Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

2

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

3

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

4

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

5

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

6

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

7

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

8

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

9

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

10

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

11

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

12

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

13

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

14

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

15

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network (OSTI)

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

16

Residential Demand Response under Uncertainty  

Science Journals Connector (OSTI)

This paper considers a residential market with real-time electricity pricing and flexible electricity consumption profiles for customers. Such a market raises an optimisation problem for home automation systems w...

Paul Scott; Sylvie Thibaux

2013-01-01T23:59:59.000Z

17

EIA Buildings Analysis of Consumer Behavior in NEMS  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Analysis of Consumer Buildings Analysis of Consumer Behavior in NEMS Behavioral Economics Experts Meeting July 17, 2013 | Washington, DC David Peterson Buildings Energy Consumption and Efficiency Analysis Overview Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 2 * NEMS Structure * Housing/floorspace and service demand in Residential Demand Module (RDM) and Commercial Demand Module (CDM) * Market share calculation for equipment in RDM and CDM * Price responses / elasticities * Distributed generation (DG) & combined heat and power (CHP) NEMS Structure Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 3 * Represents energy supply, conversion, and demand in a unified, but modular system * Detailed structural and process models in most energy sectors

18

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

19

National Energy Modeling System (NEMS)  

DOE Data Explorer (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

20

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

ABORATORY Japans Residential Energy Demand Outlook to 2030o r n i a Japans Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The residential demand for electricity in New England,  

E-Print Network (OSTI)

The residential demand for electricity, studied on the national level for many years, is here investigated on the regional level. A survey of the literature is first presented outlining past econometric work in the field ...

Levy, Paul F.

1973-01-01T23:59:59.000Z

22

Demand response-enabled residential thermostat controls.  

E-Print Network (OSTI)

human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

23

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

24

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

25

Topics in Residential Electric Demand Response.  

E-Print Network (OSTI)

??Demand response and dynamic pricing are touted as ways to empower consumers, save consumers money, and capitalize on the smart grid and expensive advanced meter (more)

Horowitz, Shira R.

2012-01-01T23:59:59.000Z

26

Progress towards Managing Residential Electricity Demand: Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress towards Managing Residential Electricity Demand: Impacts of Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India Title Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India Publication Type Conference Paper Refereed Designation Unknown LBNL Report Number LBNL-2322E Year of Publication 2009 Authors McNeil, Michael A., and Maithili Iyer Date Published 06/2009 Keywords Air Conditioners, Appliance Efficiency, appliance energy efficiency, energy efficiency, greenhouse gas emissions, india, Labels, MEPS, refrigerators, Standards and labeling URL https://isswprod.lbl.gov/library/view-docs/public/output/rpt77250.PDF Refereed Designation Unknown Attachment Size

27

Demand response-enabled autonomous control for interior space conditioning in residential buildings.  

E-Print Network (OSTI)

Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

Chen, Xue

2008-01-01T23:59:59.000Z

28

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

29

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

30

Analysis of Residential Demand Response and Double-Auction Markets  

SciTech Connect

Demand response and dynamic pricing programs are expected to play increasing roles in the modern Smart Grid environment. While direct load control of end-use loads has existed for decades, price driven response programs are only beginning to be explored at the distribution level. These programs utilize a price signal as a means to control demand. Active markets allow customers to respond to fluctuations in wholesale electrical costs, but may not allow the utility to control demand. Transactive markets, utilizing distributed controllers and a centralized auction can be used to create an interactive system which can limit demand at key times on a distribution system, decreasing congestion. With the current proliferation of computing and communication resources, the ability now exists to create transactive demand response programs at the residential level. With the combination of automated bidding and response strategies coupled with education programs and customer response, emerging demand response programs have the ability to reduce utility demand and congestion in a more controlled manner. This paper will explore the effects of a residential double-auction market, utilizing transactive controllers, on the operation of an electric power distribution system.

Fuller, Jason C.; Schneider, Kevin P.; Chassin, David P.

2011-10-10T23:59:59.000Z

31

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network (OSTI)

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

32

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thiebaux and  

E-Print Network (OSTI)

Residential Demand Response under Uncertainty Paul Scott and Sylvie Thi´ebaux and Menkes van den stochastic optimisation in residential demand response. 1 Introduction Electricity consumption in residential participate in smart grid activities such as demand response where loads are shifted to times favourable

Thiébaux, Sylvie

33

Simulating the impact of pricing policies on residential water demand: a Southern France case study  

E-Print Network (OSTI)

, with an estimated price elasticity of -0.2, is not yet very responsive to price variation. A regional water model water pricing. Keywords: demand elasticity, France, water pricing, residential water demand, simulationSimulating the impact of pricing policies on residential water demand: a Southern France case study

Paris-Sud XI, Université de

34

The Effects of Residential Energy Efficiency on Electric Demand Response Programs  

Science Journals Connector (OSTI)

Design and efficiency of houses can affect the amount of peak load reduction available from a residential demand response program. Twenty-four houses were simulated with varying thermal integrity and air conditioner size during the summer cooling season ... Keywords: demand response, efficiency, residential, hvac, conservation

Ward Jewell

2014-01-01T23:59:59.000Z

35

The behavioral response to voluntary provision of an environmental public good: Evidence from residential electricity demand  

E-Print Network (OSTI)

residential electricity demand Grant D. Jacobsen a,n , Matthew J. Kotchen b,c , Michael P. Vandenbergh d online 25 February 2012 JEL classification: H41 Q42 G54 Keywords: Green electricity Voluntary environmental protection Carbon offset Renewable energy Moral licensing Residential electricity demand a b s t r

Kotchen, Matthew J.

36

NEMS integrating module documentation report  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to a variety of assumptions. The assumptions encompass macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, technology characteristics, and demographics. NEMS produces a general equilibrium solution for energy supply and demand in the U.S. energy markets on an annual basis through 2015. Baseline forecasts from NEMS are published in the Annual Energy Outlook. Analyses are also prepared in response to requests by the U.S. Congress, the DOE Office of Policy, and others. NEMS was first used for forecasts presented in the Annual Energy Outlook 1994.

NONE

1997-05-01T23:59:59.000Z

37

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network (OSTI)

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

38

Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona  

E-Print Network (OSTI)

Article Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona to such changes requires understanding the responsiveness of water demand to price changes. We estimate the price://aepp.oxfordjournals.org/Downloadedfrom #12;measures. In this paper we apply a method for estimating the price elasticity of water demand

39

An Occupant-Based Dynamic Simulation Tool for Predicting Residential Power Demand and Quantifying the Impact of Residential Demand Response.  

E-Print Network (OSTI)

?? With their large impact on the power system and widespread distribution, residential loads provide vast resources that if utilized correctly have the potential to (more)

Johnson, Brandon Jeffrey

2013-01-01T23:59:59.000Z

40

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network (OSTI)

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Demand response: a strategy to address residential air-conditioning peak load in Australia  

Science Journals Connector (OSTI)

Rapid growth in electricity network peak demand is increasing pressure for new investment which may be used for only a few hours a year. Residential air-conditioning is widely believed to be the prime cause of...

Robert Smith; Ke Meng; Zhaoyang Dong

2013-12-01T23:59:59.000Z

42

The benefits of combining utility-controlled demand response with residential zoned cooling  

Science Journals Connector (OSTI)

This paper evaluates the effectiveness of combining direct load control with a residential zoned-cooling technology in meeting the objectives of reducing peak demand and maintaining home comfort level. In cont...

Wen Zhou; Dean C. Mountain

2014-12-01T23:59:59.000Z

43

A Survey on Privacy in Residential Demand Side Management Applications  

Science Journals Connector (OSTI)

Demand Side Management (DSM) is an auspicious concept for ... on privacy energy issues and potential solutions in Demand Response systems. For this we give an ... the BSI and indicate three technical types of Demand

Markus Karwe; Jens Strker

2014-01-01T23:59:59.000Z

44

Aggregator-Assisted Residential Participation in Demand Response Program.  

E-Print Network (OSTI)

??The demand for electricity of a particular location can vary significantly based on season, ambient temperature, time of the day etc. High demand can result (more)

Hasan, Mehedi

2012-01-01T23:59:59.000Z

45

Impact on Implementing Demand Side Management in Residential Sector  

Science Journals Connector (OSTI)

Residential electricity consumption in Malaysia increased at a rate of 14% per year between 1993 to 1997. In 1998, over 60% of population lived in urban areas. The growth of urban population at a rate of 4% per a...

H. A. Rahman; M. S. Majid; M. Y. Hassan

2001-01-01T23:59:59.000Z

46

Analysis and Representation of Miscellaneous Electric Loads in NEMS -  

Gasoline and Diesel Fuel Update (EIA)

Analysis and Representation of Miscellaneous Electric Loads in NEMS Analysis and Representation of Miscellaneous Electric Loads in NEMS Release date: January 6, 2014 Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy consumption in residential and commercial buildings. Recently, the growth of MELs has offset some of the efficiency gains made through technology improvements and standards in major end uses such as space conditioning, lighting, and water heating. Miscellaneous end uses, including televisions, personal computers, security systems, data center servers, and many other devices, have continued to penetrate into building-related market segments. Part of this proliferation of devices and equipment can be attributed to increased service demand for entertainment, computing, and convenience appliances.

47

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

48

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

49

February/March2007 COLORADO WATER Residential Water Demand Management in Aurora  

E-Print Network (OSTI)

February/March2007 COLORADO WATER 14 Residential Water Demand Management in Aurora: Learning from the Drought Crisis by Doug Kenney, Chris Goemans, Bobbie Klein, and Jess Lowrey, CU-NOAA Western Water Assessment Kevin Reidy, Water Conservation Supervisor, Aurora Water Recent drought years in Colorado have

Colorado at Boulder, University of

50

Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

51

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

52

Residential  

Science Journals Connector (OSTI)

The residential sector can be divided into apartment blocks and low-rise housing. Apartment blocks have many similarities to the non-domestic sector, such as office buildings, which are covered by the range of...

2009-01-01T23:59:59.000Z

53

Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector  

SciTech Connect

The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

Herter, Karen; Rasin, Josh; Perry, Tim

2009-11-30T23:59:59.000Z

54

RESIDENTIAL WATER DEMAND MANAGEMENT: LESSONS FROM AURORA, COLORADO1 Douglas S. Kenney, Christopher Goemans, Roberta Klein, Jessica Lowrey, and Kevin Reidy2  

E-Print Network (OSTI)

(members of the NOAA-sponsored Western Water Assessment), University of Colorado, UCB 401, BoulderRESIDENTIAL WATER DEMAND MANAGEMENT: LESSONS FROM AURORA, COLORADO1 Douglas S. Kenney, Christopher). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent

Colorado at Boulder, University of

55

Development and validation of regression models to predict monthly heating demand for residential buildings  

Science Journals Connector (OSTI)

The present research work concerns development of regression models to predict the monthly heating demand for single-family residential sector in temperate climates, with the aim to be used by architects or design engineers as support tools in the very first stage of their projects in finding efficiently energetic solutions. Another interest to use such simplified models is to make it possible a very quick parametric study in order to optimize the building structure versus environmental or economic criteria. All the energy prediction models were based on an extended database obtained by dynamic simulations for 16 major cities of France. The inputs for the regression models are the building shape factor, the building envelope U-value, the window to floor area ratio, the building time constant and the climate which is defined as function of the sol-air temperature and heating set-point. If the neural network (NN) methods could give precise representations in predicting energy use, with the advantage that they are capable of adjusting themselves to unexpected pattern changes in the incoming data, the multiple regression analysis was also found to be an efficient method, nevertheless with the requirement that an extended database should be used for the regression. The validation is probably the most important level when trying to find prediction models, so 270 different scenarios are analysed in this research work for different inputs of the models. It has been established that the energy equations obtained can do predictions quite well, a maximum deviation between the predicted and the simulated is noticed to be 5.1% for Nice climate, with an average error of 2%. In this paper, we also show that is possible to predict the building heating demand even for more complex scenarios, when the construction is adjacent to non-heated spaces, basements or roof attics.

