Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Demand Module 1999, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

1999-01-01T23:59:59.000Z

2

Industrial Demand Module 2005, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2005-05-01T23:59:59.000Z

3

Industrial Demand Module 2006, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2006-07-01T23:59:59.000Z

4

Industrial Demand Module 2009, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2009-05-20T23:59:59.000Z

5

Industrial Demand Module 2003, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2003-12-01T23:59:59.000Z

6

Industrial Demand Module 2007, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2007-03-21T23:59:59.000Z

7

Industrial Demand Module 2002, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2001-12-01T23:59:59.000Z

8

Industrial Demand Module 2001, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-12-01T23:59:59.000Z

9

Industrial Demand Module 2008, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. C. Honeycutt

2008-06-01T23:59:59.000Z

10

Industrial Demand Module 2000, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2000-01-01T23:59:59.000Z

11

Industrial Demand Module 2004, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

T. Crawford Honeycutt

2004-02-01T23:59:59.000Z

12

Industrial Demand Module 1998, National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description ofthe NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in supportof its models (Public Law 94-385, section 57.b2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

T. Crawford Honeycutt

1998-01-01T23:59:59.000Z

13

NEMS integrating module documentation report  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the US energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior. The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Not Available

1993-12-14T23:59:59.000Z

14

NEMS industrial module documentation report  

SciTech Connect

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

1994-01-01T23:59:59.000Z

15

NEMS integrating module documentation report  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to a variety of assumptions. The assumptions encompass macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, technology characteristics, and demographics. NEMS produces a general equilibrium solution for energy supply and demand in the U.S. energy markets on an annual basis through 2015. Baseline forecasts from NEMS are published in the Annual Energy Outlook. Analyses are also prepared in response to requests by the U.S. Congress, the DOE Office of Policy, and others. NEMS was first used for forecasts presented in the Annual Energy Outlook 1994.

NONE

1997-05-01T23:59:59.000Z

16

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

17

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

18

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

19

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

20

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

22

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

23

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

24

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

25

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

26

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

27

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

28

Appendix C: Map of NEMS Electricity Market Module Regions  

Annual Energy Outlook 2012 (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix C: Map of NEMS Electricity Market Module Regions...

29

Appendix C. Map of NEMS Electricity Market Module Regions  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Hall Appendix C. Map of NEMS Electricity Market Module Regions...

30

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

31

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

32

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

33

Residential Sector Demand Module 2000, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

1999-12-01T23:59:59.000Z

34

Residential Sector Demand Module 2004, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2004-02-01T23:59:59.000Z

35

Residential Sector Demand Module 2001, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2000-12-01T23:59:59.000Z

36

Residential Sector Demand Module 2002, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2001-12-01T23:59:59.000Z

37

Residential Sector Demand Module 2005, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2005-04-01T23:59:59.000Z

38

Residential Sector Demand Module 2003, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2003-01-01T23:59:59.000Z

39

Residential Sector Demand Module 2008, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2008-10-10T23:59:59.000Z

40

Residential Sector Demand Module 2006, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Sector Demand Module 2009, Model Documentation  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2009-05-01T23:59:59.000Z

42

Residential Sector Demand Module 1999, Model Documentation  

Reports and Publications (EIA)

This is the fifth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1999.

John H. Cymbalsky

1998-12-01T23:59:59.000Z

43

Residential Sector Demand Module 2007, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2007-04-26T23:59:59.000Z

44

Residential Sector Demand Module 1998, Model Documentation  

Reports and Publications (EIA)

This is the fourth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1998. Since last year, severalnew end-use services were added to the module, including: Clothes washers,dishwashers, furnace fans, color televisions, and personal computers. Also, as with allNEMS modules, the forecast horizon has been extended to the year 2020.

John H. Cymbalsky

1998-01-01T23:59:59.000Z

45

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Forecasts Using NEMS and GIS National Climatic Data Center.with Changing Boundaries." Use of GIS to Understand Socio-Forecasts Using NEMS and GIS Appendix A. Map Results Gallery

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

46

Assessment and Suggestions to Improve the Commercial Building Module of EIA-NEMS  

E-Print Network (OSTI)

The National Energy Modeling System (NEMS) is a comprehensive, computer-based, energy-economy modeling system developed and maintained by the Department of Energy's Energy Information Administration (EIA). NEMS forecasts the national production, imports, conversion, consumption, and prices of energy out to 2015, subject to macroeconomic assumptions, world energy markets, resource availability and costs, technological developments, and behavioral and technological choice criteria. NEMS has nine program modules of which the Commercial Sector Demand (CSD) module is one. Currently the CSD module uses a matrix of Energy Use Intensities (EUls) gleaned from the 1989 CBECS database to model service demand per major fuel type for eight different geographic census divisions and eleven different building types.

O'Neal, D. L.

1996-01-01T23:59:59.000Z

47

U.S. Regional Energy Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

LBNL-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Jesse A. Cohen, Jennifer L Efficiency and Renewable Energy, Office of Planning, Budget, and Analysis of the U.S. Department of Energy-57955 U.S. Regional Energy Demand Forecasts Using NEMS and GIS Prepared for the Office of Planning

48

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

49

Residential Sector Demand Module 1995, Model Documentation  

Reports and Publications (EIA)

This updated version of the NEMS Residential Module Documentation includes changesmade to the residential module for the production of the Annual Energy Outlook 1995.

John H. Cymbalsky

1995-03-01T23:59:59.000Z

50

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

51

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

52

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

53

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

54

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

55

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

56

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

57

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

58

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

59

EIA Buildings Analysis of Consumer Behavior in NEMS  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Analysis of Consumer Buildings Analysis of Consumer Behavior in NEMS Behavioral Economics Experts Meeting July 17, 2013 | Washington, DC David Peterson Buildings Energy Consumption and Efficiency Analysis Overview Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 2 * NEMS Structure * Housing/floorspace and service demand in Residential Demand Module (RDM) and Commercial Demand Module (CDM) * Market share calculation for equipment in RDM and CDM * Price responses / elasticities * Distributed generation (DG) & combined heat and power (CHP) NEMS Structure Behavioral Economics Experts Meeting, Washington DC, July 17, 2013 3 * Represents energy supply, conversion, and demand in a unified, but modular system * Detailed structural and process models in most energy sectors

60

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

62

National Energy Modeling System (NEMS)  

DOE Data Explorer (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

63

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

64

Model documentation report: Residential sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

NONE

1998-01-01T23:59:59.000Z

65

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

66

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

67

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

68

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

69

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

70

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

71

Residential Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Residential Demand Module of the National Energy Modeling System: Model Documentation 2013 November 2013 Independent Statistics & Analysis ...

72

Industrial Demand Module (IDM) - 2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The Industrial Demand Module incorporates three components: buildings; process and assembly; and boiler, steam, and cogeneration. Last Model Update:

73

Residential Sector Demand Module 1997, Model Documentation  

Reports and Publications (EIA)

This is the third edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System. It reflects changes made to the moduleover the past year for the Annual Energy Outlook 1997. Since last year, a subroutinewas added to the model which allows technology and fuel switching when space heaters,heat pump air conditioners, water heaters, stoves, and clothes dryers are retired in bothpre-1994 and post-1993 single-family homes. Also, a time-dependant function forcomputing the installed capital cost of equipment in new construction and the retail costof replacement equipment in existing housing was added.

