Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NEMS Freight Transportation Module Improvement Study  

Reports and Publications (EIA)

The U.S. Energy Information Administration (EIA) contracted with IHS Global, Inc. (IHS) to analyze the relationship between the value of industrial output, physical output, and freight movement in the United States for use in updating analytic assumptions and modeling structure within the National Energy Modeling System (NEMS) freight transportation module, including forecasting methodologies and processes to identify possible alternative approaches that would improve multi-modal freight flow and fuel consumption estimation.

2015-01-01T23:59:59.000Z

2

NEMS Freight Transportation Module Improvement Study  

Gasoline and Diesel Fuel Update (EIA)

and forecast accuracy. Challenges might include new skill development within EIA, contracting for additional commercial services, and possibly altering the manner in which NEMS...

3

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

4

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

5

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

6

Overview of NEMS-H2, Version 1.0  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEMS-H2, Version 1.0 NEMS-H2, Version 1.0 Frances Wood OnLocation, Inc., Energy Systems Consulting (fwood@onlocationinc.com) January 26, 2006 OnLocation, Inc., Energy Systems Consulting 2 Today's Presentation * Overview of NEMS-H2 Structure * Current Status * New Hydrogen Market Module (HMM) * Transportation Module Modifications * Preliminary Test Runs * Looking Ahead to Next Phase OnLocation, Inc., Energy Systems Consulting 3 NEMS Overview * The National Energy Modeling System (NEMS) was developed and is maintained by EIA - Annual Energy Outlook projections - Congressional as well as agency requests * NEMS has also been used extensively outside of EIA - Various National Laboratories studies - National Commission on Energy Policy - Program offices within DOE for R&D benefits estimation * Modular structure allows each sector to be represented by

7

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

8

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

9

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

10

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

11

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

12

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

13

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

14

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary Name: Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Agency/Company /Organization: GTZ Sector: Energy Focus Area: Transportation Topics: Implementation, Pathways analysis Resource Type: Publications Website: www.transport2012.org/bridging/ressources/files/1/817,Transport_sector Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Screenshot References: Reducing Emissions Through Sustainable Transport[1] Summary "The large mitigation potential and associated co-benefits of taking action in the land transport sector can be tapped into by a sectoral approach drawing financial resources from a transport window, in the short term

15

Oil prices and transport sector returns: an international analysis  

Science Journals Connector (OSTI)

This study examines the role of oil prices in explaining ‘transport sector’ equity returns ... study are strongly supportive of some role for oil prices in determining the transport sector returns for ... asymmet...

Mohan Nandha; Robert Brooks

2009-11-01T23:59:59.000Z

16

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

17

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

18

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

19

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

20

The Practice of Cost Benefit Analysis in the Transport Sector...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon The Practice of Cost Benefit Analysis in the Transport Sector a Mexican Perspective Jump to: navigation,...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Accounting for Co-benefits in Asia's Transportation Sector: Methods...  

Open Energy Info (EERE)

Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's...

22

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

23

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

24

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Agency/Company /Organization Hiroshima University Focus Area Transportation Topics Co-benefits assessment, GHG inventory, Pathways analysis Resource Type Publications Website http://ir.lib.hiroshima-u.ac.j Program Start 2010 Country Bangladesh UN Region South-Eastern Asia References Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies"

25

Copenhagen Accord NAMA Submissions Implications for the Transport Sector |  

Open Energy Info (EERE)

Copenhagen Accord NAMA Submissions Implications for the Transport Sector Copenhagen Accord NAMA Submissions Implications for the Transport Sector Jump to: navigation, search Tool Summary Name: Bridging the Gap: Copenhagen Accord NAMA Submissions Agency/Company /Organization: GTZ, Institute for Transportation and Development Policy (ITDP), Transport Research Laboratory(TRL), International Association for Public Transport (UITP), Veolia Transport Sector: Energy Focus Area: Transportation Topics: Low emission development planning Resource Type: Case studies/examples Website: www.transport2012.org/bridging/ressources/files/1/586,NAMA-submissions Country: Armenia, Botswana, Costa Rica, Democratic Republic of Congo, Ethiopia, Indonesia, Jordan, Republic of Macedonia, Madagascar, Marshall Islands, Mexico, Mongolia, Morocco, Papua New Guinea, Sierra Leone, Singapore

26

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

27

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses - Appendix E: Other NEMS-MP Results for the Base Case and Scenarios  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appendix E: Other NEMS-MP Results Appendix E: Other NEMS-MP Results for the Base Case and Scenarios Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

28

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

29

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...produce liquid hydrocarbon fuel. In our proposal...production of liquid hydrocarbons. Thus, the goal...sustainable production of hydrocarbon fuel for the transportation...The resulting combustion energy not only provides heat for the endothermic...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

30

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...replaced with gasoline hybrid electric vehicles...the use of plug-in hybrid electric vehicles (PHEVs...electricity from a PV grid could be directly used...current transportation fuel infrastructure, the efficiency improvement...through the proposed hybrid hydrogen-carbon economy...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

31

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...with gasoline hybrid electric vehicles...of plug-in hybrid electric vehicles...electricity from a PV grid could be directly...by using solar energy. There are two...transportation fuel infrastructure, the efficiency...the proposed hybrid hydrogen-carbon...material and energy balances. The...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

32

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...United States alone, oil consumption in the transportation...kPa), the lower heating value (LHV) of H...rise in the petroleum price has refocused the...accounts, conventional oil production is predicted...support 67% of US oil consumption equals yr Hkg...the form of its high heating value (HHV). For...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

33

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...of liquid hydrocarbon fuels (16, 17). It can...conversion to liquid fuels using the FT process...support total current oil consumption of 13.8 Mbbl/d by the...produce liquid hydrocarbon fuel. In our proposal, the...from the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

34

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...gasoline and 6% of its diesel demand by converting...conversion to liquid fuels using the FT process...total current oil consumption of 13.8 Mbbl/d by...conversion of syngas to diesel is 100% selective...liquid hydrocarbon fuel. In our proposal...the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

35

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...in the internal combustion engine will be highly beneficial. Clearly, the proposed...Transportation 1 SI Appendix General information and Assumption Total...of CH4 = 891 kJ/mol LHV of diesel assuming C15H32 = 43.987 MJ/kg. This...the gasifier. 5. Amount of diesel produced from ASPEN model using...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

36

EIA Buildings Analysis of Consumer Behavior in NEMS  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Analysis of Consumer Buildings Analysis of Consumer Behavior in NEMS Behavioral Economics Experts Meeting July 17, 2013 | Washington, DC David Peterson Buildings Energy Consumption and Efficiency Analysis Overview Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 2 * NEMS Structure * Housing/floorspace and service demand in Residential Demand Module (RDM) and Commercial Demand Module (CDM) * Market share calculation for equipment in RDM and CDM * Price responses / elasticities * Distributed generation (DG) & combined heat and power (CHP) NEMS Structure Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 3 * Represents energy supply, conversion, and demand in a unified, but modular system * Detailed structural and process models in most energy sectors

37

NEMS Buildings Sector Working Group Meeting  

Gasoline and Diesel Fuel Update (EIA)

20 * Photovoltaic system cost path - Updated 2010 system costs based on Tracking the Sun IV (LBNL, 2011) * No change from AEO2012 for residential, 7% lower for commercial -...

38

NEMS integrating module documentation report  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to a variety of assumptions. The assumptions encompass macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, technology characteristics, and demographics. NEMS produces a general equilibrium solution for energy supply and demand in the U.S. energy markets on an annual basis through 2015. Baseline forecasts from NEMS are published in the Annual Energy Outlook. Analyses are also prepared in response to requests by the U.S. Congress, the DOE Office of Policy, and others. NEMS was first used for forecasts presented in the Annual Energy Outlook 1994.

NONE

1997-05-01T23:59:59.000Z

39

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

40

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports Rail Coal Transportation Rates to the Electric Power Sector Release Date: June 16, 2011 | Next Release Date: July 2012 | full report Introduction The U.S. Energy Information Administration (EIA) is releasing a series of estimated data based on the confidential, carload waybill sample obtained from the U.S. Surface Transportation Board (Carload Waybill Sample). These estimated data represent a continuation of EIA's data and analysis products related to coal rail transportation. These estimated data also address a need expressed by EIA's customers for more detailed coal transportation rate data. Having accurate coal rail transportation rate data is important to understanding the price of electricity for two main reasons. First,

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

42

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

43

National Energy Modeling System (NEMS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

44

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

Agenda for the Transitioning the Transportation Sector--Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

45

The role of private participation in enhancing the Indian transport sector  

E-Print Network [OSTI]

The Indian transport sector, one of the largest transport networks in the world, faces some serious issues. These may be identified as follows: * Unmet demand for service and infrastructure * Conflicting responsibilities ...

Sharma, Nand, 1979-

2004-01-01T23:59:59.000Z

46

Accounting for Co-benefits in Asia's Transportation Sector: Methods and  

Open Energy Info (EERE)

Accounting for Co-benefits in Asia's Transportation Sector: Methods and Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Focus Area: Transportation Topics: Co-benefits assessment Resource Type: Guide/manual, Software/modeling tools User Interface: Spreadsheet Website: www.iges.or.jp/en/cp/activity20101108.html UN Region: Eastern Asia Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications Screenshot References: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications[1] "The workshop has two objectives. The first is to examine methodological

47

Reducing GHG emissions in the United States' transportation sector  

SciTech Connect (OSTI)

Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

2011-01-01T23:59:59.000Z

48

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

49

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

50

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

51

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

52

Rail Coal Transportation Rates to the Electric Power Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

well as other details about the shipment. A waybill can include one or more cars and a train can include one or more waybills. Unlike most other reports with coal transportation...

53

Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options  

SciTech Connect (OSTI)

It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

Geffen, CA; Dooley, JJ; Kim, SH

2003-08-24T23:59:59.000Z

54

Global Climate Change and the Unique Challenges Posed by the Transportation Sector  

SciTech Connect (OSTI)

Addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and consumers on the planet. To date, however, most efforts to address climate change have focused on only a few sectors of the economy (e.g., refineries and fossil-fired electric power plants) and a handful of large industrialized nations. While useful as a starting point, these efforts must be expanded to include other sectors of the economy and other nations. The transportation sector presents some unique challenges, with its nearly exclusive dependence on petroleum based products as a fuel source coupled with internal combustion engines as the prime mover. Reducing carbon emissions from transportation systems is unlikely to be solely accomplished by traditional climate mitigation policies that place a price on carbon. Our research shows that price signals alone are unlikely to fundamentally alter the demand for energy services or to transform the way energy services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector.

Dooley, J.J.; Geffen, C.A.; Edmonds, J.A.

2002-08-26T23:59:59.000Z

55

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

56

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

57

Reducing CO2 in the transport sector in Japan  

Science Journals Connector (OSTI)

In this paper, we have investigated the cost-effectiveness of alternative fuel vehicles as a measure for CO2 reduction. Computed results indicate that the installation of alternative fuel vehicles is much more expensive than fuel switching in industry or the power generation sector. However, some economic incentives will make the price go down to the level at which alternative fuel vehicles are competitive with conventional vehicles. At the same time, mass production makes their prices go down although it is rather expensive at present. Then, we developed the scenarios in which CO2 emissions could be stabilised at the level in 1990. In the higher demand case (1.2%/yr.), it is indispensable to introduce alternative fuel vehicles into the market. Our model selects electric vehicles and compressed natural gas vehicles as cost-effective options. In the scenario where carbon tax revenue is not offset by subsidy, we have to impose prohibitively high carbon tax to suppress CO2. However, CO2 emission can be suppressed by a reasonable carbon tax if the tax revenue is returned to the market to subsidise alternative fuel vehicles and their infrastructures.

Yoshikuni Yoshida; Hisashi Ishitani; Ryuji Matsuhashi; Osamu Kobayashi; Tetsuo Takeishi

2001-01-01T23:59:59.000Z

58

Energy efficiency achievements in China?s industrial and transport sectors: How do they rate?  

Science Journals Connector (OSTI)

Abstract China is experiencing intensified industrialisation and motorisation. In the world?s largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors? performances reflect the effectiveness of China?s energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector?s demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China?s near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and \\{GHGs\\} by 34–35 per cent.

Libo Wu; Hong Huo

2014-01-01T23:59:59.000Z

59

Session 5: ÂŤRenewable Energy in the Transportation and Power SectorsÂŽ  

U.S. Energy Information Administration (EIA) Indexed Site

5: "Renewable Energy in the Transportation and Power 5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers who are busily involved with pushing the state-of-the-art in a number of key technology areas and also technology developer who are weighing the risks and benefits of pursuing different business plans in this evolving market, and environmentalists who are

60

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network [OSTI]

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated NEMS and optoelectronics for sensor applications.  

SciTech Connect (OSTI)

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

2008-01-01T23:59:59.000Z

62

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

63

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

64

How to obtain the National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

2013-01-01T23:59:59.000Z

65

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

66

An examination of the relationship between energy consumption and performance of transportation sector in Malaysia: output multipliers approach  

Science Journals Connector (OSTI)

The objective of the current study is to investigate the energy consumption and the performance of Malaysia's transportation sector. It applied output multiplier approach which is based on input-output model. Three input-output tables of Malaysia covering the 1991, 2000 and 2005 periods were used. The results indicate significant changes in the output multipliers of the transportation sector for the (1991-2005) period. Also, the transportation-to-energy subsector multipliers were found to increase over time. The increasing importance of transportation sector to the development of Malaysian economy resulted in a noticeable increase in the consumption of each energy subsector's output especially 'petrol and coal industries' products. Based on the research findings, several policy implications were suggested for the betterment of both sectors' performance and generally for the improvement of Malaysian economy.

Hussain Ali Bekhet; Azlina Abdullah

2013-01-01T23:59:59.000Z

67

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

68

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect (OSTI)

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

69

Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles  

Broader source: Energy.gov [DOE]

The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

70

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Energy Through Greater Efficiency: The Potential for Conservation in California’s Residential Sector. Report

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

71

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

72

Overview of NEMS-H2, Version 1.0  

Broader source: Energy.gov [DOE]

Presentation on Overview of NEMS-H2, Version 1.0 given by Frances Wood of OnLocation during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

73

Assessment and Suggestions to Improve the Commercial Building Module of EIA-NEMS  

E-Print Network [OSTI]

use from the base case divided by the total change in lighting electricity use from the base case. VI LIST OF FIGURES Figure 1. Impact of lighting energy reduction on heating and cooling energy use in the large office building Figure 2. Impact...-South-Central) for the Commercial Sector Demand Module of NEMS. Units are in MBtu/sq.ft./year. E = Electricity NG = Natural Gas O = Other LA This was usually done by metering consumption before and after the retrofit and then analyzing the data to account for weather and changes...

O'Neal, D. L.; Reddy, T. A.; Sucher, B.

1996-01-01T23:59:59.000Z

74

Global Climate Change, Developing Countries and Transport Sector Options in South Africa  

E-Print Network [OSTI]

on Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transport

2000-01-01T23:59:59.000Z

75

Appendix E: Other NEMS-MP results for the base case and scenarios.  

SciTech Connect (OSTI)

The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They represent a small, though noticeable, segment of the 'LV plus 2B' market (e.g., a little more than 3% of today's energy use in that market). We generally do not include them in this discussion, simply because it requires additional effort to combine the NEMS-MP results for them with the results for the other LVs. (Where there is an exception, we will indicate so.) Second, where reference is made to E85, the ethanol content is actually 74%. The Energy Information Administration (EIA) assumes that, to address cold-starting issues, the percent of ethanol in E85 will vary seasonally. The EIA uses an annual average ethanol content of 74% in its forecasts. That assumption is maintained in the NEMS-MP scenario runs.

Plotkin, S. E.; Singh, M. K.; Energy Systems

2009-12-03T23:59:59.000Z

76

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect (OSTI)

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

77

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network [OSTI]

other assumptions for wind power to determine which onesused in NEMS regarding wind power to determine their impact

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

78

Analysis and Representation of Miscellaneous Electric Loads in NEMS -  

Gasoline and Diesel Fuel Update (EIA)

Analysis and Representation of Miscellaneous Electric Loads in NEMS Analysis and Representation of Miscellaneous Electric Loads in NEMS Release date: January 6, 2014 Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy consumption in residential and commercial buildings. Recently, the growth of MELs has offset some of the efficiency gains made through technology improvements and standards in major end uses such as space conditioning, lighting, and water heating. Miscellaneous end uses, including televisions, personal computers, security systems, data center servers, and many other devices, have continued to penetrate into building-related market segments. Part of this proliferation of devices and equipment can be attributed to increased service demand for entertainment, computing, and convenience appliances.