Tiberiu Catalina; Joseph Virgone; Eric Blanco

2008-01-01T23:59:59.000Z

56

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

57

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

58

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Energy Source Demand per Household Coal, Oil, Gas, Heat, Electricity Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japan

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

59

A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings  

Science Journals Connector (OSTI)

Abstract Swedish residential buildings are typically retrofitted on a case-by-case basis. Large numbers of building consultants are involved in the decision-making, and stakeholders find it difficult to quantify the sustainable profits from retrofits and to make an efficient selection of the optimal alternative. The present paper presents an approach to design and assess energy-demand retrofitting scenarios. This aims to contribute to retrofitting decision-making regarding the main archetypes of existing Swedish residential buildings and to the evaluation of their long-term cost effectiveness. The approach combines energy-demand modeling and retrofit option rankings with life-cycle cost analysis (LCCA). Four types of typical Swedish residential buildings are used to demonstrate the model. Retrofits in the archetypes are defined, analyzed and ranked to indicate the long-term energy savings and economic profits. The model indicates that the energy saving potential of retrofitting is 3654% in the archetypes. However, retrofits with the largest energy-saving potential are not always the most cost effective. The long-term profits of retrofitting are largely dominated by the building types. The finding can contribute to the standardization of future retrofitting designs on municipality scale in Sweden.

Qian Wang; Sture Holmberg

2015-01-01T23:59:59.000Z

60

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages  

Science Journals Connector (OSTI)

The architectural design variables which most influence the energy performance of a building are the envelope materials, shape and window areas. As these start to be defined in the early design stages, designers require simple tools to obtain information about the energy performance of the building for the design variations being considered at this phase. The shape factor is one of those tools, but it fails to correlate with energy demand in the presence of important solar gains. This paper presents a new design indicator of energy performance for residential buildings, the Envelope-Related Energy Demand (ERED), which aims to overcome the shortcomings of the shape factor while maintaining a reasonable simplicity of use. The inputs to ERED are areas of envelope elements (floor, walls, roofs and windows), U-values of envelope materials, solar heat gain coefficients (SHGC) of windows and site related parameters, concerning temperature and solar irradiation. ERED was validated against detailed simulation results of 8000 hypothetical residential buildings, varying in envelope shape, window areas and materials. Results show that there is a strong correlation between ERED and simulated energy demand. These results confirm the adequacy of ERED to assist design decisions in early stages of the design process.

Vasco Granadeiro; Joo R. Correia; Vtor M.S. Leal; Jos P. Duarte

2013-01-01T23:59:59.000Z

62

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network (OSTI)

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

63

Categorization of residential electricity consumption as a basis for the assessment of the impacts of demand response actions  

Science Journals Connector (OSTI)

Abstract In a smart(er) grid context, the existence of dynamic tariffs and bidirectional communications will simultaneously allow and require an active role from the end-user concerning electricity management. However, the residential end-user will not be always available to manage energy resources and decide, based on price signals and preferences/needs, the best response actions to implement or the best usage of the electricity produced locally. Therefore, energy management systems are required to monitor consumption/generation/storage and to make the best decisions according to input signals and the user's needs and preferences. The design of adequate algorithms to be implemented in those systems require the prior characterization of domestic electricity demand and categorization of loads, according to availability, typical usage patterns, working cycles and technical constraints. Automated demand response actions must be tailored and chosen according to this previous analysis of load characteristics. In this paper, a characterization of household electricity consumption is presented and an operational categorization of end-use loads is proposed. The existing potential for demand response to a diversified set of management actions is described and a tool to assess the impact of implementing several actions with different rates of penetration of energy management systems is presented. The results obtained show the potential savings for the end-user and expected changes in the load diagram with a decrease of the aggregated peak electricity demand and a smoothed valley.

Ana Soares; lvaro Gomes; Carlos Henggeler Antunes

2014-01-01T23:59:59.000Z

64

Quantifying flexibility of residential thermostatically controlled loads for demand response: a data-driven approach  

Science Journals Connector (OSTI)

Power systems are undergoing a paradigm shift due to the influx of variable renewable generation to the supply side. The resulting increased uncertainty has system operators looking to new resources, enabled by smart grid technologies, on the demand ... Keywords: demand response, inverse building model, load shedding, thermostatically controlled loads

Emre Can Kara; Michaelangelo D. Tabone; Jason S. MacDonald; Duncan S. Callaway; Sila Kiliccote

2014-11-01T23:59:59.000Z

65

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report  

SciTech Connect

This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

Eto, J.H.; Moezzi, M.M.

1993-12-01T23:59:59.000Z

66

Further exploring the potential of residential demand response programs in electricity distribution  

Science Journals Connector (OSTI)

Abstract Smart grids play a key role in realizing climate ambitions. Boosting consumption flexibility is an essential measure in bringing the potential gains of smart grids to fruition. The collective scientific understanding of demand response programs argues that time-of-use tariffs have proven its merits. The findings upon which this conclusion rests are, however, primarily derived from studies covering energy-based time-of-use rates over fairly short periods of time. Hence, this empirical study set out with the intention of estimating the extent of response to a demand-based time-of-use electricity distribution tariff among Swedish single-family homes in the long term. The results show that six years after the implementation households still respond to the price signals of the tariff by cutting demand in peak hours and shifting electricity consumption from peak to off-peak hours. Studies conducted in the Nordic countries commonly include only homeowners and so another aim of the study was to explore the potential of demand response programs among households living in apartment buildings. The demand-based tariff proved to bring about similar, but not as marked, effects in rental apartments, whereas there are virtually no corresponding evidences of demand response in condominium apartments.

Cajsa Bartusch; Karin Alvehag

2014-01-01T23:59:59.000Z

67

Warm homes: Drivers of the demand for heating in the residential sector in New Zealand  

Science Journals Connector (OSTI)

New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or take-backthe extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

Philippa Howden-Chapman; Helen Viggers; Ralph Chapman; Des ODea; Sarah Free; Kimberley OSullivan

2009-01-01T23:59:59.000Z

68

Commercial & Industrial Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

69

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

70

NEMS Freight Transportation Module Improvement Study  

Gasoline and Diesel Fuel Update (EIA)

and forecast accuracy. Challenges might include new skill development within EIA, contracting for additional commercial services, and possibly altering the manner in which NEMS...

71

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

72

Residential Demand Module  

Annual Energy Outlook 2012 (EIA)

for EIA (SENTECH Incorporated, 2010). Wind: The Cost and Performance of Distributed Wind Turbines, 2010-35 (ICF International, 2010). 33 U.S. Energy Information Administration |...

73

Residential Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

that can store underutilized renewable or off peak electric energy for space and water heating. ETS systems store electric energy as heat in a well insulated brick core. Built-in...

74

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

75

Cross-sector Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

76

Assessing the potential of residential demand response systems to assist in the integration of local renewable energy generation  

Science Journals Connector (OSTI)

Mass market demand response programmes may be utilised to assist bulk ... and software architecture in households. In contrast, demand response systems based only on information exchange between ... uptake. The e...

A. D. Peacock; E. H. Owens

2014-06-01T23:59:59.000Z

77

Heterogeneous Responses to Water Conservation Programs: The Case of Residential Users in Los Angeles  

E-Print Network (OSTI)

Do residential water demand side management policies measurepurchased water, demand side management and reclaimed water

Hanemann, W. Michael; Nauges, Celine

2005-01-01T23:59:59.000Z

78

The National Energy Modeling System: An Overview 2000 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Since energy costs and availability and energy-consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to facilitate policy analysis and ensure the validity of the results. A summary of the detail provided in NEMS is shown below. Summary Table Major Assumptions Each module of NEMS embodies many assumptions and data to characterize the future production, conversion, or consumption of energy in the United States. Two major assumptions concern economic growth in the United States and world oil prices, as determined by world oil supply and demand.

79

2012 SG Peer Review - Dramatic Residential Demand Reduction in the Desert Southwest - Robert Boehm, Univ. of Nevada, Las Vegas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S t G id P 2012 Smart Grid Program Peer Review Meeting "D ti D d R d ti "Dramatic Demand Reduction in the Desert Southwest" Robert F Boehm Robert F. Boehm Center for Energy Research University of Nevada Las Vegas June 8, 2012 "Dramatic Demand Reduction in the Desert Southwest" in the Desert Southwest Objective Decrease the peak electrical demand by 65% over code-built houses in a new development of 185 homes. Life-cycle Funding ($K) FY08 - FY13 (now FY15) Technical Scope 1. Build energy conserving residences. 2. Include PV on the residences. FY08 - FY13 (now FY15) $6948k 3. Develop a demand control system that gives the customer options and that is enhanced by an artificial intelligence supplemental system. Instantaneous December 2008 power pricing information will be available

80

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

SciTech Connect

Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

Fuller, Merrian C.

2010-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NEMS Buildings Sector Working Group Meeting  

Gasoline and Diesel Fuel Update (EIA)

20 * Photovoltaic system cost path - Updated 2010 system costs based on Tracking the Sun IV (LBNL, 2011) * No change from AEO2012 for residential, 7% lower for commercial -...

82

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

McParland, Charles

2010-01-01T23:59:59.000Z

83

Integrated NEMS and optoelectronics for sensor applications.  

SciTech Connect

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

2008-01-01T23:59:59.000Z

84

NEMS Freight Transportation Module Improvement Study  

Reports and Publications (EIA)

The U.S. Energy Information Administration (EIA) contracted with IHS Global, Inc. (IHS) to analyze the relationship between the value of industrial output, physical output, and freight movement in the United States for use in updating analytic assumptions and modeling structure within the National Energy Modeling System (NEMS) freight transportation module, including forecasting methodologies and processes to identify possible alternative approaches that would improve multi-modal freight flow and fuel consumption estimation.

2015-01-01T23:59:59.000Z

85

How to obtain the National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

2013-01-01T23:59:59.000Z

86

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

87

Residential Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

88

Residential Weatherization  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

89

Overview of NEMS-H2, Version 1.0  

NLE Websites -- All DOE Office Websites (Extended Search)

NEMS-H2, Version 1.0 NEMS-H2, Version 1.0 Frances Wood OnLocation, Inc., Energy Systems Consulting (fwood@onlocationinc.com) January 26, 2006 OnLocation, Inc., Energy Systems Consulting 2 Today's Presentation * Overview of NEMS-H2 Structure * Current Status * New Hydrogen Market Module (HMM) * Transportation Module Modifications * Preliminary Test Runs * Looking Ahead to Next Phase OnLocation, Inc., Energy Systems Consulting 3 NEMS Overview * The National Energy Modeling System (NEMS) was developed and is maintained by EIA - Annual Energy Outlook projections - Congressional as well as agency requests * NEMS has also been used extensively outside of EIA - Various National Laboratories studies - National Commission on Energy Policy - Program offices within DOE for R&D benefits estimation * Modular structure allows each sector to be represented by

90

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

91

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

92

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

93

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

94

Residential Humidity Control Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

95

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average...

96

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

97

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

98

Black Hills Power- Residential Customer Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

99

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

100

Overview of NEMS-H2, Version 1.0  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Overview of NEMS-H2, Version 1.0 given by Frances Wood of OnLocation during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

102

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

103

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

104

Demand Response: Load Management Programs  

E-Print Network (OSTI)

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

105

Assessment and Suggestions to Improve the Commercial Building Module of EIA-NEMS  

E-Print Network (OSTI)

use from the base case divided by the total change in lighting electricity use from the base case. VI LIST OF FIGURES Figure 1. Impact of lighting energy reduction on heating and cooling energy use in the large office building Figure 2. Impact...-South-Central) for the Commercial Sector Demand Module of NEMS. Units are in MBtu/sq.ft./year. E = Electricity NG = Natural Gas O = Other LA This was usually done by metering consumption before and after the retrofit and then analyzing the data to account for weather and changes...

O'Neal, D. L.; Reddy, T. A.; Sucher, B.

1996-01-01T23:59:59.000Z

106

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

107

Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot  

E-Print Network (OSTI)

Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. Pricing for Demand Response from Residential andthe Level of Demand Response, Power Point Presentation, 24

Herter, Karen

2010-01-01T23:59:59.000Z

108

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

109

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network (OSTI)

other assumptions for wind power to determine which onesused in NEMS regarding wind power to determine their impact

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

110

All-nanophotonic NEMS biosensor on a chip  

E-Print Network (OSTI)

Integrated chemical and biological sensors give advantages in cost, size and weight reduction and open new prospects for parallel monitoring and analysis. Biosensors based on nanoelectromechanical systems (NEMS) are the most attractive candidates for the integrated platform. However, actuation and transduction techniques (e.g. electrostatic, magnetomotive, thermal or piezoelectric) limit their operation to laboratory conditions. All-optical approach gives the possibility to overcome this problem, nevertheless, the existing schemes are either fundamentally macroscopic or excessively complicated and expensive in mass production. Here we propose a novel scheme of extremely compact NEMS biosensor monolithically integrated on a chip with all-nanophotonic transduction and actuation. It consists of the photonic waveguide and the nanobeam cantilever placed above the waveguide, both fabricated in the same CMOS-compatible process. Being in the near field of the strongly confined photonic mode, cantilever is efficiently...

