the biofuels conversion process and reduce cost

    ScienceCinema (OSTI)

    Hu, Michael

    2014-08-06T23:59:59.000Z

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  5. New membranes could speed the biofuels conversion process and reduce cost

    SciTech Connect (OSTI)

    Hu, Michael

    2014-07-23T23:59:59.000Z

    ORNL researchers have developed a new class of membranes that could enable faster, more cost efficient biofuels production. These membranes are tunable at the nanopore level and have potential uses in separating water from fuel and acid from bio-oils. The membrane materials technology just won an R&D 100 award. ORNL and NREL are partnering, with support from the DOE Bioenergy Technologies Office, to determine the best uses of these membranes to speed the biofuels conversion process. Development of the membranes was funded by DOE BETO and ORNL's Laboratory Directed Research and Development Program.

  6. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21T23:59:59.000Z

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus far, we have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. During the first project year we developed a new sonication exfoliation apparatus with a novel sealing system to carry out the sonication studies. We also initiated investigations to explore the potential that sonication may offer to enhance carbonation reactivity. During the second project year, we extended our investigations of the effects of sonication on the extent of carbonation as a function of the following parameters: particle size distribution, the mass of solid reactant, volume fraction of aqueous solution present, sonication power, time, temperature, and CO{sub 2} pressure. To date, none of the conditions investigated have significantly enhanced carbonation. Mechanistic investigations of the stirred ({approx}1,500 rpm) aqueous olivine carbonation process indicate the carbonation process involves both incongruent magnesium dissolution and silica precipitation, which results in robust silica-rich passivating layer formation. Secondary ion mass spectrometry observation of H within the passivating layer that forms during static carbonation suggests 2H{sup +}/Mg{sup 2+} ion exchange is associated with incongruent dissolution. Apparently, H{sub 2}O forms at or near the olivine/passivating-layer interface during the process and diffuses out through the passivating layers during the carbonation reaction. This is

  7. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21T23:59:59.000Z

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (i) modeling/controlling the slurry fluid-flow conditions, (ii) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (iii) incorporating select sonication offer to enhance exfoliation and carbonation. We have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. Synergistic control of the slurry-flow and aqueous chemistry parameters offers further potential to improve carbonation reactivity, which is being investigated during the no-cost extension period. During the first project year we developed a new sonication exfoliation system with a novel sealing system to carry out the sonication studies. We also initiated(Abstract truncated).

  8. Addressing Energy Costs of Current Separation Processes with Advanced Materials and Large scale purification and separation processes transform low value resources into more

    E-Print Network [OSTI]

    Li, Mo

    Addressing Energy Costs of Current Separation Processes with Advanced Materials and Processes Large scale purification and separation processes transform low value resources into more useful fuels, basic chemicals, food and clean water; however, they also consume considerable energy. With growing global

  9. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Wood, Benjamin

    2012-06-30T23:59:59.000Z

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  10. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01T23:59:59.000Z

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  11. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21T23:59:59.000Z

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  12. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect (OSTI)

    Buonassisi, Tonio

    2013-02-26T23:59:59.000Z

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  13. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;OverviewOverview · Cost components · Estimation of costsEstimation of costs · Examples ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 2 #12;Cost

  14. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30T23:59:59.000Z

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

  15. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  16. Environmental planning and categorical exclusions: Making the categorical exclusion an integral part of your NEPA tool kit

    SciTech Connect (OSTI)

    Holthoff, M.G.; Hanrahan, T.P.

    1994-06-01T23:59:59.000Z

    As contained in the Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act, 40 CFR 1500--1508, the Council on Environmental Quality (CEQ) directs federal agencies to adopt their own procedures for implementing the Act. The US Department of Energy (DOE) and the US Department of Agriculture Forest Service (USFS) are two examples of federal agencies with dissimilar but functionally equivalent CX processes. The DOE and USFS were selected as subjects for this study because of their distinctly different missions and as a results of the author`s familiarity with the policies of both agencies. The objectives of this study are to: (1) describe the CX policies and processes of the two agencies, (2) identify the similarities and differences between the two processes, and (3) suggest ways for improving these processes. In performing this evaluation, the authors will identify the components of each agency`s CX process that clearly contributes qualitative information for the purpose of making environmental planning decisions. Drawing from the best elements of each process, the authors will provide some general recommendations that should enable the agencies to fulfill their various obligations to the CX process while concurrently performing early, thorough, and expeditious environmental reviews under NEPA.

  17. ADDITION FOR CHAPTER 10 OF THE EA/RIR/IRFA RE NEPA AND ENVIRONMENTAL IMPACTS.

    E-Print Network [OSTI]

    ADDITION FOR CHAPTER 10 OF THE EA/RIR/IRFA RE NEPA AND ENVIRONMENTAL IMPACTS. During the Council.S. Environmental Protection Agency (Environmental Protection Agency 1995). Further, the amount of waste disposed) and the impacts of those disposals are unrelated to the percentages of the walleye pollock and Pacific cod

  18. ENVIRONMENTAL PLANNING / NEPA SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    ENVIRONMENTAL PLANNING / NEPA SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML@cemml.colostate.edu | http://www.cemml.colostate.edu Effective environmental planning and management of military and testing. The Center develops environmental planning documents for installations to incorporate

  19. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    Funding OpportUDity AnaouDcement NumMr OE-FOA-EEOOOO116 Procuremen11ns1nJmcn1 Number DE-EEOOO2816 NEPA Control NumMr GFO-10-162-OO1 CIDNumMr G02816 Bued on my review...

  20. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect (OSTI)

    Cerio, Frank

    2013-09-14T23:59:59.000Z

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    technologies/water_efficiency.cfm. High pressure low volumefor Compressed Air Efficiency. E-Source Tech Update.Refrigeration Plant Efficiently -- A Cost Saving Guide for

  2. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  3. Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information Processing and Communications Systems

    E-Print Network [OSTI]

    Title: Digital Infrastructure: Reducing Energy Cost and Environmental Impacts of Information of various societal and environmental mandates followed by a review of technologies, systems, and hardware

  4. Total cost analysis of process time reduction as a green machining strategy

    E-Print Network [OSTI]

    Helu, Moneer; Behmann, Benjamin; Meier, Harald; Dornfeld, David; Lanza, Gisela; Schulze, Volker

    2012-01-01T23:59:59.000Z

    on the use of life cycle assessment (LCA) to quantifyLife Cycle Cost Analysis and LCA, in: International Journal of Life Cycle Assessment,

  5. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Fig. 1. 1 Flexible electronics and flexible solar cells. Inof metal oxide based electronics on heat sensitive flexibleNanoparticles for Low-cost Electronics and Photovoltaics by

  6. Cost of Handling Texas Citrus, Fresh and Processed, 1946-47.

    E-Print Network [OSTI]

    Samuels, J. K. (James Kenneth); Fugett, Kenneth A.

    1949-01-01T23:59:59.000Z

    packinghouse 254,229 23,907 5,542 1,220 23,041 3,422 109,104 Items of cost: Cost in cents per 1-3/5 bushel equivalent Materials 37 5 3 17 2 7 d n 4 F( -. - - -. -. - - -- Labor 14 19 11 14 2 0 21 5 Other direct operating 2 2 2 2 2 2 2 Indirect operating 3... 3 2 3 3 2 2 Total packing cost 56 77 32 46 65 73 9 Administrative & sellin; 7 6 6 10 6 6 3 - Other operating cost 2 2 2 2 2 3 1 Total cost 65 85 4 0 5 8 73 82 13 Oranges Type of container 1-3/5 brucell-3/5 std.14/5 bruce*I% box bae*llO Ib. bag...

  7. MODELING OF PLUTONIUM RECOVERY AND DISCARD PROCESSES FOR THE PURPOSE OF SELECTING OPTIMUM (MINIMUM WASTE, COST AND DOSE) RESIDUE DISPOSITIONS

    SciTech Connect (OSTI)

    M. A. ROBINSON; M. B. KINKER; ET AL

    2001-04-01T23:59:59.000Z

    Researchers have developed a quantitative basis for disposition of actinide-bearing process residues. Research included the development of a technical rationale for determining when residues could be considered unattractive for proliferation purposes, and establishing plutonium-concentration-based discard ceilings of unimmobilized residues and richer discard ceilings for immobilized monolithic waste forms. Further quantitative analysis (process modeling) identifies the plutonium (Pu) concentration at which residues should be discarded to immobilization in order to minimize the quantifiable negative consequences of residue processing (cost, waste, dose). Results indicate that optimum disposition paths can be identified by process modeling, and that across-the-board discard decisions maximize negative consequences.

  8. Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles

    E-Print Network [OSTI]

    Grujicic, Mica

    Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced potential). Unfortu- nately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Inc. (1997). Guide to Energy Efficiency Opportunities in theE. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in Fresh

  10. Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications

    E-Print Network [OSTI]

    Lindsay, B. B.

    Gas Research Institute initiated a program in 1985 to develop cost-effective gas engine-driven cooling systems for commercial and industrial applications. Tecogen, Inc., has designed, fabricated, and tested a nominal 150-ton engine-driven water...

  11. Activity-based costing simulation as a tool for construction process optimization

    E-Print Network [OSTI]

    Son, Junghye

    1999-01-01T23:59:59.000Z

    to develop the scope of time-cost optimization in this research. Optimization tools, such as neural networks, genetic algorithms, and simulation methods were analyzed to determine an effective tool for the optimization based on the planning and execution...

  12. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect (OSTI)

    Ciucci, J.A. Jr.

    1983-12-01T23:59:59.000Z

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industrial sectors. Modern control systems are often notmay already have modern process control systems in place togrowing rapidly. Modern process control systems exist for

  14. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Printing and Low Temperature Laser Processing”, Sensor andCo. , Inc B Bäuerle, D. , Laser Processing and Chemistry (Conductor Microstructures by Laser Curing of Printed Gold

  15. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    annealing. Laser processing of DSSC has been reported [Kimparticle sizes Table 5.1 The DSSC processing parametersdeposition to realize DSSC on glass and plastic substrates

  16. Post-NEPA environmental investigations at DOE geopressured-geothermal project sites

    SciTech Connect (OSTI)

    Reed, A.W.

    1985-01-01T23:59:59.000Z

    In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

  17. Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    SciTech Connect (OSTI)

    William Quinn

    2012-04-30T23:59:59.000Z

    The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LEDâ??s into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield. Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

  18. Proposed Columbia Wind Farm No. 1 : Draft Environmental Impact Statement, Joint NEPA/SEPA.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Klickitat County (Wash.)