John H. Cymbalsky

1997-01-01T23:59:59.000Z

74

Commercial Demand Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

Commercial Demand Module of the National Energy Modeling System: Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

75

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

76

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

77

Model documentation report: Residential sector demand module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1997-01-01T23:59:59.000Z

78

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

79

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

80

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The National Energy Modeling System: An Overview 2000 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Since energy costs and availability and energy-consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to facilitate policy analysis and ensure the validity of the results. A summary of the detail provided in NEMS is shown below. Summary Table Major Assumptions Each module of NEMS embodies many assumptions and data to characterize the future production, conversion, or consumption of energy in the United States. Two major assumptions concern economic growth in the United States and world oil prices, as determined by world oil supply and demand.

82

Overview of NEMS-H2, Version 1.0  

NLE Websites -- All DOE Office Websites (Extended Search)

NEMS-H2, Version 1.0 NEMS-H2, Version 1.0 Frances Wood OnLocation, Inc., Energy Systems Consulting (fwood@onlocationinc.com) January 26, 2006 OnLocation, Inc., Energy Systems Consulting 2 Today's Presentation * Overview of NEMS-H2 Structure * Current Status * New Hydrogen Market Module (HMM) * Transportation Module Modifications * Preliminary Test Runs * Looking Ahead to Next Phase OnLocation, Inc., Energy Systems Consulting 3 NEMS Overview * The National Energy Modeling System (NEMS) was developed and is maintained by EIA - Annual Energy Outlook projections - Congressional as well as agency requests * NEMS has also been used extensively outside of EIA - Various National Laboratories studies - National Commission on Energy Policy - Program offices within DOE for R&D benefits estimation * Modular structure allows each sector to be represented by

83

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

84

Model Documentation Report: Residential Demand Module of the ...  

U.S. Energy Information Administration (EIA)

rebates used in demand-side management programs), can be modified at the equipment level. Housing ... Residential retired equipment efficiencies of 2005 stock

85

NEMS may be addressed to the following analysts:  

E-Print Network (OSTI)

This publication is on the WEB at: www.eia.doe.gov/oiaf/aeo/overview/index.html This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. PREFACE The National Energy Modeling System: An Overview provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2020 for the Annual Energy Outlook 2000 (AEO2000), (DOE/EIA-0383(2000)), released in November 1999. AEO2000 presents national forecasts of energy markets for five casesa reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document

An Overview; Aeo Susan H. Holte

2000-01-01T23:59:59.000Z

86

Electricity Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Market Module Market Module This page inTenTionally lefT blank 101 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2013, DOE/EIA-M068(2013). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

87

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

88

Macroeconomic Activity Module (Mam) 1998 (Kernel Regression), Model Documentation  

Reports and Publications (EIA)

The Macroeconomic Activity Module (MAM) serves two functions within the National Energy Modeling System (NEMS). First, it provides consistent sets of baselines macroeconomic variables (GDP and components, aggregate prices, interest rates, industrial output, housing starts, commercial floorspace, newcar sales, etc.) which are used by the supply, demand and conversion modules in reaching an energy market equilibrium. Second, it is designed to provide a feedback mechanism that alters the baseline variables during the course of an integrated NEMS run.

Ron Earley

1998-10-01T23:59:59.000Z

89

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 91 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2012, DOE/EIA-M068(2012). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

90

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 95 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, electricity load and demand, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2011, DOE/EIA-M068(2011). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most

91

Electricity Market Module  

Reports and Publications (EIA)

Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

Jeff Jones

2013-07-24T23:59:59.000Z

92

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

93

EIA-Assumptions to the Annual Energy Outlook - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2007 International Energy Module The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously derived supply curves, initial price paths and international regional supply and demand levels into NEMS. These quantities are not modeled directly in NEMS because NEMS is not an international model. Previous versions of the IEM adjusted these quantities after reading in initial values. In an attempt to more closely integrate the AEO2007 with the IEO2006 and the STEO some functionality was removed from the IEM. More analyst time was devoted to analyzing price relationships between marker crude oils and refined products. A new exogenous oil supply model, Generate World Oil Balances (GWOB), was also developed to incorporate actual investment occurring in the international oil market through 2015 and resource assumptions through 2030. The GWOB model provides annual country level oil production detail for eight conventional and unconventional oils.

94

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

95

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

96

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

97

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

98

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

99

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

100

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

102

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

103

Analysis and Representation of Miscellaneous Electric Loads in NEMS -  

Gasoline and Diesel Fuel Update (EIA)

Analysis and Representation of Miscellaneous Electric Loads in NEMS Analysis and Representation of Miscellaneous Electric Loads in NEMS Release date: January 6, 2014 Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy consumption in residential and commercial buildings. Recently, the growth of MELs has offset some of the efficiency gains made through technology improvements and standards in major end uses such as space conditioning, lighting, and water heating. Miscellaneous end uses, including televisions, personal computers, security systems, data center servers, and many other devices, have continued to penetrate into building-related market segments. Part of this proliferation of devices and equipment can be attributed to increased service demand for entertainment, computing, and convenience appliances.

104

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

105

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

106

Assumptions to the Annual Energy Outlook 2002 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2002, DOE/EIA- M068(2002) January 2002. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

107

Assumptions to the Annual Energy Outlook 2001 - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2001, DOE/EIA- M068(2001) January 2001. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are

108

Availability of the National Energy Modeling System (NEMS) Archive.  

U.S. Energy Information Administration (EIA)

Availability of the National Energy Modeling System (NEMS) Archive. NEMS has been developed primarily for use by the modelers at Energy Information

109

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Administration. 2004c. "Energy Glossary Website."http://www.eia.doe.gov/glossary/. Energy InformationGIS Appendix G. Glossary AEO : The Annual Energy Outlook,

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

110

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Efficiency and Renewable Energy U.S. Department of Energyor consumption of energy in the U.S. Figure 2: The 13California Energy Commission 2002) U.S. Regional Energy

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

111

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

Figure 29: Residential electricity growth rate (percentage)Over Time The residential electricity growth rate indicatesFigure 29: Residential electricity growth rate (percentage)

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

112

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

h. Pacific i. MidAtlantic 4. Climate Zone shapefile a.must have a field with climate zone IDs as an integer in apopulation forecasts and climate zone data. The models

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

113

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

114

The National Energy Modeling System: An Overview 1998 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

OVERVIEW OF NEMS OVERVIEW OF NEMS blueball.gif (205 bytes) Major Assumptions blueball.gif (205 bytes) NEMS Modular Structure blueball.gif (205 bytes) Integrating Module NEMS represents domestic energy markets by explicitly representing the economic decisionmaking involved in the production, conversion, and consumption of energy products. For example, the penetration of a new or advanced technology for electricity generation is projected only if the technology is deemed to be economic when considering the cost-minimizing mix of fuels over the life of the equipment. Since energy costs and availability and energy- consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to

115

Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices  

Science Conference Proceedings (OSTI)

The micro/nanoelectromechanical systems (MEMS/NEMS) need to be designed to perform expected functions typically in millisecond to picosecond range. Expected life of the devices for high speed contacts can vary from few hundred thousand to many billions ... Keywords: MEMS, NEMS, Nanomaterials characterization, Nanomechanics, Nanotechnology

Bharat Bhushan

2007-03-01T23:59:59.000Z

116

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2012-11-05T23:59:59.000Z

117

International Energy Module  

Reports and Publications (EIA)

Summarizes the overall structure of the International Energy Model and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods.