79

All-nanophotonic NEMS biosensor on a chip  

E-Print Network [OSTI]

Integrated chemical and biological sensors give advantages in cost, size and weight reduction and open new prospects for parallel monitoring and analysis. Biosensors based on nanoelectromechanical systems (NEMS) are the most attractive candidates for the integrated platform. However, actuation and transduction techniques (e.g. electrostatic, magnetomotive, thermal or piezoelectric) limit their operation to laboratory conditions. All-optical approach gives the possibility to overcome this problem, nevertheless, the existing schemes are either fundamentally macroscopic or excessively complicated and expensive in mass production. Here we propose a novel scheme of extremely compact NEMS biosensor monolithically integrated on a chip with all-nanophotonic transduction and actuation. It consists of the photonic waveguide and the nanobeam cantilever placed above the waveguide, both fabricated in the same CMOS-compatible process. Being in the near field of the strongly confined photonic mode, cantilever is efficiently...

Fedyanin, Dmitry Yu

2014-01-01T23:59:59.000Z

80

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect (OSTI)

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

82

Integration of renewable energy into the transport and electricity sectors through V2G  

E-Print Network [OSTI]

Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind energy systems allows integration of much higher levels of wind electricity without excess electric

Firestone, Jeremy

83

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

84

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

SciTech Connect (OSTI)

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

85

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Link to Sector 7 Users and Collaborators Link to Sector 7 Users and Collaborators This is an incomplete list of Partners from Universities and National Labs who use the facilities at Sector 7. If you wish to add a link to your institutional page, do no hesitate to contact Eric Dufresne at the APS. The APS XSD Atomic, Molecular and Optical Physics group Center for Molecular Movies at Copenhagen University Roy Clarke Group at the University of Michigan Rob Crowell Group at BNL Chris Elles's group at Kansas University Argonne's Transportation Technology R&D Center Fuel Injection and Spray Research Group Paul Evans's group web page at the University of Wisconsin Alexei Grigoriev's group at Univ. of Tulsa Eric Landahl's web page at DePaul University The SLAC Pulse Institute Ultrafast Materials Science group (D. Reis and A. Lindenberg)

86

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

87

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

Science Journals Connector (OSTI)

Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. ... The Energy Independence and Security Act (H.R. 6), which includes a 36 billion gallon renewable fuel mandate, was passed by Congress and signed by President Bush on December 19, 2007. ... Mitigation strategies with the potential to achieve significant long-term transportation emission reductions often face significant competition for primary resources with other sectors, including biomass, natural gas, renewables, and coal, and for secondary energy sources such as electricity. ...

Sonia Yeh; Alex Farrell; Richard Plevin; Alan Sanstad; John Weyant

2008-10-21T23:59:59.000Z

88

Nano-Electro-Mechanical (NEM) Relay Devices and Technology for Ultra-Low Energy Digital Integrated Circuits  

E-Print Network [OSTI]

Technology 3.1 Introduction Nano-electro-mechanical (NEM)improvements, a scaled nano-relay technology with optimizedNano-Electro-Mechanical (NEM) Relay Devices and Technology

Nathanael, Rhesa

2012-01-01T23:59:59.000Z

89

The National Energy Modeling System: An Overview 1998 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

OVERVIEW OF NEMS OVERVIEW OF NEMS blueball.gif (205 bytes) Major Assumptions blueball.gif (205 bytes) NEMS Modular Structure blueball.gif (205 bytes) Integrating Module NEMS represents domestic energy markets by explicitly representing the economic decisionmaking involved in the production, conversion, and consumption of energy products. For example, the penetration of a new or advanced technology for electricity generation is projected only if the technology is deemed to be economic when considering the cost-minimizing mix of fuels over the life of the equipment. Since energy costs and availability and energy- consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to

90

The National Energy Modeling System: An Overview 2000 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Since energy costs and availability and energy-consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to facilitate policy analysis and ensure the validity of the results. A summary of the detail provided in NEMS is shown below. Summary Table Major Assumptions Each module of NEMS embodies many assumptions and data to characterize the future production, conversion, or consumption of energy in the United States. Two major assumptions concern economic growth in the United States and world oil prices, as determined by world oil supply and demand.

91

Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov  

E-Print Network [OSTI]

Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

Baker, Chris I.

92

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

93

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network [OSTI]

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

94

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

95

Workshop on Opportunities for Magnetism in MEMS/NEMS, April 16-17, 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities for Magnetism in MEMS/NEMS Opportunities for Magnetism in MEMS/NEMS Argonne National Laboratory - April 16-17, 2010 Sponsored by NSF, NIST and Argonne National Laboratory Friday, April 16 13:00 Welcome and Introduction Chair: John Moreland 13:10 Pritiraj Mohanty Boston University "Study of Spin Dynamics using Nanomechanics" 13:50 T. Mitch Wallis NIST, Boulder "Measurement of the Einstein-de Haas Effect with a Microcantilever" 14:30 Albrecht Jander Oregon State University "Application of Torques to Nanostructures using Ferromagnetic Resonance" 15:10 Coffee Break Chair: Dennis Greywall 15:30 Rassul Karabalin Caltech "Next-Generation NEMS Functionality Enable by Advances in Novel Materials"

96

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

97

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications A Reminder for Sector 7 PIs and Users: Please report your new publications to the Sector Manager and the CAT Director. The APS requires PIs to submit new publications to its Publication Database, a link which can be found on the Publication section of the APS web site. Publication information for work done at 7ID Proper acknowledgement sentences to include in papers. Sector 7 Call for APS User Activity Reports. APS User Activity Reports by MHATT-CATers. Recent articles Recent theses Sector 7 Reports Sector 7 Recent research highlights (New) Design documents in ICMS on Sector 7 construction and operation Sector 7 related ICMS documents Library Resources available on the WWW The ANL Library system ANL electronic journal list AIM Find it! Citation Ranking by ISI (see Journal citation report)

98

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.03–0.53 MJeq/MJ emitting 0.7–27.3 g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

99

sector | OpenEI  

Open Energy Info (EERE)

sector sector Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

100

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

102

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sector 7 : Time Resolved Research Group Sector 7 is operated by the Time Resolved Research Group, which is part of the X-ray Science Division (XSD) of the Advanced Photon Source. Our research focus is the study of Ultrafast fs-laser excitation of matter, using x-ray scattering and spectroscopy techniques. The sector developped two hard x-ray beamlines (7ID and 7BM) focused on time-resolved science. The 7BM beamline has been dedicated for time-resolved radiography of fuel sprays. Sector 7 Links: What's New Beamlines Overview User information: Getting Beamtime Current Research Programs Links to our partners, and collaborators (New) Publications Contact information Operational data (w/ current 7ID schedule) ES&H information (ESAF, EOR, TMS training, User Training)

103

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

104

NEM modication prevents high-anity ATP binding to the rst nucleotide binding fold of the sulphonylurea receptor, SUR1  

E-Print Network [OSTI]

NEM modi¢cation prevents high-a¤nity ATP binding to the ¢rst nucleotide binding fold, UK Received 7 July 1999; received in revised form 11 August 1999 Abstract Pancreatic LL-cell ATP WWM 8-azido- [KK-32 P]ATP or 8-azido-[QQ-32 P]ATP was inhibited by NEM with Ki of 1.8 WWM and 2.4 WWM

Tucker, Stephen J.

105

Sector X  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X X If there is an emergency at ETTP requiring evacuation, Sector X reports to the shelter at: Oak Ridge High School 127 Providence Road Oak Ridge, TN 37830 Take most direct route to northbound Bethel Valley Road toward Oak Ridge. Turn left onto Illinois Avenue (Highway 62). Turn right onto Oak Ridge Turnpike and turn left to Oak Ridge High School. If there is an emergency at ORNL requiring evacuation, Sector X reports to the shelter at: Karns High School 2710 Byington Solway Road Knoxville, TN 37931 Take most direct route to northbound Bethel Valley Road toward Knoxville. Then take a left at Highway 62 (Oak Ridge Highway) eastbound to Knoxville. Take a right onto State Route 131 (Byington Beaver Ridge) to Karns High School. If there is an emergency at Y-12 requiring evacuation, Sector X reports to the shelter at:

106

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: News : News Sector 7 calendar of events. APS News APS Monthly meeting slides What's new at the APS Sector 7? 2013 news 2012 news 2011 news 2010 news 2009 news 2008 news 2007 news 2006 news 2005 news 2004 news 2003 news 2002 news 2001 news 2013 News from APS Sector 7 May 2013: Ruben Reininger et al. recently published an article on the optical design of the SPX Imaging and Microscopy beamline (SPXIM). The details can be found on the RSI web site here. A new web page is now available to guide 7-BM users. See the official 7-BM web page for more details. 2012 News from APS Sector 7 August 2012: Jin Wang gave a talk on August 29, 2012 entitled "The APS 7-BM is Open for Business, Officially!" at the August APS Monthly Operation Meeting. On August 1, Alan Kastengren joined the X-ray Science Division to operate the 7-BM beamline. Alan has been involved in the construction

107

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

108

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

109

service sector | OpenEI  

Open Energy Info (EERE)

service sector service sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. Source UK Department of Energy and Climate Change (DECC) Date Released July 31st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption coal Coke domestic Electricity Electricity Consumption energy data Industrial Natural Gas Petroleum service sector transportation UK Data application/zip icon Five Excel spreadsheets with UK Energy Consumption data (zip, 2.6 MiB) Quality Metrics Level of Review Peer Reviewed Comment The data in ECUK are classified as National Statistics

110

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs Research Programs Sector 7's research program exploits the brilliance of the APS undulator radiation to perform material research studies with high spatial and temporal resolution. Microbeam studies are made using x-ray beam sizes on the submicron-scale, and time-resolved diffraction measurements are carried out with picosecond resolution. Sector 7's undulator line has experimental enclosures dedicated to both time-resolved and microbeam research. In one of these enclosures (7ID-D), a femtosecond laser facility is set up for ultrafast diffraction and spectroscopy studies in a pump-probe geometry. The 7ID-B hutch is a white beam capable station used for time-resolved phase-contrast imaging and beamline optics development. A third enclosure (7ID-C) is instrumented for high-resolution diffraction studies with a Huber 6-circle diffractometer. The instrument is ideal for thin-film and interface studies, including the recently developed Coherent Bragg Rod Analysis (COBRA) technique. The fs-laser has recently been delivered to 7ID-C so time-resolved laser pump-x-ray probe can be performed in 7ID-C since March 2007. An x-ray streak camera is also being commissioned in 7ID-C. 7ID-C is equipped for microdiffraction studies with a small Huber 4-cicle diffractometer used with zone-plate optics.

111

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

112

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

113

Fact #561: March 9, 2009 All Sectors' Petroleum Gap  

Broader source: Energy.gov [DOE]

Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

114

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Information & Getting Beamtime User Information & Getting Beamtime There are three ways to request beamtime to perform an experiment on APS-7ID. One can request beam time as an APS General User, as an APS Partner User, or one can contact a staff member of Sector 7 to work collaboratively with them using a small amount of staff time to gather preliminary data. 80% of the available beamtime on 7ID is given to General and Partner Users, while 20% is reserved for staff use. Beam time is allocated and announced by email shortly before the start of an experimental run. In October 2002, beamline 7ID welcomed its first APS General Users (GU). To gain access to 7ID, General or Partner Users are required to submit a proposal to the APS GU Website by the specified deadline. Sucessful proposals will be scheduled for the next cycle following the proposal deadline. There are three proposal cycles per year with deadlines about two months before the start of a run. The deadlines and General User forms are available on the web through the APS General User Web site. Specific instructions for new General Users are available on the site. These instructions can be helpful also for new APS Users in general.

115

Sector 7  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview and History Overview and History Sector 7 consists of two APS beamlines: 7-ID: an insertion device beamline based on an APS Type-A Undulator 7-BM: a bend magnet beam line for time-resolved radiography (currently being commissioned) Overview of 7-ID 7-ID comprises four large experimental enclosures designated A, B, C, and D. In 2004, a laser enclosure was also added (7ID-E). Enclosure 7-ID-A is the first optics enclosure and houses a polished Be window, an empty x-ray filter unit, a pair of white beam slits, a water-cooled double crystal diamond monochromator (Kohzu HLD4), and a P4 mode shutter. The beamline vertical offset is 35 mm. Enclosure 7-ID-B is a white-, or monochromatic-beam experimental enclosure. It is equipped with two precision motorized table for alignment and positioning of experimental equipment. This station is used for white-beam imaging or microdiffraction experiments.

116

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburg’s “eagle-car” changed society. On the one hand, motor vehicle transportation is an integral thread of society’s fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

117

Downstream Emissions Trading for Transport  

Science Journals Connector (OSTI)

This chapter addresses the issue of downstream emission trading within the transport sector. It is argued that emission trading may be relevant in this sector, and ... regarding international transport, it is arg...

Charles Raux

2011-01-01T23:59:59.000Z

118

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

119

Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors  

Science Journals Connector (OSTI)

Five fuel options (petroleum, natural gas, synthetic fuels (coal to liquid, CTL; gas to liquid, GTL; biomass to liquid, BTL), electricity, and hydrogen) and five vehicle technologies (ICEV, HEV, BEV, PHEV, and FCV) were considered. ... Petro ICEV, Synth ICEV, NG ICEV, H2 ICEV = internal combustion engine vehicle fueled either by petroleum, synthetic fuel (CTL, GTL, or BTL), natural gas, or gaseous hydrogen; HEV = hybrid electric vehicle; BEV = battery electric vehicle, PHEV = plug-in hybrid electric vehicle; Petro FCV, Synth FCV, H2 FCV = fuel-cell vehicle fueled either by petroleum, synthetic fuel, or gaseous hydrogen. ... In their CO2 reduction scenario (reduction from 1990 of 50% by 2050 and 75% by 2100), the car sector is dominated by gasoline/diesel (first in ICEVs, then HEVs and to a small extent also PHEVs) with hydrogen-fueled FCVs becoming dominant by 2100. ...

M. Grahn; C. Azar; M. I. Williander; J. E. Anderson; S. A. Mueller; T. J. Wallington

2009-03-26T23:59:59.000Z

120

Sector 6 Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 2009 2008 2007 2006 2005 2004 2003 2002 2001 APS Pubs. Database Sector 6 Publications Publications 2013:(45) "Classical and quantum phase transitions revealed using transport and x-ray measurements," Arnab Banerjee, Ph.D.-Thesis, University of Chicago, 2013. "Charge transfer and multiple density waves in the rare earth tellurides," A. Banerjee, Yejun Feng, D.M. Silevitch, Jiyang Wang, J.C. Lang, H.-H. Kuo, I.R. Fisher, T.F. Rosenbaum, Phys. Rev. B 87, 155131 (2013). "Controlling Size-Induced Phase Transformations Using Chemically Designed Nanolaminates," Matt Beekman, Sabrina Disch, Sergei Rouvimov, Deepa Kasinathan, Klaus Koepernik, Helge Rosner, Paul Zschack, Wolfgang S. Neumann, David C. Johnson, Angew. Chem. Int. Ed. 52, 13211 (2013).

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

122

Fact #609: February 8, 2010 The Transportation Petroleum Gap...  

Broader source: Energy.gov (indexed) [DOE]

09: February 8, 2010 The Transportation Petroleum Gap Fact 609: February 8, 2010 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed...

123

Fact #560: March 2, 2009 The Transportation Petroleum Gap | Department...  

Broader source: Energy.gov (indexed) [DOE]

0: March 2, 2009 The Transportation Petroleum Gap Fact 560: March 2, 2009 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S....

124

Fact #687: August 8, 2011 The Transportation Petroleum Gap |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: August 8, 2011 The Transportation Petroleum Gap Fact 687: August 8, 2011 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S....

125

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport:...

126

Convergence of carbon dioxide emissions in different sectors in China  

Science Journals Connector (OSTI)

Abstract In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the ?-convergence, stochastic convergence and ?-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector.

Juan Wang; Kezhong Zhang

2014-01-01T23:59:59.000Z

127

Sector 1 welcome  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne Welcome to Sector 1 of the Advanced Photon Source (APS) located at Argonne National Laboratory (ANL). The Sector 1 beamlines are operated by the Materials Physics & Engineering Group (MPE) of the APS X-ray Science Division (XSD). Sector 1 consists of the 1-ID and 1-BM beamlines, and 80% of the available beamtime is accessible to outside users through the General User program. The main programs pursued at Sector 1 are described below. 1-ID is dedicated to providing and using brilliant, high-energy x-ray beams (50-150 keV) for the following activities: Coupled high-energy small- and wide-angle scattering (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Sector 1 General Layout Stress/strain/texture studies Pair-distribution function (PDF) measurements

128

Advanced Vehicle Electrification and Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

129

Advanced Vehicle Electrification and Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

130

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...designed to co-feed a biomass gasifier with H2 and CO2 recycled from...the benefits. In a typical gasifier, oxygen and steam are supplied...value of the coal fed to the gasifier. Energy in the H 2 goes toward...think of the synthetic oil as a medium for storing H 2 , then the...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

131

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...biomass for the H 2 CAR process will always...improvement in PV cell and electrolyzer efficiencies...generate electricity or hydrogen from solar cells or an alternative...energy as synthetic fuels. Comparison with...requirement for the H 2 CAR process with the...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

132

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...7). Both of these energy carriers, when produced...carbon-free primary energy source such as nuclear, solar, wind, etc. or a...with technical and economical challenges. For the...storage density of the energy (6). The current...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

133

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...a Billion-Ton Annual Supply , www1.eere.energy.gov/biomass/publications...Composition and Property Database , www1.eere.energy.gov/biomass/feedstock_databases...Billion-Ton Annual Supply http://www1.eere.energy.gov/biomass/publications...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

134

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...were recycled to the gasifier. ASPEN (23) simulations...decreases to support a given size of plant. (viii) Less...by using biomass Case Gasifier efficiency, % Biomass land area...of the coal fed to the gasifier. Energy in the H 2 goes...the synthetic oil as a medium for storing H 2 , then...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

135

Climate forcing from the transport sectors  

Science Journals Connector (OSTI)

...National Greenhouse Gas Inventories ( Institute for Global Environmental...century, ships were fired by coal...use and electricity generation. The data on electricity generation includes renewable...biomass burning, nuclear power, hydroelectric power...