    1995-03-01T23:59:59.000Z

    This Draft Environmental Impact Statement (DEIS) addresses the Columbia Wind Farm {number_sign}1 (Project) proposal for construction and operation of a 25 megawatt (MW) wind power project in the Columbia Hills area southeast of Goldendale in Klickitat County, Washington. The Project would be constructed on private land by Conservation and Renewable Energy System (CARES) (the Applicant). An Environmental Impact Statement is required under both NEPA and SEPA guidelines and is issued under Section 102 (2) (C) of the National Environmental Policy Act (NEPA) at 42 U.S.C. 4321 et seq and under the Washington State Environmental Policy Act (SEPA) as provided by RCW 43.21C.030 (2) (c). Bonneville Power Administration is the NEPA lead agency; Klickitat County is the nominal SEPA lead agency and CARES is the SEPA co-lead agency for this DEIS. The Project site is approximately 395 hectares (975 acres) in size. The Proposed Action would include approximately 91 model AWT-26 wind turbines. Under the No Action Alternative, the Project would not be constructed and existing grazing and agricultural activities on the site would continue.

  19. DEPARTMENT OFENFRGY EERE PROJECT MANAGEMENT CENTER NEPA DETEIU...

    Broader source: Energy.gov (indexed) [DOE]

    this determination due to the nature of the action, which is to increase the number of Smart Meter installations compared to the number originally tasked. The no-cost aspect...

  20. US DEPARTMENT OF ENERGY EE RE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    refueling equipment (compression and fueling station) and the incremental cost of a eNG medium duty truck. The proposed project site is located at 17440 Highway 167, Dry Prong ,...

  1. Lessons Learned Quarterly Report, March 2007

    Broader source: Energy.gov [DOE]

    Welcome to the 50th quarterly report on lessons learned in the NEPA process. The Of?ce of NEPA Policy and Compliance launched the Lessons Learned program in December 1994 to support continuous improvement in the NEPA process. The Of?ce began by presenting cost and time metrics and “What Worked and What Didn’t Work.” Other features were soon introduced.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industry is for process cooling, freezing, and cold storage.Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,industry. Unit processes such as pasteurization, homogenization, and cold storage

  3. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  4. Hanford Site National Environmental Policy Act (NEPA) Characterization Report, Revision 17

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Sackschewsky, Michael R.; Scott, Michael J.; Thorne, Paul D.

    2005-09-30T23:59:59.000Z

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements about significance or environmental consequences are provided. This year’s report is the seventeenth revision of the original document published in 1988 and is (until replaced by the eighteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, of the 100, 200, 300, and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities. Information in Chapter 6 of this document can be adapted and supplemented with specific information for a chapter covering statutory and regulatory requirements in an environmental assessment or environmental impact statement. When preparing environmental assessments and EISs, authors should also be cognizant of the document titled Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements published by the DOE Office of NEPA Oversight (DOE 2004). Additional guidance on preparing DOE NEPA documents can be found at http://tis.eh.doe.gov/nepa/guidance.html. Any interested individual seeking baseline data on the Hanford Site and its past activities may also use the information contained in this document to evaluate projected activities and their impacts. For this 2005 revision, the following sections of the document were reviewed by the authors and updated with the best available information through May 2005: Climate and Meteorology Air Quality Geology – Seismicity section only Hydrology – Flow charts for the Columbia and Yakima rivers only Ecology – Threatened and Endangered Species subsection only Socioeconomics Occupational Safety All of Chapter 6.

  5. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    Information is presented concerning the 850/sup 0/C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850/sup 0/C IDC plant; 950/sup 0/C DC reactor vessel; 950/sup 0/C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones.

  6. NEPA and CEQA: Integrating State and Federal Environmental Reviews...

    Energy Savers [EERE]

    Commission licensing process, which takes the place of the CEQA process for certain power plants NEPACEQAFinalHandbookCoverLetterFebruary2014.pdf NEPACEQAFinalHandbookFe...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Vegetable Processing/Cold Storage Facilities. Proceedings ofControl System in a Food Cold Storage Facility. Case Studyhomogenization, and cold storage can be found in nearly

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    to implement control systems and more modern systems entercontrol systems; many facilities may already have modernprocess control systems are growing rapidly. Modern process

  10. Enhance accuracy in Software cost and schedule estimation by using "Uncertainty Analysis and Assessment" in the system modeling process

    E-Print Network [OSTI]

    Vasantrao, Kardile Vilas

    2011-01-01T23:59:59.000Z

    Accurate software cost and schedule estimation are essential for software project success. Often it referred to as the "black art" because of its complexity and uncertainty, software estimation is not as difficult or puzzling as people think. In fact, generating accurate estimates is straightforward-once you understand the intensity of uncertainty and framework for the modeling process. The mystery to successful software estimation-distilling academic information and real-world experience into a practical guide for working software professionals. Instead of arcane treatises and rigid modeling techniques, this will guide highlights a proven set of procedures, understandable formulas, and heuristics that individuals and development teams can apply to their projects to help achieve estimation proficiency with choose appropriate development approaches In the early stage of software life cycle project manager are inefficient to estimate the effort, schedule, cost estimation and its development approach .This in tu...

  11. Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of EnergyLow-Cost

  12. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31T23:59:59.000Z

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  13. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray; Singh, Surinder; Spiry, Irina; Wood, Benjamin

    2013-12-30T23:59:59.000Z

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). At a steam temperature of 395 °C (743 °F), the CCS energy penalty for amino-silicone solvent is only 30.4% which compares to a 35.9% energy penalty for MEA. The increase in COE for the amino-silicone solvent relative to the non-capture case is between 98% and 103% (depending on the solvent cost) which compares to an ~109% COE cost increase for MEA. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  14. Cost Model for Digital Curation: Cost of Digital Migration

    E-Print Network [OSTI]

    Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01T23:59:59.000Z

    notes that comparisons of cost data remain difficult becausethese resources into cost data, and a description of themigrations), the cost of processing the data may rise

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    are in the process cooling of milk and other dairy products,to finish cooling the outgoing pasteurized milk. Installingand cooling upon entering the facility for storage, the milk

  16. Development of a method for recording energy costs and uses during the construction process 

    E-Print Network [OSTI]

    Arnold, Althea Gayle

    2009-05-15T23:59:59.000Z

    consumption during the construction process, sets forth methods for recording this energy consumption and establishes a program for the recording and analysis of this data. An energy study of electricity, gasoline, and diesel consumption was made...

  17. Process based cost modeling of emerging optoelectronic interconnects : implications for material platform choice

    E-Print Network [OSTI]

    Liu, Shan, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Continuously increasing demand for processing power, storage capacity, and I/O capacity in personal computing, data network, and display interface suggests that optical interconnects may soon supplant copper not only for ...

  18. Handbook Issued on NEPA and CEQA: Integrating Federal and State...

    Energy Savers [EERE]

    (CEC) licensing process, which takes the place of the CEQA process for certain power plants. The handbook and associated letter are posted on this website and on the White...

  19. Flowsheet optimization with implicit models and complex cost and size functions using Chemical Process Simulators.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of the paths between unit operations, or choices of different technologies among them. Along the history of the flowsheet, recycle structure of the flowsheet, general structure of the separation system, (vapor and liquid recovery), and heat integration. If the process becomes unprofitable as the design proceeds, the search

  20. Novel cost allocation framework for natural gas processes: methodology and application to plan economic optimization

    E-Print Network [OSTI]

    Jang, Won-Hyouk

    2004-09-30T23:59:59.000Z

    ....................................................................................... 31 4. Example of clusters formed around global and local optima...................................37 5. Flowchart of the quadratic search. ...........................................................................38 6. Initial population... function shows discontinuous behavior as well. Also, because elements of the process flowsheet show nonlinear characteristics according to their operating range, the optimization problem may have 11 multiple local optima. Despite their high...

  1. The Palomar Transient Factory: High Quality Realtime Data Processing in a Cost-Constrained Environment

    E-Print Network [OSTI]

    Surace, J; Masci, F; Grillmair, C; Helou, G

    2015-01-01T23:59:59.000Z

    The Palomar Transient Factory (PTF) is a synoptic sky survey in operation since 2009. PTF utilizes a 7.1 square degree camera on the Palomar 48-inch Schmidt telescope to survey the sky primarily at a single wavelength (R-band) at a rate of 1000-3000 square degrees a night. The data are used to detect and study transient and moving objects such as gamma ray bursts, supernovae and asteroids, as well as variable phenomena such as quasars and Galactic stars. The data processing system at IPAC handles realtime processing and detection of transients, solar system object processing, high photometric precision processing and light curve generation, and long-term archiving and curation. This was developed under an extremely limited budget profile in an unusually agile development environment. Here we discuss the mechanics of this system and our overall development approach. Although a significant scientific installation in of itself, PTF also serves as the prototype for our next generation project, the Zwicky Transien...

  2. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21T23:59:59.000Z

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  3. U.S. Department of Energy NEPA Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    consultant to manage the energy efficiency and conservation block grant process, 3) energy audit of City buildings, 4) revolving loan fund for energy efficient upgrades to...

  4. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETFIU...

    Broader source: Energy.gov (indexed) [DOE]

    used to procure and pre-process biomass feedstock (Task 1), produce an intermediate bio-oil using Battelle's existing Catalytic Fast Pyrolysis Laboratory (Task 2), develop an...

  5. National Environmental Justice Conference: "Leveraging NEPA for EJ Advancement"

    Broader source: Energy.gov [DOE]

    Description: This half- day workshop is designed to teach the process.  While all Departmental workers are welcome to join, we especially urge analysis practitioners, contractor workers and...

  6. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    SciTech Connect (OSTI)

    Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in [Indian Institute of Technology Bombay, Department of Mathematics (India)

    2013-12-15T23:59:59.000Z

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.

  7. Title 40 CFR 1501 NEPA and Agency Planning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen EnergyR. 297water0 CFR 1501 NEPA

  8. Promoting NEPA Transparency and Public Engagement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring Solar forProjectDepartmentPlants

  9. Regulations for Implementing the Procedural Provisions of NEPA | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyas of 7/16/2015of Energy

  10. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31T23:59:59.000Z

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  11. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION

    SciTech Connect (OSTI)

    John Sirman; Leonard Switzer; Bart van Hassel

    2004-06-01T23:59:59.000Z

    This annual technical progress report summarizes the work accomplished during the second year of the program, January-December 2003, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes and confirmation of process economics, significant future progress is expected. Concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been investigated. OTM reactor combustion testing was delayed to insufficient reliability of the earlier OTM materials. Substantial improvements to reliability have been identified and testing will recommence early in 2004. Promising OTM material compositions and OTM architectures have been identified that improve the reliability of the ceramic elements. Economic evaluation continued. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton CO{sub 2}.