Adrian Geagla

2013-10-22T23:59:59.000Z

118

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

119

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

120

Integrating Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

Chapter 3 describes the NEMS global data structure, used for inter-module communication, ... technologies, representations of renewable energy technologies, ...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Model documentation, Coal Market Module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

NONE

1998-01-01T23:59:59.000Z

122

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

123

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

124

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

125

Investigation of residential central air conditioning load shapes in NEMS  

E-Print Network (OSTI)

of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-01-01T23:59:59.000Z

126

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

127

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

128

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

129

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network (OSTI)

Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model developed for industrial energy analysis at the Pacific Northwest National Laboratory. Although the results are mixed, generally ITEMS show greater penetration of energy efficient technologies and thus lower energy use, even though the business as usual forecasts for ITEMS uses a higher discount rate than NEMS uses.

Roop, J. M.; Dahowski, R. T

2000-04-01T23:59:59.000Z

130

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

131

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

132

Residential Demand Module...................................................................................................................... 27  

E-Print Network (OSTI)

analytical agency within the U.S. Department of Energy. By law, EIAs data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

unknown authors

2013-01-01T23:59:59.000Z

133

Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

NA NA 0.000 Diesel Engine II: integrated starteralternator with idle off and limited regenerative breaking 2005 1500.00 0.050 2005 1200.00 0.050 NA NA 0.000 Diesel Engine...

134

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

135

Model documentation: Electricity Market Module, Electricity Capacity Planning submodule  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

1994-04-07T23:59:59.000Z

136

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

137

Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

6, DOE/EIA- 6, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

138

Integrating Module of the National Energy Modeling System  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2010-06-01T23:59:59.000Z

139

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

140

EIA-Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2007 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2007, DOE/EIA- M068(2007). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

142

Macroeconomic Activity Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 2013 (AEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code

2013-04-10T23:59:59.000Z

143

DOE Hydrogen Analysis Repository: NEMS-H2 (National Energy Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

economic aspects of hydrogen production, delivery, and consumption. Keywords: Energy prices; emissions; production; imports; energy consumption; economic Purpose NEMS projects...

144

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 129 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled

145

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

146

Integrating Module of the National Energy Modeling System 2007, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2007-05-23T23:59:59.000Z

147

Integrating Module of the National Energy Modeling System 1995, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1995-05-01T23:59:59.000Z

148

Integrating Module of the National Energy Modeling System 1997, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1997-05-01T23:59:59.000Z

149

Integrating Module of the National Energy Modeling System 2004, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2004-02-01T23:59:59.000Z

150

Integrating Module of the National Energy Modeling System 2001, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2000-12-01T23:59:59.000Z

151

Integrating Module of the National Energy Modeling System 2009, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2009-05-01T23:59:59.000Z

152

Integrating Module of the National Energy Modeling System 1999, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1998-12-01T23:59:59.000Z

153

Integrating Module of the National Energy Modeling System 2000, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

1999-12-01T23:59:59.000Z

154

Integrating Module of the National Energy Modeling System 2008, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2008-08-29T23:59:59.000Z

155

Integrating Module of the National Energy Modeling System 2002, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2001-12-01T23:59:59.000Z

156

Integrating Module of the National Energy Modeling System 2005, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2005-05-01T23:59:59.000Z

157

Integrating Module of the National Energy Modeling System 1996 Model Documentation - NOT PUBLISHED  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

158

Integrating Module of the National Energy Modeling System 2006, Model Documentation  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

Dan Skelly

2006-06-01T23:59:59.000Z

159

Integrating Module of the National Energy Modeling System 1998 Model Documentation - NOT PUBLISHED  

Reports and Publications (EIA)

Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

John Maples

2013-09-05T23:59:59.000Z

160

Renewable Fuels Module, Appendix - Model Performance, Model Documentation  

Reports and Publications (EIA)

This appendix discusses performance aspects of the Renewable Fuels Module (RFM). It is intended to present the pattern of response of the RFM to typical changes in its major inputs from other NEMS modules.

Perry M. Lindstrom

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

162

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

163

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

164

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

165

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

166

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network (OSTI)

and maintenance (O&M) costs, renewable energy productionrenewable energy technologies are modeled becomes critical. The structure of NEMS makes cost

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

167

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

168

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

169

Nanoelectromechanical (NEM) relays integrated with CMOS SRAM for improved stability and low leakage  

Science Conference Proceedings (OSTI)

We present a hybrid nanoelectromechanical (NEM)/CMOS static random access memory (SRAM) cell, in which the two pull-down transistors of a conventional CMOS six transistor (6T) SRAM cell are replaced with NEM relays. This SRAM cell utilizes the infinite ...

Soogine Chong; Kerem Akarvardar; Roozbeh Parsa; Jun-Bo Yoon; Roger T. Howe; Subhasish Mitra; H.-S. Philip Wong

2009-11-01T23:59:59.000Z

170

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

171

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

172

Nano-Electro-Mechanical (NEM) Relay Devices and Technology for Ultra-Low Energy Digital Integrated Circuits  

E-Print Network (OSTI)

Technology 3.1 Introduction Nano-electro-mechanical (NEM)improvements, a scaled nano-relay technology with optimizedNano-Electro-Mechanical (NEM) Relay Devices and Technology

Nathanael, Rhesa

2012-01-01T23:59:59.000Z

173

Boron injection/dilution capabilities in TRACB/NEM coupled code  

SciTech Connect

The coupled code TRAC-BF1/NEM is a thermal-hydraulic-neutronic code which allows transient simulations considering neutronic 3D and thermal-hydraulic process in multiple channels with one-dimensional geometry. TRAC-BF1 and NEM can be executed either in stand-alone mode, i.e. without coupling, as well as coupled. In stand-alone calculations NEM code is used without coupling and the thermal-hydraulic conditions (fuel temperature, moderator density and boron concentration) and xenon concentration for each node are taken from the SIMULATE3 output files. The NEM's source code has been modified to be able to read these conditions from external files when it is executed without being coupled. The coupling between TRAC-BF1 and NEM follows an integration scheme in which the thermal-hydraulic solution of TRAC-BF1 is sent to NEM to incorporate the feedback effects through the cross sections. TRAC-BF1 solves heat conduction equations inside of the heat structures using the 3D power distribution from NEM. The coupling is carried out through the communication protocol functions of PVM (Parallel Virtual Machine). The present article presents a study which constitutes an advance in the simulation of injection, transport and mix of boron in the reactor, increasing the capabilities of TRAC-BF1/NEM coupled code. This article shows the modifications introduced in the TRAC-BF1/NEM's source code to allow a more realistic simulation of boron injection transients. The qualification of these improvements in both codes is performed simulating a steady state of a generic BWR at nominal power. The results have been compared with SIMULATE3 which is used as a reference to obtain the cross sections through the SIMTAB methodology. (authors)