Fedyanin, Dmitry Yu

2014-01-01T23:59:59.000Z

111

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

112

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

113

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

114

Estimating response to price signals in residential electricity consumption.  

E-Print Network (OSTI)

?? Based on a previous empirical study of the effect of a residential demand response program in Sala, Sweden, this project investigated the economic consequences (more)

Huang, Yizhang

2013-01-01T23:59:59.000Z

115

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

116

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

117

Residential Marketing Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

118

Demand response-enabled residential thermostat controls.  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings. Peffer, T. ,on 2008 ACEEE Summer Study on Energy Efficiency in BuildingsSummer Study on Energy Efficiency in Buildings References

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

119

Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector  

E-Print Network (OSTI)

We calculated the change in energy demand for each home in aincrease residential site energy demand by 0.07 quads (0.07increase annual site energy demand by less than 1% ? WAPs

Logue, J.M.

2014-01-01T23:59:59.000Z

120

Residential Thermostats: Comfort Controls in California Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Thermostats: Comfort Controls in California Homes Residential Thermostats: Comfort Controls in California Homes Title Residential Thermostats: Comfort Controls in California Homes Publication Type Report LBNL Report Number LBNL-938e Year of Publication 2008 Authors Walker, Iain S., and Alan K. Meier Keywords demand response and distributed energy resources center, demand response research center, home networks & controls Abstract This report summarizes results of a literature review, a workshop, and many meetings with demand response and thermostat researchers and implementers. The information obtained from these resources was used to identify key issues of thermostat performance from both energy savings and peak demand perspectives. A research plan was developed to address these issues and activities have already begun to pursue the research agenda.

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

122

New England Gas Company - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Gas Company - Residential and Commercial Energy New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Residential Furnace: $300 - $450 Boilers: $1000 - $1500 Combined High Efficiency Boiler/Water Heater: $1,200 Heat Recovery Ventilator: $500 High Efficiency Indirect Water Heater: $400 Condensing Gas Water Heater: $500 High Efficiency On-Demand, Tankless Water Heater: $500 - $800

123

Nano-Electro-Mechanical (NEM) Relay Devices and Technology for Ultra-Low Energy Digital Integrated Circuits  

E-Print Network (OSTI)

Technology 3.1 Introduction Nano-electro-mechanical (NEM)improvements, a scaled nano-relay technology with optimizedNano-Electro-Mechanical (NEM) Relay Devices and Technology

Nathanael, Rhesa

2012-01-01T23:59:59.000Z

124

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

125

Implications of maximizing China's technical potential for residential end-use energy efficiency: A 2030 outlook from the bottom-up  

E-Print Network (OSTI)

4 3. Basis for Residential Energy Demandand the subsequent energy demand and CO 2 emissionsa smaller share of total energy demand followed by space

Khanna, Nina

2014-01-01T23:59:59.000Z

126

The National Energy Modeling System: An Overview 1998 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

OVERVIEW OF NEMS OVERVIEW OF NEMS blueball.gif (205 bytes) Major Assumptions blueball.gif (205 bytes) NEMS Modular Structure blueball.gif (205 bytes) Integrating Module NEMS represents domestic energy markets by explicitly representing the economic decisionmaking involved in the production, conversion, and consumption of energy products. For example, the penetration of a new or advanced technology for electricity generation is projected only if the technology is deemed to be economic when considering the cost-minimizing mix of fuels over the life of the equipment. Since energy costs and availability and energy- consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to

127

Demand Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

128

Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov  

E-Print Network (OSTI)

Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

Baker, Chris I.

129

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

130

The Role of Demand Response Policy Forum Series  

E-Print Network (OSTI)

The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

California at Davis, University of

131

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

132

Potential Peak Load Reductions From Residential Energy Efficient Upgrades  

E-Print Network (OSTI)

of the distribution network can be improved; and added environmental pollution can be minimized. Energy efficiency improvements, especially through residential programs, are increasingly being used to mitigate this rise in peak demand. This paper examines...

Meisegeier, D.; Howes, M.; King, D.; Hall, J.

2002-01-01T23:59:59.000Z

133

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL; Greene, David L [ORNL

2013-10-01T23:59:59.000Z

134

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

135

Residential propane prices decreases  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating...

136

Residential propane price decreases  

Gasoline and Diesel Fuel Update (EIA)

6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel...

137

Residential propane prices surges  

U.S. Energy Information Administration (EIA) Indexed Site

9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel...

138

Residential propane price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel...

139

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel...

140

Residential propane prices surges  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy's (DOE's) Better Buildings Residential programs work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

142

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

143

Chapter 17: Residential Behavior Protocol  

SciTech Connect

Residential behavior-based (BB) programs use strategies grounded in the behavioral social sciences to influence household energy use. Strategies may include providing households with real-time or delayed feedback about their energy use; supplying energy-efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions. BB programs often target multiple energy end uses and encourage energy savings, demand savings, or both. Savings from BB programs are usually a small percentage of energy use, typically less than 5%.

Stewart, J.; Todd, A.

2015-01-01T23:59:59.000Z

144

Workshop on Opportunities for Magnetism in MEMS/NEMS, April 16-17, 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Magnetism in MEMS/NEMS Opportunities for Magnetism in MEMS/NEMS Argonne National Laboratory - April 16-17, 2010 Sponsored by NSF, NIST and Argonne National Laboratory Friday, April 16 13:00 Welcome and Introduction Chair: John Moreland 13:10 Pritiraj Mohanty Boston University "Study of Spin Dynamics using Nanomechanics" 13:50 T. Mitch Wallis NIST, Boulder "Measurement of the Einstein-de Haas Effect with a Microcantilever" 14:30 Albrecht Jander Oregon State University "Application of Torques to Nanostructures using Ferromagnetic Resonance" 15:10 Coffee Break Chair: Dennis Greywall 15:30 Rassul Karabalin Caltech "Next-Generation NEMS Functionality Enable by Advances in Novel Materials"

145

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

146

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

147

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

148

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

149

Residential Retrofit Program Design Guide  

Energy.gov (U.S. Department of Energy (DOE))

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

150

NREL: Buildings Research - Residential Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Capabilities Photo showing a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the...

151

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

152

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

153

Residential heating conservation in Krakow  

SciTech Connect

A four-building conservation experiment was conducted in Krakow, Poland, during the 1992--1993 and 1993--1994 winters, aimed at determining potential savings of heat in typical multifamily residential buildings connected to the district heat network. Four identical multifamily buildings were selected for measurement and retrofitting. Together with the U.S. team, the local district heat utility, the Krakow development authority, and a Polish energy-efficiency foundation designed and conducted the 264-residence test of utility, building, and occupant conservation strategies during the 1992--1993 winter Baseline data were collected on each building prior to any conservation work. A different scope of work was planned and executed for each building, ranging from controls at the building level only to thermostatic valve control and weatherization. The project team has identified and demonstrated affordable and effective conservation technologies that can be applied to Krakow`s existing concrete-element residential housing. The results suggest that conservation strategies will be key to many alternatives in Krakow`s plan to eliminate low-emission air pollution sources. Conservation can allow connecting more customers to the utility network and eliminating local boilers without requiring construction of new combined heat and power plants. It can reduce heat costs for customers converting from solid-fuel heat sources to less polluting sources. By reducing heat demand, more customers can be served by existing gas and electric distribution systems.

Markel, L.C. [Electrotek Concepts, Knoxville, TN (United States); Reeves, G. [George Reeves Associates, Lake Hopatcong, NJ (United States); Gula, A.; Szydlowski, R.F. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1995-08-01T23:59:59.000Z

154

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

155

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decrease The average retail price for propane is 2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

156

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases The average retail price for propane is 2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy...

157

Residential propane price  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases The average retail price for propane is 2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy...

158

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 3.2 cents from a week ago to 2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential...

159

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 10.3 cents from a week ago to 2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential...

160

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose 3.9 cents from a week ago to 2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential...

162

Residential propane prices surges  

Gasoline and Diesel Fuel Update (EIA)

propane prices surges The average retail price for propane rose to an all-time high of 4.01 a gallon, that's up 1.05 from a week ago, based on the residential heating fuel survey...

163

Residential propane price increases  

U.S. Energy Information Administration (EIA) Indexed Site

propane price increases The average retail price for propane is 2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

164

Residential propane prices stable  

Gasoline and Diesel Fuel Update (EIA)

propane price decreases The average retail price for propane is 2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S....

165

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose 4.8 cents from a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential...

166

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 2.5 cents from a week ago to 2.83 per gallon. That's up 56 cents from a year ago, based on the residential...

167

Residential propane prices increase  

NLE Websites -- All DOE Office Websites (Extended Search)

propane prices increase The average retail price for propane rose to 2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy...

168

Residential propane prices increase  

Annual Energy Outlook 2012 (EIA)

propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential...

169

Residential propane prices available  

Annual Energy Outlook 2012 (EIA)

propane prices available The average retail price for propane is 2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey....

170

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

propane prices increase The average retail price for propane rose 9.1 cents from a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential...

171

Residential Energy Disclosure (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

172

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network (OSTI)

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

173

NEM modication prevents high-anity ATP binding to the rst nucleotide binding fold of the sulphonylurea receptor, SUR1  

E-Print Network (OSTI)

NEM modi¢cation prevents high-a¤nity ATP binding to the ¢rst nucleotide binding fold, UK Received 7 July 1999; received in revised form 11 August 1999 Abstract Pancreatic LL-cell ATP WWM 8-azido- [KK-32 P]ATP or 8-azido-[QQ-32 P]ATP was inhibited by NEM with Ki of 1.8 WWM and 2.4 WWM

Tucker, Stephen J.

174

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

175

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

176

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

177

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

178

Residential Retrofit Program Design Guide Overview Transcript...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide...

179

Fact Sheet: Better Buildings Residential Network | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

180

Comparative Life-Cycle Assessment of Residential Heating Systems, Focused on Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

This study aims to analyze a Solid Oxide Fuel Cell (SOFC) for residential heating applications by...producer, the user as an individual and the user...intended as the heating demand of a building, applied by defa...

Alba Cnovas; Rainer Zah; Santiago Gass

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Appendix E: Other NEMS-MP results for the base case and scenarios.  

SciTech Connect

The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They represent a small, though noticeable, segment of the 'LV plus 2B' market (e.g., a little more than 3% of today's energy use in that market). We generally do not include them in this discussion, simply because it requires additional effort to combine the NEMS-MP results for them with the results for the other LVs. (Where there is an exception, we will indicate so.) Second, where reference is made to E85, the ethanol content is actually 74%. The Energy Information Administration (EIA) assumes that, to address cold-starting issues, the percent of ethanol in E85 will vary seasonally. The EIA uses an annual average ethanol content of 74% in its forecasts. That assumption is maintained in the NEMS-MP scenario runs.

Plotkin, S. E.; Singh, M. K.; Energy Systems

2009-12-03T23:59:59.000Z

182

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

183

MassSAVE (Gas) - Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program MassSAVE (Gas) - Residential Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2013 State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $300-$450 Forced Hot Water Boilers: $1,000-$1500 Programmable/Wi-Fi Thermostats: $25-$100 Indirect Water Heater: $400 Tankless On-Demand Water Heater: $500 or $800 Indirect Water Heater: $400 Condensing Gas Water Heaters: $500 Combined Boiler/Water Heating Unit: $1,200 Storage Water Heater: $100 After-Market Boiler Reset Controls: $225

184

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

185

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

186

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

187

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

188

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

189

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

190

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

191

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

192

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

193

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

194

Residential propane price is unchanged  

NLE Websites -- All DOE Office Websites (Extended Search)

13, 2014 Residential propane price is unchanged The average retail price for propane is 2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating...