  12. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION

    SciTech Connect (OSTI)

    Bart van Hassel; John Sirman

    2005-07-01T23:59:59.000Z

    This annual technical progress report summarizes the work accomplished during the third year of the program, January-December 2004, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The groundwork was laid for both the membrane materials development and the construction of the required facilities for testing the membrane reliability and performance. It has resulted in the construction of a single tube and multi-tube combustion test facility. Design for Six Sigma (DFSS) principles were applied to the membrane material selection process. The required ceramic powders were ordered and will be evaluated in 2005. Design of experiment techniques (fuel gas mixture design) were applied to the membrane performance evaluation process. The first results indicate that the oxygen flux of the membrane is significantly higher when the porous support is exposed to the fuel gas mixture instead of air. Failures of the oxygen transport membrane tube did not occur during the reporting period which is supporting evidence that our emphasis on design for robustness is yielding the desired result. All work on the project was performed in a safe manner as proven by zero recordable injuries or lost work days.

  13. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO{sub 2} CAPTURE AND SEQUESTRATION

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; G. Maxwell Christie

    2003-07-01T23:59:59.000Z

    This annual technical progress report summarizes the work accomplished during the first year of the program, January-December 2002, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes significant future progress is expected. A number of concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been proposed. A detailed modeling plan has been proposed and early modeling work has focused on developing spreadsheet based models for quick engineering calculations. Combustion reactor laboratory scale evaluations efforts have been delayed due to the closing of Praxair's Tarrytown facility in December 2001. Experimental facilities and personnel have been relocated to Praxair's facility in Tonawanda. The facilities have recently been re-commissioned. Work with the OTM development task has also been delayed as early material selections were discarded. More recently, more promising OTM material compositions have been identified. Economic evaluation commenced. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton carbon.

  14. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  15. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31T23:59:59.000Z

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  16. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect (OSTI)

    DR. DEVIN MACKENZIE

    2011-12-13T23:59:59.000Z

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

  17. Process-based cost modeling of tool-steels parts by transient liquid-phase infiltration of powder-metal preforms

    E-Print Network [OSTI]

    Barradas Martinez, Juan Alfredo, 1974-

    2004-01-01T23:59:59.000Z

    (cont.) cost between these two processes was related mainly to their powder scrap rates, 15 % for the Pressing-TLI and 80% for the 3DP-TLI. The high scrap rate value of the 3DP process originates from the fact that powder ...

  18. Scoping Guidance: Memorandum for General Counsels, NEPA Liaisons, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess|2Stanford University

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  20. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program 

    E-Print Network [OSTI]

    Jackson, D.

    1997-01-01T23:59:59.000Z

    on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period....

  1. Nuclear Engineering and Design 236 (2006) 16411647 Basic factors to forecast maintenance cost and failure processes for

    E-Print Network [OSTI]

    Popova, Elmira

    2006-01-01T23:59:59.000Z

    . The importance of equipment reliability and prediction in the commercial nuclear power plant is presented along a Bayesian model for the failure rate of the equipment, which is input to the cost forecasting model Texas Project Nuclear Operating Company (STPNOC): failure times, repair costs, equipment downtime

  2. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  3. NEPA Documentation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -Department of5-1213-13

  4. http://www.eh.doe.gov/nepa/process/ll/95q4.htm

    Broader source: Energy.gov (indexed) [DOE]

    Amarillo, Texas High Explosive Waste Water Treatment Facility at LANL, Los Alamos, New Mexico Decontamination and Dismantlement of the Pinellas Plant, Pinellas, Florida...

  5. http://www.eh.doe.gov/nepa/process/ll/95q3.htm

    Broader source: Energy.gov (indexed) [DOE]

    Hydro-Electric Transmission Line, Bangor, Maine Idaho Operations Office Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental...

  6. http://www.eh.doe.gov/nepa/process/ll/95q2.htm

    Broader source: Energy.gov (indexed) [DOE]

    Program, LANL, Los Alamos, New Mexico 3 Remedial Action at the Slick Rock Uranium Mill Tailings Sites, Slick Rock, Colorado 4 Remedial Action, Uranium Mill Tailings...

  7. Using the NEPA Process to Further the Department's Mission and Goals |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFactEnergy Bob UnderYour

  8. Hanford Advisory Board Handout U.S. Department of Energy NEPA vs. CERCLA Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory Board HAB

  9. DOE Policy on NEPA Process Transparency and Openness | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment of

  10. DOE Policy on NEPA Process Transparency and Openness | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU WasteAdministrator |20.1CPlan for 2302(c)Policy2,DOE

  11. Title 40 CFR 1506.1 Limitations On Actions During NEPA Process | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen EnergyR.to Comments6 OtherEnergy

  12. NEPA Process for Geothermal Power Plants in the Deschutes National Forest |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF Advisors LLC Jump to: navigation,Open

  13. Establishment of a Cost-Effective and Robust Planning Basis for the Processing of M-91 Waste at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Parker, Brian M.

    2004-07-30T23:59:59.000Z

    This report identifies and evaluates viable alternatives for the accelerated processing of Hanford Site transuranic (TRU) and mixed low-level wastes (MLLW) that cannot be processed using existing site capabilities. Accelerated processing of these waste streams will lead to earlier reduction of risk and considerable life-cycle cost savings. The processing need is to handle both oversized MLLW and TRU containers as well as containers with surface contact dose rates greater than 200 mrem/hr. This capability is known as the ''M-91'' processing capability required by the Tri-Party Agreement milestone M-91--01. The new, phased approach proposed in this evaluation would use a combination of existing and planned processing capabilities to treat and more easily manage contact-handled waste streams first and would provide for earlier processing of these wastes.

  14. Vehicle Technologies Office Merit Review 2015: Thick Low-Cost, High-Power Lithium-Ion Electrodes via Aqueous Processing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thick low-cost,...

  15. Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal

    E-Print Network [OSTI]

    Hunt, Andrew Robert

    2007-01-01T23:59:59.000Z

    Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

  16. Operating Costs Estimates Cost Indices

    E-Print Network [OSTI]

    Boisvert, Jeff

    to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

  17. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    SciTech Connect (OSTI)

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31T23:59:59.000Z

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  18. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST

    SciTech Connect (OSTI)

    M.J. McKelvy; J. Diefenbacher; R. Nunez; R.W. Carpenter; A.V.G. Chizmeshya

    2005-01-01T23:59:59.000Z

    Coal can support a large fraction of global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other candidate technologies, which propose long-term storage (e.g., ocean and geological sequestration), mineral sequestration permanently disposes of CO{sub 2} as geologically stable mineral carbonates. Only benign, naturally occurring materials are formed, eliminating long-term storage and liability issues. Serpentine carbonation is a leading mineral sequestration process candidate, which offers large scale, permanent sequestration. Deposits exceed those needed to carbonate all the CO{sub 2} that could be generated from global coal reserves, and mining and milling costs are reasonable ({approx}$4 to $5/ton). Carbonation is exothermic, providing exciting low-cost process potential. The remaining goal is to develop an economically viable process. An essential step in this development is increasing the carbonation reaction rate and degree of completion, without substantially impacting other process costs. Recently, the Albany Research Center (ARC) has accelerated serpentine carbonation, which occurs naturally over geological time, to near completion in less than an hour. While reaction rates for natural serpentine have been found to be too slow for practical application, both heat and mechanical (attrition grinding) pretreatment were found to substantially enhance carbonation reactivity. Unfortunately, these processes are too energy intensive to be cost-effective in their present form. In this project we explored the potential that utilizing power plant waste heat (e.g., available up to {approx}200-250 C) during mechanical activation (i.e., thermomechanical activation) offers to enhance serpentine mineral carbonation, while reducing pretreatment energy consumption and process cost. This project was carried out in collaboration with the Albany Research Center (ARC) to maximize the insight into the potential thermomechanical activation offers. Lizardite was selected as the model serpentine material for investigation, due to the relative structural simplicity of its lamellar structure when compared with the corrugated and spiral structures of antigorite and chrysotile, respectively. Hot-ground materials were prepared as a function of grinding temperature, time, and intensity. Carbonation reactivity was explored using the standard ARC serpentine carbonation test (155 C, 150 atm CO{sub 2}, and 1 hr). The product feedstock and carbonation materials were investigated via a battery of techniques, including X-ray powder diffraction, electron microscopy, thermogravimetric and differential thermal, BET, elemental, and infrared analysis. The incorporation of low-level heat with moderate mechanical activation (i.e., thermomechanical activation) was found to be able to substantially enhance serpentine carbonation reactivity in comparison with moderate mechanical activation alone. Increases in the extent of carbonation of over 70% have been observed in this feasibility study, indicating thermomechanical activation offers substantial potential to lower process cost. Investigations of the thermomechanically activated materials that formed indicate adding low-level heat during moderately intense lizardite mechanical activation promotes (1) energy absorption during activation, (2) structural disorder, and (3) dehydroxylation, as well as carbonation reactivity, with the level of energy absorption, structural disorder and dehydroxylation generally increasing with increasing activation temperature. Increasing activation temperatures were also associated with decreasing surface areas and water absorptive capacities for the activated product materials. The above decreases in surface area and water absorption capacity can be directly correlated with enhanced particle sintering during thermomechanical activation, as evidenced by electron microscopy observation. The level of induced structural disorder appears to be a key parameter in enhancing carbonation reactivity. However, p

  19. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program

    E-Print Network [OSTI]

    Jackson, D.

    A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency...

  20. Analysis of Bioproducts from Ultra-Low Cost Biomass Processing Lucy Cheadle, Chemical Engineering, Washington University in St. Louis, MO

    E-Print Network [OSTI]

    Collins, Gary S.

    of volatiles in the sample ·Introduce oxygen to combust char and determine ash content · For "oven-dried" wood of biochar product to processing variations. Possible uses for biochar: · Natural coal replacement · Soil developed to use timber harvest and forest fuels reduction slash. Normally, slash is disposed of by being

  1. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  2. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  3. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect (OSTI)

    Vogt, Kirkland

    2013-02-01T23:59:59.000Z

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  4. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 6, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The project`s objective is to demonstrate innovative applications of technology for cost reduction for the Chiyoda Thoroughbred-121 (CT-121) process. The CT-121 process is a wet FGD process that removes SO{sub 2}, can achieve simultaneous particulate control, and can produce a salable by-product gypsum thereby reducing or even eliminating solid waste disposal problems. Figure 1 shows a flow schematic of the process. CT-121 removes SO{sub 2} and particulate matter in a unique limestone-based scrubber called the Jet Bubbling Reactor (JBR). IN the JBR, flue gas bubbles beneath the slurry, SO{sub 2} is absorbed, and particulate matter is removed from the gas. The agitator circulates limestone slurry to ensure that fresh reactant is always available in the bubbling or froth zone sot that SO{sub 2} removal can proceed at a rapid rate. Air is introduced into the bottom of the JBR to oxidize the absorbed SO{sub 2} to sulfate, and limestone is added continuously to neutralize the acid slurry and form gypsum. The JBR is designed to allow ample time for complete oxidation of the SO{sub 2}, for complete reaction of the limestone, and for growth of large gypsum crystals. The gypsum slurry is continuously withdrawn from the JBR and is to be dewatered in a gypsum stack. The stacking technique involves filing a diked area with gypsum slurry, allowing the gypsum solids to settle, and removing clear liquid from the top of the stack for recycle back to the process.