Jambrina, A.; Barrachina, T.; Miro, R.; Verdu, G. [Inst. for the Industrial, Radiophysical and Environmental Safety ISIRYM, Universitat Politecnica de Valencia UPV (Spain)

2012-07-01T23:59:59.000Z

174

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2013-10-01T23:59:59.000Z

175

CNT-based MEMS/NEMS gas ionizers for portable mass spectrometry applications  

E-Print Network (OSTI)

We report the fabrication and experimental characterization of a carbon nanotube (CNT)-based MEMS/NEMS electron impact gas ionizer with an integrated extractor gate for portable mass spectrometry. The ionizer achieves ...

Velasquez-Heller, Luis Fernand

176

Transportation Sector Module 1997, Model Documentation  

Reports and Publications (EIA)

Over the past year, several modifications have been made to the NEMS Transportation Model,incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules.

John Maples

1997-02-01T23:59:59.000Z

177

Solar in Demand | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's...

178

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

179

Workshop on Opportunities for Magnetism in MEMS/NEMS, April 16-17, 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Magnetism in MEMS/NEMS Opportunities for Magnetism in MEMS/NEMS Argonne National Laboratory - April 16-17, 2010 Sponsored by NSF, NIST and Argonne National Laboratory Friday, April 16 13:00 Welcome and Introduction Chair: John Moreland 13:10 Pritiraj Mohanty Boston University "Study of Spin Dynamics using Nanomechanics" 13:50 T. Mitch Wallis NIST, Boulder "Measurement of the Einstein-de Haas Effect with a Microcantilever" 14:30 Albrecht Jander Oregon State University "Application of Torques to Nanostructures using Ferromagnetic Resonance" 15:10 Coffee Break Chair: Dennis Greywall 15:30 Rassul Karabalin Caltech "Next-Generation NEMS Functionality Enable by Advances in Novel Materials"

180

Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)  

SciTech Connect

This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.

Gumerman, Etan; Marnay, Chris

2004-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

182

2002 EIA Models Directory - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The NEMS Residential Sector Demand Module is an integrated dynamic modeling system that projects residential energy demand by ... Energy Demand and Integration ...

183

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

184

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

185

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

186

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

187

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

188

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

189

Appendix E: Other NEMS-MP results for the base case and scenarios.  

DOE Green Energy (OSTI)

The NEMS-MP model generates numerous results for each run of a scenario. (This model is the integrated National Energy Modeling System [NEMS] version used for the Multi-Path Transportation Futures Study [MP].) This appendix examines additional findings beyond the primary results reported in the Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses (Reference 1). These additional results are provided in order to help further illuminate some of the primary results. Specifically discussed in this appendix are: (1) Energy use results for light vehicles (LVs), including details about the underlying total vehicle miles traveled (VMT), the average vehicle fuel economy, and the volumes of the different fuels used; (2) Resource fuels and their use in the production of ethanol, hydrogen (H{sub 2}), and electricity; (3) Ethanol use in the scenarios (i.e., the ethanol consumption in E85 vs. other blends, the percent of travel by flex fuel vehicles on E85, etc.); (4) Relative availability of E85 and H2 stations; (5) Fuel prices; (6) Vehicle prices; and (7) Consumer savings. These results are discussed as follows: (1) The three scenarios (Mixed, (P)HEV & Ethanol, and H2 Success) when assuming vehicle prices developed through literature review; (2) The three scenarios with vehicle prices that incorporate the achievement of the U.S. Department of Energy (DOE) program vehicle cost goals; (3) The three scenarios with 'literature review' vehicle prices, plus vehicle subsidies; and (4) The three scenarios with 'program goals' vehicle prices, plus vehicle subsidies. The four versions or cases of each scenario are referred to as: Literature Review No Subsidies, Program Goals No Subsidies, Literature Review with Subsidies, and Program Goals with Subsidies. Two additional points must be made here. First, none of the results presented for LVs in this section include Class 2B trucks. Results for this class are included occasionally in Reference 1. They represent a small, though noticeable, segment of the 'LV plus 2B' market (e.g., a little more than 3% of today's energy use in that market). We generally do not include them in this discussion, simply because it requires additional effort to combine the NEMS-MP results for them with the results for the other LVs. (Where there is an exception, we will indicate so.) Second, where reference is made to E85, the ethanol content is actually 74%. The Energy Information Administration (EIA) assumes that, to address cold-starting issues, the percent of ethanol in E85 will vary seasonally. The EIA uses an annual average ethanol content of 74% in its forecasts. That assumption is maintained in the NEMS-MP scenario runs.

Plotkin, S. E.; Singh, M. K.; Energy Systems

2009-12-03T23:59:59.000Z

190

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

DOE Green Energy (OSTI)

Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214 GW when all limitations are removed. The figures in the upper end of these ranges are not intended to be viewed as reasonable projections, but their magnitude illustrates the importance of the parameters governing the growth of wind capacity and resource availability in forecasts using NEMS. In addition, many uncertainties exist regarding these assumptions that potentially affect the growth of wind power. We suggest several areas in which to focus future research in order to better model the potential development of this resource. Because many of the assumptions related to wind in the model are also used for other renewable technologies, these suggestions could be applied to other renewable resources as well.

Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

191

Appendix model performance - model documentation renewable fuels module of the National Energy Modeling System  

DOE Green Energy (OSTI)

This appendix discusses performance aspects of the Renewable Fuels Module (RFM). It is intended to present the pattern of response of the RFM to typical changes in its major inputs from other NEMS modules. The overall approach of this document, with the particular statistics presented, is designed to be comparable with similar analyses conducted for all of the modules of NEMS. While not always applicable, the overall approach has been to produce analyses and statistics that are as comparable as possible with model developer`s reports for other NEMS modules. Those areas where the analysis is somewhat limited or constrained are discussed. Because the RFM consists of independent submodules, this appendix is broken down by submodule.

Not Available

1994-09-01T23:59:59.000Z

192

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

193

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network (OSTI)

presents forecasts of energy supply, demand and pricesa reference case forecast with fossil fuel prices close toforecast for wind technologies. The AEOs annual report of energy supply, demand, and prices

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

194

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

195

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

196

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

197

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

198

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

199

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

200

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

202

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

203

Science and technology of piezoelectric/diamond heterostructures for monolithically integrated high performance MEMS/NEMS/CMOS devices.  

SciTech Connect

This paper describes the fundamental and applied science performed to integrate piezoelectric PbZr{sub x}Ti{sub 1-x}O{sub 3} and AlN films with a novel mechanically robust ultrananocrystalline diamond layer to enable a new generation of low voltage/high-performance piezoactuated hybrid piezoelectric/diamond MEMS/NEMS devices.