Jan Fuglestvedt; Terje Berntsen; Gunnar Myhre; Kristin Rypdal; Ragnhild Bieltvedt Skeie

2008-01-01T23:59:59.000Z

136

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...source of liquid hydrocarbon fuels (16, 17...gasification data provided in...produce liquid hydrocarbon fuel. In our...The resulting combustion energy not only provides heat for the endothermic...pass from the hydrocarbon conversion...well as other heat requirements...From the NRC data in Table E-23...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

137

Climate forcing from the transport sectors  

Science Journals Connector (OSTI)

...conversion from coal to diesel propulsion but later...memory of the carbon cycle; man-made emissions...Integrated RF is a general indicator that is...the use of gasoline and diesel. In terms of CO 2 equivalents...for aviation fuel and diesel for shipping...

Jan Fuglestvedt; Terje Berntsen; Gunnar Myhre; Kristin Rypdal; Ragnhild Bieltvedt Skeie

2008-01-01T23:59:59.000Z

138

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...IN 47907 A hybrid hydrogen-carbon...open loop system. (iv...annualized average solar energy conversion...solar, wind, etc. or...source such as solar, nuclear, wind, etc...processing system, and the...source such as solar, nuclear...named the hybrid H 2 -carbon...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

139

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...biomass to obtain synthesis gas (syngas), a mixture of CO and H 2 , and...assuming that the conversion of syngas to diesel is 100% selective...feed stock. The resulting combustion energy not only provides heat...formed in the gasifier from the combustion reaction and through the water...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

140

Property:ProgramSector | Open Energy Information  

Open Energy Info (EERE)

ProgramSector ProgramSector Jump to: navigation, search This is a property of type String. Pages using the property "ProgramSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2008 Solar Technologies Market Report + Energy + 2010 Solar Market Transformation Analysis and Tools + Energy + 2011 APTA Public Transportation Fact Book + Energy + A A Case for Climate Neutrality: Case Studies on Moving Towards a Low Carbon Economy + Energy +, Land +, Climate + A Conceptual Framework for Progressing Towards Sustainability in the Agriculture and Food Sector + Land + A Guide to Community Solar: Utility, Private, and Non-profit Project Development + Energy + A Low Carbon Economic Strategy for Scotland + Energy +, Land + A Municipal Official's Guide to Diesel Idling Reduction + Climate +, Energy +

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

142

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

Ecosystems National Security Tourism Transportation Water Resources NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS) National Climatic DataNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet AGRICULTURE Overview A wide

143

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COASTAL HAZARDS OVERVIEW Global

144

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

be used most effectively. #12;NOAA Satellite and Information Service National Environmental Satellite Insurance Litigation Marine and Coastal Ecosystems National Security TOURISM Transportation WaterNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet TOURISM Overview Tourism

145

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

146

Public Sector Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capitol dome Capitol dome Public Sector Energy Efficiency Research on sustainable federal operations supports the implementation of sustainable policies and practices in the public sector. This work serves as a bridge between the technology development of Department of Energy's National Laboratories and the operational needs of public sector. Research activities involve many aspects of integrating sustainability into buildings and government practices, including technical assistance for sustainable building design, operations, and maintenance; project financing for sustainable facilities; institutional change in support of sustainability policy goals; and procurement of sustainable products. All of those activities are supported by our work on program and project evaluation, which analyzes overall program effectiveness while ensuring

147

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-Owned",4600990,3030181,1391043,179766,0...

148

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-Owned",28786033,9192981,12...

149

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-Owned",18912606,3579076,8038708,7294822,0...

150

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-Owned",21086842,7858971,6302526,6925231,114 2,"Southwestern...

151

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Mississippi Inc","Investor-Owned",13272532,5550307,5322525,2399700,0 2,"Mississippi...

152

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

153

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Connecticut Light & Power Co","Investor-Owned",7162779,5456175,1...

154

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NM","Investor-Owned",9396214,3323544,4301354,177...

155

Sector 6 Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Highlights of research on Sector 6 Teasing Out the Nature of Structural Instabilities in Ceramic Compounds Teasing Out the Nature of Structural Instabilities in Ceramic Compounds March 12, 2013 Researchers have used beamlines 6-ID-B at the APS and XmAS at the ESRF to probe the structure of the rare-earth magnetic material europium titanate. In a magnetic field, the optical properties of this system change quite dramatically, presenting hope of a strong magneto-electric material for potential use in new memory, processing, and sensor devices.

156

Energy demand and economic consequences of transport policy  

Science Journals Connector (OSTI)

Transport sector is a major consumer of energy. Concern of energy scarcity and price fluctuations enhanced significance of ... sector in national planning. This paper analyses energy demand for transport services...

J. B. Alam; Z. Wadud; J. B. Alam…

2013-09-01T23:59:59.000Z

157

14 - Graphene nanoelectromechanics (NEMS)  

Science Journals Connector (OSTI)

Abstract: The use of graphene in the development of nanoscale mechanical structures is reviewed. The recent development of graphene resonators and techniques used to fabricate and characterise them is described. Some applications in sensor technology are highlighted.

Z. Moktadir

2014-01-01T23:59:59.000Z

158

Louisville Private Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Sector Attendees Private Sector Attendees ENERGY STAR Kick-off Meeting December 2007 5/3rd Bank Al J Schneider Company (The Galt House East) Baptist Hospital East Brown - Forman Building Owner and Managers Association (BOMA) Louisville CB Richard Ellis Commercial Real Estate Women (CREW) Louisville Cushman Wakefield General Electric Company Golden Foods Greater Louisville Chapter of International Facility Management Association (IFMA) Hines Humana, Inc Institute of Real Estate Management (IREM) Kentucky Chapter Jewish Hospital & St Mary's Healthcare Kentucky Chapter, Certified Commercial Investment Managers (CCIM) Kentucky Governor's Office of Energy Policy Kentucky Society of Health Care Engineers Kindred Health Care Louisville Air Pollution Control Board

159

By Sector, 2010 Nonprofit /  

E-Print Network [OSTI]

% West USA 46% By Region, 2010 Consul9ng 9% Environment/Energy 7% Finance/Investment Banking 4Public 38% Private 44% By Sector, 2010 Nonprofit / Mul9lateral 18% Asia 32% East USA 22 4% Manufacturing 3% Market Research 4% Media 3% Other 6% Technology 12% Think Tank 2

Tsien, Roger Y.

160

Making Africa's Power Sector Sustainable: An Analysis of Power Sector  

Open Energy Info (EERE)

Making Africa's Power Sector Sustainable: An Analysis of Power Sector Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary Name: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Agency/Company /Organization: United Nations Environment Programme, United Nations Economic Commission for Africa Sector: Energy Topics: Market analysis, Policies/deployment programs, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity Resource Type: Guide/manual, Lessons learned/best practices Website: www.uneca.org/eca_programmes/nrid/pubs/powersectorreport.pdf UN Region: Eastern Africa References: Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa[1] Overview "This study assesses the socio-economic and environmental impacts of power

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

of offering NEM for biogas-electric systems and fuel cells.but AB 2228 (2002) allowed biogas-electric facilities up to

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

162

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical experts, policymakers, and other transportation stakeholders in the public and private sectors Providing technical expertise on alternative fuel vehicles and fueling...

163

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

164

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

165

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

166

Transportation Business Plan  

SciTech Connect (OSTI)

The Transportation Business Plan is a step in the process of procuring the transportation system. It sets the context for business strategy decisions by providing pertinent background information, describing the legislation and policies governing transportation under the NWPA, and describing requirements of the transportation system. Included in the document are strategies for procuring shipping casks and transportation support services. In the spirit of the NWPA directive to utilize the private sector to the maximum extent possible, opportunities for business ventures are obvious throughout the system development cycle.

Not Available

1986-01-01T23:59:59.000Z

167

Climate VISION: Private Sector Initiatives: Chemical Manufacturing  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas intensity reduction target of 18% by 2012 from 1990 levels. ACC will measure progress based on data collected directly from its members. ACC also pledges to support the search for new products and pursue innovations that help other industries and sectors achieve the President's goal. Activities include increased production efficiencies, promoting coal gasification technology, increasing bio-based processes, and, most importantly, developing efficiency-enabling products for use in other sectors, such as appliance transportation and construction. The following documents are available for download as Adobe PDF documents.

168

Mapping expert perspectives of the aviation sector  

Science Journals Connector (OSTI)

Aviation globally is characterised by significant change and consequently the future of the sector has always been difficult to predict. This study adopts a systemic approach based on findings from exploratory interviews with UK aviation academics to: determine the roles of stakeholders in the air transport system; report the current issues facing the sector; explore how these issues interact and impact on the stakeholders in the system; and speculate on the future implications. Six core stakeholders are identified: airlines, airports, consumers, manufacturers, governing institutions and interest groups. Nine core issues are reported, namely: local environment, climate change, peak oil, the state of the economy, social norms, demographics, disruptive events, national (or international) regulations and capacity. A matrix of interactions and their impacts and implications for managing the aviation system is then presented.

Namasoondrum P. Mootien; James P. Warren; Dick Morris; Marcus P. Enoch

2013-01-01T23:59:59.000Z

169

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

170

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases On This Page The National Energy Modeling... Component modules Annual Energy Outlook 2011... The National Energy Modeling System The projections in the Annual Energy Outlook 2011 (AEO2011) are generated from the National Energy Modeling System (NEMS) [1], developed and maintained by the Office of Energy Analysis (OEA), formerly known as the Office Integrated Analysis and Forecasting (OIAF), of the U.S. Energy Information Administration (EIA) [2]. In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups,

171

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

172

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases JUMP TO: The National Energy Modeling System | Component modules | Annual Energy Outlook 2013 cases The National Energy Modeling System Projections in the Annual Energy Outlook 2013 (AEO2013) are generated using the National Energy Modeling System (NEMS) [148], developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual Energy Outlook (AEO) projections, NEMS is also used to complete analytical studies for the U.S. Congress, the Executive Office of the President, other offices within the U.S. Department of Energy (DOE), and other Federal agencies. NEMS is also used by other nongovernment groups, such as the Electric Power Research Institute, Duke University, and Georgia Institute

173

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

174

Modeling regional transportation demand in China and the impacts of a national carbon constraint  

E-Print Network [OSTI]

Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

Kishimoto, Paul

2015-01-30T23:59:59.000Z

175

Sector 1 - Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS Software APS Software Scientists and researchers at the APS develop custom scientific software to help with acquisition and analysis of beamline data. Several packages are available for a variety of platforms and uses. Data Acquisition Motion control and data collection at the 1-BM and 1-ID beamlines are primarily executed using EPICS software. We also utilize SPEC, running through EPICS, for many experiments. Data Analysis Some of the programs used at Sector 1 to analyse 1-d and/or 2-d data sets are described: Fit2d, for viewing and analysing 2-dimensional data Igor, for analysis of small-angle scattering data Matlab, for strain/texture analysis and image analysis. GSAS/EXPGUI, for structural refinement of diffraction data. A comprehensive list of Powder Diffraction Software and Resources can be

176

Louisville Private Sector Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thursday, December 13, 2007 Thursday, December 13, 2007 9:00 AM - 12:00 PM Agenda * Welcome and introductions from the Mayor (9:00-9:15) o The Mayor's energy and climate protection goals for Louisville o Request for private sector input for the upcoming public-private partnership to promote increased energy efficiency in buildings throughout the Louisville community o Highlights from the December 12 meeting of the ENERGY STAR Challenge implementation group o Introduction to Metro's Green Initiative and goals for today's session * Getting started with ENERGY STAR (9:15-10:00) o Introduction to the program and overview of ENERGY STAR resources o Kentucky and regional ENERGY STAR Partners and labeled buildings o Simple steps for energy savings o The benefits of energy savings

177

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

178

Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Sector Electric Power Sector Hydroelectric Power (a) ............... 0.670 0.785 0.653 0.561 0.633 0.775 0.631 0.566 0.659 0.776 0.625 0.572 2.668 2.605 2.633 Wood Biomass (b) ........................ 0.048 0.043 0.052 0.046 0.045 0.039 0.051 0.052 0.055 0.049 0.060 0.054 0.190 0.187 0.218 Waste Biomass (c) ....................... 0.063 0.064 0.066 0.069 0.061 0.063 0.063 0.064 0.062 0.065 0.068 0.065 0.262 0.250 0.261 Wind ............................................. 0.376 0.361 0.253 0.377 0.428 0.461 0.315 0.400 0.417 0.461 0.340 0.424 1.368 1.604 1.641 Geothermal ................................. 0.036 0.037 0.038 0.039 0.041 0.041 0.041 0.042 0.041 0.040 0.041 0.042 0.149 0.164 0.165 Solar ............................................. 0.007 0.022 0.021 0.014 0.013 0.022 0.026 0.016 0.021 0.048 0.048 0.025 0.064

179

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Program Organization Country Region Topic Sector Sector Program Organization Country Region Topic Sector Sector Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS Albania Enhancing Capacity for Low Emission Development Strategies EC LEDS United States Agency for International Development USAID United States Environmental Protection Agency United States Department of Energy United States Department of Agriculture United States Department of State Albania Southern Asia Low emission development planning LEDS Energy Land Climate Algeria Clean Technology Fund CTF Algeria Clean Technology Fund CTF African Development Bank Asian Development Bank European Bank for Reconstruction and Development EBRD Inter American Development Bank IDB World Bank Algeria South Eastern Asia Background analysis Finance Implementation

180

Sector 9 | Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sitemap A Amptek Detector B Beam Transport (BM) Beam Transport (ID) Beamlines Beamline Alignment (BM) Beamline Alignment (ID) Beamline Equipment (BM) Beamline Equipment (ID) Beryllium Window (ID) Bicron Szintillation Detector BM B-Table BM Beamline BM First Optics Enclosure (FOE) 9-BM A BM User Manual Bruker CCD C Cable / Patch Panel Layout (BM) Cable / Patch Panel Layout (ID) Common Tasks Computers & Software Contact Info Control Panels (BM) Control Panels (ID) Cryo Pump Cryostats Current Amplifier D Differential Pump (BM) Differential Pump (ID) E EPS and PSS Systems (BM) EPS and PSS Systems (ID) EXAFS F Flag Locations (BM) G Gas Distribution (BM) Gas Distribution (ID) Gate Valves Getting Beamtime H High Voltage (HV) Power Supply Home Page Horizontal Focusing Mirror (ID) Hutches (BM)

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

182

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

183

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

184

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers [EERE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

185

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

186

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Joshua DeLung What does this mean for me?

187

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COAStAl HAzArDS Overview Global

188

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

SciTech Connect (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

189

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

190

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Oil/Liquids Oil/Liquids Petroleum and other liquids consumption outside industrial sector is stagnant or declines figure data Consumption of petroleum and other liquids peaks at 19.8 million barrels per day in 2019 in the AEO2013 Reference case and then falls to 18.9 million barrels per day in 2040 (Figure 93). The transportation sector accounts for the largest share of total consumption throughout the projection, although its share falls to 68 percent in 2040 from 72 percent in 2012 as a result of improvements in vehicle efficiency following the incorporation of CAFE standards for both LDVs and HDVs. Consumption of petroleum and other liquids increases in the industrial sector, by 0.6 million barrels per day from 2011 to 2040, but decreases in all the other end-use sectors.

191

The Greenhouse Gas Protocol Initiative: Sector Specific Tools | Open Energy  

Open Energy Info (EERE)

Gas Protocol Initiative: Sector Specific Tools Gas Protocol Initiative: Sector Specific Tools Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Sector Specific Tools Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased Electricity[1] The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion[2] The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources[3]

192

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

193

AIDS and the private sector  

Science Journals Connector (OSTI)

... a host of other celebrities are promoting the US launch of 'Product Red', the private sector's campaign to fight AIDS. Some of the profits on products sold in ... is to be welcomed. For two decades, AIDS activists and officials have implored the private sector to join the fight against AIDS. In reality, that effort remains overwhelmingly dependent ...