  5. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect (OSTI)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30T23:59:59.000Z

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

  6. National Environmenal Policy Act Contracting Reform Guidance: Phase 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The NEPA Contracting Quality Improvement Team identified several contracting improvements to reduce the cost and time for the NEPA process. The team`s February 1995 report recommended a series of steps to achieve the improvements, including issuance of contracting guidance. The guidance will be issued in three phases. This Phase I guidance implements the team`s short-term recommendations. It provides model statements of work and a sample schedule of contractor deliverables, establishes a pilot program for evaluating performance of NEPA support contractors, and describes information resources available on the DOE NEPA Web.

  7. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    and Processing (IT) Lignin-Based Low-Cost Carbon Fiber Precursors * Structural Materials for Vehicles (VT) * Graphite Electrodes for Arc Furnaces (IT) * Nanoporous CF for...

  8. Contracting with reading costs and renegotiation costs

    E-Print Network [OSTI]

    Brennan, James R.

    2007-01-01T23:59:59.000Z

    Reading Costs, Competition, and ContractReading Costs . . . . . . . . . . . . . . . . C. EquilibriumUnconscionability A?ect Reading Costs . . . . . . . . . .

  9. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24T23:59:59.000Z

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  10. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  11. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10T23:59:59.000Z

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    E. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in FreshSummer Study on Energy Efficiency in Industry, American

  13. LIFE Cost of Electricity, Capital and Operating Costs

    SciTech Connect (OSTI)

    Anklam, T

    2011-04-14T23:59:59.000Z

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  14. DRAFT Hanford Advisory Board Handout for PIC MTG 2/6/13 DOE NEPA vs. CERCLA Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental Technology Testing

  15. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

  16. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01T23:59:59.000Z

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  17. u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    vessel that processes dairy manure and other organic wastes in an oxygen-free environment designed to induce digestion by anaerobic bacteria. The digested fiber solids are...

  18. u.s. DEPART1IENT OF ENERGY EE RE PROJECT MANAGEMDH CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    design unallowable) Task 5 - software development activities only Task 7 - Software and Signal Processing Development, Testing, and Reporting Task 8 * Project Management and...

  19. DEPARTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERl...

    Broader source: Energy.gov (indexed) [DOE]

    Page I of2 STATE: CA PROJECT TITLE: The Diablo Regional Distributed Solar Energy Generation Expedited Permit Process Funding Opportunity Announcement Number Procurement...

  20. DFPARThIFNT OFENJ!RGY EERE PROJECT MANAGEMENT CENTER NEPA DETER1...

    Broader source: Energy.gov (indexed) [DOE]

    audits and process and facility analysis work would be completed at selected small or medium-sized manufacturing companies and would involve data collection, analysis and...

  1. Life-cycle costs for the Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1996-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the NEPA and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided and tables showing different breakdowns of the cost estimates are provided. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report. Specifically, costs for high-level waste are found in this section, as well as supplemental costs for additional low-level waste and hazardous waste alternatives.

  2. Procedures for Submitting Documents for Posting on the DOE NEPA Website |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammieReserveSecretaryProcedures for

  3. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

  4. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  5. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  6. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  7. Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells

    E-Print Network [OSTI]

    Zhou, Yaoqi

    -Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

  8. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  9. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  10. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  11. Cost Sharing What is Cost Sharing?

    E-Print Network [OSTI]

    Tsien, Roger Y.

    sharing using various data fields (bin, fund, PI, index, etc.) x Create a Bin Generate a bin where cost;3 Cost Sharing Steps Search for & Create a Bin Search Results Display Select AWARD Type the correct data1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources

  12. Evaluation of Federal Energy Savings Performance Contracting -- Methodology for Comparing Processes and Costs of ESPC and Appropriatins-Funded Energy Projects

    SciTech Connect (OSTI)

    Hughes, P.J.

    2002-10-08T23:59:59.000Z

    Federal agencies have had performance contracting authority since 1985, when Congress first authorized agencies to enter into shared energy savings agreements with Public Law 99-272, the Consolidated Omnibus Budget Reconciliation Act. By the end of FY 2001, agencies had used energy savings performance contracts (ESPCs) to attract private-sector investment of over $1 billion to improve the energy efficiency of federal buildings. Executive Order 13123 directs agencies to maximize their use of alternative financing contracting mechanisms such as ESPCs when life-cycle cost effective to reduce energy use and cost in their facilities and operations. Continuing support for ESPCs at the Administration and Congressional levels is evident in the pending comprehensive national energy legislation, which repeals the sunset provision on ESPC authority and extends ESPC authority to water savings projects. Despite the Congressional and Presidential directives to use ESPCs, some agencies have been reluctant to do so. Decision makers in these agencies see no reason to enter into long-term obligations to pay interest on borrowed money out of their own operating budgets if instead Congress will grant them appropriations to pay for the improvements up front. Questions frequently arise about whether pricing in ESPCs, which are negotiated for best value, is as favorable as prices obtained through competitive sourcing, and whether ESPC as a means of implementing energy conservation projects is as life-cycle cost effective as the standard practice of funding these projects through appropriations. The lack of any quantitative analysis to address these issues was the impetus for this study. ESPCs are by definition cost-effective because of their ''pay-from-savings'' requirement and guarantee, but do their interest costs and negotiated pricing extract an unreasonably high price? Appropriations seem to be the least-cost option, because the U.S. Treasury can borrow money at lower interest rates than the private sector, but appropriations for energy projects are scarce. What are the costs associated with requesting funding and waiting for appropriations? And how is the value of an energy project affected if savings that are not guaranteed do not last? The objective of this study was to develop and demonstrate methods to help federal energy managers take some of the guesswork out of obtaining best value from spending on building retrofit energy improvements. We developed a method for comparing all-inclusive prices of energy conservation measures (ECMs) implemented using appropriated funds and through ESPCs that illustrates how agencies can use their own appropriations-funded project experience to ensure fair ESPC pricing. The second method documented in this report is for comparing life-cycle costs. This method illustrates how agencies can use their experience, and their judgment concerning their prospects for appropriations, to decide between financing and waiting.

  13. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31T23:59:59.000Z

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    industry is refrigeration, which is used for process cooling, cold storage,Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Vegetable Processing/Cold Storage Facilities. Proceedings ofControl System in a Food Cold Storage Facility. Case Studyare discussed below. Cold storage involves the storage of

  16. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  17. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01T23:59:59.000Z

    Samuel Schenker, “The Costs of Hir- u ing Skilled Workers”,Employee Replacement Costs Arindrajit Dube, Eric Freeman andof employee replacement costs, using a panel survey of

  18. Employee Replacement Costs

    E-Print Network [OSTI]

    Dube, Arindrajit; Freeman, Eric; Reich, Michael

    2010-01-01T23:59:59.000Z

    Employee Replacement Costs Arindrajit Dube, Eric Freeman andproperties of employee replacement costs, using a panel2008. We establish that replacement costs are sub- stantial

  19. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool 

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01T23:59:59.000Z

    To improve monitoring technology often re-quired by industrial energy efficiency projects, we have developed a set of power and process monitoring tools based on the IEEE 1451.2 smart sensor interface standard. These tools enable a wide...

  20. Liquefaction and Pipeline Costs Bruce Kelly

    E-Print Network [OSTI]

    1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 are representative of hydrogen pipeline costs; 10 percent added to unit hydrogen costs as a contingency Better-9, 2007 Columbia, Maryland #12;2 Hydrogen Liquefaction Basic process Compress Cool to temperature

  1. Arbitrage and viability in securities markets with ...xed trading costs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Arbitrage and viability in securities markets with ...xed trading costs Elyčs Jouini Hedi Kallaly with ...xed costs of trading, i.e. transactions costs that are bounded regardless of the transaction size, such as: ...xed brokerage fees, investment taxes, op- erational and processing costs, or opportunity costs

  2. Environmental Review of Western Water Project Operations: Where NEPA Has Not Applied, Will It Now Protect Farmers from Fish

    E-Print Network [OSTI]

    Benson, Reed D.

    2011-01-01T23:59:59.000Z

    the trend toward species extinction, whatever the cost." 'policy of preventing species extinctions, 30 0 and statingjeopardy to species facing extinction. Not surprisingly,

  3. Cost Model and Cost Estimating Software

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses a formalized methodology is basically a cost model, which forms the basis for estimating software.

  4. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    If the activity creates an impoundment of water, adverse effects to the aquatic system due to accelerating the passage of water, andor restricting its flow must be...

  5. Environmental Review - NEPA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact statements. Environmental Impact Statement-EIS Southwest Intertie Project Environmental Assessment-EA Cliffrose Solar Energy Interconnection Project DOEEA-1989...

  6. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Cementing Swivel Test Da te: 6-23-2010 DOE Code: 6730-020-71094 Contractor Code: 8067-779 Project Lead: Mark Duletsky Project Overview 1. Brief project description include The...

  7. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    268 Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mark Duletsky Project...

  8. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Code: TBD Project Lead: Brian Black Project Overview This project will use the drilling rig and associated equipment to drill a well to 5400 feet that will be 1. What are...

  9. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    duration of the projed? 4 . What major equipment will be used if any (work over rig, drilling rig, etc.)? Contractor Code: The primary functions of the bio-treatment facility...

  10. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    - )Jp R tW" I Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mar1<...

  11. UGP Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transparency and openness. Some actions may have environmental impacts that require an environmental assessment and a detailed analysis to determine the extent and severity of...

  12. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    , fossil, and renewable energy activities. Conditions: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficiency that do not...

  13. SN Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project San Luis Transmission Project Environmental Assessment-EA San Joaquin Valley Right-of-Way Maintenance Project North Area Right-of-Way Maintenance Project Sacramento...

  14. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    rr ;J. 95 Project lnfonnation Project Title: Well Coring-Schlumberger Carbon Services Date: 31810 DOE Code: 6730.020.81016 Contractor Code: 8067-708 Project Lead: Vicki Stamp...

  15. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    67 Project lnfonnation Project Title: Restoration of 63-S-11 Date: 1212112009 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview The environmental impacts will be...

  16. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    8 Project lnfonnation Project Title: Restoration of 62-42 SX 10 DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 62-42 SX-1 0. What are the...

  17. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    environment. 1. What are the environmental impacts? Dig up old electrical line from pumping unit on 61-S-34 to power pole east of well , approximately 75 feet 2. What is the...

  18. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    9 Project Information Project Title: Restoration of 73 SX 1 OH DOE Code: Project Lead: Jeff Jones Project Overview We will be restoring this location 73 SX 10H. What are the...

  19. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    2 Project Information Project Title: 17 -AX-11 Restoration Date: DOE Code: Contractor Code: Project Lead: Jim Bell Project Overview The environmental impacts should be minimal ....