195

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

196

1822 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 4, DECEMBER 2012 Real-Time Price-Based Demand Response  

E-Print Network (OSTI)

, real-time price-based demand response management, residential appli- ances, robust optimization1822 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 4, DECEMBER 2012 Real-Time Price-Based Demand Response Management for Residential Appliances via Stochastic Optimization and Robust Optimization Zhi Chen

Fu, Yong

197

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

Letschert, Virginie

2010-01-01T23:59:59.000Z

198

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

2000: Lighting Type Incandescent Fluorescent CFL Percentagescenario, we assume that incandescent bulbs are graduallyW 60W 15W Fluorescent Lamps Incandescent Lamps CFL We then

Letschert, Virginie

2010-01-01T23:59:59.000Z

199

CALIFORNIA STATEWIDE RESIDENTIAL APPLIANCE  

E-Print Network (OSTI)

methodology and results report that includes energy consumption tables from the conditional demand analysis Energy Consumption and Appliance Saturation Summaries. Results from the Conditional Demand Analysis (CDA conditioning is the primary driver of peak energy demand in California and the saturation of central air

200

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Demand Response and Open Automated Demand Response  

E-Print Network (OSTI)

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

202

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

203

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

204

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

205

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

206

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

207

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

208

STORM WATER Residential  

E-Print Network (OSTI)

STORM WATER QUALITY HOTLINE UCSC Residential Car Washing http THAT MAY CAUSE ENVIRONMENTAL HARM TO THE STORM WATER QUALITY HOTLINE: (831) 459-2553. LIKE US ON FACEBOOK AT UCSC STORM WATER MANAGEMENT PROGRAM! DID YOU KNOW? PRACTICAL SOLUTIONS > USE A COMMERCIAL CAR WASH

California at Santa Cruz, University of

209

Residential Mechanical Precooling  

SciTech Connect

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

210

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

211

Application-oriented modelling of domestic energy demand  

Science Journals Connector (OSTI)

Abstract Detailed residential energy consumption data can be used to offer advanced services and provide new business opportunities to all participants in the energy supply chain, including utilities, distributors and customers. The increasing interest in the residential consumption data is behind the roll-out of smart meters in large areas and led to intensified research efforts in new data acquisition technologies for the energy sector. This paper introduces a novel model for generation of residential energy consumption profiles based on the energy demand contribution of each household appliance and calculated by using a probabilistic approach. The model takes into consideration a wide range of household appliances and its modular structure provides a high degree of flexibility. Residential consumption data generated by the proposed model are suitable for development of new services and applications such as residential real-time pricing schemes or tools for energy demand prediction. To demonstrate the main features of the model, an individual household consumption was created and the effects of a possible change in the user behaviour and the appliance configuration presented. In order to show the flexibility offered in creation of the aggregated demand, the detailed simulation results of an energy demand management algorithm applied to an aggregated user group are used.

J.K. Gruber; S. Jahromizadeh; M. Prodanovi?; V. Rako?evi?

2014-01-01T23:59:59.000Z

212

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

213

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

214

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

215

Residential Transportation Historical Data Tables for 1983-2001  

U.S. Energy Information Administration (EIA) Indexed Site

RTECS Historical Data Tables RTECS Historical Data Tables Residential Transportation Historical Data Tables Released: May 2008 Below are historical data tables from the Residential Transportation Energy Consumption Survey (RTECS) and Household Vehicles Energy Use: Latest Data & Trends report. These tables cover the trends in energy consumption for household transportation throughout the survey years. The data focus on several important indicators of demand for transportation: number and type of vehicles per household; vehicle-miles traveled per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel pdf Table 2. Percent of Households with Vehicles excel pdf

216

Detailed residential electric determination  

SciTech Connect

Data on residential loads has been collected from four residences in real time. The data, measured at 5-second intervals for 53 days of continuous operation, were statistically characterized. An algorithm was developed and incorporated into the modeling code SOLCEL. Performance simulations with SOLCEL using these data as well as previous data collected over longer time intervals indicate that no significant errors in system value are introduced through the use of long-term average data.

Not Available

1984-06-01T23:59:59.000Z

217

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

218

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

219

Designing a residential hybrid electrical energy storage system based on the energy buffering strategy  

Science Journals Connector (OSTI)

Due to severe variation in load demand over time, utility companies generally raise electrical energy price during periods of high load demand. A grid-connected hybrid electrical energy storage (HEES) system can help residential users lower their electric ... Keywords: electric bill savings, energy management, hybrid electrical energy storage system

Di Zhu; Siyu Yue; Yanzhi Wang; Younghyun Kim; Naehyuck Chang; Massoud Pedram

2013-09-01T23:59:59.000Z

220

Does Marginal Price Matter? A Regression Discontinuity Approach to Estimating Water Demand  

E-Print Network (OSTI)

Groot, and Peter Nijkamp, Price and Income Elasticities ofJ. Espey and W. D. Shaw, Price Elasticity of ResidentialDavid J. Molina, A Note on Price Perception in Water Demand

Nataraj, Shanthi; Hanemann, W. Michael

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)  

Reports and Publications (EIA)

In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

2005-01-01T23:59:59.000Z

222

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

223

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

224

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

225

Residential appliances technology atlas  

SciTech Connect

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

226

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

227

Residential photovoltaic systems costs  

SciTech Connect

A study of costs associated with the installation and operation of a residential photovoltaic system has been conducted to determine present and projected (1986) status. As a basis for the study, a residential photovoltaic system design projected for 1986 was assumed, consisting of two principal components: a roof-mounted array and a utility-interactive inverter. The scope of the study encompassed both silicon and cadmium sulfide photovoltaic modules. Cost estimates were obtained by a survey and study of reports generated by companies and agencies presently active in each of the subsystem area. Where necessary, supplemental estimates were established as part of this study. The range of estimates for silicon-based systems strongly suggest that such systems will be competitive for new installations and reasonably competitive for retrofit applications. The cadmium-sulfide-based system cost estimates, which are less certain than those for silicon, indicate that these systems will be marginally competitive with silicon-based systems for new construction, but not competitive for retrofit applications. Significant variations from the DOE system price sub-goals were found, however, particularly in the areas of array mounting, wiring and cleaning. Additional development work appears needed in these areas.

Cox, C.H. III

1980-01-01T23:59:59.000Z

228

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

229

Fact Sheet: Better Buildings Residential Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another...

230

Residential Energy Efficiency Technical Update Meeting: August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Technical Update Meeting: August 2011 Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link to the summary...

231

Residential Energy Efficiency Customer Service Best Practices...  

Energy Savers (EERE)

Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call Residential Energy Efficiency Customer Service Best Practices Peer Exchange Call January 22, 2015...

232

Building America Residential Energy Efficiency Technical Update...  

Energy Savers (EERE)

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

233

Optimal Sizing for Residential CHP System  

Science Journals Connector (OSTI)

Residential CHP systems have been introduced around Japan recently, ... the process of boosting the adoption of residential CHP systems, both manufacturers and customers are interested...

Hongbo Ren; Weijun Gao; Yingjun Ruan

2007-01-01T23:59:59.000Z

234

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

235

Quality Assurance for Residential Retrofit Programs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance for Residential Retrofit Programs Quality Assurance for Residential Retrofit Programs Blue version of the EERE PowerPoint template, for use with PowerPoint 2007....

236

Better Buildings Residential Network | Department of Energy  

Energy Savers (EERE)

more. Residential Network Members Welcome Our Newest Members Cascadia Consulting Group Johnson Environmental The Building Performance Center, Inc. *Residential Network members that...

237

Residential energy gateway system in smart grid.  

E-Print Network (OSTI)

??This project discusses about the residential energy gateway in the Smart Grid. A residential energy gateway is a critical component in the Home Energy Management (more)

Thirumurthy, Vinod Govindswamy

2010-01-01T23:59:59.000Z

238

Better Buildings Residential Network Orientation Peer Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Residential Network Orientation Peer Exchange Webinar Better Buildings Residential Network Orientation Peer Exchange Webinar September 11, 2014 7:00PM to 8:3...

239

Better Buildings Residential Network Membership Form | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

240

SoCalGas - Multi-Family Residential Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-Family Residential Rebate Program Multi-Family Residential Rebate Program SoCalGas - Multi-Family Residential Rebate Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount Dishwashers: $30 Insulation: 25% Natural Gas Storage Water Heaters: $30 Tankless Water Heaters: $300 Central Furnaces: $200 Central System Water Heaters: $500 Central System Boilers: $1,500 Central Demand Hot Water Controllers: $700 or $1400 Provider Southern California Gas Company Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

242

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

243

Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan, Zhiyun Lin, and Minyue Fu  

E-Print Network (OSTI)

Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan of residential responsive loads for vari- ous demand response applications. We propose a general hybrid system and effectively reduce the peak power consumption. I. INTRODUCTION Demand response has the potential to shift

Zhang, Wei

244

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

245

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

246

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

247

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

248

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

249

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

250

SMUD's Residential Summer Solutions Study  

NLE Websites -- All DOE Office Websites (Extended Search)

SMUD's Residential Summer Solutions Study SMUD's Residential Summer Solutions Study Speaker(s): Karen Herter Date: August 26, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page In 2009, the DRRC and SMUD teamed up to test the use of dynamic pricing and communicating thermostats in the small commercial sector. The final results showed summer energy savings of 20%, event impacts of 14%, and bill savings of 25%. In 2011, the same team will conduct a similar study involving residential customers with interval meters. The study is designed to inform the transition to the Sacramento smart grid through experimentation with real-time energy use data and communicating thermostats, both with and without dynamic pricing. Three randomly chosen groups of residential customers were offered one of three equipment configuration treatments: (a)

251

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

252

Residential propane price decreases slightly  

NLE Websites -- All DOE Office Websites (Extended Search)

propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by...

253

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

propane price increase slightly The average retail price for propane is 2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the...

254

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

05, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

255

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

256

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

257

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

258

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

259

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

260

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Residential heating oil prices available  

NLE Websites -- All DOE Office Websites (Extended Search)

ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at 3.48 per gallon,...

262

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

263

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses - Appendix E: Other NEMS-MP Results for the Base Case and Scenarios  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix E: Other NEMS-MP Results Appendix E: Other NEMS-MP Results for the Base Case and Scenarios Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

264

Scenario Prediction of Energy Demand and Development Status of Renewable Energy in Dunstan Area of Chongming Island  

Science Journals Connector (OSTI)

Based on the data of GDP and population during the period 20032008, the energy demand in 2020 for industrial and residential energy in Dunstan area of Chongming Island was ... research material, the development ...

Xuezhong Fan; Liquan Zhang

2013-01-01T23:59:59.000Z

265

Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs  

U.S. Energy Information Administration (EIA) Indexed Site

Experts Meeting: Behavioral Economics Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY PROGRAMS (30 minutes) * ORIENTATION/PRESENTATION: BEHAVIORAL ECONOMICS GENERAL OVERVIEW AND DISCUSSION (45 minutes) * EXPERTS ROUNDTABLE DISCUSSION/BRAINSTROMING: HOW CAN EIA BENEFIT FROM APPLICATION OF BEHAVIORAL ECONOMICS TO RESIDENTIAL AND COMMERCIAL ENERGY DEMAND MODELING?

266

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

267

Decentralized demandsupply matching using community microgrids and consumer demand response: A scenario analysis  

Science Journals Connector (OSTI)

Abstract Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demandsupply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demandsupply matching within a community, and, (2) determine which of these options can suitably plug the existing demandsupply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs.

Kumudhini Ravindra; Parameshwar P. Iyer

2014-01-01T23:59:59.000Z

268

Residential Retrofit Design Guide Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Residential Retrofit Design Guide Overview Webinar. Res Retro Design Guide Webinar 5-3-11...

269

NREL Residential Buildings Group Partners - Datasets - OpenEI...  

Open Energy Info (EERE)

Residential Buildings ... Dataset Activity Stream NREL Residential Buildings Group Partners This spreadsheet contains a list of all the companies with which NREL's Residential...