Auciello, O.; Sumant, A. V.; Hiller, J.; Kabius, B.; Ma, Z.; Srinivasan, S. (Center for Nanoscale Materials); ( MSD); (Univ. of Wisconsin at Madison); (INTEL)

2008-12-01T23:59:59.000Z

204

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

205

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

206

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

207

Estimating the environmental and economic effects of widespread residential PV adoption using GIS and NEMS  

Science Conference Proceedings (OSTI)

This paper describes a study of the national effects of widespread adoption of grid-connected residential rooftop photovoltaic (PV) systems. A Geographic Information System (GIS) model is used to estimate potential PV system adoption and PV electricity generation and the National Energy Modeling System (NEMS) is used to estimate the national effects of PV electricity generation. Adoption is assumed to occur if levelized PV system cost is less than the local average retail electricity rate at the country level. An estimate of the current {open_quotes}best{close_quotes} scenario (defined by a 6.5% real interest rate, 30-year loan life, $6{sub 1994}/W system cost, and $4{sub 1994}/month voluntary premium) results in no adoption. Several scenarios designed to stimulate PV adoption are modeled. As an example, if PV system costs are instead assumed to be $3{sub 1994}/W, rooftop systems are found to be cost effective in 16% of detached single-family households in the U.S. by 2015 (assuming full adoption of 4-kW systems), this results in 82.1 TWh of annual PV electricity generation, 170 TWh of avoided electricity transmission, distribution, and generation losses, 6 Mt/a of avoided carbon emissions, 50 kt/a of avoided NOx emissions, and 27.3 GW of avoided electricity generating capacity in place.

Marnay, C.; Richey, R.C.; Mahler, S.A. [and others

1997-10-01T23:59:59.000Z

208

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

209

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, its also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if its cold, consumers will use ...

210

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

211

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

212

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

213

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

214

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

215

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

216

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

217

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

218

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

219

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses - Appendix E: Other NEMS-MP Results for the Base Case and Scenarios  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix E: Other NEMS-MP Results Appendix E: Other NEMS-MP Results for the Base Case and Scenarios Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

220

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Model documentation Renewable Fuels Module of the National Energy Modeling System  

DOE Green Energy (OSTI)

This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

NONE

1996-01-01T23:59:59.000Z

222

Model documentation Coal Market Module of the National Energy Modeling System  

SciTech Connect

This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

1996-04-30T23:59:59.000Z

223

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

224

Petroleum Market Module  

U.S. Energy Information Administration (EIA)

Cellulosic biomass feedstock supplies and costs are taken from the NEMS Renewable Fuels Model. Initial capital costs for biomass cellulosic ethanol were obtained f ...

225

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

226

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

227

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

228

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

229

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

230

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

231

Modular Communication Interface Specification for Demand Response  

Science Conference Proceedings (OSTI)

This report contains a technical specification for a modular interface for residential appliances that enables them to be compatible with any utility communication system through the use of customer-installable plug-in communication modules. This specification is the result of collaboration between utilities, appliance makers, communication system providers, demand response service providers, and trade organizations. The specification details the mechanical, electrical, and logical characteristics of a s...

2011-08-31T23:59:59.000Z

232

Electricity market module: Electricity fuel dispatch submodule  

Science Conference Proceedings (OSTI)

In previous Annual Energy Outlooks (AEO), international electricity trade was represented in the National Energy Modeling System (NEMS) Electricity Market Module (EMM) modeling framework as an exogenous input. The exception to this exogenous treatment was for firm power projections, i.e., new Canadian hydroelectric model builds. The AEO95 implementation of EMM allowed Canadian hydroelectric projects to be selected in the Electricity Capacity Planning (ECP) submodule on an annual basis and otherwise addressed as any other purchased power commitments. This technical memorandum addresses modifications to the Electricity Fuel Dispatch Submodule implemented in AEO96 to enhance the treatment of international electricity trade through the representation of economy imports from Canada.

NONE

1996-06-01T23:59:59.000Z

233

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

234

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

235

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

236

Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module  

SciTech Connect

The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliers must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.

1998-02-01T23:59:59.000Z

237

Macroeconomic Activity Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 19 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook2011 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module.

238

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

239

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

240

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

242

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

243

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

244

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

245

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

246

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

247

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

248

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFCs core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

249

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

250

PDSF Modules  

NLE Websites -- All DOE Office Websites (Extended Search)

Modules Modules Modules Modules Approach to Managing The Environment Modules is a system which you can use to specify what software you want to use. If you want to use a particular software package loading its module will take care of the details of modifying your environment as necessary. The advantage of the modules approach is that the you are not required to explicitly specify paths for different executable versions and try to keep their related man paths and environment variables coordinated. Instead you simply "load" and "unload" specific modules to control your environment. Getting Started with Modules If you're using the standard startup files on PDSF then you're already setup for using modules. If the "module" command is not available, please

251

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

252

Photovoltaic Modules: Effect of Tilt Angle on Soiling.  

E-Print Network (OSTI)

??Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted (more)

Cano, Jose

2011-01-01T23:59:59.000Z

253

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

254

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

255

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

256

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

257

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

258

Experts Meeting: Behavioral Economics as Applied to Energy Demand...  

U.S. Energy Information Administration (EIA) Indexed Site

methods associated with the modeling of changing energy markets for purposes of public information and policy analysis. - EIA uses the NEMS tool, a computer-based,...

259

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

260

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

262

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

263

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

264

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

265

Transportation Sector Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2012-10-31T23:59:59.000Z

266

Transportation Sector Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2013-09-05T23:59:59.000Z

267

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

268

EIA-Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2007 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

269

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

270

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

271

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

272

Model Documentation Report: Residential Demand Module of the ...  

U.S. Energy Information Administration (EIA)

New home heating technology choice model log-linear parameter ?. ... Percent of homes meeting ENERGY STAR Home criteria or better by heating technology

273

EIA - The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System: An Overview 2003 This report provides a summary description of the NEMS which was used to generate the projections of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003. Preface Introduction Overview of NEMS Carbon Dioxide and Methane Emissions Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Renewable Fuels Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Bibliography Download the Report NEMS: An Overview 2003 Cover. Need help, contact the National Energy Information Center at 202-586-8800.

274

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

275

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

276

NEMS Measurement Science  

Science Conference Proceedings (OSTI)

... approximately one third of all nanotechnology R&D [1] and ... will focus on the measurement science needed for ... this work, all of these results will be ...

2012-12-21T23:59:59.000Z

277

Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.  