  20. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    1 Project Information Project Title: C-EA 2. Work on existing well location (within 125' Date: 662011 from well bore) DOE Code: Contractor Code: Project Lead: Michael J. Taylor...

  1. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    od Project Information Project Title: South Composting Facility Pit Date: 1102011 DOE Code: 6730.020.0000 Contractor Code: 8067-788 Project Lead: Tony Bowler Project Overview...

  2. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    28 Project Information Project Title: New B-1-3 Pit and Box Construction Date: 51 2612011 DOE Code: Contractor Code: Project Lead: Maintenance Department Project Overview This is a...

  3. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    2 Project Information Project T itle: Repair flowline 77 -S-1 0 Date: 31112010 DOE Code: Contractor Code: Project Lead: Wes Riesland Project Overview The flowline leak at 77 -s-1...

  4. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    6 Project Information Project Title: Repair flowline at 83-AX-4 Date: 2-17-2010 DOE Code: Contractor Code: Project Lead: Bernard Winfrey Project Overview 1. What are the...

  5. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    :;J7 Project Information Project Title: B-1-3 Heat Trace Date: 101409 DOE Code: Contractor Code: Project Lead: Mike Preston Project Overview Routine maintenance activities for...

  6. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    or threat of release of a hazardous substance ... including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facilities currently...

  7. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    high-level radioactive waste and spent nuclear fuel , including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facilities currently...

  8. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    release or threat of release of a hazardous substance ... induding treatment (e.g., incineration). recovery, storage, or disposal of wastes at existing facilities currently...

  9. NEPA Review Routing Form

    Broader source: Energy.gov (indexed) [DOE]

    or threat of release of a hazardous substance ... including treatment (e.g., incineration), recovery, storage, or disposal of wastes at existing facil currently handling...

  10. RM Environmental Review (NEPA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    San Juan County, NM (8-30-13) Lusk Rural Substation Control Building Construction Niobrara County, WY (1-16-13) Malta-Mt. Elbert 230-kV Danger Tree Management, Lake...

  11. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    Instruments, ......ell monitoring equ1pment. uranium shielding material. depleted uranium milita munitions, and packaged radioactive waste not exceeding 50 curies....

  12. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    removal of rig anchors or T-bars, drainage control , transport and backfilling of clean soil I fill dirt, and reseeding . The table below is to be completed by the Project Lead...

  13. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    nonnal operations and accident conditions? which do not threaten Waters of the State' or wetland areas. If Waters of the State' or wetland areas a threatened by either a spill or...

  14. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    substance other than high-level radioactive waste and spent nuclear fuel, including treatment (e.g., incineration), recovery, storage. or disposal of wastes at existing...

  15. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    affecting the the work each day. SOPs will be reviewed for generation, transportation, treatment, storage or disposal of compliance to state and local regulations. hazardous and...

  16. NEPA COMPLIANCE SURVEY

    Broader source: Energy.gov (indexed) [DOE]

    affecting the the work each day. SOPs will be reviewed for generation, transportation, treatment, storage or disposal of com pliance to state and local regulations. hazardous...

  17. OFFICE: NEPA REVIEWS:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) | DepartmentOE's3OFFICE:

  18. NEPA Lessons Learned Questionnaire

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons Learned

  19. DOE NEPA Compliance Officers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water | Department

  20. NEPA of 1969

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on theon theNational

  1. NEPA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global Emissions Datasource History

  2. NEPA Contracting Reform Guidance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FY 12 ProjectStatement Lessons

  3. Activity Based Costing

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

  4. Sharing Supermodular Costs

    E-Print Network [OSTI]

    2010-06-23T23:59:59.000Z

    For a particular class of supermodular cost cooperative games that arises from a scheduling ... the costs collectively incurred by a group of cooperating agents.

  5. Operations Cost Allocation Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms...

  6. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  7. Systems Engineering Cost Estimation

    E-Print Network [OSTI]

    Bryson, Joanna J.

    on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost

  8. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  9. Cost Constrained Spectrum Sensing in Cognitive Radio Networks

    E-Print Network [OSTI]

    Yener, Aylin

    networks considering its system level cost that accounts for the local processing cost of sensing (sample collection and energy calculation at each secondary user) as well as the transmission cost (forwarding energy for various factors that contribute to the cost incurred by spectrum sensing. In this paper, we study energy

  10. OOTW COST TOOLS

    SciTech Connect (OSTI)

    HARTLEY, D.S.III; PACKARD, S.L.

    1998-09-01T23:59:59.000Z

    This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

  11. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

  12. Calculating Costs for Quality of Security Service Evdoxia Spyropoulou

    E-Print Network [OSTI]

    utilization costs. The estimated costs can be fed into a resource management system to facilitate the process the design of the QoSS costing demonstration, which we believe is suitable for incorporation into a resource resource availability. As part of the process of estimating efficient task schedules, the RMS must balance

  13. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  14. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Bauer, Hans F. (Morgantown, WV); Grimes, Robert W. (Laramie, WY)

    1993-01-01T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  15. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurvesSpeedingScientificof Scientific andPredictive Models ofl* t ,

  16. Cost-sharing mechanisms for scheduling under general demand ...

    E-Print Network [OSTI]

    2011-09-04T23:59:59.000Z

    providing the allocation S. A cost-sharing method is ?-budget-balanced for a cost ..... 2The load of a machine is equal to the sum of the processing times of all the ...

  17. Breaking the Fuel Cell Cost Barrier AMFC Workshop

    E-Print Network [OSTI]

    on in market entry process ! #12;Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost Barriers 3 Graphite batteries and diesel generators #12;PFM vs. PEM stack- Cost Analysis per kW at 10^3 unit volumes 6 PFM

  18. Direct/Indirect Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides recommended categories for direct and indirect elements developed by the Committee for Cost Methods Development (CCMD) and describes various estimating techniques for direct and indirect costs.

  19. About Cost Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

  20. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  1. Expenses as a component of inventory cost

    E-Print Network [OSTI]

    Lott, Eugene H

    1949-01-01T23:59:59.000Z

    ?ocess cost accounting. While it is not necessary to give exhaust1ve t eetment to this sub]ect, a short desc?ip tion of the method' used 1. necessa?y to establish an 1m- portant point Job order cost accounting is us, d in manufactu?ing when p?oduction... of total manufacturing cost applicable to clearly dis tinguishable lots as they pass through various manufacturing processes or depa?tments ~ In this system, it is possible to compute the unit cost of each finished p?oduct by accumulating the total...

  2. Cost objective PLM and CE

    E-Print Network [OSTI]

    Perry, Nicolas

    2010-01-01T23:59:59.000Z

    Concurrent engineering taking into account product life-cycle factors seems to be one of the industrial challenges of the next years. Cost estimation and management are two main strategic tasks that imply the possibility of managing costs at the earliest stages of product development. This is why it is indispensable to let people from economics and from industrial engineering collaborates in order to find the best solution for enterprise progress for economical factors mastering. The objective of this paper is to present who we try to adapt costing methods in a PLM and CE point of view to the new industrial context and configuration in order to give pertinent decision aid for product and process choices. A very important factor is related to cost management problems when developing new products. A case study is introduced that presents how product development actors have referenced elements to product life-cycle costs and impacts, how they have an idea bout economical indicators when taking decisions during t...

  3. Cost objective PLM and CE

    E-Print Network [OSTI]

    Nicolas Perry; Alain Bernard

    2010-11-26T23:59:59.000Z

    Concurrent engineering taking into account product life-cycle factors seems to be one of the industrial challenges of the next years. Cost estimation and management are two main strategic tasks that imply the possibility of managing costs at the earliest stages of product development. This is why it is indispensable to let people from economics and from industrial engineering collaborates in order to find the best solution for enterprise progress for economical factors mastering. The objective of this paper is to present who we try to adapt costing methods in a PLM and CE point of view to the new industrial context and configuration in order to give pertinent decision aid for product and process choices. A very important factor is related to cost management problems when developing new products. A case study is introduced that presents how product development actors have referenced elements to product life-cycle costs and impacts, how they have an idea bout economical indicators when taking decisions during the progression of the project of product development.

  4. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  5. Actinide Partitioning-Transmutation Program Final Report. V. Preconceptual designs and costs of partitioning facilities and shipping casks (appendix 3)

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This Appendix contains cost estimate documents for the Fuels Reprocessing Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contribution to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed.

  6. Time-Energy Costs of Quantum Measurements

    E-Print Network [OSTI]

    Chi-Hang Fred Fung; H. F. Chau

    2014-05-08T23:59:59.000Z

    Time and energy of quantum processes are a tradeoff against each other. We propose to ascribe to any given quantum process a time-energy cost to quantify how much computation it performs. Here, we analyze the time-energy costs for general quantum measurements, along a similar line as our previous work for quantum channels, and prove exact and lower bound formulae for the costs. We use these formulae to evaluate the efficiencies of actual measurement implementations. We find that one implementation for a Bell measurement is optimal in time-energy. We also analyze the time-energy cost for unambiguous state discrimination and find evidence that only a finite time-energy cost is needed to distinguish any number of states.

  7. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

  8. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  9. A cost/benefit model for insertion of technological innovation into a total quality management program 

    E-Print Network [OSTI]

    Ratliff, William L

    1997-01-01T23:59:59.000Z

    justify quality improvement. The results of this study provide process-level engineers with a cost/benefit model template, which can be used to cost justify technological improvement based upon total quality costs....

  10. Lessons Learned Quarterly Report, June 2006

    Broader source: Energy.gov [DOE]

    Welcome to the 47th quarterly report on lessons learned in the NEPA process. The quality of our NEPA process affects the quality of DOE’s decisions. Our appreciation goes out to all the NCOs and NEPA Document Managers who work every day to build quality into NEPA documents.

  11. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  12. Pension costs and liabilities

    E-Print Network [OSTI]

    Courtney, Harley Macon

    1961-01-01T23:59:59.000Z

    be to charge the cost over the current and subsequent years on the assumption that the cost, even though measured by past services, is incurred in contemplation of present and future 1 services. 1'he development of accounting thought concerning retire...? present liabilities are under- stated and owner's equity is overstated by a corresponding amount. It seems, however, that charging retained earnings with the past service cost does not, represent the true picture. Pension payments based solely on past...

  13. Innovative, Lower Cost Sensors and Controls Yield Better Energy...

    Broader source: Energy.gov (indexed) [DOE]

    ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors. ORNLs Pooran Joshi shows how the process enables...

  14. average system cost: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    course that address life cycle costs, particularly the concepts of life cycle assessment (LCA) and design packaging technology, specifically the process of predicting the...

  15. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced Titanium...

  16. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01T23:59:59.000Z

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  17. INDEPENDENT COST REVIEW (ICR)

    Energy Savers [EERE]

    experience - as needed - in project management, scheduling, cost estimatingcost engineering, risk management, as well as subject matter experts (SMEs) with knowledge of...