270

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

271

Demand Response Assessment INTRODUCTION  

E-Print Network (OSTI)

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

272

Consumers Energy (Electric) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Residential Energy Efficiency Program Electric) - Residential Energy Efficiency Program Consumers Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Windows: $250 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300

273

Building Technologies Office: Residential Dishwashers, Dehumidifiers, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting to someone by E-mail Share Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Facebook Tweet about Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Twitter Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Google Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR

274

Better Buildings Neighborhood Program: Residential Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 to someone by E-mail Share Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Facebook Tweet about Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Twitter Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Google Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Delicious

275

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

SciTech Connect

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

276

Energy Crossroads: Practical Web Resources for Residential Energy Users |  

NLE Websites -- All DOE Office Websites (Extended Search)

Practical Web Resources for Residential Energy Users Practical Web Resources for Residential Energy Users Suggest a Listing California Residents' 20% Solution Cut 20% on your home electricity consumption. This 20% solution web site identifies energy efficiency measures and their predicted percentage savings to help you save energy. California's Electricity System Status The power grid that supplies the electric current coming into your home or business is designed to maintain a dynamic balance between the consumer demand for electricity and the amount being supplied by generators. (This site also offers links for some other areas, like New York, New England, Texas, etc.) Consumer Energy Center This site offers the public a one-stop site on the Internet for the latest

277

Thermal Performance of Phase-Change Wallboard for Residential Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Thermal Performance of Phase-Change Wallboard for Residential Cooling Cooling residential buildings in milder climates contributes significantly to peak demand mainly because of poor load factors. Peak cooling load determines the size of equipment and the cooling source. Several measures reduce cooling-system size and allow the use of lower-energy cooling sources; they include incorporating exterior walls or other elements that effectively shelter interiors from outside heat and cold, and providing thermal mass, to cool interior spaces during the day by absorbing heat and warm them at night as the mass discharges its heat. Thermal mass features may be used for storage only or serve as structural elements. Concrete, steel, adobe, stone, and brick all satisfy requirements

278

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

279

Austin Energy's Residential Solar Rate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leslie Libby Leslie Libby Austin Energy Project Manager 2020 Utility Scale Solar Goal 175 MW 30 MW PPA at Webberville 2020 Distributed Solar Goal 25 MW Residential - 7.0 MW Commercial - 1.4 MW Municipal and Schools - 1.0 MW TOTAL - 9.4 MW $0 $2 $4 $6 $8 $10 $12 $14 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 Installed Cost ($/Watt-DC) Residential Commercial Municipal Residential Rebate $2.00/Watt Average Installed Cost $3.75/Watt - SEIA Q2 2012 Report - Austin had the lowest installed cost in the nation ($3.88/W-DC)

280

A review of solar cooling technologies for residential applications in Canada  

Science Journals Connector (OSTI)

In the last two decades, the demand for residential cooling has increased exponentially, creating a significant demand on the electrical grid during the summer months. Between 1990 and 2008, the total Canadian residential floor area that requires cooling has almost tripled, while the total energy consumed for space cooling has more than doubled. The implementation of solar cooling systems could assist in reducing this energy consumption, and consequently, reduce greenhouse gas emissions released into the atmosphere as a result of the generation of the required electricity to power typical air conditioners. This paper presents a review of the solar cooling technologies that have been developed and implemented for use in residential and commercial applications. Related work conducted under the International Energy Agency is also described and a review of cooling installations both worldwide and Canada are discussed.

Christopher Baldwin; Cynthia A. Cruickshank

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

282

Residential Lighting: Title 24 and Technology Update  

E-Print Network (OSTI)

Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply the development and deployment of energy-efficient lighting and daylighting technologies in partnership. Effectively apply the residential Title 24 Building Energy Efficiency Standards requirements specific

California at Davis, University of

283

Residential Load Management Program and Pilot  

E-Print Network (OSTI)

In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

Haverlah, D.; Riordon, K.

1994-01-01T23:59:59.000Z

284

Residential propane price decreases slightly decreases slightly  

Gasoline and Diesel Fuel Update (EIA)

7, 2014 Residential propane price decreases slightly The average retail price for propane is 2.38 per gallon, down 3-tenths of a cent from last week, based on the residential...

285

Edmond Electric- Residential Heat Pump Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

286

Residential propane price continues to decrease  

Gasoline and Diesel Fuel Update (EIA)

12, 2014 Residential propane price continues to decrease The average retail price for propane fell to 3.76 per gallon, down 13.4 cents from a week ago, based on the residential...

287

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

288

Residential propane price continues to decrease  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2014 Residential propane price decreases The average retail price for propane fell to 3.64 per gallon, down 12.7 cents from a week ago, based on the residential heating fuel...

289

New Zealand Energy Data: Electricity Demand and Consumption | OpenEI  

Open Energy Info (EERE)

Electricity Demand and Consumption Electricity Demand and Consumption Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). The sectors included are: agriculture, forestry and fishing; industrial (mining, food processing, wood and paper, chemicals, basic metals, other minor sectors); commercial; and residential. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago)

290

Residential Condensing Gas Furnaces | Department of Energy  

Office of Environmental Management (EM)

Gas Furnaces Residential Condensing Gas Furnaces Standardized Templates for Reporting Test Results residentialcondensinggasfurnacev1.0.xlsx More Documents & Publications...

291

Presentation: Better Buildings Residential Program Solution Center  

Energy.gov (U.S. Department of Energy (DOE))

Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy, Better Buildings Neighborhood Program.

292

Renovating Residential HVAC Systems HVAC Systems  

E-Print Network (OSTI)

- 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker and Air Conditioning), and Stacy Hunt and Ananda Harzell (IBACOS). #12;- 3 - Renovating Residential HVAC Guideline for Residential HVAC Retrofits (http

293

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

of offering NEM for biogas-electric systems and fuel cells.but AB 2228 (2002) allowed biogas-electric facilities up to

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

294

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period  

Energy.gov (U.S. Department of Energy (DOE))

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

295

Demand response enabling technology development  

E-Print Network (OSTI)

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing SenSys 2003,

2006-01-01T23:59:59.000Z

296

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

297

Demand Response Programs for Oregon  

E-Print Network (OSTI)

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

298

Demand response enabling technology development  

E-Print Network (OSTI)

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

299

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

300

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Covered Product Category: Residential Refrigerators  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including residential refrigerators, which are an ENERGY STAR-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

302

CALIFORNIA ENERGY Residential Duct Placement  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Residential Duct Placement: Market Barriers Market Barriers, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Prepared By: GARD Analytics, Inc. Roger Hedrick, Lead Author DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission

303

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

304

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

305

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview  

E-Print Network (OSTI)

2008 Residential2008 Residential Energy Plan ReviewEnergy Plan Reviewe gy la eviewe gy la eview #12;2008 Residential Energy Plan2008 Residential Energy Plan Review ChecklistReview Checklist Simplification 2005 Residential Energy Plan Review2005 Residential Energy Plan Review 2005 and 2008 Nonresidential

306

Optimal Residential Solar Photovoltaic Capacity in Grid Connected Applications  

Science Journals Connector (OSTI)

Abstract Microgeneration using solar photovoltaic systems is becoming increasingly popular in residential households as such systems allow households to use a renewable energy source, while also reducing their reliance on the electricity grid, to fulfill their electricity demand. In this study, we explore the attractiveness of PV microgeneration systems of different capacities in the absence of incentives and net metering options and under both flat and variable tariff scenarious. Smaller systems that are below 1 kW in capacity are more attractive under such conditions, however, at current cost levels, they still remain economically unattractive. The cost levels which allow for these PV systems to be economically viable are also determined.

Shisheng Huang; Jingjie Xiao; Joseph F. Pekny; Gintaras V. Reklaitis

2012-01-01T23:59:59.000Z

307

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

308

Employing demand response in energy procurement plans of electricity retailers  

Science Journals Connector (OSTI)

Abstract This paper proposes a new framework in which demand response (DR) is incorporated as an energy resource of electricity retailers in addition to the commonly used forward contracts and pool markets. In this way, a stepwise reward-based DR is proposed as a real-time resource of the retailer. In addition, the unpredictable behavior of customers participating in the proposed reward-based DR is modeled through a scenario-based participation factor. The overall problem is formulated as a stochastic optimization approach in which pool prices and customers participation in DR are uncertain variables. The feasibility of the problem is evaluated on a realistic case of the Australian National Electricity Market (NEM) and solved using General Algebraic Modeling System (GAMS) software.

Nadali Mahmoudi; Mehdi Eghbal; Tapan K. Saha

2014-01-01T23:59:59.000Z

309

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Home Performance with ENERGY STAR®: $4000 Program Info Funding Source NH Saves State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with ENERGY STAR®: up to $4,000 for improvements ENERGY STAR® Homes Qualification: custom incentives and technical support

310

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

311

Charlottesville Gas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program Charlottesville Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Appliances & Electronics Water Heating Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: up to $100 Natural Gas Water Heater Conversion: $100 Provider City of Charlottesville Charlottesville Gas offers rebates to residential customers for purchasing and installing specified energy efficient equipment. Rebates and utility bill credits of up to $100 are available for installing new, energy efficient natural gas water heaters and programmable thermostats. Only customers which previously did not have natural gas water heating are

312

Residential Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Rights Residential Solar Rights Residential Solar Rights < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State New Jersey Program Type Solar/Wind Access Policy In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar collector" is not defined, but would seem to include both solar photovoltaic and solar thermal technologies which use collectors installed on the roof of a dwelling. This law covers only dwellings that are ''not'' deemed community property of the association, including townhouses which have at least two sides that are

313

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

314

Firelands Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $800 Air Source Heat Pump: $500 Dual Fuel Heat Pump: $250 Electric Water Heater: $100-$300 HVAC Controls: $100 Provider Firelands Electric Cooperative Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes new Geothermal Heat Pumps, Air-Source

315

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

316

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

317

Alameda Municipal Power - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Program Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Maximum Rebate Single family, duplex, or triplex: $960 per unit Multi-family dwelling (four or more units): $480 per unit. Program Info State California Program Type Utility Grant Program Rebate Amount Weatherization: 80% of the cost Do-It-Yourself Weatherization: 70% of the cost Provider Alameda Municipal Power Alameda Municipal Power (AMP) offers a grant to help its residential customers who have electric heat weatherize homes to increase efficiency.

318

Detailed Modeling and Response of Demand Response Enabled Appliances  

SciTech Connect

Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

Vyakaranam, Bharat; Fuller, Jason C.

2014-04-14T23:59:59.000Z

319

Multiobjective demand side management solutions for utilities with peak demand deficit  

Science Journals Connector (OSTI)

Abstract Demand side management (DSM) is a growing concept around the world, particularly in urban India, recently due to presence of time of day (TOD) tariffs for the large commercial and industrial customers. Residential customers are not exposed to TOD tariff structure so far in India. This encourages commercial and industrial customers to schedule their flexible loads as per TOD tariff to extract maximum benefit of it and helps utilities to reduce their peak load demand and reshape the load curve. For efficient DSM implementation, this paper presents a multiobjective DSM solutions based on integer genetic algorithm to benefit both utilities and consumers. The proposed algorithm provides new directions on effective implementation of DSM techniques for Indian utilities. Simulations were carried out on Indian practical distribution system with large commercial and industrial loads. The simulation results of the proposed algorithm shows that the presented DSM technique comprehends reasonable savings to both utility and consumers simultaneously, while reducing the system peak.

Nandkishor Kinhekar; Narayana Prasad Padhy; Hari Om Gupta

2014-01-01T23:59:59.000Z

320

Strategies for Low Carbon Growth In India: Industry and Non Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Low Carbon Growth In India: Industry and Non Residential Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Title Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-4557E Year of Publication 2011 Authors Sathaye, Jayant A., Stephane Rue de la du Can, Maithili Iyer, Michael A. McNeil, Klaas Jan Kramer, Joyashree Roy, Moumita Roy, and Shreya Roy Chowdhury Date Published 5/2011 Publisher LBNL Keywords Buildings Energy Efficiency, CO2 Accounting Methodology, CO2 mitigation, Demand Side Management, energy efficiency, greenhouse gas (ghg), india, industrial energy efficiency, industrial sector, Low Carbon Growth, Low Growth, Non Residential Abstract This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analyses supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Prospects of energy savings in residential space heating  

Science Journals Connector (OSTI)

This paper presents some insight to the problem of heating of housing in Jordan. Residential space and water heating are dependent particularly upon the combustion of fossil fuels, which thereby contribute significantly to air pollution and the build-up of carbon dioxide in the atmosphere. The results of a recent survey were used to evaluate the energy demand and conservation in Jordanian residential buildings. Space heating accounts for 61% of the total residential energy consumption with kerosene being the most popular fuel used, followed by liquefied petroleum gas (LPG), for heating purposes. Unvented combustion appliances employed to provide space heating produce high levels of combustion by-products that often exceed acceptable concentrations, degraded indoor air quality and cause unnecessary exposure to toxic gases such as carbon monoxide. During 1999, the number of accidents in households due to the use of different energy forms accounted for about 40% of all accidents, except road accidents, in Jordan. In light of the fact that only 5% of dwellings in Jordan have been provided with wall insulation and none employ roof insulation, the overall heat transfer coefficients, and consequently heating loads, were estimated for a typical single house using different constructions for external walls. It is concluded that space heating load can be reduced by about 50%, when economically-viable insulating measures are applied to the building envelopes, i.e. to ceilings and walls. These lead to corresponding reductions in fossil fuels consumption and in emissions of air pollutants.