SciTech Connect

Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

2009-05-01T23:59:59.000Z

278

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

279

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

280

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

282

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence (more)

Li, Suxi

2007-01-01T23:59:59.000Z

283

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

284

Module Configuration  

SciTech Connect

A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

Oweis, Salah (Ellicott City, MD); D' Ussel, Louis (Bordeaux, FR); Chagnon, Guy (Cockeysville, MD); Zuhowski, Michael (Annapolis, MD); Sack, Tim (Cockeysville, MD); Laucournet, Gaullume (Paris, FR); Jackson, Edward J. (Taneytown, MD)

2002-06-04T23:59:59.000Z

285

Critical infrastructure security curriculum modules  

Science Conference Proceedings (OSTI)

Critical infrastructures have succumbed to the demands of greater connectivity. Although the scheme of connecting these critical equipment and devices to cyberspace has brought us tremendous convenience, it also enabled certain unimaginable risks and ... Keywords: SCADA, control systems, course modules, critical infrastructures, cybersecurity, programmable logic controllers, security, vulnerability

Guillermo A. Francia, III

2011-09-01T23:59:59.000Z

286

Assumptions to the Annual Energy Outlook 2002 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2002), (Washington, DC, January 2002). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

287

Assumptions to the Annual Energy Outlook 2001 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2001), (Washington, DC, January 2001). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

288

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

289

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

290

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

291

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

292

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

293

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

294

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

295

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

296

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

297

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

298

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. Economic demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

299

Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

Piette, Mary Ann; Kiliccote, Sila

2006-09-01T23:59:59.000Z

300

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

302

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

303

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

304

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

305

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

306

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

307

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

308

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

309

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

310

1018 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 6, DECEMBER 2004 Limit Cycle Oscillations in CW Laser-Driven NEMS  

E-Print Network (OSTI)

. N. Schoess, and M. L. Wilson, "Fiber-optic vibration sensor based on frequency modulation of light1018 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 6, DECEMBER 2004 Limit Cycle. As the device moves within the field, the quantity of light absorbed and hence the resulting thermal stresses

Rand, Richard H.

311

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

312

Module Handbook Specialisation Photovoltaics  

E-Print Network (OSTI)

#12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Module name: PHOTOVOLTAIC CELL AND MODULE TECHNOLOGY Section EUREC · Chemistry · Physics Target learning outcomes The module Photovoltaic Cell and Module Technology teaches

Habel, Annegret

313

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

314

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

315

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

316

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

317

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

318

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

319

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

320

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

322

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

323

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

324

Model documentation renewable fuels module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

NONE

1995-06-01T23:59:59.000Z

325

Application on demand system over the Internet  

E-Print Network (OSTI)

This paper describes the design and implementation of the ASP-NG system. The main modules of the ASP-NG system are the AoD service and the Web Portal. The ASP-NG Portal is a portal for providing the user with the necessary interface in order to access an Application on Demand (AoD) service. The ASP-NG portal is responsible for the interaction with the user of the AoD service. Using the AoD service the user rents an application for a limited time period at a fraction of the actual cost of the application. The AoD service is responsible for downloading the appropriate parts of the application according to the user's actions, while enforcing the mutually agreed frame between the user and the Application Service Provider (ASP). The implementation of the ASP-NG portal is based on the Web Services of the Java 2, Enterprise Edition platform and the implementation of the AoD module is based on CCCprogramming language. The ASP-NG portal offers to its users the capability to select and customize the language of the user interface in order to present information in their preferred language. Moreover the ASP-NG portal offers to the portal administrator the capability to customise the look and feel of the ASP-NG portal.

Ch Bouras Gkamas; Ch. Bouras A; A. Gkamas A; I. Nave B; D. Primpas A; A. Shani B; O. Sheory B; K. Stamos A; Y. Tzruya C

2004-01-01T23:59:59.000Z

326

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

327

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

328

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

329

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

330

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

331

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

332

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

333

EIA - Assumptions to the Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2010 This report summarizes the major assumptions used in the NEMS to generate the AEO2010 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions Download the Report Assumptions to the Annual Energy Outlook 2010 Report Cover. Need help, contact the National Energy Information Center at 202-586-8800.

334

EIA - Assumptions to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th This report summarizes the major assumptions used in the NEMS to generate the AEO2009 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions

335

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

336

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

337

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

338

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW by 2030, or 14

Goldman, Charles

2010-01-01T23:59:59.000Z

339

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPPs

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

340

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

342

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

343

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

344

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

345

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

346

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail:...

347

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

348

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

349

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

350

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

351

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

352

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

353

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. Assessment of DemandRegulatory Commission (FERC) 2007. Assessment of DemandRegulatory Commission (FERC) 2008a. Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

354

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

355

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

356

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

357

Demand Dispatch Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

358

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

359

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

360

Thermionic modules  

DOE Patents (OSTI)

Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

2002-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

362

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

363

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

364

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

365

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

366

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

367

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

368

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

369

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network (OSTI)

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

370

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

371

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

372

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

373

Price-elastic demand in deregulated electricity markets  

E-Print Network (OSTI)

by the amount of electricity demand that is settled forward.unresponsive demand side, electricity demand has to be metxed percentage of overall electricity demand. The ISO, thus,

Siddiqui, Afzal S.

2003-01-01T23:59:59.000Z

374

Building Energy Software Tools Directory : Demand Response Quick...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Back to Tool Demand response quick assessment tool screenshot Demand response quick assessment tool screenshot Demand response quick...

375

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingthe average and maximum peak demand savings. The electricityuse charges, demand ratchets, peak demand charges, and other

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

376

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

377

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

378

Photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Lenox, Carl J. S. (Oakland, CA); Culligan, Matthew (Berkeley, CA); Danning, Matt (Oakland, CA)

2012-07-17T23:59:59.000Z

379

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

380

Distillate Demand Strong in December 1999  

Gasoline and Diesel Fuel Update (EIA)

5% higher than in the prior year, due mainly to diesel demand growth, since warm weather kept heating oil demand from growing much. Last December, when stocks dropped below...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over the last 11 years when interest in demand response increased. Demand response is an electricity tariff or program established to motivate changes in electric use by end-use...

382

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

383

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

384

Travel Behavior and Demand Analysis and Prediction  

E-Print Network (OSTI)

and Demand Analysis and Prediction Konstadinos G. Goulias University of California Santa Barbara, Santa Barbara, CA, USA

Goulias, Konstadinos G

2007-01-01T23:59:59.000Z

385

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

386

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

387

Forecasting demand of commodities after natural disasters  

Science Conference Proceedings (OSTI)

Demand forecasting after natural disasters is especially important in emergency management. However, since the time series of commodities demand after natural disasters usually has a great deal of nonlinearity and irregularity, it has poor prediction ... Keywords: ARIMA, Demand forecasting, EMD, Emergency management, Natural disaster

Xiaoyan Xu; Yuqing Qi; Zhongsheng Hua

2010-06-01T23:59:59.000Z

388

Leveraging gamification in demand dispatch systems  

Science Conference Proceedings (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

389

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

390

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

391

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

392

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

393

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

394

Ups and downs of demand limiting  

SciTech Connect

Electric power load management by limiting power demand can be used for energy conservation. Methods for affecting demand limiting, reducing peak usage in buildings, particularly usage for heating and ventilating systems, and power pricing to encourage demand limiting are discussed. (LCL)

Pannkoke, T.

1976-12-01T23:59:59.000Z

395

Assumptions to the Annual Energy Outlook 2000 - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(99), (Washington, DC, February 1999).