2006-10-18T23:59:59.000Z

194

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Broader source: Energy.gov [DOE]

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

195

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

See most recent version of AEO See most recent version of AEO Annual Energy Outlook Products - Archive Annual Energy Outlook Supplement Tables Assumptions NEM System (NEMS): An Overview NEMS Retrospective Early Release HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF HTML PDF 2013 2013 2013 2013 2012 2012 2012 2012 2012 2012 2011 2011 2011 2011 2011 2011 2011 2011 2010 2010 2010 2010 2010 2010 2010 2010 2010 2009 2009 2009 2009 2009 2009 2009 2009 2009 2008 2008 2008 2008 2008 2008 2009 2008 2008 2008 2008 2007 2007 2007 2007 2007

196

CEC-500-2010-FS-002 Assess New Transportation  

E-Print Network [OSTI]

CEC-500-2010-FS-002 Assess New Transportation and Land-Use Patterns in a Carbon-Constrained Future TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ March 2010 The Issue California's transportation sector is the single largest contributor of greenhouse gas

197

Greenhouse Gas Emissions from Aviation and Marine Transportation...  

Open Energy Info (EERE)

Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org...

198

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

199

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers [EERE]

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

200

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

202

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

203

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

204

Oak Ridge Reservation's emergency sectors change | Department...  

Broader source: Energy.gov (indexed) [DOE]

Reservation's emergency sectors change Oak Ridge Reservation's emergency sectors change March 11, 2014 - 11:30am Addthis On March 12, the Tennessee Emergency Management Agency...

205

Energy Sector Cybersecurity Framework Implementation Guidance  

Energy Savers [EERE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

206

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

207

Energy Analysis by Sector | Department of Energy  

Office of Environmental Management (EM)

Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use...

208

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

209

UNDP-Costa Rica Regional Programme for LAC - Preparation of Sectoral LEDs  

Open Energy Info (EERE)

Rica Regional Programme for LAC - Preparation of Sectoral LEDs Rica Regional Programme for LAC - Preparation of Sectoral LEDs for transport and agriculture Jump to: navigation, search Name UNDP-Costa Rica Regional Programme for LAC - Preparation of Sectoral LEDs for transport and agriculture Agency/Company /Organization United Nations Development Programme (UNDP) Sector Climate, Energy Focus Area Agriculture, Transportation Topics Low emission development planning, -LEDS Country Costa Rica Central America References UNDP - Latin America & the Caribbean[1] Contents 1 Program Overview 1.1 Program Focus 1.2 Environment and Sustainable Development 2 References Program Overview "Across Latin America and the Caribbean, UNDP helps countries build and share their own solutions to urgent development challenges, supporting

210

Costa Rica-Regional Programme for LAC: Preparation of Sectoral LEDs for  

Open Energy Info (EERE)

Costa Rica-Regional Programme for LAC: Preparation of Sectoral LEDs for Costa Rica-Regional Programme for LAC: Preparation of Sectoral LEDs for Transport and Agriculture Jump to: navigation, search Name UNDP-Costa Rica Regional Programme for LAC - Preparation of Sectoral LEDs for transport and agriculture Agency/Company /Organization United Nations Development Programme (UNDP) Sector Climate, Energy Focus Area Agriculture, Transportation Topics Low emission development planning, -LEDS Country Costa Rica Central America References UNDP - Latin America & the Caribbean[1] Contents 1 Program Overview 1.1 Program Focus 1.2 Environment and Sustainable Development 2 References Program Overview "Across Latin America and the Caribbean, UNDP helps countries build and share their own solutions to urgent development challenges, supporting

211

Alternative and Transitional Energy Sources for Urban Transportation  

Science Journals Connector (OSTI)

In urban areas, the transportation sector is one of the principal sources of substantial energy consumption. Although public modes of transportation have ... cities still prefer owning and using their private cars

Linna Li; Becky P. Y. Loo

2014-03-01T23:59:59.000Z

212

Quantitative analysis of alternative transportation under environmental constraints  

E-Print Network [OSTI]

This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

Sandoval López, Reynaldo

2006-01-01T23:59:59.000Z

213

Harmony Search Algorithm for Transport Energy Demand Modeling  

Science Journals Connector (OSTI)

The transport sector is one of the major consumers of energy production throughout the world. Thus, the estimation of medium and long-term energy consumption based on socio-economic and transport related indic...

Halim Ceylan; Huseyin Ceylan

2009-01-01T23:59:59.000Z

214

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

215

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. See more figure data Reference Case Tables Table 2. Energy Consumption by Sector and Source - United States XLS Table 2.1. Energy Consumption by Sector and Source - New England XLS Table 2.2. Energy Consumption by Sector and Source - Middle Atlantic XLS

216

Activities to Secure Control Systems in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

sector sector NSTB November 2008 Hank Kenchington - Program Manager Office of Electricity of Delivery and Energy Reliability U.S. Department of Energy Activities to Secure Control Systems in the Energy Sector * 2,000,000 Miles of Oil Pipelines * 1,300,000 Miles of Gas Pipelines * 2,000 Petroleum Terminals * ~1,000,000 Wells * Extensive Ports, Refineries, Transportation, and LNG Facilities * 160,000 Miles of Electrical Transmission lines * ~17,000 Generators; 985,000 Megawatts (net summer capacity) * Over 3,100 Electric Utilities, with 131 million customers Refinery Locations, Crude and Product Pipelines Source: Energy Information Administration, Office of Oil & Gas LNG Import Facilities (Reactivation underway) Legend Interstate Pipelines Intrastate and Other Pipelines

217

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Market Trends - Industrial sector energy demand Market Trends - Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments, industrial delivered energy consumption increases by only 19 percent from 2011 to 2040 in the AEO2013 Reference case. The continued decline in energy intensity of the industrial sector is explained in part by a shift in the share of shipments from energy-intensive manufacturing industries (bulk chemicals, petroleum refineries, paper products, iron and steel, food products, aluminum, cement and lime, and glass) to other, less energy-intensive industries, such as plastics, computers, and transportation equipment. Also, the decline in energy intensity for the less energy-intensive industries is almost twice

218

Sector 1 Frequently Asked Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sector 1 - General Information Sector 1 - General Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 = 5.4308 Angstrom CeO2 a0=5.411 Angstrom Cd-109 gamma = 88.036 keV X-ray energy/wavelength conversion constant = 12.39842 Angstrom/keV Useful 1-ID Operations Information Always set the undulator by closing from large to small gap. Always scan the Kohzu monochromator from high to low energy. A Cd-109 source that can be used to calibrate detectors can be obtained by contacting Ali. It has Ag flourescent lines and a 88.036 keV gamma line. Tim Mooney's telephone number is 2-5417. Frequently Asked Questions The following questions come up often when using the Sector 1 beamlines. If you have a question (and maybe answer) that would be of general interest to Sector 1 users, please give it to Jon or Greg for inclusion in this list.

219

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

220

Program Program Organization Country Region Topic Sector Sector  

Open Energy Info (EERE)

Greenhouse Gas Hydrogen Industry People and Policy Solar Transportation Land Use Wind Jordan UNEP Green Economy Advisory Services Jordan UNEP Green Economy Advisory Services...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Accomplishments Progress 9 Project Partners *CH4 Energy *CP Fuels *Go Natural Towing *Jordan School District *Kenworth PacLease *Ogden City *Questar Gas Company *Robinson Waste...

222

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Technical Accomplishments 7 Project Partners *CH4 Energy *CP Fuels *Go Natural Towing *Jordan School District *Ogden City *Questar Gas Company *Robinson Waste *Salt Lake City *Semi...

223

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

public stations CNG America: 3 CNG public stations Go Natural Towing: 3 CNG tow trucks Jordan School District: 24 CNG School buses 1 private CNG station with time fill hoses...

224

High Penetration of Renewable Energy in the Transportation Sector...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

currently accounts for 71% of U.S. petroleum consumption and 33% of its greenhouse gas (GHG) emissions. If the nation seeks to address the associated economic, environmental, and...

225

Fact #619: April 19, 2010 Transportation Sector Revenue by Industry...  

Energy Savers [EERE]

passenger trans, warehouseing and storage, rail, transit and ground passenger trans, pipeline, and water) for the economic census year 2002. For more detailed information, see...

226

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

227

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

228

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

229

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

230

Sector Profiles of Significant Large CHP Markets, March 2004  

Broader source: Energy.gov [DOE]

Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

231

Dissipative hidden sector dark matter  

E-Print Network [OSTI]

A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. Subsequently we examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. We then analyze the phenomenology of our model in the context of galactic structure, and find that it can reproduc...

Foot, R

2014-01-01T23:59:59.000Z

232

Competition on the Hospital Sector  

Science Journals Connector (OSTI)

Abstract This article is about the role of competition in the health care sector. It concentrates on competition amongst hospitals for fixed budgets. The literature supports the argument that with fixed prices hospitals will compete on quality dimensions, and quality of output will increase. Under variable prices, competition can lead to chiseling of output quality. The evidence, at least with respect to the UK, shows that competition need not have an adverse effect on equity of access to health care.

Z. Cooper; A. McGuire

2014-01-01T23:59:59.000Z

233

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

234

Water Impacts of the Electricity Sector (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

235

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

236

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

237

The private sector offers an alternative  

Science Journals Connector (OSTI)

... industrialists have been trying to launch an alternative to the sixth generation computer project with private sector funding.

David Swinbanks

1991-05-30T23:59:59.000Z

238

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 0. Comparisons of energy consumption by sector projections, 2025, 2035, and 2040 (quadrillion Btu) Sector AEO2013 Reference INFORUM IHSGI ExxonMobil IEA 2011 Residential 11.3 11.5 10.8 -- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 -- 19.3a Industrial 24.0 23.6 -- -- 23.7a Industrial excluding electricity 20.7 20.2 -- 20.0 -- Lossesb 0.7 -- -- -- -- Natural gas feedstocks 0.5 -- -- -- -- Industrial removing losses and feedstocks 22.9 -- 21.7 -- -- Transportation 27.1 27.2 26.2 27.0 23.1a Electric power 39.4 39.2 40.5 37.0 37.2a Less: electricity demandc 12.7 12.8 12.7 -- 15.0a

239

Number of Retail Customers by State by Sector, 1990-2012  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Retail Customers by State by Sector, 1990-2012" Number of Retail Customers by State by Sector, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",275405,48790,1263,0,"NA",325458 2012,"AL","Total Electric Industry",2150977,357395,7168,0,"NA",2515540 2012,"AR","Total Electric Industry",1332154,181823,33926,2,"NA",1547905 2012,"AZ","Total Electric Industry",2585638,305250,7740,0,"NA",2898628 2012,"CA","Total Electric Industry",13101887,1834779,73805,12,"NA",15010483

240

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990  

U.S. Energy Information Administration (EIA) Indexed Site

Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" Retail Sales of Electricity (Megawatthours) by State by Sector by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",2160196,2875038,1381177,0,"NA",6416411 2012,"AL","Total Electric Industry",30632261,21799181,33751106,0,"NA",86182548 2012,"AR","Total Electric Industry",17909301,12102048,16847755,463,"NA",46859567 2012,"AZ","Total Electric Industry",32922970,29692256,12448117,0,"NA",75063343 2012,"CA","Total Electric Industry",90109995,121791536,46951714,684793,"NA",259538038

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy demand Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels... Output growth for... Industrial and commercial... Heat and power energy consumption increases in manufacturing industries Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case. Energy consumption growth is moderated by a shift in the mix of output, as growth in energy-intensive manufacturing output (aluminum, steel, bulk chemicals, paper, and refining) slows and growth in high-value (but less energy-intensive) industries, such as computers and transportation equipment, accelerates. figure data

242

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

243

Danish Government - Sector Programmes | Open Energy Information  

Open Energy Info (EERE)

Government - Sector Programmes Government - Sector Programmes Jump to: navigation, search Name Danish Government - Sector Programmes Agency/Company /Organization Danish Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program End 2012 Country South Africa, Vietnam Southern Africa, South-Eastern Asia References Denmark[1] Promoting wind energy in South Africa and energy efficiency in Vietnam (subject to parliamentary approval) References ↑ "Denmark" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Government_-_Sector_Programmes&oldid=580876" Category: Programs

244

The Changing US Electric Sector Business Model  

E-Print Network [OSTI]

The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

Aliff, G.

2013-01-01T23:59:59.000Z

245

Macroscopic theory of dark sector  

E-Print Network [OSTI]

A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

Boris E. Meierovich

2014-10-06T23:59:59.000Z

246

Working to Achieve Cybersecurity in the Energy Sector | Department...  

Broader source: Energy.gov (indexed) [DOE]

Working to Achieve Cybersecurity in the Energy Sector Working to Achieve Cybersecurity in the Energy Sector Presentation covers cybersecurity in the energy sector and is given at...

247

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

248

Making Africa's Power Sector Sustainable: An Analysis of Power...  

Open Energy Info (EERE)

Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector Sustainable: An Analysis...

249

Better Buildings Alliance for the Public Sector | Department...  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Alliance for the Public Sector Better Buildings Alliance for the Public Sector Better Buildings Alliance for the Public Sector Webinar. Presentation More Documents...

250

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

251

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

252

SECTOR MANAGER CONTACT INFORMATION As of 13 May 2014  

E-Print Network [OSTI]

-545-0013 paulasectorX@yahoo.com Northeast Fishery Sector XI Sector Manager: Josh Wiersma PO Box 118 Portsmouth NH 03802 603-682-6115 josh.wiersma@gmail.com Northeast Fishery Sector XIII Sector Manager: John Haran 205

253

Causal simulation models for facing third millennium air transport sustainability  

Science Journals Connector (OSTI)

Aeronautics and air transport is a vital sector of our society and economy. Air transport logistics is one of the key players to support efficient globalization; however, sustainable mobility is at stake, due to facts such as the interdependencies with ... Keywords: air transport logistics, causal models, emergent dynamics, mitigation mechanisms, perturbations

Miquel A Piera; Juan José Ramos; Romualdo Moreno; Mercedes Narciso

2014-02-01T23:59:59.000Z

254

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect (OSTI)

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

255

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

256

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

Issues National Energy Sector Cyber Organization Notice of Intent Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is expected to have the knowledge, expertise, capabilities, and capacity, at a minimum to: * Identify and prioritize cyber security research and development issues.

257

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

258

Decoupling limits in multi-sector supergravities  

SciTech Connect (OSTI)

Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naďve global superpotential. We show that this requires non-canonical scaling in the naďve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

2013-03-01T23:59:59.000Z

259

Category:Private Sectors | Open Energy Information  

Open Energy Info (EERE)

currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PrivateSectors&oldid272250" Categories: Programs Projects...

260

Category:Public Sectors | Open Energy Information  

Open Energy Info (EERE)

This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Categories: Programs Projects...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Photonic Sensing Technology in the Energy Sector  

Science Journals Connector (OSTI)

A review of photonic sensing technologies based on spectroscopic, fiber optics, and LIDAR technologies used in energy sector for measurement and monitoring applications in wind, oil...

Mendez, Alexis

262

Energy Sector Cybersecurity Framework Implementation Guidance...  

Energy Savers [EERE]

and government. In developing this guidance, the Energy Department collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council and the...

263

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

264

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

265

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

266

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

267

The Impacts of the Domestic Fuel Increases on Prices of the Indonesian Economic Sectors  

Science Journals Connector (OSTI)

Abstract Fuel price subsidy policy in Indonesia has hindered other energy programs, namely energy conservation and energy diversification. This study tries to analyze the impact of fuel price hike to the economic sector. This study utilizes the IO table analysis of Indonesia in 2005, a 66 X 66 classification of domestic transactions on the basis of producer prices. This study examines the impact of the increasing 10 percent, 20 percent and 30 percent of fuel prices to the economic sector. The analysis found that the increasing fuel price would have a devastating impact on the transportation sector. The government should preserve those sectors which exposed the largest impact from the increasing of the fuel price.

Dhani Setyawan

2014-01-01T23:59:59.000Z

268

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

269

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect (OSTI)

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

270

Doors open in the private sector  

Science Journals Connector (OSTI)

... Foreign R & D personnel employed by private corporations in Japan PARALLEL with the opening of the public sector there has been rapid ... public sector there has been rapid growth in opportunities for foreign researchers in Japan's private companies. Between 1988 and 1991 the number of foreign researchers in the ...

David Swinbanks

1993-04-29T23:59:59.000Z

271

UK observatories look to private sector  

Science Journals Connector (OSTI)

... London. The British government has announced that private-sector organizations will be invited to bid for the services provided by its 'Royal ... a negotiator with the Institute of Professionals, Managers and Specialists (IPMS), says that private-sector management of the observatories is not the solution to what he describes as " ...