Jamal O Jaber

2002-01-01T23:59:59.000Z

322

Smart Thermostats in Residential Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio Behavior Based...

323

E-Print Network 3.0 - america residential system Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Housing, Dining & Residential Services Housing, Dining... & Residential Services Housing, Dining & Residential ... Source: Balandin, Alexander- Department of...

324

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

The impact of increasing home size on energy demand The impact of increasing home size on energy demand RECS 2009 - Release date: April 19, 2012 Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than

325

City-level energy and CO2 reduction effect by introducing new residential water heaters  

Science Journals Connector (OSTI)

Simulation models for a variety of new water heater systems were developed and the models were integrated into a city-level residential energy end-use model for Osaka City. Using the model, the potential of energy conservation and CO2 emission-reduction by introducing new residential water heaters was evaluated at the city-level. Optimal water-heating systems for each household category for primary energy reduction, CO2 emission-reduction, or cost reduction were identified by applying the end-use demand model. The effect of subsidies for installing more efficient systems and the influence of diffusion of these systems on electricity load curves were also discussed.

Yoshiyuki Shimoda; Tomo Okamura; Yohei Yamaguchi; Yukio Yamaguchi; Ayako Taniguchi; Takao Morikawa

2010-01-01T23:59:59.000Z

326

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

327

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael OSheasy

2002-01-01T23:59:59.000Z

328

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

329

Driving Demand for Home Energy Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Demand for Home Energy Improvements Driving Demand for Home Energy Improvements Title Driving Demand for Home Energy Improvements Publication Type Report Year of Publication 2010 Authors Fuller, Merrian C., Cathy Kunkel, Mark Zimring, Ian M. Hoffman, Katie L. Soroye, and Charles A. Goldman Tertiary Authors Borgeson, Merrian Pagination 136 Date Published 09/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency-they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars1 flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements2, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula-and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs-there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers-especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

330

Residential Enhanced Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Enhanced Rewards Program Residential Enhanced Rewards Program Residential Enhanced Rewards Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info Funding Source Focus on Energy Expiration Date 05/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Natural Gas Furnace: $475 Furnace with ECM (natural gas, propane, or oil-fired): $850 Hot-Water Boiler ( Natural Gas Furnace with AC: $1,500 Provider Focus on Energy Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less are eligible for the incentives. Applicants must be able to document a gross household income of

331

Alameda Municipal Power - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Grant Program Rebate Amount Refrigerator Replacement: Up to $100 Second Refrigerator Pickup: $35 CFLs: 3 free replacement bulbs Motors: $0.18/per kWh saved Lighting: $0.20/per kWh saved HVAC: $0.22/per kWh saved Refrigeration: $0.22/per kWh saved Provider Alameda Municipal Power Alameda Municipal Power (AMP) has multiple program in place to help

332

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

333

Evaluation of evolving residential electricity tariffs  

SciTech Connect

Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

2011-05-15T23:59:59.000Z

334

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

335

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

336

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

337

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting: Purchases limited to 20 CFLs per customer per year Refrigerator/Freezer Recycling: $70 (limit of 2 per customer per program year) Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) State Illinois Program Type Utility Rebate Program Rebate Amount New Construction Builder Incentives: Contact ComEd Lighting: In-store discount

338

Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Efficiency Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Commercial Heating & Cooling Program Info State Iowa Program Type Utility Grant Program Rebate Amount 50% of cost, up to $100 Provider Farmers Electric Cooperative Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements made by the participating member. Grants are limited to $100 per year. A variety of measures and

339

Mansfield Municipal Electric Department - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mansfield Municipal Electric Department - Residential Energy Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program Mansfield Municipal Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Maximum Rebate $100 limit per customer account for appliances purchased in the same calendar year. Program Info Expiration Date 12/31/2014 State Massachusetts Program Type Utility Rebate Program Rebate Amount Central AC: $100 Refrigerators: $100 Clothes Washing Machines: $100 Dishwashers: $75 Dehumidifiers: $50 Window Air Conditioners: $50 Provider Mansfield Municipal Electric Department Mansfield Municipal Electric Department encourages energy efficiency

340

Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Energy Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Geothermal Heat Pumps: 5 ton CFL Bulbs: 12 bulbs per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount CFL Bulbs: $2/bulb Geothermal Heat Pumps (New Construction): $350/ton Geothermal Heat Pumps (Upgrade): $700/ton Air Source Heat Pumps (New Construction): $800 Air Source Heat Pumps (Upgrade): $400 Central Air Conditioners: $100 - $200 Heat Pump Water Heaters: $400

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hutchinson Utilities Commission - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hutchinson Utilities Commission - Residential Energy Efficiency Hutchinson Utilities Commission - Residential Energy Efficiency Program Hutchinson Utilities Commission - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 500 Program Info Expiration Date program offered until expiration of funding State Minnesota Program Type Utility Rebate Program Rebate Amount Natural Gas Furnaces: $150-$250, depending on efficiency Natural Gas Furnace Tune-up: $25 ECM Motor: $75 Natural Gas Boilers: $200 Central Air Conditioners: $250 Central Air Conditioner Tune-up: $25 Tankless Gas Water Heaters: $150 Storage Gas Water Heaters: $50 Air Source Heat Pumps: $75/ton

342

Georgia Environmental Finance Authority - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Environmental Finance Authority - Residential Energy Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Heating Heat Pumps Water Heating Program Info State Georgia Program Type State Loan Program Rebate Amount Oglethorpe Power Corporation: $5,500 Electric Cities of Georgia: up to $5,000 Municipal Gas Authority of Georgia: up to $5,000 Estes Heating and Air (Statewide): $10,000 The Georgia Environmental Finance Authority (GEFA) encourages Georgians to

343

Better Buildings Residential Network Case Study: Partnerships  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

344

Ameren Illinois (Gas)- Residential Energy Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Ameren Illinois Utilities (AmerenIP, AmerenCIPS, and AmerenCILCO) offer residential customers incentives for certain energy efficiency upgrades and improvements. Incentives are currently available...

345

Xcel Energy (Gas)- Residential Conservation Programs  

Energy.gov (U.S. Department of Energy (DOE))

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

346

Vermont Gas- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

The Equipment Replacement program offers rebates for residential customers who replace existing heating equipment or water heater with a more energy efficient one. Rebates vary depending on...

347

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

348

Residential Buildings Integration | Department of Energy  

Office of Environmental Management (EM)

demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development...

349

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

350

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

351

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

352

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

353

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

354

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

355

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

356

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

357

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

358

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

359

Residential Energy Efficiency Research Planning Meeting Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Summary Report Residential Energy Efficiency Research Planning Meeting Summary Report This report summarizes key findings and outcomes from the U.S. Department of Energy's...

360

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

362

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

363

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

364

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

365

Xcel Energy (Electric)- Residential Conservation Programs  

Energy.gov (U.S. Department of Energy (DOE))

Xcel Energy offers its Wisconsin residential customers rebates for high efficiency appliances and systems. Currently, rebates are available for high efficiency electric water heaters, electric...

366

Entergy New Orleans- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Entergy New Orleans has designed an incentive program to help residential customers understand and make energy efficiency improvements in eligible homes. Incentives are geared towards both...

367

Lincoln Electric System (Residential)- Sustainable Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

368

Residential Energy Star Appliance Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Energy Trust of Oregon offers rebates for Energy Star refrigerators, freezers and clothes washers to Oregon residential electric service customers of Portland General Electric (PGE) and Pacific...

369

Presentation: Better Buildings Residential Program Solution Center  

Energy.gov (U.S. Department of Energy (DOE))

Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014.

370

Chelan County PUD- Residential Weatherization Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

371

Idaho Falls Power- Residential Weatherization Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

372

Residential Building Integration Program Overview - 2014 BTO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Integration Program Overview - 2014 BTO Peer Review Residential Building Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of...

373

Covered Product Category: Residential Electric Resistance Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Resistance Water Heaters Covered Product Category: Residential Electric Resistance Water Heaters The Federal Energy Management Program (FEMP) sets Federal efficiency...

374

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

375

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik

2013-01-01T23:59:59.000Z

376

Home Network Technologies and Automating Demand Response  

SciTech Connect

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

377

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

378

Demand-Aware Price Policy Synthesis and Verification Services for Smart Grids  

E-Print Network (OSTI)

at the same time (peak hour), this may result in an economical damage (both for usage of peak power plants forcing residential end users to cut their power demand. On the other hand, if all users require energy interconnection. The first service, which we call EDN Virtual Tomography (EVT) service, considers the whole EDN

Tronci, Enrico

379

THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION  

E-Print Network (OSTI)

research in the areas of residential building design and construction, sustainable buildings, energy issues in residential buildings, lifecycle analysis of buildings and related infrastructure, and sustainable landTHE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College

Guiltinan, Mark

380

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

382

Procedures and Standards for Residential Ventilation System  

E-Print Network (OSTI)

1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated, commissioning, procedures, standards, ASHRAE 62.2 Please use the following citation for this report: Stratton, J.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

383

Tips For Residential Heating Oil Tank Owners  

E-Print Network (OSTI)

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

384

SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE  

E-Print Network (OSTI)

1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

385

Redding Electric - Residential and Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential and Commercial Energy Efficiency Residential and Commercial Energy Efficiency Rebate Program Redding Electric - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Windows: $250 - Residential; $750 (Commercial) Insulation: up to $500 - Residential; pre-approval required - Commercial Water Heater Blanket: $20 per unit Radiant/Thermal Barrier Material: $500 - Residential; pre-approval required - Commercial Duct Repair/Replacement: $500

386

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

387

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

388

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

389

Federal Energy Management Program: Covered Product Category: Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Freezers to someone by E-mail Residential Freezers to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Residential Freezers on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Residential Freezers on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Residential Freezers on Google Bookmark Federal Energy Management Program: Covered Product Category: Residential Freezers on Delicious Rank Federal Energy Management Program: Covered Product Category: Residential Freezers on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Residential Freezers on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process

390

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility...

391

AEP Public Service Company of Oklahoma - Non-Residential Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Residential Efficiency Rebate Program AEP Public Service Company of Oklahoma - Non-Residential Efficiency Rebate Program < Back Eligibility Commercial Fed. Government...

392

Urgent Action on Energy Conservation Standards for Residential...  

Energy Savers (EERE)

Urgent Action on Energy Conservation Standards for Residential Water Heaters (Docket Number: EERE-2012-BT-STD-0022) Urgent Action on Energy Conservation Standards for Residential...

393

2014-06-25 Issuance: Energy Conservation Standards for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule...

394

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers (EERE)

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

395

2011 Residential Energy Efficiency Technical Update Meeting Summary...  

Energy Savers (EERE)

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011 2011 Residential Energy Efficiency Technical Update Meeting Summary...

396

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

397

Focus Series: MaineResidential Direct Install Program  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Neighborhood Program Focus Series: MaineResidential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof.

398

Sustainable Energy Resources for Consumers Webinar on Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Residential Retrofit Program Design Guide Overview Transcript.doc Residential...

399

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Heat Pump Water Heaters Covered Product Category: Residential Heat Pump Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance and...

400

El Paso Electric Company- Residential Efficiency Program (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Eligible equipment includes air...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Residential Clothes Washers (Appendix J2) | Department of Energy  

Energy Savers (EERE)

J2) Residential Clothes Washers (Appendix J2) Standardized Templates for Reporting Test Results Residential Clothes Washer (Appendix J2).xlsx More Documents & Publications...

402

2014-04-11 Issuance: Test Procedures for Residential Clothes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking...

403

Better Buildings Residential Program - 2014 BTO Peer Review ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Program - 2014 BTO Peer Review Better Buildings Residential Program - 2014 BTO Peer Review Presenter: Danielle Byrnett, U.S. Department of Energy The Better Buildings...

404

Efficient Residential Water Heaters Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Assistance Program Pilot Projects Efficient Residential Water Heaters Webinar Efficient Residential Water Heaters Webinar On Feb. 22, 2011, Jerone Gagliano,...

405

Better Buildings Residential Network: Lessons Learned: Peer Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer...