396

Measurement and Verification for Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

397

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

398

TOB Module Assembly  

NLE Websites -- All DOE Office Websites (Extended Search)

SiTracker Home Page Participating Institutions and Principal Contacts Useful Links Notes Images TOB Module Assembly and Testing Project TOB Integration Data Tracker Offline DQM LHC Fluence Calculator Total US Modules Tested Graph Total US Modules Tested Graph Total US Modules Tested Total US Modules Tested US Modules Tested Graph US Modules Tested Graph US Modules Tested US Modules Tested Rod Assembly TOB Modules on a Rod TOB Rod Insertion Installation of a TOB Rod Completed TOB Completed Tracker Outer Barrel TOB Module Assembly and Testing Project All 5208 modules of the CMS Tracker Outer Barrel were assembled and tested at two production sites in the US: the Fermi National Accelerator Laboratory and the University of California at Santa Barbara. The modules were delivered to CERN in the form of rods, with the last shipment taking

399

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

400

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously derived supply curves, initial price paths and international regional supply and demand levels into NEMS. These quantities are not modeled directly in NEMS because NEMS is not an international model. Previous versions of the IEM adjusted these quantities after reading in initial values. In an attempt to more closely integrate the AEO2007 with the IEO2006 and the STEO some functionality was removed from the IEM. More analyst time was devoted to analyzing price relationships between marker crude oils and refined products. A new exogenous oil supply model, Generate World Oil Balances (GWOB), was also developed to incorporate actual investment occurring in the international oil market through 2015

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

402

Distributed Intelligent Automated Demand Response (DIADR) Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

403

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

404

Marketing & Driving Demand: Social Media Tools & Strategies ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing & Driving Demand: Social Media Tools & Strategies January 16, 2011 Maryanne Fuller (MF): Hi there. This is Maryanne Fuller from Lawrence Berkeley National Laboratory....

405

Northwest Open Automated Demand Response Technology Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA)...

406

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

407

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

408

Capitalize on Existing Assets with Demand Response  

E-Print Network (OSTI)

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assetsat no cost and no risk. Demand response, the voluntary reduction of electric demand in response to grid instability, provides financial incentives to participating facilities that agree to conserve energy. With demand response, facilities also receive advance notice of potential blackouts and can proactively protect their equipment and machinery from sudden losses of power. A detailed case study, focusing on a sample industrial customers participation in demand response, will support the presentation.

Collins, J.

2008-01-01T23:59:59.000Z

409

Optimization of Demand Response Through Peak Shaving  

E-Print Network (OSTI)

Jul 5, 2013 ... Optimization of Demand Response Through Peak Shaving. G. Zakeri(g.zakeri *** at*** auckland.ac.nz) D. Craigie(David.Craigie ***at***...

410

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

411

Demand response participation in PJM wholesale markets  

Science Conference Proceedings (OSTI)

This paper provides an overview of demand response resource participation in PJM wholesale ancillary service markets which include: Day Ahead Scheduling Reserves, Synchronized Reserves and Regulation.

Peter L. Langbein

2012-01-01T23:59:59.000Z

412

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

413

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

for the most natural gas usage (33% and 51% of total demanddependence in natural gas usage, and consequently, Januarygas demand exhibits a strong winter peak in residential usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

414

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

415

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

networks_in_the_home_the_new_growth_market.htm [12] NationalHome Network Technologies and Automating Demand Responsethe University of California. Home Network Technologies and

McParland, Charles

2010-01-01T23:59:59.000Z

416

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

417

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

418

Discrete Choice Analysis: Hydrogen FCV Demand Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Choice Analysis: H 2 FCV Demand Potential Cory Welch H 2 Scenario Analysis Workshop Washington, D.C. , January 31, 2007 2 Overview * Motivation for work * Methodology * Relative...

419

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

In Maximum demand, year 2050 electricity consumption reachesefficiency, year 2050 electricity consumption is 357 TWh,capita electricity consumption increases from 7,421 kWh/year

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

420

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

55. Sample distribution of vehicle electricity demand forand distribution facilities that supply electricity demand.55. Sample distribution of vehicle electricity demand for

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

422

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

5. Average, minimum, and maximum demand reduction at eachshow the minimum and maximum demand reduction during the7. Average, minimum, and maximum demand reduction at each

Kiliccote, Sila

2010-01-01T23:59:59.000Z

423

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

424

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

425

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

warming and electricity demand: A study of California.Extreme Heat, and Electricity Demand in California Norman L.high temperature and electricity demand for air-conditioned

Miller, N.L.

2008-01-01T23:59:59.000Z

426

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Statewide California Electricity Demand. [accessed June 22,fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

427

U.S. Propane Demand - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

428

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

429

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

430

Results and commissioning issues from an automated demand response pilot  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

431

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

ofFullyAutomatedDemand ResponseinLargeFacilities. FullyAutomatedDemandResponseTestsinLargeFacilities. OpenAutomated DemandResponseCommunicationStandards:

Dudley, June Han

2009-01-01T23:59:59.000Z

432

Rates and technologies for mass-market demand response  

E-Print Network (OSTI)

Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

433

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Goodin. 2009. Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

434

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

435

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

436

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

437

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

438

Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets  

E-Print Network (OSTI)

the New England ISO Demand Response Collaborative, a NYSERDACEC Staff. Selected Demand Response Pilots in California:New Principles for Demand Response Planning, Electric Power

Borenstein, Severin; Jaske, Michael; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

439

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

440

Measurement and evaluation techniques for automated demand response demonstration  

E-Print Network (OSTI)

Development for Demand Response Calculation Findings andManagement and Demand Response in Commercial Buildings. of Fully Automated Demand Response in Large Facilities.

Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network (OSTI)

and Techniques for Demand Response. May 2007. LBNL-59975.tofacilitateautomating demandresponseactionsattheInteroperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

442

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

443

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Table 22. Agricultural natural gas demand by planning area.23. Other sector natural gas demand by planning area.Projections Monthly natural gas demands are depicted in

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

444

Microgrid Dispatch for Macrogrid Peak-Demand Mitigation  

E-Print Network (OSTI)

Dispatch for Macrogrid Peak- Demand Mitigation NicholasDispatch for Macrogrid Peak-Demand Mitigation Nicholasdetermine whether the peak demand on the substation feeder

DeForest, Nicholas

2013-01-01T23:59:59.000Z

445

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

for Electricity and Power Peak Demand . . . . ELECTRICITYby Major Utility Service Area Projected Peak Demand for1977 Historical Peak Demand by Utility Service Area Weather-

Benenson, P.

2010-01-01T23:59:59.000Z

446

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

projected extreme heat and peak demand for electricity areadequately kept up with peak demand, and electricity supplytrend in aggregate peak demand in California is expected to

Miller, N.L.