  18. Target Cost Management Strategy

    E-Print Network [OSTI]

    Okano, Hiroshi

    1996-01-01T23:59:59.000Z

    Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

  19. Biodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison

    E-Print Network [OSTI]

    Biodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison Burke Anderson-2008 Abstract: Alternative fuel resources such as biodiesel are important to combat fossil fuel use reduction. Biodiesel is made through a process of transesterification that can be preformed in a variety

  20. Lessons Learned Quarterly Report, December 1995

    Broader source: Energy.gov [DOE]

    This quarterly report summarizes the lessons learned for documents completed between July 1 and September 30, 1995. It is based primarily on responses to the revised questionnaire that was provided for use during January 1995, and includes information on direct and indirect NEPA process costs and on total project costs.

  1. EUV lithography cost of ownership analysis

    SciTech Connect (OSTI)

    Hawryluk, A.M.; Ceglio, N.M.

    1995-01-19T23:59:59.000Z

    The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

  2. What History Can Teach Us about the Future Costs

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Viewpointt What History Can Teach Us about the Future Costs of U.S. NUCLEAR POWER Past experience suggests that high-cost surprises should be included in the planning process. NATHAN E. HULTMAN GEORGETOWN total cost, and incur financial risks no greater than those for other energy technologies. In this ar

  3. Benchmarking Non-Hardware Balance of System (Soft) Costs for

    E-Print Network [OSTI]

    Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results process" or "soft" costs--for residential and commercial photovoltaic (PV) systems. Annual expenditure

  4. Global Services Sourcing: Issues of Cost and Quality

    E-Print Network [OSTI]

    Global Services Sourcing: Issues of Cost and Quality Nirupam Bajpai, Jeffrey Sachs, Rohit Arora Services Sourcing: Issues of Cost and Quality Nirupam Bajpai Nirupam.bajpai@columbia.edu Jeffrey D. Sachs for cost, stayed for quality" about moving processes outside the company (in some cases outside the country

  5. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21T23:59:59.000Z

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  6. FY 1997 cost savings report

    SciTech Connect (OSTI)

    Sellards, J.B.

    1998-06-01T23:59:59.000Z

    With the end of the cold war, funding for the Environmental Management program increased rapidly as nuclear weapons production facilities were shut down, cleanup responsibilities increased, and facilities were transferred to the cleanup program. As funding for the Environmental Management (EM) program began to level off in response to Administration and Congressional efforts to balance the Federal budget, the program redoubled its efforts to increase efficiency and get more productivity out of every dollar. Cost savings and enhanced performance are an integral pair of Hanford Site operations. FY1997 was the third year of a cost savings program that was initially defined in FY 1995. The definitions and process remained virtually the same as those used in FY 1996.

  7. Supplemental report on cost estimates'

    SciTech Connect (OSTI)

    NONE

    1992-04-29T23:59:59.000Z

    The Office of Management and Budget (OMB) and the U.S. Army Corps of Engineers have completed an analysis of the Department of Energy's (DOE) Fiscal Year (FY) 1993 budget request for its Environmental Restoration and Waste Management (ERWM) program. The results were presented to an interagency review group (IAG) of senior-Administration officials for their consideration in the budget process. This analysis included evaluations of the underlying legal requirements and cost estimates on which the ERWM budget request was based. The major conclusions are contained in a separate report entitled, ''Interagency Review of the Department of Energy Environmental Restoration and Waste Management Program.'' This Corps supplemental report provides greater detail on the cost analysis.

  8. The requirements discovery process

    SciTech Connect (OSTI)

    Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States). Systems and Industrial Engineering; Dean, F.F. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01T23:59:59.000Z

    Cost and schedule overruns are often caused by poor requirements that are produced by people who do not understand the requirement process. This paper provides a high-level overview of the requirements discovery process.

  9. Lessons Learned Quarterly Report, December 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 45th quarterly report on lessons learned in the NEPA process. We thank all those who participated in the NEPA 35 conference. You made it successful. We hope you are as inspired as we are by the spirit of NEPA Section 101and the challenge to improve the implementation of NEPA.

  10. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    identify particularly useful cost data and cost models thatcontaining hydrogen cost data for production, storage,Volume Validates cost data with Industry Operating Costs

  11. Cost modeling and design for manufacturing guidelines for advanced composite fabrication

    E-Print Network [OSTI]

    Haffner, Sascha M. (Sascha Marcel), 1968-

    2002-01-01T23:59:59.000Z

    Experience shows that the majority of costs are committed during the early stages of the development process. Presently, many cost estimation methods are available to the public for metal processing, but there are almost ...

  12. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16T23:59:59.000Z

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

  13. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  14. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09T23:59:59.000Z

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  15. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  16. Investments of uncertain cost

    E-Print Network [OSTI]

    Pindyck, Robert S.

    1992-01-01T23:59:59.000Z

    I study irreversible investment decisions when projects take time to complete, and are subject to two types of uncertainty over the cost of completion. The first is technical uncertainty, i.e., uncertainty over the amount ...

  17. Standard costs for labor

    E-Print Network [OSTI]

    Khan, Mohammed Nurul Absar

    1960-01-01T23:59:59.000Z

    STANDARD COSTS FOR LABOR A Thesis By MD. NURUL ABSAR KHAN Submitted to the Graduate School of the Agricultural and Mechanical College of Texms in partial fulfillment of the requirements for the degree of MASTER OF BUSINESS ADMINISTRATION... January 1960 Ma/or Sub)acts Accounting STANOAHD COSTS FOR LABOR ND, NURUL ABSAR KHAN Approved as t style and content bys Chairman of Committee Head of Hepartment January 1960 The author acknowledges his indebtedness to Mr. T. M. Leland, Mr. T. D...

  18. EE / CA and Letter: Adoption of the Engineering Evaluation and Cost Analysis for the Management of Contaminated Structures, 15 Non-Process Buildings (15 Series), and the 15 Series Addendum at the Weldon Spring Chemical Plant, Weldon Spring, Missouri as an Environmental Assessment (EA) for Interim Actions at the WSS. DOE determined that the EE / CAs adequately satisfy the NEPA requirements for an EA. The documents adopted as the EA include the EE / CAs for the Management of Contaminated Structures, 15 Non-Process Buildings (15 Series), and the 15 Series Addendum. DOE has also determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, as defined by NEPA. IR-1000-1003-1.04. Attached document: Engineering Evaluation and Cost Analysis for the Management of Contaminated Structures, 15 Non-Process Buildings (15 Series), and the 15 Series Addendum at the Weldon Spring Chemical Plant, Weldon Spring, Missouri - Environmental Assessment, DOE/ EA/-0549. November 1991.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer District2, j ,&+~

  19. Cost Model for Digital Curation: Cost of Digital Migration

    E-Print Network [OSTI]

    Kejser, Ulla Břgvad; Nielsen, Anders Bo; Thirifays, Alex

    2009-01-01T23:59:59.000Z

    and Monitor Technology functions each consists of two costinfluence, the fewer costs. Monitor Technology depends onCost Critical Activities Monitor community Report on monitoring Monitor technology

  20. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01T23:59:59.000Z

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  1. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  2. Mandatory Photovoltaic System Cost Analysis

    Broader source: Energy.gov [DOE]

    The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

  3. Costs of mixed low-level waste stabilization options

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-03-01T23:59:59.000Z

    Selection of final waste forms to be used for disposal of DOE`s mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability.

  4. Unaccounted-for gas cost allocation

    SciTech Connect (OSTI)

    Ozenne, D.G. (Univ. of California, Los Angeles, CA (United States))

    1994-02-15T23:59:59.000Z

    As competitive pressures grow, gas utility managers have stepped up their search for ways to ensure that rates remain competitive. This challenge is particularly acute in the large commercial and industrial market segments, which are most typically [open quotes]at risk.[close quotes] A variety of cost-allocation studies have been undertaken to determine more accurately what costs are associated with serving market segments, and which costs should be recovered from each. Because there are clear winners and losers in this process (at least, it is clear who wins and loses in the short term), these reallocations have been hotly debated and fiercely litigated. Any proposed change in allocation must be supported by either compelling logic or empirical evidence. This article suggests a method of reallocating the costs associated with unaccounted-for (UAF) gas volumes, based on results from two studies of the elements contributing to UAF gas.

  5. OPTIONS - ALLOCATION FUNDS - TRANSACTION COSTS

    E-Print Network [OSTI]

    Admin

    2009-03-25T23:59:59.000Z

    One first problem to overcome is the impact of transaction costs. ... They entail a reduction of transaction costs and improve the investor's economic welfare.

  6. Optimization Online - Sharing Supermodular Costs

    E-Print Network [OSTI]

    Andreas S. Schulz

    2007-08-28T23:59:59.000Z

    Aug 28, 2007 ... Abstract: We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety of situations: in particular, ...

  7. Preemptive scheduling with position costs

    E-Print Network [OSTI]

    In most scheduling models presented in the literature [3, 10], the cost for ... Preemptive scheduling in order to minimize the total position costs also stems.

  8. Price/Cost Proposal Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PREPARATION INSTRUCTIONS PriceCost Proposal: Provide complete, current, and accurate cost or pricing data in accordance with Federal and Department of Energy Acquisition...

  9. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17T23:59:59.000Z

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  10. Cost Type Examples Salary costs for staff working

    E-Print Network [OSTI]

    Rambaut, Andrew

    . Equipment access charges Service contracts, running costs, materials and consumables and staff time

  11. Study to establish cost projections for production of redox chemicals

    SciTech Connect (OSTI)

    Walther, J.F.; Greco, C.C.; Rusinko, R.N.; Wadsworth, A.L. III

    1982-11-01T23:59:59.000Z

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  12. Memorandum for Federal NEPA Contacts: Emergency Actions and NEPA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MWMemo of IntentDepartment of

  13. FACILITIES AND ADMINISTRATIVE (F&A) COST AND IDC RATES The cost of conducting research consists of two broad types of costs direct costs and facilities and

    E-Print Network [OSTI]

    Keinan, Alon

    FACILITIES AND ADMINISTRATIVE (F&A) COST AND IDC RATES The cost of conducting research consists of two broad types of costs ­ direct costs and facilities and administrative costs (F&A), also known as indirect costs. Direct

  14. Cutting Industrial Solar System Costs in Half 

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating...

  15. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01T23:59:59.000Z

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  16. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01T23:59:59.000Z

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development *

  17. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01T23:59:59.000Z

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development

  18. Allocable costs What are they?

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    Allocable costs What are they? The A-21 circular definition: a. A cost is allocable to a particular cost objective (i.e., a specific function, project, sponsored agreement, department, or the like) if the goods or services involved are chargeable or assignable to such cost objective in accordance

  19. The Costs and Revenues of

    E-Print Network [OSTI]

    The Costs and Revenues of Transformation to Continuous Cover Forestry Owen Davies & Gary Kerr March 2011 #12;2 | Costs and Revenues of CCF | Owen Davies & Gary Kerr | March 2011 Costs and Revenues of CCF The costs and revenues of transformation to continuous cover forestry: Modelling silvicultural options

  20. Hay Harvesting Costs $$$$$ in Texas.

    E-Print Network [OSTI]

    Long, James T.; Taylor, Wayne D.

    1972-01-01T23:59:59.000Z

    Hay is an important crop in Ta 1 Harvesting costs constitute the major5 pense of hay production in many M Mg and Wayne D . Taylor INTRODUCTION .................................................... 2 Fixed Costs or Ownership Costs... ............................................. 10 Totarl Cost .............................................................. 10 HAY HARVESTING ALTERNATIVES COMPARED ...................... 11 HOW TO MAKE WISE DECISIONS CONCERNING INVESTMENTS IN MACHINERY...

  1. Construction Cost March 6, 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ...................................................................................................................................... 14 3.3 UMass Historical Cost Trends-- John Mathews, P.E., MPA, UMass Amherst............. 17 4 PartConstruction Cost Symposium March 6, 2007 University of Massachusetts Amherst #12;Construction Cost .......................................................... 22 4.3.2 The need for summer construction schedules and the impact on project cost......... 23 4

  2. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect (OSTI)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20T23:59:59.000Z

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

  3. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02T23:59:59.000Z

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  4. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-12-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. {section}4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. NEPA Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission

  6. NEPA Updates | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes:Energy Success Stories

  7. OpenEI Community - NEPA

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHomeWrap-up courtesy5/0

  8. NEPA Documentation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008CITE:DepartmentNote

  9. NEPA History | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,

  10. NEPA Implementation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on the implementation

  11. NEPA Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29,guidance on theon the topic of

  12. NEPA | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global Emissions Datasource

  13. Considering Cumulative Effects under NEPA

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S. S p e c t i

  14. NEPA - Categorical Exclusions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEES EFRC PosterOfficial

  15. NEPA - Environmental Assessments - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEES EFRC

  16. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01T23:59:59.000Z

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  17. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    cost and risk in chemical manufacturing facilities. 24 25 At the core of PI is the optimization of process performance by focusing on molecular level kinetics, 26...

  18. Bureau of mines cost estimating system handbook (in two parts). 1. Surface and underground mining

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The handbook provides a convenient costing procedure based on the summation of the costs for unit processes required in any particular mining or mineral processing operation. The costing handbook consists of a series of costing sections, each corresponding to a specific mining unit process. Contained within each section is the methodology to estimate either the capital or operating cost for that unit process. The unit process sections may be used to generate, in January 1984 dollars, costs through the use of either costing curves or formulae representing the prevailing technology. Coverage for surface mining includes dredging, quarrying, strip mining, and open pit mining. The underground mining includes individual development sections for drifting, raising, shaft sinking, stope development, various mining methods, underground mine haulage, general plant, and underground mine administrative cost.

  19. U.S. Department of Energy Hydrogen Storage Cost Analysis

    SciTech Connect (OSTI)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11T23:59:59.000Z

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a â��bottom-upâ� costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with DFMA�® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target. In general, tank costs are the largest component of system cost, responsible for at least 30 percent of total system cost, in all but two of the 12 systems. Purchased BOP cost also drives system cost, accounting for 10 to 50 percent of total system cost across the various storage systems. Potential improvements in these cost drivers for all storage systems may come from new manufacturing processes and higher production volumes for BOP components. In addition, advances in the production of storage media may help drive down overall costs for the sodium alanate, SBH, LCH2, MOF, and AX-21 systems.

  20. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01T23:59:59.000Z

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. Lower Cost Energy Options

    E-Print Network [OSTI]

    Maze, M. E.

    the last f1ve years we have saved over $177 m11110n. 0= o u.vncGS AlIOTT DOMUTtC ENERGY COST & SAVINGS 11(000) uxm llOOOO lDXD ""'"lIXlIl ,..,.., 6CIlOll DlOO :om om a L--=.lLol.uLJULl:LJJU11.Lil:Ll..L<.LLLJ..lLo 7374.75'71i771BNlIJ nAIl F...

  2. FY 1995 cost savings report

    SciTech Connect (OSTI)

    Andrews-Smith, K.L., Westinghouse Hanford

    1996-06-21T23:59:59.000Z

    Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

  3. Controlling landfill closure costs

    SciTech Connect (OSTI)

    Millspaugh, M.P.; Ammerman, T.A. [Spectra Engineering, Latham, NY (United States)

    1995-05-01T23:59:59.000Z

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  4. Electric Demand Cost Versus Labor Cost: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  5. Electric Demand Cost Versus Labor Cost: A Case Study 

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01T23:59:59.000Z

    ELEcrRIC DEMAND COST Versus LABOR COST: A CASE STUDY Sanjay Agrawal Richard Jensen Assistant Director Director Industrial Assessment Center Department of Engineering Hofstra University, Hempstead, NY 11549 ABSTRAcr Electric Utility companies...

  6. Cost Assessment of CO2 Sequestration by Mineral Carbonation 

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  7. Cost Assessment of CO2 Sequestration by Mineral Carbonation

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  8. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    Ratecapacity match cathode 12 8. Down-select low cost anode process 50% vs baseline capex + opex 13 9. Scale cathode film to support task 16 10 m 17 10. Lab prototype cell dry...

  9. Dry Process Electrode Fabrication

    Broader source: Energy.gov (indexed) [DOE]

    capacity match cathode Oct. 14 8. Down-select low cost anode process 50% vs baseline capex + opex Dec. 14 9. Scale cathode film to support task 16 10 m Apr. 15 10. Lab prototype...

  10. Assessing the environmental impact of energy generating clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M. [Energetics, Inc., Columbia, MD (United States); Pell, J. [Department of Energy, Washington, DC (United States)

    1995-12-01T23:59:59.000Z

    The Clean Coal Technology (CCT) Program of the U.S. Department of Energy (DOE) is a partnership between government and industry designed for cleaner and more efficient use of coal, both for electric power generation and industrial applications. Approximately seven billion dollars have been committed to the CCT program (two and half-billion dollars from DOE and the rest by industry). The potential environmental effects of CCT projects are subject to review because a proposal by DOE to cost-share a CCT project constitutes a {open_quotes}major federal action{close_quotes} under section 102(2)(c) of NEPA. Consequently, by virtue of numerous NEPA impact evaluations of CCT projects, a great deal has been learned about environmental impact analyses for coal combustion sources. In the course of NEPA review of CCT projects, air quality is often a significant environmental issue. This paper focuses on CCT air quality issues from a NEPA perspective, including Prevention of Significant Deterioration, New Source Review, atmospheric visibility, global climate change, and acidic deposition. The analyses of the impacts of the proposed action, alternative actions, and cumulative effects will be examined. (It is a {open_quotes}given{close_quotes} that any action must comply with Federal and State requirements and the provision of the Clean Air Act and other regulatory statues.) NEPA is not a permitting process, but rather it is a process to provide decision makers with the information they require make an informed decision about the potential environmental consequences of undertaking an action. The NEPA review of environmental effects has been instrumental in effectuating beneficial changes in some past CCT projects-changes that have mitigated potentially adverse environmental impacts. Accordingly, NEPA has served as a constructive analytical tool, with similar implications for other actions related to the electric power generation industry that are subject to environmental review.

  11. Cost-Energy Dynamics: An Engineering - Economic Basis for Industrial Energy Conservation Policies

    E-Print Network [OSTI]

    Phung, D. L.; van Gool, W.

    1980-01-01T23:59:59.000Z

    This paper develops a theory called cost-energy dynamics that can be used to shape policies for industrial energy conservation. It is built on two hypotheses commonly observed in process engineering; namely, cost varies as positive power function...

  12. A simplified and scalable should-cost tool in the oilfield services industry

    E-Print Network [OSTI]

    Mealer, Clayton M

    2013-01-01T23:59:59.000Z

    Third party spend accounts for a significant amount of a business' costs. When procuring unique, highly-engineered components, this cost is often negotiated with suppliers during the procurement process. Due to the limited ...

  13. Feature-based investment cost estimation based on modular design of a continuous pharmaceutical manufacturing system

    E-Print Network [OSTI]

    Collins, Donovan (Donovan Scott)

    2011-01-01T23:59:59.000Z

    Previous studies of continuous manufacturing processes have used equipment-factored cost estimation methods to predict savings in initial plant investment costs. In order to challenge and validate the existing methods of ...

  14. Cost-Energy Dynamics: An Engineering - Economic Basis for Industrial Energy Conservation Policies 

    E-Print Network [OSTI]

    Phung, D. L.; van Gool, W.

    1980-01-01T23:59:59.000Z

    This paper develops a theory called cost-energy dynamics that can be used to shape policies for industrial energy conservation. It is built on two hypotheses commonly observed in process engineering; namely, cost varies as positive power function...

  15. A Program for Optimizing SRF Linac Costs

    SciTech Connect (OSTI)

    Powers, Thomas J. [JLAB

    2013-04-01T23:59:59.000Z

    Every well-designed machine goes through the process of cost optimization several times during its design, production and operation. The initial optimizations are done during the early proposal stage of the project when none of the systems have been engineered. When a superconducting radio frequency (SRF) linac is implemented as part of the design, it is often a difficult decision as to the frequency and gradient that will be used. Frequently, such choices are made based on existing designs, which invariably necessitate moderate to substantial modifications so that they can be used in the new accelerator. Thus the fallacy of using existing designs is that they will frequently provide a higher cost machine or a machine with sub-optimal beam physics parameters. This paper describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK [1] several years ago while they were in the process of developing a conceptual design for the New Light Source project. The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs.

  16. Looking at Resource Sharing Costs

    E-Print Network [OSTI]

    Leon, Lars; Kress, Nancy

    2012-05-23T23:59:59.000Z

    Purpose – This paper is the result of a small cost study of resource sharing services in 23 North American libraries. Trends that have affected resource sharing costs since the last comprehensive study are discussed. Design/methodology approach...

  17. User cost in oil production

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1990-01-01T23:59:59.000Z

    The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

  18. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the U.S. Department of Energy Presentationname CARBON FIBER OVERVIEW Materials LM002 Task FY 2010 Budget Industry Cost Share FY 2011 Budget Industry Cost Share...

  19. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV Battery Cost

  20. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Office - Oak Ridge, TN Contract Name: Transuranic Waste Processing Contract Sep-14 2,433,940 Cost Plus Award Fee 150,664,017 Fee Information Minimum Fee 2,039,246 Maximum Fee...

  1. Implementing Energy Efficiency in Wastewater to Reduce Costs

    E-Print Network [OSTI]

    Cantwell, J. C.

    2008-01-01T23:59:59.000Z

    In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system...