Ehsan Masood

1996-05-02T23:59:59.000Z

272

residential sector key indicators | OpenEI  

Open Energy Info (EERE)

residential sector key indicators residential sector key indicators Dataset Summary Description This dataset is the 2009 United States Residential Sector Key Indicators and Consumption, part of the Source EIA Date Released March 01st, 2009 (5 years ago) Date Updated Unknown Keywords AEO consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon 2009 Residential Sector Key Indicators and Consumption (xls, 55.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

273

energy use by sector | OpenEI  

Open Energy Info (EERE)

use by sector use by sector Dataset Summary Description Statistics New Zealand conducted and published results of an energy use survey across industry and trade sectors to evaluate energy use in 2009. The data includes: energy use by fuel type and industry (2009); petrol and diesel purchasing and end use by industry (2009); energy saving initiatives by industry (2009); and areas identified as possibilities for less energy use (2009). Source Statistics New Zealand Date Released October 15th, 2010 (4 years ago) Date Updated Unknown Keywords diesel energy savings energy use by sector New Zealand petrol Data application/vnd.ms-excel icon New Zealand Energy Use Survey: Industrial and Trade Sectors (xls, 108 KiB) application/zip icon Energy Use Survey (zip, 127 KiB) Quality Metrics

274

USDOT-Transportation and Climate Change Clearinghouse | Open Energy  

Open Energy Info (EERE)

USDOT-Transportation and Climate Change Clearinghouse USDOT-Transportation and Climate Change Clearinghouse Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USDOT-Transportation and Climate Change Clearinghouse Agency/Company /Organization: United States Department of Transportation Sector: Climate Focus Area: Transportation Topics: GHG inventory, Market analysis Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Website Website: climate.dot.gov/methodologies/analysis-resources.html Cost: Free USDOT-Transportation and Climate Change Clearinghouse Screenshot References: USDOT-Transportation and Climate Change Clearinghouse[1] "Assessments of available models and analytical tools can be used to compare greenhouse gas measurement methods and analytical approaches. This

275

The role of natural gas as a vehicle transportation fuel  

E-Print Network [OSTI]

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

276

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

277

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

Gasoline and Diesel Fuel Update (EIA)

and Representation of and Representation of Miscellaneous Electric Loads in NEMS December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Analysis and Representation of Miscellaneous Electric Loads in NEMS i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. December 2013

278

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2011 cases Reference Baseline economic growth (2.7 percent per year from 2009 through 2035), world oil price, and technology assumptions. Complete projection tables in Appendix A. World light, sweet crude oil prices rise to about $125 per barrel by 2035 in year 2009 dollars. Assumes RFS target to be met as soon as possible. Fully integrated Low Economic Growth Real GDP grows at an average annual rate of 2.1 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated High Economic Growth Real GDP grows at an average annual rate of 3.2 percent from 2009 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Fully integrated

279

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2012 cases Reference Baseline economic growth (2.5 percent per year from 2010 through 2035), oil price, and technology assumptions. Complete projection tables in Appendix A. Light, sweet crude oil prices rise to about $145 per barrel (2010 dollars) in 2035. Assumes RFS target to be met as soon as possible. Low Economic Growth Real GDP grows at an average annual rate of 2.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.. High Economic Growth Real GDP grows at an average annual rate of 3.0 percent from 2010 to 2035. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B.

280

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power Partners program, which is being developed in cooperation with the Department of Energy. The memberships of the seven organizations that comprise EPICI represent 100% of the power generators in the United States. Through individual commitments and collective actions, the power sector will strive to make meaningful contributions to the President's greenhouse gas intensity goal. EPICI members also support efforts to increase technology research, development and deployment that will help the power sector, and other sectors, achieve the President's goal. The seven organizations comprising EPICI are the American Public Power

282

Cosmology of hidden sector with Higgs portal  

E-Print Network [OSTI]

In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

Cabi, Serkan

2009-01-01T23:59:59.000Z

283

Top partner probes of extended Higgs sectors  

E-Print Network [OSTI]

Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

Kearney, John

284

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

285

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

286

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

287

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

288

Energy-Sector Stakeholders Attend the Department of Energy's...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

289

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

290

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

291

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

2006-01-01T23:59:59.000Z

292

Changes Sweeping Through the Electricity Sector: Moving toward...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

293

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

294

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. energy demand U.S. energy demand In the United States, average energy use per person declines from 2010 to 2035 figure data Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use but also the mix of fuels consumed. Changes in the structure of the economy and in the efficiency of the equipment deployed throughout the economy also have an impact on energy use per capita. The shift in the industrial sector away from energy-intensive manufacturing toward services is one reason for the projected decline in industrial energy intensity (energy use per dollar of GDP), but its impact on energy consumption per capita is less direct (Figure 71). From 1990 to

295

Sectoral trends in global energy use and greenhouse gasemissions  

SciTech Connect (OSTI)

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

2006-07-24T23:59:59.000Z

296

ImSET: Impact of Sector Energy Technologies  

SciTech Connect (OSTI)

This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

2005-07-19T23:59:59.000Z

297

AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division  

Open Energy Info (EERE)

Delivered Prices by End-Use Sector and Census Division Delivered Prices by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 137, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural Gas Data application/vnd.ms-excel icon AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division- Reference Case (xls, 140.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

298

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

299

Performance Measurement in the Road Sector: A Cross-Country Review of  

Open Energy Info (EERE)

Performance Measurement in the Road Sector: A Cross-Country Review of Performance Measurement in the Road Sector: A Cross-Country Review of Experience Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Performance Measurement in the Road Sector: A Cross-Country Review of Experience Agency/Company /Organization: ITF Complexity/Ease of Use: Not Available Website: www.internationaltransportforum.org/jtrc/DiscussionPapers/DP201210.pdf Related Tools Handbook for Handling, Storing, and Dispensing E85 London Congestion Pricing: Implications for Other Cities Bike-Sharing:History, Impacts, Models of Provision, and Future ... further results Find Another Tool FIND TRANSPORTATION TOOLS This report focuses on reviewing performance requirements and indicators established by developed countries worldwide. Additionally, the concept of

300

AEO2011: Natural Gas Consumption by End-Use Sector and Census Division |  

Open Energy Info (EERE)

Consumption by End-Use Sector and Census Division Consumption by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New Report Highlights Growth of America's Clean Energy Job Sector |  

Broader source: Energy.gov (indexed) [DOE]

New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs

302

The future of sustainable transport system for Europe  

Science Journals Connector (OSTI)

The EU has launched targets for energy efficiency and the reduction in pollutant emissions in the transport sector. It establishes a framework to foster the promotion and development of a market for clean vehicles. In 2011 the EU passed a "Roadmap to ... Keywords: Biofuels, EU transport policy, Electric cars, Energy dependence, GHG emissions, Road traffic

Dieter Ei?el; Chin Peng Chu

2014-08-01T23:59:59.000Z

303

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Sector Integration Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher levels of variable renewable electricity. Impacts of renewable electricity generation on efficiency and emissions of conventional generators. Grid expansion and planning to allow large scale deployment of renewable generation. Graphic showing a high concept diagram of how a modern electricity system can be designed to include storage and incorporate large scale renewable generation. High Renewable Generation Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure

304

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

305

EU competition law on electricity sector liberalisation  

Science Journals Connector (OSTI)

This paper aims to study how competition law helps facilitate the process of EU electricity liberalisation and study the use of competition law on the liberalised EU energy market. This paper provides an overview of competition law regarding to purposes of EU competition law and articles 101, 102 and 106 of EC Treaty on the Functioning of the European Union. The paper explores the role of competition law on EU electricity market liberalisation and focuses on the three main directive packages that transform EU electricity market towards competition. It further explores competition law enforcement that facilitates the structural change in EU electricity sector and discusses how the EU Competition Commission utilise the competition law to decrease market barriers in EU electricity sector. Finally the paper focuses on possible issues for competition law on EU electricity sector, especially on merger and acquisition cases. The last part provides conclusion of the paper.

Pornchai Wisuttisak

2014-01-01T23:59:59.000Z

306

Dams and Energy Sectors Interdependency Study  

Broader source: Energy.gov (indexed) [DOE]

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

307

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

308

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

309

Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments  

E-Print Network [OSTI]

Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

Nelson, Joshua S

2008-01-01T23:59:59.000Z

310

Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors  

SciTech Connect (OSTI)

This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

Whitaker, M.; Heath, G.

2010-05-01T23:59:59.000Z

311

Public-Private Sector Media Partnerships  

Broader source: Energy.gov (indexed) [DOE]

Public-Private Sector Public-Private Sector Media Partnerships Stacy Hunt, Confluence Communications March 1, 2012 Who is the Building America Retrofit Alliance (BARA)? * One of 10 industry teams funded in part by the U.S. Department of Energy's Building America program * Multidisciplinary and focused on building performance, multimedia content and program development, and EE/RE outreach Why are media partnerships important to Building America? * Access to large, loyal, qualified existing audiences * Tried and true communications channels, strategies, and materials * Often strong editorial voices and/or industry leadership positions Media Case Study The Cool Energy House Media Case Study What's Useful to Remodelers?

312

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

313

WIPP Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across...

314

Transportation Security  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

315

On the Road to Transportation Efficiency (Video)  

SciTech Connect (OSTI)

Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

Not Available

2014-03-01T23:59:59.000Z

316

Retail competition in the UK electricity sector  

E-Print Network [OSTI]

Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition Santiago, Chile 16 &17 March 2006 #12;Outline · Why retail competition? · Preparations and large user;Why retail competition? · Wholesale competition to deliver most efficient pattern of generation

Rudnick, Hugh

317

Australian telecommunications: Private sector at arms' length  

Science Journals Connector (OSTI)

... has been busily reversing the free-market bent of Mr Malcolm Eraser's policy on telecommunications in order to keep it in the public sector. The latest policy reversal is ... year. But it seems the government has now given in to pressure from the Australian Telecommunications Employees' Association which was against private ownership. The decreased deficit in the August budget ...

Vimala Sarma

1983-12-08T23:59:59.000Z

318

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

319

Training & Research in the Indian Power Sector  

E-Print Network [OSTI]

Training & Research in the Indian Power Sector An academic perspective Rangan Banerjee, Energy requirements, financing investments, providing reliable electricity at affordable costs #12;Need for Training France ­ Power Generation & Transmission Group ­ Average 80 hours of training/year (14% of budget) 3

Banerjee, Rangan

320

SUPPLIERS WITHIN AN ECOLOGICALLY AWARE AUTOMOTIVE SECTOR  

E-Print Network [OSTI]

1 SUPPLIERS WITHIN AN ECOLOGICALLY AWARE AUTOMOTIVE SECTOR 1 Overview on the theme It is clear, materials recyclers and shredders, as represented in figure 1. Figure 1 - Automobile life cycle and the hulk are sent to shredders. The shredder reduces the hulk to small pieces, with around 10 cm each

Instituto de Sistemas e Robotica

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rabi multi-sector reservoir simulation model  

SciTech Connect (OSTI)

To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

Bruijnzeels, C.; O`Halloran, C.

1995-12-31T23:59:59.000Z

322

The Bamble Sector, South Norway: A review  

Science Journals Connector (OSTI)

Abstract The Proterozoic Bamble Sector, South Norway, is one of the world's classic amphibolite- to granulite-facies transition zones. It is characterized by a well-developed isograd sequence, with isolated ‘granulite-facies islands’ in the amphibolite-facies portion of the transition zone. The area is notable for the discovery of CO2-dominated fluid inclusions in the granulite-facies rocks by Jacques Touret in the late 1960's, which triggered discussion of the role of carbonic fluids during granulite genesis. The aim of this review is to provide an overview of the current state of knowledge of the Bamble Sector, with an emphasis on the Arendal-Froland-Nelaug-Tvedestrand area and off shore islands (most prominantly Tromřy and Hisřy) where the transition zone is best developed. After a brief overview of the history of geological research and mining in the area, aspects of sedimentary, metamorphic and magmatic petrology of the Bamble Sector are discussed, including the role of fluids. Issues relevant to current geotectonic models for SW Scandinavia, directly related to the Bamble Sector, are discussed at the end of the review.

Timo G. Nijland; Daniel E. Harlov; Tom Andersen

2014-01-01T23:59:59.000Z

323

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE  

E-Print Network [OSTI]

WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

324

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft fĂĽr Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

325

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

326

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

327

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

328

Transportation Market Distortions  

E-Print Network [OSTI]

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

329

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Sectoral Proposal Templates Ecofys-Sectoral Proposal Templates Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1] The 'Sectoral Proposal Templates' aim at supporting developing countries in proposing sectoral emission baselines under a post-Kyoto climate regime. The sectoral approach underlying this work is seen as a means to scale-up investments in clean technology and systems in developing countries.

330

Property:Sector | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Sector Jump to: navigation, search This is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this property. (previous 25) (next 25) 1 1 Solar Inc + Renewable Energy +, Solar + 1.5-ft Wave Flume Facility + Hydro + 10-ft Wave Flume Facility + Hydro + 11-ft Wave Flume Facility + Hydro + 12 Voltz Limited + Renewable Energy +, Solar +, Wind energy + 1366 Technologies + Solar + 1st Light Energy, Inc. + Solar + 2 2-ft Flume Facility + Hydro + 2008 Solar Technologies Market Report + Renewable Energy +, Solar +, Concentrating solar power +, ... 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + Clean Fossil Energy +

331

Climate VISION: Private Sector Initiatives: Progress Report  

Office of Scientific and Technical Information (OSTI)

PROGRESS REPORT PROGRESS REPORT Progress Report NEWS MEDIA CONTACT: Megan Barnett, (202) 586-4940 FOR IMMEDIATE RELEASE Friday, February 8, 2008 DOE Releases Climate VISION Progress Report 2007 Outlines Industry Progress in Reducing Greenhouse Gas Emissions Intensity through Climate VISION Partnership WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate VISION Progress Report 2007, which reports on the actions taken by energy-intensive industries to improve greenhouse gas emissions intensity of their operations from 2002 to 2006. The report indicates that the power and energy-intensive industrial sectors improved their combined emissions intensity by 9.4 percent over this four year period, and in 2006, actual greenhouse gas emissions for these sectors fell a combined 1.4 percent.

332

Laser experiments explore the hidden sector  

E-Print Network [OSTI]

Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

2007-11-30T23:59:59.000Z

333

The Lepton Sector of a Fourth Generation  

E-Print Network [OSTI]

In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

2010-05-10T23:59:59.000Z

334

Implications for decision making: Industrial sector perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the industrial sector. Industry is presented as supportive of energy conservation measures in spite of the large uncertainties in the global warming issue. Perspectives of developed and developing countries are contrasted, and carbon dioxide emissions are compared. Socioeconomic implications of reducing greenhouse gas emissions, particularly in the form of higher prices for goods and services, are outlined.

Mangelsdorf, F.E. [Texaco, Inc., Beacon, NY (United States)

1992-12-31T23:59:59.000Z

335

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

Reductions in Urban Transport Reductions in Urban Transport Jump to: navigation, search Logo: Indonesia-GTZ Emissions Reductions in Urban Transport Name Indonesia-GTZ Emissions Reductions in Urban Transport Agency/Company /Organization GTZ Partner Ministry of Transportation Sector Energy Focus Area Transportation Topics Background analysis Website http://www.gtz.de/en/themen/um Program Start 2008 Program End 2012 Country Indonesia UN Region South-Eastern Asia References GTZ Transport & Climate Change Website[1] GTZ is working with Indonesia on this program with the following objective: "Indonesian cities increasingly plan and implement measures for a transport system that is energy efficient as well as environmentally and climate friendly." Background of the project is the absence of a national policy on

336

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

337

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

NEMS overview and brief description of cases NEMS overview and brief description of cases Table E1. Summary of the AEO2013 cases Case name Description Reference Real GDP grows at an average annual rate of 2.5 percent from 2011 to 2040. Crude oil prices rise to about $163 per barrel (2011 dollars) in 2040. Complete projection tables in Appendix A. Low Economic Growth Real GDP grows at an average annual rate of 1.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. High Economic Growth Real GDP grows at an average annual rate of 2.9 percent from 2011 to 2040. Other energy market assumptions are the same as in the Reference case. Partial projection tables in Appendix B. Low Oil Price Low prices result from a combination of low demand for petroleum and other liquids in the non-OECD nations and higher global supply. Lower demand is measured by lower economic growth relative to the Reference case. On the supply side, OPEC increases its market share to 49 percent, and the costs of other liquids production technologies are lower than in the Reference case.Light, sweet crude oil prices fall to $75 per barrel in 2040. Partial projection tables in Appendix C.