406

Residential energy use: an international perspective on long-term trends in Denmark, Norway and Sweden  

Science Journals Connector (OSTI)

This paper examines residential energy use in the Scandinavian countries: Denmark, Norway and Sweden, over the period 19731999. The paper uses a decomposition approach to investigate differences in residential energy demand structure and end-use intensities and discusses both differences in absolute levels of energy use and differences over time. Comparisons are also made to other countries that have been analysed in the IEA energy efficiency indicator project. The analysis shows that, in contrast to Denmark and Sweden, Norway saw a growth in total residential energy use between 1973 and 1999. This can be partially explained by the fact that Norway started from a lower per capita income level in the early 1970s but has since then enjoyed a rapid income growth that drove up house area and consequently put a pressure on energy use. But the analysis also shows that Denmark and Sweden achieved significant reductions of residential energy intensities between 1973 and 1990, while the reductions in Norway were negligible. After 1990, the picture changed; there was a strong decline in residential energy intensities in Norway and a high rate of energy savings compared to most other countries analysed by the IEA, while energy savings in Denmark and Sweden more or less came to a halt.

Fridtjof Unander; Ingunn Ettestl; Mike Ting; Lee Schipper

2004-01-01T23:59:59.000Z

407

Energy Demand Staff Scientist  

E-Print Network (OSTI)

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

408

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

409

residential sector key indicators | OpenEI  

Open Energy Info (EERE)

residential sector key indicators residential sector key indicators Dataset Summary Description This dataset is the 2009 United States Residential Sector Key Indicators and Consumption, part of the Source EIA Date Released March 01st, 2009 (5 years ago) Date Updated Unknown Keywords AEO consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon 2009 Residential Sector Key Indicators and Consumption (xls, 55.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

410

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

411

Non-residential | OpenEI  

Open Energy Info (EERE)

05 05 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278105 Varnish cache server Non-residential Dataset Summary Description Natural gas consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009. Source California Energy Commission Date Released Unknown Date Updated Unknown Keywords annual energy consumption Energy Consumption Natural Gas Non-residential Residential Data text/csv icon Natural Gas Consumption By County (csv, 17 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006-2009 License License Other or unspecified, see optional comment below

412

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) Entergy Arkansas - Residential Energy Efficiency Program (Arkansas) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount $175 incentive toward the cost of a high-performance AC tune-up of a system size 5 tons or less $200 incentive toward the cost of a high-performance AC tune-up of a system size over 5 tons Tier 1 Home Energy Survey --- Survey $75 discount

413

Sustainable Energy Utility - Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility - Residential Energy Efficiency Program Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Start Date 01/01/2013 Expiration Date 09/30/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerators: $50 Clothes Washers: $50 CFL Lighting: varies by in-store discounts LED Lighting: $5-$10 The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides incentives to residents who complete qualifying home energy upgrades. Qualifying items include refrigerators, clothes washers, LED lighting and CFL lighting

414

Southwest Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Cooling Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Energy Audit Repairs: $500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump (New Units): $750/ton Geothermal Heat Pump (Replacement Units): $200/ton Dual Fuel Heat Pump: $150/ton Room AC: $50 Energy Audit Repairs: 50% of cost Provider Southwest Electric Cooperative Southwest Electric Cooperative offers rebates to its customers that purchase energy efficient heating and air conditioning equipment . This

415

Northeastern REMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeastern REMC - Residential Energy Efficiency Rebate Program Northeastern REMC - Residential Energy Efficiency Rebate Program Northeastern REMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Geothermal Heat Pump: $1,000 Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $100/ton or $500/unit Air Source Heat Pump: $250/unit Water Heater: $100 Provider Northeastern REMC Northeastern Rural Electric Membership Corporation (REMC) is a consumer-owned corporation that supplies electric power to more than 25,000 members in Northeastern Indiana. Northeastern REMC offers rebates to its residential customers for the purchase of geothermal heat pumps, air-source

416

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

417

Groton Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program Groton Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Compact Fluorescent Bulbs: Free While Supplies Last Insulation: $0.50/sq ft Heat Pump Water Heater: Up to $500 HVAC Controls: $250/unit Single Package/Split System Unitary AC: $250/ton Air-Source Heat Pump: $250/ton Water-Source Heat Pump: $150/ton Home Energy Savings Program: Free for Electric Customers

418

Industrial demand side management status report: Synopsis  

SciTech Connect

Industrial demand side management (DSM) programs, though not as developed or widely implemented as residential and commercial programs, hold the promise of significant energy savings-savings that will benefit industrial firms, utilities and the environment. This paper is a synopsis of a larger research report, Industrial Demand Side Management. A Status Report, prepared for the US Department of Energy. The report provides an overview of and rationale for DSM programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential electricity savings from industrial energy efficiency measures. Overcoming difficulties to effective program implementation is worthwhile, since rough estimates indicate a substantial potential for electricity savings. The report categorizes types of DSM programs, presents several examples of each type, and explores elements of successful programs. Two in-depth case studies (of Boise Cascade and of Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. Finally, the research report also includes a comprehensive bibliography, a description of technical assistance programs, and an example of a methodology for evaluating potential or actual savings from projects.

Hopkins, M.E.F.; Conger, R.L.; Foley, T.J.; Parker, J.W.; Placet, M.; Sandahl, L.J.; Spanner, G.E.; Woodruff, M.G.; Norland, D.

1995-08-01T23:59:59.000Z

419

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

residential electricity consumption include disaggregationfor annual residential electricity consumption through 2050.Saturation and unit electricity consumption are projected

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

420

National patterns of energy demand and expenditures by Hispanics  

SciTech Connect

This paper is based on ongoing research, at Argonne National Laboratory, being done for the Office of Minority Economic Impact (MI) of the US Department of Energy. Under its legislative mandate MI is required to assess the impact of government policy, programs, and actions on US minorities. In line with this mission Argonne is currently involved in characterizing and analyzing the patterns of energy demand and expenditures of minorities. A major barrier associated with this task is the availability of sufficient data. With the possible exception of blacks, analysis of the patterns of energy demand for most minority population categories is all but impossible because of small sample sizes. The major source of residential energy consumption data, the Residential Energy Consumption Survey, only collects data on 5000 to 7000 households. For many minority population categories, this number of observations make any meaningful statistical analysis at least at the regional Census level practically impossible, with any further refinement of the analysis becoming even more difficult. In this paper our primary purpose is to describe the patterns of energy demand for Hispanics and nonhispanics but ancillary to that briefly present one possible solution to the data availability problem.

Poyer, D.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

14 - Graphene nanoelectromechanics (NEMS)  

Science Journals Connector (OSTI)

Abstract: The use of graphene in the development of nanoscale mechanical structures is reviewed. The recent development of graphene resonators and techniques used to fabricate and characterise them is described. Some applications in sensor technology are highlighted.

Z. Moktadir

2014-01-01T23:59:59.000Z

422

Residential Retrofit Program Design Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Program Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the Vermont Energy Investment Corporation (VEIC), and includes the following companies: American Council for an Energy Efficient Economy (ACEEE), Energy Futures Group (EFG), Midwest Energy Efficiency Alliance (MEEA), Northwest Energy Efficiency Alliance (NEEA), Northeast Energy Efficiency Partnership (NEEP), Natural

423

Residential solar home resale analysis  

SciTech Connect

One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

Noll, S.A.

1980-01-01T23:59:59.000Z

424

Thermal performance of phase change wallboard for residential cooling application  

SciTech Connect

Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

Feustel, H.E.; Stetiu, C.

1997-04-01T23:59:59.000Z

425

Residential Loan Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Residential Loan Fund Residential Loan Fund < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Maximum Rebate $20,000 Program Info Funding Source System Benefits Charge (SBC) Start Date 11/10/2009 (current offering) State New York Program Type State Loan Program Rebate Amount Varies Provider New York State Energy Research and Development Authority '''''The New York State Energy Research and Development Authority (NYSERDA) has extended the Participation Agreements of the Assisted Home Performance

426

Air Barriers for Residential and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

427

Air Barriers for Residential and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

428

Modeling diffusion of electrical appliances in the residential sector  

SciTech Connect

This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

McNeil, Michael A.; Letschert, Virginie E.

2009-11-22T23:59:59.000Z

429

Organizing for demand-side management program implementation  

SciTech Connect

Organizing for the implementation of a demand-side management (DSM) program, is an exercise in planning and acquiring resources. However, the requirements for energy efficiency program implementation will vary and are dependent upon the type of mechanism employed in delivering the program. For example, commercial energy efficiency programs generally have three delivery mechanisms: rebate; direct installation; or DSM. For residential programs there are two unique methods, one a catalog program, which provides a source of purchasing energy efficient products, or a point-of-sale program, where rebates, in the form of coupons can be redeemed at the time of product purchase.

Obeiter, R.

1996-01-01T23:59:59.000Z

430

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network (OSTI)

widely differing control technologies, notification options,Electric Reliability Technology, LBNL, Joseph Eto E. Availability F. Technology Proposed Residential Large

Levy, Roger

2014-01-01T23:59:59.000Z

431

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network (OSTI)

with residential electric resistance water heater solar system backup electric resistance water heaters. Anheaters require electric resistance backup water heaters.

Levy, Roger

2014-01-01T23:59:59.000Z

432

Better Buildings Residential Program Solution Center Demonstration Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014.

433

Guide for Benchmarking Residential Energy Efficiency Program Progress  

Energy.gov (U.S. Department of Energy (DOE))

Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program.

434

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Details on Connecticut Energy Efficiency Fund and its benefits to small businesses and residential customers.

435

DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy has published a supplemental proposed determination regarding miscellaneous residential refrigeration products.

436

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

How does EIA estimate energy consumption and end uses in U.S. homes? How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses â€" information critical to meeting future energy demand and improving efficiency and building design. RECS uses a multi-stage area probability design to select sample methodology figure A multi-stage area probability design ensures the selection

437

National Grid (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Grid (Electric) - Residential Energy Efficiency Rebate National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) National Grid (Electric) - Residential Energy Efficiency Rebate Programs (Upstate New York) < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Other Commercial Weatherization Manufacturing Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $30 Multifamily Energy Evaluation: Free assessment, installation of up to ten CFLs/unit, water efficiency measures, hot water pipe and tank wrap, and a $300 rebate for refrigerator replacement costs. Provider National Grid Residential Upstate Efficiency Programs National Grid residential electric customers in Upstate New York are

438

EWEB - Residential Energy Efficiency Loan Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Energy Efficiency Loan Programs EWEB - Residential Energy Efficiency Loan Programs EWEB - Residential Energy Efficiency Loan Programs < Back Eligibility Multi-Family Residential Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Ductwork: not specified Thermostats: not specified Ductless Heat Pump: $4,000 Air Source Heat Pump: $7,000 Geothermal Heat Pump: $8,000 Air Sealing: up to $800 Program Info State Oregon Program Type Utility Loan Program Utility Loan Program Rebate Amount Windows and Insulation: not specified Ductwork: not specified

439

New Mexico Gas Company - Residential Efficiency Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Efficiency Programs Residential Efficiency Programs New Mexico Gas Company - Residential Efficiency Programs < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Insulation: $500 Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount ENERGY STAR Qualifying Home: $750 New Mexico Energy$mart Income Qualifying Weatherization: Free Tankless Water Heater: $300 Insulation: 25% of cost up to $500 The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding

440

El Paso Electric Company - Residential Solutions Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solutions Program Residential Solutions Program El Paso Electric Company - Residential Solutions Program < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Residential Solutions Program: $425/kW saved Low-Income Solutions Program: $576/kW saved Provider El Paso Electric Company '''The El Paso Electric Residential Solutions Program funding has been expended in Texas for 2012. New funding will be available January 1, 2013. ''' The El Paso Electric Residential Solutions Program offers El Paso Electric

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EWEB - Residential Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs EWEB - Residential Energy Efficiency Rebate Programs < Back Eligibility Low-Income Residential Residential Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Electric Water Heater: $25 - $75 Heat Pump Water Heater: $25 Ductless Heat Pumps: $1,000 - $1,500 Air Source Heat Pump: $1,000

442

Texas-New Mexico Power Company - Residential Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Residential Energy Efficiency Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate 20% of TNMP's annual Residential Standard Offer Program incentive budget Program Info State Texas Program Type Utility Rebate Program Rebate Amount Energy Star Rated Home Builders: Custom Residential Large and Small Projects: $260; $0.08/kWh reduction

443

High Performance Windows Volume Purchase: For Residential Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buyers to someone by E-mail Residential Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Residential Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Residential Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Google Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Delicious Rank High Performance Windows Volume Purchase: For Residential Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Residential Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Residential Buyers Both home owners and buyers can take advantage of the energy savings from

444

Econometric model of the joint production and consumption of residential space heat  

SciTech Connect

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

445

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

446

Marblehead Municipal Light Department - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marblehead Municipal Light Department - Residential Energy Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program Marblehead Municipal Light Department - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Insulation: $1,600 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerators: $100, plus $25 for disposal of old refrigerator Clothes Washers: $50 - $100 Dishwashers: $25 - $50 Room A/C Units: 50% of purchase price up to $50 Central A/C: $325 - $525, varies by efficiency and technology Heat Pumps: $325 - $675, varies by efficiency and technology Programmable Thermostat: up to 50% of the purchase price

447

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

448

Shrewsbury Electric - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shrewsbury Electric - Residential Energy Efficiency Rebate Program Shrewsbury Electric - Residential Energy Efficiency Rebate Program Shrewsbury Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Program Info Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $50 Dish Washer: $50 Room Air Conditioner: $25 Provider EFI In collaboration with EFI, Shrewsbury Electric offers rebates on ENERGY STAR appliances. Eligible products include washing machines, dishwashers, refrigerators, and room air conditioners. Customers will need to fill out an appliance mail-in rebate form that can be obtained at the Town Hall or on the Town of Shrewsbury web site. Information will be required including

449

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

450

Fact Sheet: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Sheet Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of American homes that are energy efficient. Since 2010, the U.S. Department of Energy (DOE), local Better Buildings Neighborhood Program partners, and Home Performance with ENERGY STAR ® Sponsors have leveraged over $1 billion in federal funding and local resources to build more energy-efficient communities. DOE is now expanding this network of residential energy efficiency programs and partners to new members. Who Should Join? Network membership is open to all organizations that are committed to accelerating the pace of energy

451

Residential Solar Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Tax Credit Solar Tax Credit Residential Solar Tax Credit < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate 5,000 for solar-energy systems Program Info Start Date 01/01/1998 (solar electric); 01/01/2006 (solar thermal) State New York Program Type Personal Tax Credit Rebate Amount 25% for solar-electric (PV) and solar-thermal systems; for third-party owned systems this is in reference to the aggregate amount owed under the contract rather than the amount owed in any single year Provider New York State Department of Taxation and Finance Enacted in August 1997, this personal income tax credit originally applied to expenditures on solar-electric (PV) equipment used on residential

452

Asian residential segregation in Houston, Texas  

E-Print Network (OSTI)

and Asians as it did previously for European immigrant groups, but does not apply to African Americans. 6 Previous research on Asian residential segregation has mostly focused on the broad racial category of the Asian population instead...

Yoon, Bo Hee

2009-06-02T23:59:59.000Z

453

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

454

Addressing endogeneity in residential location models  

E-Print Network (OSTI)

Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

Guevara-Cue, Cristin Angelo

2005-01-01T23:59:59.000Z

455

The College Station Residential Energy Compliance Code  

E-Print Network (OSTI)

The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

Claridge, D. E.; Schrock, D.

1988-01-01T23:59:59.000Z

456

Turkish residential real estate investment analysis  

E-Print Network (OSTI)

This paper examines the investment potential for Turkish Residential Real Estate Market, focusing mainly on Istanbul. With a stable economy since 2002, dynamic population, geo-political location and the potential accession ...

Ciller, Berk (Berk U.)

2007-01-01T23:59:59.000Z

457

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

458

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

459

,"New York Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:45:53 PM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

460

Covered Product Category: Residential Electric Resistance Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with capacities of 20 to 120 gallons and maximum energy input of 12 kW. Residential heat pump and gas storage-type water heaters are covered by ENERGY STAR. Boilers, swimming...

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property Tax Exemption for Residential Solar Systems  

Energy.gov (U.S. Department of Energy (DOE))

[http://www.nmlegis.gov/Sessions/10%20Regular/final/HB0233.pdf HB 233 of 2010] exempted residential solar energy systems from property tax assessments. According to state law, for the purposes of...

462

Effects of Federal Residential Energy Conservation Programs  

Science Journals Connector (OSTI)

...fiberglass 2. Improve jacket insulation thermal con ductivity a) 2...setting 5.6'C 4. Add insulation to distribution pipe...Assumed improvements in thermal integrities for residential...sulfur removal from power plants, strip-mine reclamation...

Eric Hirst; Janet Carney

1978-02-24T23:59:59.000Z

463

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network (OSTI)

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

464

Modeling of Residential Attics with Radiant Barriers  

E-Print Network (OSTI)

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant...

Wilkes, K. E.

1988-01-01T23:59:59.000Z

465

Lumbee River EMC- Residential Weatherization Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

466

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to 4.20 per gallon. That's up 13.6 cents from a year ago,...

467

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 4.23 per gallon. That's up 5.1 cents from a year...

468

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 4.23 per gallon. That's up 14.9 cents from a year...

469

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to 4.12 per gallon. That's up 9.4 cents from a year...

470

Residential heating oil prices virtually unchanged  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to 4.24 per gallon. That's up 8.2 cents...

471

Chicopee Electric Light- Residential Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

472

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

M. , Charvat, K. 2004. Solar Chimneys for ResidentialStudy of Performance of Solar Chimney with Air-conditionedM.S. 1994. A Study of Solar Chimney Assisted Wind Towed

Walker, Iain

2013-01-01T23:59:59.000Z

473

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

474

Residential photovoltaic worth : a summary assessment  

E-Print Network (OSTI)

Two critical perspectives have been addressed by the analyses of residential photovoltaic worth. For the researcher and designer have been established allowable costs. For the homeowner and institutional decision-makers ...

Dinwoodie, Thomas L.

1982-01-01T23:59:59.000Z

475

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn Better Buildings Residential Network (BBRN) members must be supportive of residential energy efficiency and the mission of the BBRN. Members are expected to be legally incorporated organizations or institutions, rather than individuals, actively engaged in the field of existing residential building energy efficiency with an ability to impact the market. Members should have the ability and capacity to carry out the requirements for membership (i.e., reporting the annual number of upgrades in their sphere of influence, and associated benefits), and actively engage as a member. Members must actively engage in significant work supporting, studying, researching, reporting, and/or

476

Residential Lighting End-Use Consumption  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

477

Salt Lake County Residential Solar Financing Study  

Energy.gov (U.S. Department of Energy (DOE))

As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a review of the community-scale solar project in St. George, Utah. We have also provided cost estimates for each system.

478

\\{HEMSs\\} and enabled demand response in electricity market: An overview  

Science Journals Connector (OSTI)

Abstract Traditional electricity grid offers demand side management (DSM) programs for industrial plants and commercial buildings; there is no such program for residential consumers because of the lack of effective automation tools and efficient information and communication technologies (ICTs). Smart Grid is, by definition, equipped with modern automation tools such as home energy management system (HEMS), and ICTs. HEMS is an intelligent system that performs planning, monitoring and control functions of the energy utilization within premises. It is intended to offer desirable demand response according to system conditions and price value signaled by the utility. HEMS enables smart appliances to counter demand response programs according to the comfort level and priority set by the consumer. Demand response can play a key role to ensure sustainable and reliable electricity supply by reducing future generation cost, electricity prices, CO2 emission and electricity consumption at peak times. This paper focuses on the review of \\{HEMSs\\} and enabled demand response (DR) programs in various scenarios as well as incorporates various DR architectures and models employed in the smart grid. A comprehensive case study along with simulations and numerical analysis has also been presented.

Aftab Ahmed Khan; Sohail Razzaq; Asadullah Khan; Fatima Khursheed; Owais

2015-01-01T23:59:59.000Z

479

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

480

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems residential demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Evaluation of evolving residential electricity tariffs  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of evolving residential electricity tariffs Evaluation of evolving residential electricity tariffs Title Evaluation of evolving residential electricity tariffs Publication Type Conference Paper Year of Publication 2011 Authors Lai, Judy, Nicholas DeForest, Sila Kiliccote, Michael Stadler, Chris Marnay, and Jonathan Donadee Conference Name ECEEE Summer Study, June 6-11, 2011 Date Published 06/2011 Publisher LBNL Conference Location Belambra Presqu'île de Giens, France Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. A relatively simple two-tiered pricing system (charges by usage under/over baseline for the home's climate zone) was replaced in the summer of 2001 by a more complicated five-tiered system (usage below baseline and up to 30%, 100%, 200%, and 300%+ over baseline). In 2009, PG&E began the process of upgrading its residential customers to Smart Meters and laying the groundwork for time of use pricing, due to start in 2011. This paper examines the history of the tiered pricing system, discusses the problems the utility encountered with its Smart Meter roll out, and evaluates the proposed dynamic pricing incentive structures. Scenario analyses of example PG&E customer bills will also be presented. What would these residential customers pay if they were still operating under a tiered structure, and/or if they participated in peak hour reductions?

482

Marketing Demand-Side Management  

E-Print Network (OSTI)

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

483

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

484

The 1986 residential occupant survey  

SciTech Connect

In 1986, Pacific Northwest Laboratory developed the Residential Occupant Survey-Spring '86, which was implemented. The overall purpose of the study was to collect demographic, attitudinal, and behavioral data related to the use and conservation of electricity in dwellings participating in the Bonneville Power Administration's End-Use Load and Conservation Assessment Program (ELCAP). Information was collected on the respondents' perceptions of the energy efficiency of their dwelling, temperature the dwelling was kept when people were at home and awake during the last heating season, which rooms, if any, were not heated during the last heating season, number of times the dwelling was unoccupied for at least one week, number of times pets were let out of the dwelling per day, attitudes toward energy use and conservation and several socio-demographic variables such as age, sex, and total household income. The results of the data analyses showed age to be an important factor for reported indoor temperature and perceived energy efficiency of the dwelling. The results also showed that almost 60% of the ELCAP occupants do not heat one or more rooms during the heating season, and almost 45% of the ELCAP dwellings were unoccupied for at least one week during the reporting period. In terms of the reported allocation of household income for household energy expenses, the results showed that the reported dollar amount spent for the expenses remained relatively constant over income levels.

Ivey, D.L.; Alley, P.K.

1987-04-01T23:59:59.000Z

485

Assessment of Demand Response Resource  

E-Print Network (OSTI)

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

486

ERCOT Demand Response Paul Wattles  

E-Print Network (OSTI)

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

487

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

488

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

489

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionType Choice, and Fuel Usage Total annual residentialResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

490

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

491

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

492

Housing, Credit Constraints, and Macro Stability: The Secondary Mortgage Market and Reduced Cyclicality of Residential Investment  

E-Print Network (OSTI)

volatility of residential investment shrank relative to thatvolatility of residential investment, the secondary mortgageCyclicality of Residential Investment Joe Peek Gatton Chair

Peek, Joe; Wilcox, James A.

2006-01-01T23:59:59.000Z

493

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

U.S. Residential Electricity Consumption by End Use. 2011a [average residential electricity consumption by end-use inaverage residential electricity consumption by end-use in

Garbesi, Karina

2012-01-01T23:59:59.000Z

494

Assessment of Residential GSHP System  

SciTech Connect

This report first briefly reviews geothermal heat pump (GHP) technology and the current status of the GHP industry in the United States. Then it assesses the potential national benefits, in terms of energy savings, reduced summer peak electrical demand, consumer energy cost savings, and reduced CO{sub 2} emissions from retrofitting the space heating, space cooling, and water heating systems in existing U.S. single-family homes with state-of-the-art GHP systems. The investment for retrofitting typical U.S. single-family homes with state-of-the-art GHP systems is also analyzed using the metrics of net present value and levelized cost.

Liu, Xiaobing [ORNL

2010-09-01T23:59:59.000Z

495

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

496

Post-Retrofit Residential Assessments  

SciTech Connect

This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energys Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

2012-04-30T23:59:59.000Z

497

Demand-Driven Algorithm for Sharing and Distribution of Photovoltaic Power in a Small Local Area Grid  

Science Journals Connector (OSTI)

The objective of installing a residential photovoltaic system is to cut the cost of the monthly electric bill. However, many homeowners, especially those with low-income, finds it difficult to invest in such systems because require substantial upfront ... Keywords: Demand Driven, Information and Communication Technology (ICT), Jordan, Photovoltaic, Power Distribution, Power Sharing, Renewable Energy

Mohammad Abu-Arqoub, Ghassan F. Issa, Ahmad F. Shubita, Abed Alkarim Banna

2014-01-01T23:59:59.000Z

498

Unitil - Residential Energy Efficiency Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Cooling Maximum Rebate Home Performance with Energy Star: $4,000 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: 50% Clothes Washer: $30 Refrigerator: $30 Room Air Conditioner: $20 Room Purifier: $15 CFLs: In-store discounts Provider Unitil Energy Systems

499

Better Buildings Neighborhood Program: What's Working in Residential Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

What's Working What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 to someone by E-mail Share Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Facebook Tweet about Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Twitter Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Google Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Delicious Rank Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Digg

500

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200