  2. Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

  3. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01T23:59:59.000Z

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  4. Low-Cost Spectral Sensor Development Description.

    SciTech Connect (OSTI)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01T23:59:59.000Z

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  5. RETHINKING STANDBY & FIXED COST CHARGES

    E-Print Network [OSTI]

    intended to recover a more significant share of fixed costs solely from solar PV customer- generators rooftop solar PV development at limited to no cost to taxpayers and non-solar utility customers. StandbyPage | i RETHINKING STANDBY & FIXED COST CHARGES: REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR

  6. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  7. Delisting -- A cost effective alternative

    SciTech Connect (OSTI)

    Pal, S.C.; Johnson, M.J. [Benchmark Engineering Inc., Birmingham, AL (United States)

    1995-12-31T23:59:59.000Z

    Delisting offers a cost-effective disposal option for some solid wastes that are listed as hazardous. Delisting involves treating a waste so that it must not: meet the criteria for which it was listed; exhibit any of the hazardous waste characteristics; and exhibit any additional factors, including other constituents, which may cause it to be a hazardous waste. A listed waste, including Cd, Cr, and Pb, at an abandoned manufacturing site in EPA Region 4 was extensively sampled and analyzed to define the extent and treatability of the waste and the impacted soil. A treatability study was conducted to demonstrate the efficacy of the selected treatment process so that the treated waste met each of the three criteria for exclusion. Complex and elaborate quality control procedures were executed to ensure data integrity throughout the process. The data were subjected to a fate and transport model to evaluate the migration potential of the landfilled treated waste by using EPA`s Composite Model for Landfill (CML) and Organic Leachate Model (OLM). A delisting petition was submitted to the state regulatory authority. After approval of the delisting petition, a work plan was prepared to implement the delisting procedures. The waste and impacted soil were excavated, treated and transported to a Subtitle D landfill for disposals

  8. Design and development of a supplier evaluation process

    E-Print Network [OSTI]

    Corum, Andrew (Andrew R.)

    2009-01-01T23:59:59.000Z

    Low-cost sourcing is a strategy many companies, including Pratt & Whitney, use to reduce part costs. As they increase their efforts to resource products to low-cost regions, Pratt & Whitney needs a robust process to ...

  9. COSTING INFORMATION IN THE UK NHS: THE (NON-) USE OF COST INFORMATION

    E-Print Network [OSTI]

    of the NHS model of control introduced by the New Labour Government (1997 White Paper). It aims to explore as a control device. Therefore, the micro effect is a decoupling from cost control at the organisational level. The paper adds to our understanding of the nature of the interaction between the macro steering process

  10. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01T23:59:59.000Z

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

  11. Global transportation cost modeling for long-range planning

    SciTech Connect (OSTI)

    Pope, R.B.; Michelhaugh, R.D.; Singley, P.T. [Oak Ridge National Lab., TN (United States); Lester, P.B. [Dept. of Energy, Oak Ridge, TN (United States)

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) is preparing to perform significant remediation activities of the sites for which it is responsible. To accomplish this, it is preparing a corporate global plan focused on activities over the next decade. Significant in these planned activities is the transportation of the waste arising from the remediation. The costs of this transportation are expected to be large. To support the initial assessment of the plan, a cost estimating model was developed, peer-reviewed against other available packaging and transportation cost data, and applied to a significant number of shipping campaigns of radioactive waste. This cost estimating model, known as the Ten-year Plan Transportation Cost Model (TEPTRAM), can be used to model radioactive material shipments between DOE sites or from DOE sites to non-DOE destinations. The model considers the costs for (a) recovering and processing of the wastes, (b)packaging the wastes for transport, and (c) the carriage of the waste. It also provides a rough order of magnitude estimate of labor costs associated with preparing and undertaking the shipments. At the user`s direction, the model can also consider the cost of DOE`s interactions with its external stakeholders (e.g., state and local governments and tribal entities) and the cost associated with tracking and communicating with the shipments. By considering all of these sources of costs, it provides a mechanism for assessing and comparing the costs of various waste processing and shipping campaign alternatives to help guide decision-making. Recent analyses of specific planned shipments of transuranic (TRU) waste which consider alternative packaging options are described. These analyses show that options are available for significantly reducing total costs while still satisfying regulatory requirements.

  12. Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior

    SciTech Connect (OSTI)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-23T23:59:59.000Z

    The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

  13. Gray: Introduction 1 Database and Transaction Processing Performance Handbook

    E-Print Network [OSTI]

    Narasayya, Vivek

    are often used in this way as a rough estimate of the relative system performance because the cost/performance metrics for database systems and transaction processing systems. Each benchmark tries to answer with the lowest cost-of-ownership". Cost-of-ownership includes project risks, programming costs, operations costs

  14. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  15. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  16. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

  17. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    systems in China, particularly for the cost of hydrogenthe capital cost for equipment imported to China. Hydrogenestate costs in Shanghai are among the highest in China. $

  18. Cost Model and Cost Estimating Software - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is basically a cost model, which forms the basis for estimating software. g4301-1chp22.pdf -- PDF Document, 190 KB Writer: John Makepeace Subjects: Administration...

  19. Novel Approaches to Conserve Energy in Textile Processing Through The Use Of Supercritical Fluids

    E-Print Network [OSTI]

    Brown, M.; Sikorski, M.

    supercritical fluid and a cost comparison with conventional wet-processing and convective drying is presented....

  20. Low-Cost Illumination-Grade LEDs

    SciTech Connect (OSTI)

    Epler, John

    2013-08-31T23:59:59.000Z

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  1. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29T23:59:59.000Z

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  2. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Product Manufacture in a Flexible Manufacturing System Nancypart production under flexible process routings is studiedMachining; Cost; Energy; Flexible Manufacturing INTRODUCTION

  3. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  4. Inventory processes: Quasiregenerative property,

    E-Print Network [OSTI]

    Rubinstein, Reuven

    Inventory processes: Quasi­regenerative property, performance evaluation and sensitivity estimation­commodity, discrete­time, multiperiod (s; S)­ policy inventory model with backlog. The cost function may contain that the resulting inventory process is quasi­regenerative, i.e. admits a cycle decomposition and indicate how

  5. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    production and conversion parameters must be optimized. Lower cost fiber enable CF composite applications. Approach: 1. Complete previous effort by scaling to the CF production...

  6. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  7. Audit Costs for the 1986 Texas Energy Cost Containment Program

    E-Print Network [OSTI]

    Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

    1987-01-01T23:59:59.000Z

    Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

  8. JUMP DIFFUSION OPTION WITH TRANSACTION COSTS

    E-Print Network [OSTI]

    Mocioalca, Oana

    JUMP DIFFUSION OPTION WITH TRANSACTION COSTS "non-systematic" risk, inclusive of transaction costs. We compute the total transac- tion costs and the turnover for different options, transaction costs, and revision intervals

  9. An Explanation of F&A Costs What are F&A Costs?

    E-Print Network [OSTI]

    An Explanation of F&A Costs What are F&A Costs? Costs involved in conducting sponsored projects are categorized in two ways: direct costs or indirect costs. The federal government refers officially to indirect costs as facilities and administrative (F&A) costs, sometimes simply called "overhead" costs. Direct

  10. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  11. The Impact of Test Suite Granularity on the CostEffectiveness of Regression Testing

    E-Print Network [OSTI]

    Rothermel, Gregg

    The Impact of Test Suite Granularity on the Cost­Effectiveness of Regression Testing Gregg,pkallakug@cse.unl.edu ABSTRACT Regression testing is an expensive testing process used to validate software following modi#12;cations. The cost-e#11;ective- ness of regression testing techniques varies with characteris- tics of test

  12. The Impact of Test Suite Granularity on the Cost-Effectiveness of Regression Testing

    E-Print Network [OSTI]

    Rothermel, Gregg

    The Impact of Test Suite Granularity on the Cost-Effectiveness of Regression Testing Gregg,pkallakug@cse.unl.edu ABSTRACT Regression testing is an expensive testing process used to validate software following modi cations. The cost-e ective- ness of regression testing techniques varies with characteris- tics of test

  13. MINIMIZERS OF COST-FUNCTIONS INVOLVING NONSMOOTH DATA-FIDELITY TERMS. APPLICATION TO THE

    E-Print Network [OSTI]

    Nikolova, Mila

    MINIMIZERS OF COST-FUNCTIONS INVOLVING NONSMOOTH DATA-FIDELITY TERMS. APPLICATION TO THE PROCESSING cost- function F(x, y) = (x, y) + (x), where is a data-fidelity term, is a smooth regularization term construct a cost-function allowing aberrant data (outliers) to be detected and to be selectively smoothed

  14. Maximizing Classifier Utility when Training Data is Costly Gary M. Weiss and Ye Tian

    E-Print Network [OSTI]

    Weiss, Gary

    Maximizing Classifier Utility when Training Data is Costly Gary M. Weiss and Ye Tian Department of acquir- ing the training examples in the data mining process; we analyze the impact of the cost- formance of several progressive sampling schemes, which, given the cost of the training data, will generate

  15. Lessons Learned Quarterly Report, September 2001

    Broader source: Energy.gov [DOE]

    Welcome to the 28th quarterly report on lessons learned in the NEPA process. This completes our seventh year of providing performance metrics, news, and guidance to the DOE NEPA Community. Please note the cumulative index in this issue.

  16. Lessons Learned Quarterly Report Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 2002 Welcome to the 32nd quarterly report on lessons learned in the NEPA process. Much of this issue is devoted to reporting on the July DOE NEPA Community Meeting....

  17. Electric power substation capital costs

    SciTech Connect (OSTI)

    Dagle, J.E.; Brown, D.R.

    1997-12-01T23:59:59.000Z

    The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

  18. Use of Cost Estimating Relationships

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Cost Estimating Relationships (CERs) are an important tool in an estimator's kit, and in many cases, they are the only tool. Thus, it is important to understand their limitations and characteristics. This chapter discusses considerations of which the estimator must be aware so the Cost Estimating Relationships can be properly used.

  19. 5, 14791509, 2008 Staged cost

    E-Print Network [OSTI]

    Boyer, Edmond

    HESSD 5, 1479­1509, 2008 Staged cost optimization of urban storm drainage systems M. Maharjan et al Staged cost optimization of urban storm drainage systems based on hydraulic performance in a changing optimization of urban storm drainage systems M. Maharjan et al. Title Page Abstract Introduction Conclusions

  20. Cost of Service and Rate Design Issues Affecting Industrial Customers in Retail Rate Proceedings

    E-Print Network [OSTI]

    Stover, C. N. Jr.

    . If energy costs are a significant element in the cost of doi~g business, then the industrial customer must be familiar with the activities involved in the ratemaking process, be aware of the issues that might be raised as a part of the process, know... electric energy cost is a major component of the overall cost of doing business, it is imperative that the customer be familiar with the ratemaking activities and, in particular, know how his individual costs might be affected by the resolution...