338

Private Sector Outreach and Partnerships | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident response would not be possible without the participation of the private sector. The relationships ISER maintains with energy sector owners and operators and public associations representing energy subsectors, including the American

339

Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10: February 15, 10: February 15, 2010 All Sectors' Petroleum Gap to someone by E-mail Share Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Facebook Tweet about Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Twitter Bookmark Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Google Bookmark Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Delicious Rank Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on Digg Find More places to share Vehicle Technologies Office: Fact #610: February 15, 2010 All Sectors' Petroleum Gap on AddThis.com... Fact #610: February 15, 2010 All Sectors' Petroleum Gap

340

Fact #610: February 15, 2010 All Sectors' Petroleum Gap | Department...  

Energy Savers [EERE]

10: February 15, 2010 All Sectors' Petroleum Gap Fact 610: February 15, 2010 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fact #688: August 15, 2011 All Sectors' Petroleum Gap | Department...  

Energy Savers [EERE]

8: August 15, 2011 All Sectors' Petroleum Gap Fact 688: August 15, 2011 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the...

342

ANL Study Shows Wind Power Decreases Power Sector Emissions ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ANL Study Shows Wind Power Decreases Power Sector Emissions ANL Study Shows Wind Power Decreases Power Sector Emissions May 1, 2012 - 3:38pm Addthis This is an excerpt from the...

343

Study of Long-Term Transport Action Plan for ASEAN | Open Energy  

Open Energy Info (EERE)

Long-Term Transport Action Plan for ASEAN Long-Term Transport Action Plan for ASEAN Jump to: navigation, search Name Study of Long-Term Transport Action Plan for ASEAN Agency/Company /Organization Association of Southeast Asian Nations (ASEAN), Institution for Transport Policy Studies (ITPS), Clean Air Asia, Transport Research Laboratory (TRL), Mizuho Information & Research Institute (MHIR) Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

344

Extrapolating Environmental Benefits from IGCC in NEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2008 (April August 2008 (April 2009 Revision) DOE/NETL-402/080108 Water Requirements for Existing and Emerging Thermoelectric Plant Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

345

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010  

Broader source: Energy.gov [DOE]

The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

346

Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009  

Broader source: Energy.gov [DOE]

Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

347

Oil- and Coal-Based Sea Transportation Needs: An Integrated Forecasting Approach  

Science Journals Connector (OSTI)

Due to the global economic crisis and increasing environmental issues (agreements to...2...emissions), the overall transportation logistics sector is currently suffering from one of the most severe recessions (as...

Y. H. Venus Lun; Olli-Pekka Hilmola; Alexander M. Goulielmos…

2013-01-01T23:59:59.000Z

348

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar  

Broader source: Energy.gov [DOE]

Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

349

Types of Nuclear Industry Jobs Commercial and Government Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jobs Commercial and Government Sectors Professional Category Technician Category Engineer Category Craft Category Chemist Chemistry Technician Chemical Engineer Boilermaker...

350

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

351

WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS?  

E-Print Network [OSTI]

WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS? Susie LEE Ingmar SCHUMACHER (in)stability induce financial reforms? Susie Lee1 Ingmar Schumacher2 October 26, 2011 Abstract The article studies whether financial sector (in)stability had an effect on reforms in the fi- nancial sector

Boyer, Edmond

352

Private sector cautious on Pemex reorganization  

SciTech Connect (OSTI)

Private sector interest in the privatization of the petrochemical subsidiaries of Mexico`s state oil company Petroleos Mexicanos (Pemex) will hinge on the government`s decisions on minority ownership, says Raul Millares, president of Aniq, the Mexican chemical industry association. The murkiest issues are how the subsidiaries will be operated and what rights minority owners will have. {open_quotes}The question is who is going to manage the subsidiaries on a day-to-day basis,{close_quotes} says Millares. {open_quotes}There is a lot of doubt as to whether private companies will be able to get the flexibility they need.{close_quotes}

Sissell, K.

1997-03-19T23:59:59.000Z

353

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

354

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

355

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

356

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

357

Energy Critical Infrastructure and Key Resources Sector-Specific  

Broader source: Energy.gov (indexed) [DOE]

Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR) protection efforts into a single national program. The NIPP includes an overall framework integrating federal programs and activities that are currently underway in the various sectors, as well as new and developing CI/KR protection efforts. The Energy

358

Measuring, Reporting, and Verifying (MRV) of Transport Nationally  

Open Energy Info (EERE)

Measuring, Reporting, and Verifying (MRV) of Transport Nationally Measuring, Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II Jump to: navigation, search Name Measuring, Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II Agency/Company /Organization Institute for Global Environmental Strategies (IGES), Clean Air Asia Partner Institute for Global Environmental Strategies (IGES) Sector Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, -NAMA Program Start 2012 Program End 2013 Country Philippines South-Eastern Asia References Phase I information[1] Overview Progress and Outcomes Capacity building activities include enhancing capacity for implementing

359

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

360

Philippines-Measuring, Reporting, and Verifying (MRV) of Transport  

Open Energy Info (EERE)

Philippines-Measuring, Reporting, and Verifying (MRV) of Transport Philippines-Measuring, Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II Jump to: navigation, search Name Measuring, Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II Agency/Company /Organization Institute for Global Environmental Strategies (IGES), Clean Air Asia Partner Institute for Global Environmental Strategies (IGES) Sector Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, -NAMA Program Start 2012 Program End 2013 Country Philippines South-Eastern Asia References Phase I information[1] Overview Progress and Outcomes Capacity building activities include enhancing capacity for implementing

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Template:Energy Generation Facilities by Sector | Open Energy Information  

Open Energy Info (EERE)

Facilities by Sector Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the specified sector in a map, or in a list with CSV link depending on SUBPAGENAME; the purpose being the separation of the map content from the underlying data. If the page it is included on ends in '/Data' it will display the raw data and the CSV link. Otherwise, it will display the full screen map. Parameters sector - the sector to query on (for example: Biomass, Solar, Wind energy, Geothermal energy) (required) Usage It should be called in the following format: {{Energy Generation Facilities by Sector}} Example For an example of this template in use, see one of the pages listed in 'What links here' below.

362

Low Carbon Development Planning in the Power Sector | Open Energy  

Open Energy Info (EERE)

the Power Sector the Power Sector Jump to: navigation, search Logo: Low Carbon Development Planning in the Power Sector Name Low Carbon Development Planning in the Power Sector Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy Topics Low emission development planning Website http://www.esmap.org/esmap/nod Country Morocco, Nigeria UN Region Northern Africa References ESMAP[1] Overview "This new program was initiated in 2010 and aims to provide clients with analytical support to develop capacity for low-carbon development in power sector planning. It employs a learning-by doing approach with pilot activities in two countries in the initial stage (Nigeria and Morocco - 2010-12). A toolkit will be developed at the end of the pilot program to

363

Residential Transportation Historical Publications reports, data and  

U.S. Energy Information Administration (EIA) Indexed Site

Historical Publications Historical Publications Residential Transportation reports, data tables and transportation questionnaires Released: May 2008 The Energy Information Administration conducts several core consumption surveys. Among them was the Residential Transportation Energy Consumption Survey (RTECS). RTECS was designed by EIA to provide information on how energy is used by households for personal vehicles. It was an integral part of a series of surveys (i.e., core consumption surveys) designed by EIA to collect data on energy used by end-use economic sectors. The RTECS collected data on the number and type of vehicles used by the household. For each vehicle, data were collected on the number of miles traveled (commonly called VMT) for the year, the number of gallons of fuel consumed, the type of fuel used, the priced paid for fuel, and the number of miles per gallon. Additional electronic releases are available on the Transportation homepage.

364

Neurotransmitter Transporters  

E-Print Network [OSTI]

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

365

Transportation Demand Management in Beijing - Mitigation of emissions in  

Open Energy Info (EERE)

Beijing - Mitigation of emissions in Beijing - Mitigation of emissions in urban transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft fĂĽr Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in Beijing to enable them to calculate baselines and assess reduction

366

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

367

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

368

Los Angeles County Metropolitan Transportation Authority Metro | Open  

Open Energy Info (EERE)

County Metropolitan Transportation Authority Metro County Metropolitan Transportation Authority Metro Jump to: navigation, search Name Los Angeles County Metropolitan Transportation Authority (Metro) Place Los Angeles, California Zip 90012-2952 Sector Renewable Energy Product Metro is the regional transportation planner for all of Los Angeles County. It is a developer of renewable energy projects. References Los Angeles County Metropolitan Transportation Authority (Metro)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Los Angeles County Metropolitan Transportation Authority (Metro) is a company located in Los Angeles, California . References ↑ "Los Angeles County Metropolitan Transportation Authority

369

LEDSGP/Transportation Toolkit/Key Actions/Implement and Monitor | Open  

Open Energy Info (EERE)

Actions/Implement and Monitor Actions/Implement and Monitor < LEDSGP‎ | Transportation Toolkit‎ | Key Actions Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

370

NREL: Transportation Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and...

371

Achieving sustainable urban transport mobility in post peak oil era  

Science Journals Connector (OSTI)

Peak oil is the term used to describe the point at which global oil production will peak and thereafter start to decline. Recognising that transport uses a significant portion of global energy, the shortage of fossil fuel in post peak oil era will pose a global challenge in the transport sector. The paper presents an assessment of international research to illustrate the possible time frame of peak oil. It investigates the key implications of the oil shortage that threaten to render the urban transport system of Australia ineffective. Synthesis of documented research evidence suggests three major implications in the urban transport sector: (1) a reduction of mobility for individuals, (2) an increase of transport disadvantage, and (3) a disruption of urban freight movement. In addition, the paper explores strategies to cope with the devastating effects of the shortage of the fossil fuel in the post peak oil era. A number of strategies to achieve sustainable mobility in the future urban transport system are presented. These strategies are summarised into three main themes: (1) a mode shift to alternate transport modes, (2) an integration of land use and transport planning, and (3) a global technical effort for alternate fuels and vehicles. It is expected that a concerted global effort in this regard can have a far-reaching effect in achieving sustainability in urban transport mobility.

Md Aftabuzzaman; Ehsan Mazloumi

2011-01-01T23:59:59.000Z

372

LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline | Open Energy  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline < LEDSGP‎ | Transportation Toolkit‎ | Key Actions Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

373

Climate VISION: Private Sector Initiatives: Forest Products  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements American Forest & Paper Association Logo The American Forest & Paper Association (AF&PA) supports the Climate VISION initiative to address climate change through enhanced research in technology and science, incentives, and voluntary efforts from all sectors of the American economy. The members of AF&PA have undertaken a series of programs through which they are collectively committed to meeting the President's intensity reduction goals. These programs include inventorying and reporting on greenhouse gases, actions to enhance sequestration in managed forests and products, development and implementation of improved technologies, efforts to improve energy efficiency, use of cogeneration and increased use of renewable energy, and recycling. AF&PA expects that these programs will

374

1-ID: Sector 1, Insertion Device Beamline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-ID beamline schematic 1-ID beamline schematic ID on-axis brilliance values 1-ID - Sector 1, Insertion Device Beamline Responsible Scientists Jon Almer, phone: (630) 252-1049, e-mail: almer@aps.anl.gov Sarvjit Shastri, phone: (630) 252-0129, e-mail: shastri@aps.anl.gov John Okasinski, phone: (630) 252-0162, e-mail: okasinski@aps.anl.gov Peter Kenesei, phone: (630) 252-0133, e-mail: kenesei@aps.anl.gov Scientific Programs Coupled high-energy SAXS/WAXS studies (HE-SAXS/WAXS) High-energy diffraction microscopy (HEDM) Single-grain studies Stress/strain/texture studies Pair-distribution function (PDF) measurements High-energy fluorescence Source Characteristics Upstream insertion device: APS Undulator A No. of Poles 72 Undulator Period 3.3 cm Device Length 2.4 m Minimum Gap 11 mm Downstream insertion device

375

Annual Real Natural Gas Prices by Sector  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Major regulatory reforms at the Federal level began at the end of the 1970s with the passage of the Natural Gas Policy Act, and have affected most phases of the industry and markets Over time the movement to a more competitive model led to lower prices starting around 1983, which was accentuated by the drop in world oil prices in 1986 Gas consumers in all sectors seem to have benefited, on average, from a more competitive marketplace However, several factors have come together recently that have pushed spot gas prices up sharply and which are expected to reverse the downward trend in in real gas prices for the next year or so: U.S. gas production has been relatively flat. Expected demand is high under normal weather assumptions. Gas storage levels are below normal.

376

Climate VISION: Private Sector Initiatives: Cement  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the emissions expressed in million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the cement industry were 8.3 MMTCE in 2002, and process-related CO2 emissions were approximately 11.4 MMTCE for a total of 19.7 MMTCE. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of

377

CP nonconservation in the leptonic sector  

E-Print Network [OSTI]

In this paper we use an exact method to impose unitarity on moduli of neutrino PMNS matrix recently determined, and show how one could obtain information on CP nonconservation from a limited experimental information. One suggests a novel type of global fit by expressing all theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, [New J.Phys. {\\bf 6} (2004) 122] is confirmed, it will imply a new physics in the leptonic sector.

Petre Dita

2011-01-21T23:59:59.000Z

378

CP nonconservation in the leptonic sector  

E-Print Network [OSTI]

In this paper we use an exact method to impose unitarity on moduli of the neutrino PMNS matrix recently determined, and show how one could obtain information on CP non-conservation from a limited experimental information. One suggests a novel type of global fit by expressing all the theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, New J.Phys. {\\bf 6} (2004) 122 is confirmed, it will imply a new physics in the leptonic sector.

Petre Dita

2006-03-06T23:59:59.000Z

379

Interacting vacuum energy in the dark sector  

E-Print Network [OSTI]

We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

L. P. Chimento; S. Carneiro

2014-04-02T23:59:59.000Z

380

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Photovoltaic Financing: Residential Sector Deployment  

SciTech Connect (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

382

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

2. Summary of number of over-estimated results between AEO Reference 2. Summary of number of over-estimated results between AEO Reference cases and realized outcomes All AEOs NEMS AEOs Percent of Projections Over-Estimated Percent of Projections Over-Estimated Table 3. Gross Domestic Product (Average Cumulative Growth), Actual vs. Projected 24% 37% Table 4. World Oil Prices, Actual vs. Projected 52% 24% Table 5. Total Petroleum Consumption, Actual vs. Projected 44% 61% Table 6. Domestic Crude Oil Production, Actual vs. Projected 59% 65% Table 7. Petroleum Net Imports, Actual vs. Projected 56% 61% Table 8. Natural Gas Wellhead Prices, Actual vs. Projected 54% 23% Table 9. Total Natural Gas Consumption, Actual vs. Projected 49% 70% Table 10. Natural Gas Production, Actual vs. Projected 56% 71% Table 11. Natural Gas Net Imports, Actual vs. Projected 45% 64%

383

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

California California Colorado Delaware Massachusetts New Jersey New York State renewable energy requirements and goals: Update through 2010 To the extent possible, AEO2011 incorporates the impacts of State laws requiring the addition of renewable generation or capacity by utilities doing business in the States. Currently, 30 States and the District of Columbia have enforceable RPS or similar laws (Table 2). Under such standards, each State determines its own levels of renewable generation, eligible technologies, and noncompliance penalties. AEO2011 includes the impacts of all laws in effect in 2010 (with the exception of Hawaii, because NEMS provides electricity market projections for the continental United States only). In the AEO2011 Reference case, States generally meet their ultimate RPS

384

Transportation Security  

Broader source: Energy.gov (indexed) [DOE]

For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work Plan, dated 8/2/06, Product #16, stated: "Develop an annotated bibliography of publicly-available documents related to security of radioactive material transportation." * Earlier this year, a preliminary draft annotated bibliography on this topic was developed by T-REX , UNM, to initially address this STG Work Plan Task. Preliminary Draft - For Review Only 3 Considerations in Determining Release of Information * Some "Publicly-available" documents could potentially contain inappropriate information according to standards set by DOE information security policy and DOE Guides. - Such documents would not be freely

385

Transportation Issues  

Broader source: Energy.gov (indexed) [DOE]

Issues Issues and Resolutions - Compilation of Laboratory Transportation Work Package Reports Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Compiled by Paul McConnell Sandia National Laboratories September 30, 2012 FCRD-UFD-2012-000342 Transportation Issues and Resolutions ii September 2012 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any

386

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

387

ECUT energy data reference series: lightweight materials for ground transportation  

SciTech Connect (OSTI)

This report summarizes information that describes the use of lightweight materials in automobiles. The information on this mode of transportation represents the largest potential energy savings for substitution of lightweight materials in the transportation sector. Included are data on energy conversion efficiency of the engine and its relationship to vehicle weight, the capital stock, the amount of energy used, and the service activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

388

Policy Research TRANSPORTATION  

E-Print Network [OSTI]

Policy Research TRANSPORTATION CENTER Thestate's transportation system is central to its ability movement of goods to maintain and enhance global economic competitiveness. An effective transportation, TTI has identified the following set of initial transportation issues which must be better understood

389

Economics of Transition in the Power Sector | Open Energy Information  

Open Energy Info (EERE)

Economics of Transition in the Power Sector Economics of Transition in the Power Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Economics of Transition in the Power Sector Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Market analysis, Policies/deployment programs Website: www.iea.org/papers/2010/economics_of_transition.pdf References: The Economics of Transition in the Power Sector[1] The power sector carries a considerably great burden of the CO2 emission reductions required to address climate change, a feature common to many scenarios of emissions abatement. These reductions will only be possible if existing plants are replaced with more efficient, and less-emitting types of plants over the coming decades. This report considers: the risk factors

390

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

391

Notice of Public Comment on Electricity Sector Cybersecurity Risk  

Broader source: Energy.gov (indexed) [DOE]

Notice of Public Comment on Electricity Sector Cybersecurity Risk Notice of Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 Notice of Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 The Department of Energy invited public comment on DOE's intent to publish the Electricity Sector Cybersecurity Risk Management Process Guideline. The guideline describes a risk management process that is targeted to the specific needs of electricity sector organizations and adds to the body of resources that help refine the definition and application of effective cybersecurity for all organizations in the Electricity Sector. Comments were due by October 28, 2011.