2008-01-01T23:59:59.000Z

447

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

448

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

Total Annual Energy Usage Peak Electric Demand Power UsageSetpoint (C) Peak Electric Demand Power Usage Effective-Total Annual Energy Usage Peak Electric Demand Scenario

Shehabi, Arman

2010-01-01T23:59:59.000Z

449

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

450

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

451

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

452

Ballasted photovoltaic module and module arrays  

DOE Patents (OSTI)

A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

2011-11-29T23:59:59.000Z

453

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network (OSTI)

of the baseline defining a customer's load profile, and (2) PVs cannot be turned on at will for scheduled tests customers to curtail demand when needed to reduce risk of grid failure during times of peak loading load. The value of this credit may reach or exceed $100/kW/year [1] Demand response is typically

Perez, Richard R.

454

A distributed approach to taming peak demand  

Science Conference Proceedings (OSTI)

A significant portion of all energy capacity is wasted in over-provisioning to meet peak demand. The current state-of-the-art in reducing peak demand requires central authorities to limit device usage directly, and are generally reactive. We apply techniques ...

Michael Sabolish; Ahmed Amer; Thomas M. Kroeger

2012-06-01T23:59:59.000Z

455

Designing presentations for on-demand viewing  

Science Conference Proceedings (OSTI)

Increasingly often, presentations are given before a live audience, while simultaneously being viewed remotely and recorded for subsequent viewing on-demand over the Web. How should video presentations be designed for web access? How is video accessed ... Keywords: digital library, streaming media, video on-demand

Liwei He; Jonathan Grudin; Anoop Gupta

2000-12-01T23:59:59.000Z

456

Note: The Newsvendor Model with Endogenous Demand  

Science Conference Proceedings (OSTI)

This paper considers a firm's price and inventory policy when it faces uncertain demand that depends on both price and inventory level. The authors extend the classic newsvendor model by assuming that expected utility maximizing consumers choose between ... Keywords: Demand Uncertainty, Fill Rate Competition, Inventory, Newsvendor Model, Pricing, Service Levels, Service Rate Competition

James D. Dana; Nicholas C. Petruzzi

2001-11-01T23:59:59.000Z

457

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

458

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

459

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

460

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar,...

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

462

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

463

OECD Crude Oil v Product Demand Seasonal Patterns  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: The answer lies in separating crude oil demand from product demand. Crude oil demand should be a better indicator of pressures on crude oil price than product demand....

464

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

concerns during system peak demand conditions, and failurerelative to national peak demand, was about 5.0% in 2006 [2]to a regions summer peak demand (see Fig. 2). Demand

Cappers, Peter

2009-01-01T23:59:59.000Z

465

NERSC Modules Software Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Modules Environment Environment » Modules Environment Modules Software Environment NERSC uses the module utility to manage nearly all software. There are two huge advantages of the module approach: NERSC can provide many different versions and/or installations of a single software package on a given machine, including a default version as well as several older and newer versions; and Users can easily switch to different versions or installations without having to explicitly specify different paths. With modules, the MANPATH and related environment variables are automatically managed. Users simply ``load'' and ``unload'' modules to control their environment. The module utility consists of two parts: the module command itself and the modulefiles on which it operates. Module Command

466

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

load and customer maximum demand are most commonly used as1) minimum and maximum amounts of demand reduction; (2)

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

467

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

468

? Market Simulation Activities ? Registration Process Overview ? Agreements ? Intro to Demand Response Provider Software ? Resource Data Template ? Pre-Market Meter Data Submission  

E-Print Network (OSTI)

By the end of this module, you will be able to: ? Describe the purpose of the Proxy Demand Resource project ? Identify the tabs in the Demand Response Provider software ? Identify three components of the Generator Resource Data Template and describe how they are used. ISO PUBLIC- 2010 CAISO 3

Jenny Pedersen; Senior Client Trainer; Iso Public Caiso

2010-01-01T23:59:59.000Z

469

FERC sees huge potential for demand response  

Science Conference Proceedings (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

470

Transportation Sector Module 2003, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2003-02-01T23:59:59.000Z

471

Transportation Sector Module 2009, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2009-06-02T23:59:59.000Z

472

Transportation Sector Module 2006, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2006-09-01T23:59:59.000Z

473

Transportation Sector Module 2007, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2007-05-09T23:59:59.000Z

474

Transportation Sector Module 2002, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2002-05-01T23:59:59.000Z

475

Transportation Sector Module 2001, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2001-02-01T23:59:59.000Z

476

Transportation Sector Module 2004, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2004-03-01T23:59:59.000Z

477

Transportation Sector Module 2005, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2005-06-01T23:59:59.000Z

478

Transportation Sector Module 2008, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

John Maples

2008-11-04T23:59:59.000Z

479

NCEP_Demand_Response_Draft_111208.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

480

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

Note: This page contains sample records for the topic "nems demand modules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

482

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

483

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

484

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

485

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

486

Better Buildings Neighborhood Program: Driving Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

even know they have. This section explains how you can use effective marketing to drive demand for energy upgrades in your community. Following the lead of many Better Buildings...

487

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

488

Demand response-enabled residential thermostat controls  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the users discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David; Peffer, Therese; Arens, Edward

2008-01-01T23:59:59.000Z

489

A residential energy demand system for Spain  

E-Print Network (OSTI)

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

490

Demand Response Enabled Appliance Development at GE  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Enabled Appliance Development at GE Speaker(s): David Najewicz Date: June 12, 2009 - 12:00pm Location: 90-3122 Dave Najewicz of GE Consumer and Appliances will...

491

Automated Demand Response for Critical Peak Pricing  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Demand Response for Critical Peak Pricing Speaker(s): Naoya Motegi Date: June 9, 2005 - 12:00pm Location: Bldg. 90 California utilities have been exploring the use of...

492

Wireless Demand Response Controls for HVAC  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Demand Response Controls for HVAC Speaker(s): Clifford Federspiel Date: June 22, 2006 - 12:00pm Location: 90-3148 Seminar HostPoint of Contact: Richard Diamond Peng Xu We...

493

Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

Melendez, M.

2006-05-18T23:59:59.000Z

494

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal...

495

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

496

Demand response-enabled residential thermostat controls.  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the users discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

497

Essays on exchange rates and electricity demand  

E-Print Network (OSTI)

This thesis examines two important issues in economic development: exchange rates and electricity demand and addresses methodological issues of using time series and panel data analysis to investigate important policy ...

Li, Xiangming, 1966-

1999-01-01T23:59:59.000Z

498

Micro economics for demand-side management  

E-Print Network (OSTI)

This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

Kibune, Hisao

1991-01-01T23:59:59.000Z

499

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Regulatory Commission [FERC] (2008). Assessment of DemandRegulatory Commission [FERC] (2009). A National AssessmentEIS EMCS EMS EPA ESCO ESPC FERC GE HVAC ISO ISO-NE kW kWh MW

Goldman, Charles

2010-01-01T23:59:59.000Z

500

Proceedings: Demand-Side Management Incentive Regulation  

Science Conference Proceedings (OSTI)

These proceedings provide background information on proposed regulatory incentive mechanisms to encourage utilities to develop demand-side management programs. Attendees discussed and analyzed various proposals and techniques and developed lists of key attributes that incentive mechanisms should have.

None

1990-05-01T23:59:59.000Z