392

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

393

Ecofys-Sectoral Proposal Templates | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Ecofys-Sectoral Proposal Templates (Redirected from Ecofys Sectoral Proposal Templates) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ecofys Sectoral Proposal Templates Agency/Company /Organization: Ecofys Partner: GtripleC Sector: Energy, Land Phase: Determine Baseline Topics: Baseline projection, GHG inventory, Low emission development planning Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.sectoral-approaches.net/ Cost: Free References: Ecofys Sectoral Proposal Templates[1]

394

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Power Sector Programs/Initiatives Facilitating Organizations Other Resources Power Sector Programs/Initiatives To help achieve its Climate VISION commitment, the power sector has developed a series of programs and sector-wide initiatives. Power sector members are encouraged to participate in programs organized by their EPICI representative organization and join one of the sector-wide initiatives described below. PowerTree Carbon Company Through PowerTree Carbon Company, electric companies are partnering with government agencies and environmental groups to plant trees and restore natural ecosystems in Arkansas, Louisiana, and Mississippi. In addition to sequestering CO2 emissions, the PowerTree Carbon Company project will: create significant habitats for waterfowl, birds, and other native wildlife

395

Roadmap to Secure Control Systems in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

396

Notice of Public Comment on Electricity Sector Cybersecurity Risk  

Broader source: Energy.gov (indexed) [DOE]

Public Comment on Electricity Sector Cybersecurity Risk Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 Notice of Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 The Department of Energy invited public comment on DOE's intent to publish the Electricity Sector Cybersecurity Risk Management Process Guideline. The guideline describes a risk management process that is targeted to the specific needs of electricity sector organizations and adds to the body of resources that help refine the definition and application of effective cybersecurity for all organizations in the Electricity Sector. Comments were due by October 28, 2011.

397

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

398

Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Renewable Energy Topics: Finance, Market analysis Resource Type: Publications Website: www.sefalliance.org/fileadmin/media/base/downloads/SEFI_Public_Finance Public Finance Mechanisms to Catalyze Sustainable Energy Sector Growth Screenshot

399

EC-LEDS in the Agriculture Sector | Open Energy Information  

Open Energy Info (EERE)

the Agriculture Sector the Agriculture Sector Jump to: navigation, search Name EC-LEDS in the Agriculture Sector Agency/Company /Organization United States Department of Agriculture, United States Department of State Partner Ministry of Agriculture, Ministry of Environment Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Program End 2013 Country Costa Rica, Kenya, Mexico, Vietnam Central America, Eastern Africa, Central America, South-Eastern Asia References Land Use Assessment Toolkit - Agriculture Resources[1] Overview Progress and Outcomes Capacity building activities include strengthening implementation of

400

Oak Ridge Reservation Emergency Sectors Changing | Y-12 National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge Reservation ... Oak Ridge Reservation Emergency Sectors Changing Posted: March 11, 2014 - 12:23pm OAK RIDGE, Tenn. - On March 12, the Tennessee Emergency Management...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network [OSTI]

of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

Goldman, Charles

2010-01-01T23:59:59.000Z

402

Climate Change Mitigation in the Energy and Forestry Sectors...  

Open Energy Info (EERE)

of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

403

Climate Change and China's Agricultural Sector: An Overview of...  

Open Energy Info (EERE)

An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

404

Climate Change: Risks and Opportunities for the Finance Sector...  

Open Energy Info (EERE)

Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course AgencyCompany Organization:...

405

Cryogenic resonant microwave cavity searches for hidden sector photons  

E-Print Network [OSTI]

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53 $\\mu$eV we limit the hidden photon kinetic mixing parameter $\\chi cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Parker, Stephen R; Povey, Rhys G; Tobar, Michael E

2014-01-01T23:59:59.000Z

406

Cryogenic resonant microwave cavity searches for hidden sector photons  

E-Print Network [OSTI]

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53 $\\mu$eV we limit the hidden photon kinetic mixing parameter $\\chi cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Stephen R. Parker; John G. Hartnett; Rhys G. Povey; Michael E. Tobar

2014-10-20T23:59:59.000Z

407

Cryogenic resonant microwave cavity searches for hidden sector photons  

Science Journals Connector (OSTI)

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment, where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53???eV, we limit the hidden photon kinetic mixing parameter ?cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Stephen R. Parker; John G. Hartnett; Rhys G. Povey; Michael E. Tobar

2013-12-03T23:59:59.000Z

408

Nexus of Energy Use and Technology in the Buildings Sector  

U.S. Energy Information Administration (EIA) Indexed Site

of Energy Use and Technology in the Buildings Sector EIA Energy Conference July 15, 2014 | Washington, DC Tom Leckey, EIA Director, Office of Energy Consumption and Efficiency...

409

Climate VISION: Private Sector Initiatives: Minerals: GHG Work...  

Office of Scientific and Technical Information (OSTI)

four major areas of activity - Emissions Measurement and Reporting, Opportunities for GHG Inventory Protocols Reduction of GHGs, Cross-Sector Projects, and Research &...

410

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSsLBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey

411

DOE Encourages Utility Sector Nominations to the Federal Communication...  

Broader source: Energy.gov (indexed) [DOE]

Utility Sector Nominations to the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council March 29, 2011 - 5:22pm Addthis...

412

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

sectors – for example the Nord-Stream pipeline that willNovember 22, 2007. Nord-Stream and Siberia's Yuzhno-Russkoye

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

413

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network [OSTI]

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables… (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

414

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

the end user while primary energy consumption includes finalWEC 2001). GDP Primary Energy Consumption (EJ) natural gasHistorical Primary Energy Consumption by sector Energy Use

2008-01-01T23:59:59.000Z

415

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

not provide data on primary energy consumption by sector. Inconsumption into primary energy consumption by multiplyingA.3.5 provides primary energy consumption values for the

2006-01-01T23:59:59.000Z

416

Designing Effective State Programs for the Industrial Sector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy...

417

U.S. Energy Sector Vulnerability Report | Department of Energy  

Energy Savers [EERE]

future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and...

418

Energy-Sector Stakeholders Attend the Department of Energy's...  

Office of Environmental Management (EM)

Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for...

419

Low Carbon Society Toward 2050: Indonesia Energy Sector | Open Energy  

Open Energy Info (EERE)

Society Toward 2050: Indonesia Energy Sector Society Toward 2050: Indonesia Energy Sector Jump to: navigation, search Tool Summary Name: Low Carbon Society Toward 2050: Indonesia Energy Sector Agency/Company /Organization: National Institute for Environmental Studies, Institute for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, Grid Assessment and Integration, People and Policy, Solar Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Adaptation, Background analysis, Baseline projection, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment

420

South Africa Sectoral Study on Climate and Refrigeration Technology...  

Open Energy Info (EERE)

Reduction Potential and Implementing NAMAs Jump to: navigation, search Name South Africa-Sectoral Study on Climate and Refrigeration Technology in Developing Countries and the...

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Why did the solar power sector develop quickly in Japan? .  

E-Print Network [OSTI]

??The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994… (more)

Rogol, Michael G

2007-01-01T23:59:59.000Z

422

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

423

Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles  

Broader source: Energy.gov [DOE]

Highway vehicles are responsible for the majority of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in medium and...

424

Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating  

Open Energy Info (EERE)

Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating Transport Projects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating Transport Projects Agency/Company /Organization: Institute for Global Environmental Strategies Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: enviroscope.iges.or.jp/modules/envirolib/upload/3209/attach/transport% For the past three years, the Institute for Global Environmental Strategies (IGES) has been conducting research on co-benefits. This research has demonstrated that quantifying co-benefits is essential to mainstreaming climate and development concerns into project appraisals, policymaking processes, and international climate negotiations. IGES research has also

425

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

426

Greenhouse Gas Emissions from Aviation and Marine Transportation:  

Open Energy Info (EERE)

Greenhouse Gas Emissions from Aviation and Marine Transportation: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Jump to: navigation, search Tool Summary Name: Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potentials and Policies Agency/Company /Organization: Pew Center on Global Climate Change Sector: Climate, Energy Focus Area: Greenhouse Gas, Transportation Topics: GHG inventory Resource Type: Publications, Technical report Website: www.pewclimate.org/docUploads/aviation-and-marine-report-2009.pdf Cost: Free References: Greenhouse Gas emissions from aviation and marine transportation: mitigation potential and policies[1] "This paper provides an overview of greenhouse gas (GHG) emissions from aviation and marine transportation and the various mitigation options to

427

TRANSfer - Towards climate-friendly transport technologies and measures |  

Open Energy Info (EERE)

TRANSfer - Towards climate-friendly transport technologies and measures TRANSfer - Towards climate-friendly transport technologies and measures Jump to: navigation, search Tool Summary Name: TRANSfer - Towards climate-friendly transport technologies and measures Agency/Company /Organization: GIZ Focus Area: Governance - Planning - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transferproject.org/index.php/hb During the 3-year project, project partners will develop the online handbook 'Navigating Transport NAMAs' with practical advice on how to develop and implement a mitigation action in the transport sector. The handbook will consist of a generic part with general information on transport NAMAs and a number of case studies which will be based on south-south networks of countries and practical implementation within the

428

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

429

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

430

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

431

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

432

Intelligent Transportation Systems - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intelligent Transportation Systems Intelligent Transportation Systems The Center for Transportation Analysis does specialty research and development in intelligent transportation systems. Intelligent Transportation Systems (ITS) are part of the national strategy for improving the operational safety, efficiency, and security of our nation's highways. Since the early 1990s, ITS has been the umbrella under which significant efforts have been conducted in research, development, testing, deployment and integration of advanced technologies to improve the measures of effectiveness of our national highway network. These measures include level of congestion, the number of accidents and fatalities, delay, throughput, access to transportation, and fuel efficiency. A transportation future that includes ITS will involve a significant improvement in these

433

US Energy Sector Vulnerabilities to Climate Change  

Broader source: Energy.gov (indexed) [DOE]

On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince On the cover: Trans-Alaska oil pipeline; aerial view of New Jersey refinery; coal barges on Mississippi River in St. Paul, Minnesota; power plant in Prince George's County, Maryland; Grand Coulee Dam in Washington State; corn field near Somers, Iowa; wind turbines in Texas. Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND EXTREME WEATHER Acknowledgements This report was drafted by the U.S. Department of Energy's Office of Policy and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). The coordinating lead author and a principal author was Craig Zamuda of DOE-PI; other principal authors included Bryan Mignone of DOE-PI, and Dan Bilello, KC Hallett, Courtney Lee, Jordan Macknick, Robin Newmark, and Daniel Steinberg of NREL. Vince Tidwell of Sandia National Laboratories, Tom Wilbanks of

434

Measurement of energy-saving effect by intermodal freight transport in Thailand  

Science Journals Connector (OSTI)

In Thailand, transport sector is the largest energy consuming sector (38%). Road haulage of freight transport accounts for approximately 92% of total domestic freight movements. Accordingly, it is one of the largest contributors to adverse environmental impacts. This study presents one option to reduce energy consumption through modal shift from trailer to intermodal transport involving railway and waterway. It focuses on freight movements between Bangkok and Hat Yai in Thailand. Energy savings are measured by multi-objective optimisation model using decision variables consisting of three mode options: trailer only, intermodal-rail and intermodal-waterway. In addition to energy consumption, the objective function also includes time and charge of shipment factor.

Shinya Hanaoka; Taqsim Husnain; Tomoya Kawasaki; Pichet Kunadhamraks

2011-01-01T23:59:59.000Z

435

Chapter one - Introduction to Transporter Container Sanitation, Traceability and Temperature Controls  

Science Journals Connector (OSTI)

Abstract Outbreaks due to food adulteration have resulted in extensive needs for food safety improvement in all food supply chain sectors. The need for improved measurement, analysis and reporting has reduced the food supply chain’s ability to move to preventive and risk reducing strategies based on causal analysis. The transportation sector has been basically ignored as a key factor in the delivery of safe and quality food. In order to improve food transportation processes, especially sectors handling perishable foods, new definitions and controls for shippers, carriers, containers, maintenance stations and personnel need to be established and managed as other critical operational functions are managed. This lack of transportation food safety and quality controls leaves the entire food supply chain in jeopardy of falling to recalls, product liability, vicarious liability, lack of sales, and an inability to meet established international and evolving transportation food safety and quality requirements.

John M. Ryan

2014-01-01T23:59:59.000Z

436

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

heat and synfuels) consumed by each end-use sector by a final-to- primary conversion factor that accounts for conversion, transmission and distribution losses.heat and synfuels) consumed by each end-use sector by a final-to-primary conversion factor that account for conversion, transmission and distribution losses.

2006-01-01T23:59:59.000Z

437

Liberalization in the Water Sector: Three leading models.  

E-Print Network [OSTI]

and the pervasive changes in other infrastructure sectors, one must note the remarkably slow pace of reform in the water sector. Moreover, the most systematic reforms until now have been implemented in developed . By reform, we mean substantial changes in decision rights, changes that modify the governance and in many

Boyer, Edmond

438

SECTORAL EFFECTS OF TAX REFORMS IN AN OPEN ECONOMY  

E-Print Network [OSTI]

SECTORAL EFFECTS OF TAX REFORMS IN AN OPEN ECONOMY Olivier CARDI Romain RESTOUT December, 2010 REFORMS IN AN OPEN ECONOMY Olivier CARDI Universit´e Panth´eon-Assas ERMES Ecole Polytechnique Romain with traded and non traded goods to in- vestigate the sectoral effects of three tax reforms: i) two revenue

Boyer, Edmond

439

ISSN 1745-9648 Electricity Sector Reform in Greece  

E-Print Network [OSTI]

ISSN 1745-9648 Electricity Sector Reform in Greece by Ekaterini Iliadou Lawyer - Legal Department of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece

Feigon, Brooke

440

The Clean Development Mechanism and Power Sector Reforms in Developing  

E-Print Network [OSTI]

regions include stimulating private sector financing, increasing operational and managerial efficiencies and lowering electricity tariffs #12;The CDM and renewable energy · Power sector reforms could potentially require higher investments for electricity generation than conventional fuel projects · Can also offer

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

LEDSGP/Transportation Toolkit/Key Actions/Develop Alternative Scenarios |  

Open Energy Info (EERE)

Develop Alternative Scenarios Develop Alternative Scenarios < LEDSGP‎ | Transportation Toolkit‎ | Key Actions(Redirected from Transportation Toolkit/Key Actions/Develop Alternative Scenarios) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

442

LEDSGP/Transportation Toolkit/Key Actions/Assess Opportunities | Open  

Open Energy Info (EERE)

Assess Opportunities Assess Opportunities < LEDSGP‎ | Transportation Toolkit‎ | Key Actions(Redirected from Transportation Toolkit/Key Actions/Assess Opportunities) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport

443

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas • Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

444

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs • Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

445

Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Nepal-Sectoral Climate Impacts Economic Assessment Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

446

EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector  

Broader source: Energy.gov (indexed) [DOE]

13: Approaches for Acquiring Energy Savings in Commercial 13: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration SUMMARY This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector buildings region wide. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 1991 EA-0513: Final Environmental Assessment Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration September 25, 1991 EA-0513: Finding of No Significant Impact Approaches for Acquiring Energy Savings in Commercial Sector Buildings,

447

Energy Efficiency and the Finance Sector | Open Energy Information  

Open Energy Info (EERE)

the Finance Sector the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector Agency/Company /Organization United Nations Environment Programme Sector Energy Focus Area Energy Efficiency Topics Finance, Market analysis, Policies/deployment programs Website http://www.unepfi.org/fileadmi References Energy Efficiency and the Finance Sector[1] Summary "This survey was carried out in 2008, when high and volatile oil prices, steadily rising demand for energy, and global imperatives, such as climate change, created significant renewed attention to energy efficiency - both in the policy and commercial world. UNEP Finance Initiative sought to provide an evidence base on current lending activities in the energy efficiency space, as well as views on this issue through a survey among

448

Property:Incentive/ImplSector | Open Energy Information  

Open Energy Info (EERE)

ImplSector ImplSector Jump to: navigation, search Property Name Incentive/ImplSector Property Type String Description Implementing Sector. Pages using the property "Incentive/ImplSector" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal + 3 30% Business Tax Credit for Solar (Vermont) + State/Territory + 4 401 Certification (Vermont) + State/Province + A AEP (Central and North) - CitySmart Program (Texas) + Utility + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Utility + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Utility +

449

Climate Change Adaptation and Mitigation in the Tourism Sector | Open  

Open Energy Info (EERE)

Climate Change Adaptation and Mitigation in the Tourism Sector Climate Change Adaptation and Mitigation in the Tourism Sector Jump to: navigation, search Tool Summary Name: Climate Change Adaptation and Mitigation in the Tourism Sector Agency/Company /Organization: United Nations Environment Programme Topics: Adaptation, Co-benefits assessment Resource Type: Publications Website: www.unep.fr/shared/publications/pdf/DTIx1047xPA-ClimateChange.pdf Climate Change Adaptation and Mitigation in the Tourism Sector Screenshot References: Climate Change Adaptation and Mitigation in the Tourism Sector[1] Summary "This document forms part of the " UNEP Manuals on Sustainable Tourism" and the UNWTO sustainable tourism policy guidebooks publication series, aiming to provide guidance to tourism stakeholders to integrate

450

Public Sector Energy Efficiency Aggregation Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program Public Sector Energy Efficiency Aggregation Program < Back Eligibility Fed. Government Institutional Local Government Nonprofit Schools State Government Savings Category Other Maximum Rebate $4,000,000 Program Info Expiration Date 3/22/2013 State Illinois Program Type State Grant Program Rebate Amount $500,000-$4,000,000 Provider Illinois Department of Commerce and Economic Opportunity The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will allow public sector participants to combine energy efficiency projects in order to simplify the application process and implement projects that might otherwise be

451

Two Paths to Transforming Markets through Public Sector Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paths to Transforming Markets through Public Sector Energy Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down Laura Van Wie McGrory, Philip Coleman, David Fridley, and Jeffrey Harris, Lawrence Berkeley National Laboratory (LBNL) Edgar Villaseñor Franco, Promoting an Energy-efficient Public Sector (PEPS) ABSTRACT The evolution of government purchasing initiatives in Mexico and China, part of the PEPS (Promoting an Energy-efficient Public Sector) program, demonstrates the need for flexibility in designing energy-efficiency strategies in the public sector. Several years of pursuing a top-down (federally led) strategy in Mexico produced few results, and it was not until the program was restructured in 2004 to focus on municipal-level purchasing that the program

452

EIA Data: 2011 United States Residential Sector Key Indicators and  

Open Energy Info (EERE)

Residential Sector Key Indicators and Residential Sector Key Indicators and Consumption Dataset Summary Description This dataset is the 2011 United States Residential Sector Key Indicators and Consumption, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (4 years ago) Date Updated Unknown Keywords consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon Residential Sector Key Indicators and Consumption (xls, 62.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm

453

Climate Change: Risks and Opportunities for the Finance Sector Online  

Open Energy Info (EERE)

Climate Change: Risks and Opportunities for the Finance Sector Online Climate Change: Risks and Opportunities for the Finance Sector Online Course Jump to: navigation, search Tool Summary Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency/Company /Organization: United Nations Environment Programme (UNEP) Sector: Climate Topics: Finance Resource Type: Training materials, Video, Webinar Website: www.unepfi.org/training/index.html Cost: Free Language: English References: Climate Change: Risks and Opportunities for the Finance Sector Online Course[1] "To equip representatives of financial institutions - including banks, insurers, and fund managers - as well as other stakeholders with the necessary knowledge and skills to address climate change risks and capitalise on its opportunities. The course has been running since 2007,

454

Nepal Sectoral Climate impacts Economic Assessment | Open Energy  

Open Energy Info (EERE)

Sectoral Climate impacts Economic Assessment Sectoral Climate impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment Agency/Company /Organization Climate and Development Knowledge Network (CDKN), United Kingdom Department for International Development Partner Ministry of Environment for Government of Nepal Sector Climate Focus Area Agriculture, Forestry, Greenhouse Gas, Industry, Land Use, People and Policy, Water Conservation Topics Low emission development planning Website http://cdkn.org/2011/11/call-f Country Nepal Southern Asia References Nepal Sectoral Climate impacts Economic Assessment[1] CDKN is providing support to the GoN through a number of projects to design and deliver climate compatible development (CCD) plans and policies. To

455

Energy-Sector Stakeholders Attend the Department of Energy's 2010  

Broader source: Energy.gov (indexed) [DOE]

Energy-Sector Stakeholders Attend the Department of Energy's 2010 Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, 2010 during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. Energy Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review More Documents & Publications

456

Climate Change and China's Agricultural Sector: An Overview of Impacts,  

Open Energy Info (EERE)

China's Agricultural Sector: An Overview of Impacts, China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Agency/Company /Organization International Centre for Trade and Sustainable Development Sector Land Focus Area Agriculture Topics Adaptation, Background analysis, Co-benefits assessment Resource Type Publications Website http://ictsd.org/downloads/201 Country China UN Region Eastern Asia References China's Ag Impacts [1] Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Screenshot "The overall goal of this paper is to review and document the likely impacts of climate change on China's agricultural production, efforts

457

U.S. Energy Sector Vulnerability Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report As part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process -- and to advance the Energy Department's goal of promoting energy security -- the Department released the U.S. Energy Sector Vulnerability to Climate Change and Extreme Weather report. The report examines current and potential future impacts of climate change trends on the U.S. energy sector, including: Coastal energy infrastructure is at risk from sea level rise, increasing storm intensity and higher storm surge and flooding. Oil and gas production -- including refining, hydraulic fracturing

458

Moving Forward with the Electric Sector Cybersecurity Risk Management  

Broader source: Energy.gov (indexed) [DOE]

Moving Forward with the Electric Sector Cybersecurity Risk Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative January 20, 2012 - 10:28am Addthis Since the January 5, 2012 launch of the "Electric Sector Cybersecurity Risk Management Maturity" program, a White House initiative led by the Department of Energy in partnership with the Department of Homeland Security (DHS) to create a more comprehensive and consistent approach to protecting the nation's electric grid against cyber attacks, we have seen a tremendous response from the electric sector. More and more companies are stepping forward, saying they want to participate. We are capitalizing on the growing momentum in several ways. One of our

459

Utility Sector Leaders Make Firm Commitment to Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency Utility Sector Leaders Make Firm Commitment to Energy Efficiency: Press Release, July 31, 2006 announcing an energy efficiency action plan. More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. Utility Sector Leaders Make Firm Commitment to Energy Efficiency More Documents & Publications Chapter 3: Demand-Side Resources US - Brazil Binational Energy Working Group Joint Action Plan

460

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Global warming and transport in Brazil - ethanol alternative  

Science Journals Connector (OSTI)

This paper deals with the risk of global warming as intensified by the carbon dioxide (CO2) emissions of the transport sector, particularly in gasoline-powered vehicles in Brazil. Car ownership and use are increasing rapidly partly because of very poor public transport quality, which, in turn, is causing higher emission levels of CO2. In this connection, the use of ethanol in Brazil for the transport sector may prove to be an important alternative, furthering the efforts to stabilise the actual level of gases in the atmosphere. The energy derived from biomass, and in this case, from a renewable, ''clean'' source, i.e., from sugar-cane, has the unquestionable advantage of permitting the almost complete reabsorption of CO2 emitted through the combustion of fuel alcohol. This closed cycle allows, in principle, the increase of the energy supply, essential for economic development, with fewer hazards to the environment.

Suzana Kahn Ribeiro; Pauline Staib Younes-Ibrahim

2001-01-01T23:59:59.000Z

462

18 - Biomethane for transport applications  

Science Journals Connector (OSTI)

Abstract: This chapter describes the fundamentals, potential and synergy of jointly using biomethane and natural gas in the transport sector. In the absence of an extensive national gas grid, biomethane distribution logistics of liquefied biogas (LBG) or compressed biogas (CBG) by road is capital intensive; however, biomethane represents an opportunity to make the natural gas vehicle (NGV) market green, forming a virtual gas grid. The promotional value of biomethane may offset some of the extra costs, particularly so when contemplating a future paradigm shift towards a fully sustainable society. The status and growth prospects of the Swedish and the world NGV market are described and discussed. Gas quality issues and relevant vehicle technology developments are also covered.

Mattias Svensson

2013-01-01T23:59:59.000Z

463

Transportation Research Record: J. of the TRB, No. 2242, p. 55-63. Doi 10.3141/2242-07 FRAMEWORK FOR ASSESSING INDICATORS  

E-Print Network [OSTI]

Transportation Research Record: J. of the TRB, No. 2242, p. 55-63. Doi 10.3141/2242-07 FRAMEWORK FOR ASSESSING INDICATORS OF ENVIRONMENTAL IMPACTS IN THE TRANSPORT SECTOR Robert Joumard 1 , Henrik Gudmundsson 2 and Lennart Folkeson 3 1 IFSTTAR (French Institute of Science and Technology for Transport

Boyer, Edmond

464

The Carnol process for CO{sub 2} mitigation from power plants and the transportation sector  

SciTech Connect (OSTI)

A CO{sub 2} mitigation process is developed which converts waste CO{sub 2}, primarily recovered from coal-fired power plant stack gases with natural gas, to produce methanol as a liquid fuel and coproduct carbon as a materials commodity. The Carnol process chemistry consists of methane decomposition to produce hydrogen which is catalytically reacted with the recovered waste CO{sub 2} to produce methanol. The carbon is either stored or sold as a materials commodity. A process design is modelled and mass and energy balances are presented as a function of reactor pressure and temperature conditions. The Carnol process is a viable alternative to sequestering CO{sub 2} in the ocean for purposes of reducing CO{sub 2} emissions from coal burning power plants. Over 90% of the CO{sub 2} from the coal burning plant is used in the process which results in a net CO{sub 2} emission reduction of over 90% compared to that obtained for conventional methanol production by steam reforming of methane. Methanol as an alternative liquid fuel for automotive engines and for fuel cells achieves additional CO{sub 2} emission reduction benefits. The economics of the process is greatly enhanced when carbon can be sold as a materials commodity. Improvement in process design and economics should be achieved by developing a molten metal (tin) methane decomposition reactor and a liquid phase, slurry catalyst, methanol synthesis reactor directly using the solvent saturated with CO{sub 2} scrubbed from the power plant stack gases. The benefits of the process warrant its further development.

Steinberg, M.

1995-08-01T23:59:59.000Z

465

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

1, 2007. Regional Greenhouse Gas Initiative (RGGI), 2007.About RGGI. http://www.rggi.org/about.htm Accessed April 14,RI, VT, MD, Initiative d (RGGI) also DC and PA observing (

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

466

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Class 3-7 Heavy Vehicles. Argonne National Laboratory, U.S.the United States and Canada. ANL/ESD/02-5, Argonne NationalLaboratory, Argonne, Illinois. Plotkin, S. , D. Santini, A.

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

467

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

cost accounting Solar photovoltaic Cost effectiveness ($photovoltaic Average new plant (fossil, The GHG intensity and cost

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

468

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

and mitigation cost comparisons between fossil fuel, nuclear and renewable energyrenewable energy credit-tracking and trading system Collaborate on GHG mitigationenergy efficiency and renewable fuels) that the mitigation

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

469

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

hybrid (gas or diesel) electric vehicle technology (Langer,e.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

470

GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open...  

Open Energy Info (EERE)

with reduction commitments cut the cost of meeting their emission targets. The Clean Development Mechanism (CDM) is related to projects realized in developing countries with...

471

Radiative forcing due to changes in ozone and methane caused by the transport sector  

E-Print Network [OSTI]

and indirect aerosol effect from SHIP (Balkanski et al. ,effect of O 3 and CH 4 amounting to 42 mW m Ŕ2 for ROAD, Ŕ11 mW m Ŕ2 for SHIP and

2011-01-01T23:59:59.000Z

472

Radiative forcing due to changes in ozone and methane caused by the transport sector  

E-Print Network [OSTI]

., 2008). This switch for SHIP is partly due to the strong direct and indirect aerosol effect from SHIP in revised form 27 September 2010 Accepted 4 October 2010 Keywords: Radiative forcing GWP GTP Shipping SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using

Haak, Hein

473

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

buildings to have a “net- zero-energy” impact. The issue hasto include such a net-zero-energy requirement by 2030 (CEC,like LEED certification or zero-net-energy are not directly

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

474

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

vehicle rolling resistance, aerodynamics, engine efficiency, and transmission efficiency are ordered according to their initial cost-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

475

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).by states that large hydroelectric is not counted toward the

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

476

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3  

SciTech Connect (OSTI)

This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

NONE

1998-01-01T23:59:59.000Z

477

Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector  

E-Print Network [OSTI]

. Energy densities of different energy storage systems. The num- bers are based on higher heats produce their energy mainly in the form of electricity. This means that if we want to decouple trans- port from the use of fossil fuels, we must find ways to use electric energy in vehicles. Electric trains

478

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

110 Table 26. Landfill gas GHG reductionlandfills to utilize the landfill gas generally includes acollection system. Landfill gas from throughout landfills

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

479

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

heaters Walk-in refrigerators and freezers Single-voltagewashers, commercial refrigerators and freezers, commercialDay Domestic Refrigerator – Freezer. ” ASHRAE Transactions ,

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

480

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Update of States’ Combined Heat and Power Activities. ”M. Spurr, 1999. Combined Heat and Power: Capturing WastedElliot, 2001. “Combined Heat and Power: Saving Energy and

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems transportation sector" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

are ethanol and biodiesel; the federal energy legislation,the total amount of ethanol, by fuel energy content, in thisof Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

482

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

of natural gas-powered combined cycle power plants. The mostintegrated gasification combined cycle (IGCC) coal plants,integrated gasification combined cycle (IGCC) technology for

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

483

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

AMT), Gasoline direct injection (GDI), Tires (low rollingTechnology Direct injection (GDI) Low RR tires Integrated

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

484

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

electricity production cost of new coal and natural gasgas reduction cost-effectiveness of light duty vehicle refrigerant systems 56 Figure 17. Ethanol productionCost effectiveness curve for fuel feedstock GHG reduction technologies Greenhouse gas emissions (million tonne CO2e/yr) Reference Natural gas production

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

485

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

2006; Wang, 2005). Cellulose-based ethanol is associatedemissions per gge for cellulose-based ethanol that displacescellolosic ethanol scenario Reference (AEO2007), cellulose-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

486

Title: Innovation of the Surface Transportation Sector Organizers: Rick Geddes and Al George  

E-Print Network [OSTI]

and college faculty and students; city and regional planners; local business persons; realtors; local energy" a Sustainable Community ISSUE: A recent report by the UNEP1 seeks to provide independent, coherent?).Two primary conclusions emerge; that processes using energy and fossil fuels and agriculture and food

Angenent, Lars T.

487

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Drennen, 2005. The Cost of Geothermal Energy in the Westerngeothermal energy through underground piping; these systems tend to be more cost-

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

488

Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

489

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).large conventional hydroelectric power is not included (this

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

490

Transportation Security | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

491

Transportation Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Security Transportation Security Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste...

492

Strategic Freight Transportation Contract Procurement  

E-Print Network [OSTI]

Based Procurement for Transportation Services, Journal ofCoia, A. , Evolving transportation exchanges, World trade,an Auction Based Transportation Marketplace, Transportation

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

493

"Educating transportation professionals."  

E-Print Network [OSTI]

"Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

Acton, Scott

494

Public Sector Electric Efficiency Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs Public Sector Electric Efficiency Programs < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $300,000 per location Total incentive may not exceed 75% of project cost (equipment + labor) or 100% of incremental measure cost Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for ComEd, Ameren subsidiary customers Start Date 06/01/2008 State Illinois Program Type State Rebate Program Rebate Amount Standard Incentive Program: Varies by technology

495

Public Sector New Construction and Retrofit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

496

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

497

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

498

Working to Achieve Cybersecurity in the Energy Sector  

Broader source: Energy.gov (indexed) [DOE]

Rita Wells Rita Wells Idaho National Laboratory Working to Achieve Cybersecurity in the Energy Sector "Cybersecurity for Energy Delivery Systems (CEDS)" Roadmap Vision In 10 years, control systems for critical applications will be designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function. * Published in January 2006 * Energy Sector's synthesis of critical control system security challenges, R&D needs, and implementation milestones * Provides strategic framework to - align activities to sector needs - coordinate public and private programs - stimulate investments in control systems security Roadmap - Framework for Public-Private Collaboration Roadmap - Key Strategies & 2015 Goals

499

Energy Efficiency Financing for Public Sector Projects (California) |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $3 million Program Info State California Program Type State Loan Program Provider California Energy Commission Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission for energy

500

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

National Nuclear Security Administration (NNSA)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific