National Library of Energy BETA

Sample records for needles area kratt

  1. 2-M Probe At The Needles Area (Kratt, Et Al., 2010) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At The Needles Area (Kratt, Et Al., 2010) Exploration Activity Details Location...

  2. Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006...

    Open Energy Info (EERE)

    Page Edit with form History Multispectral Imaging At Teels Marsh Area (Kratt, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. 2-M Probe At Hawthorne Area (Kratt, Et Al., 2010) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Hawthorne Area (Kratt, Et Al., 2010) Exploration Activity Details Location...

  4. 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) Exploration Activity Details Location...

  5. 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) Exploration Activity Details...

  6. 2-M Probe At Alum Area (Kratt, Et Al., 2010) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Alum Area (Kratt, Et Al., 2010) Exploration Activity Details Location Alum...

  7. 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) Exploration Activity Details...

  8. Multispectral Imaging At The Needles Area (Kratt, Et Al., 2005...

    Open Energy Info (EERE)

    is being used for in situ validation, along with laboratory measurements and x-ray diffraction analyses of samples collected in teh field. We are in the process of producing and...

  9. Observation Wells At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At The Needles Area (DOE GTP) Exploration Activity...

  10. Development Wells At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At The Needles Area (DOE GTP) Exploration Activity...

  11. Reflection Survey At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At The Needles Area (DOE GTP) Exploration Activity...

  12. Geothermometry At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At The Needles Area (DOE GTP) Exploration Activity...

  13. Cuttings Analysis At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At The Needles Area (DOE GTP) Exploration Activity...

  14. Modeling-Computer Simulations At The Needles Area (Bell & Ramelli...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At The Needles Area (Bell & Ramelli, 2009) Exploration Activity Details...

  15. Field Mapping At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

  16. Acoustic Logs At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At The Needles Area (DOE GTP) Exploration Activity...

  17. Resistivity Log At The Needles Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Log At The Needles Area (DOE GTP) Exploration Activity...

  18. Flow Test At The Needles Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

  19. Geothermometry At Gabbs Alkali Flat Area (Kratt, Et Al., 2008...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  20. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along...

  1. 2-M Probe At Tungsten Mountain Area (Kratt, Et Al., 2008) | Open...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  2. 2-M Probe At Gabbs Alkali Flat Area (Kratt, Et Al., 2008) | Open...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  3. 2-M Probe At Rhodes Marsh Area (Kratt, Et Al., 2008) | Open Energy...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  4. 2-M Probe At Teels Marsh Area (Kratt, Et Al., 2008) | Open Energy...

    Open Energy Info (EERE)

    Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin Penfield, Ben Delwiche (2008) A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  5. 2-M Probe At Winnemucca Dry Lake Area (Kratt, Et Al., 2010) ...

    Open Energy Info (EERE)

    temperature anomalies were detected. We were unable to clearly ascertain the background temperature but the spatial distribution of the data did not point to a broader zone of...

  6. Multispectral Imaging At Teels Marsh Area (Shevenell, Et Al....

    Open Energy Info (EERE)

    1). References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  7. Geothermometry At Columbus Salt Marsh Area (Shevenell, Et Al...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  8. Geothermometry At Teels Marsh Area (Shevenell, Et Al., 2008)...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  9. Multispectral Imaging At Rhodes Marsh Area (Shevenell, Et Al...

    Open Energy Info (EERE)

    1). References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  10. Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...

    Open Energy Info (EERE)

    1). References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  11. Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  12. ElectroNeedle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For example, a foot-and-mouth out- break in 2001 cost Great Britain an estimated ... that ElectroNeedles(tm) will find their first implementation in veterinary applications. ...

  13. ElectroNeedle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ElectroNeedle  (tm) Biomedical Sensor Array 2007 R&D 100 Award Entry Form ElectroNeedle  (tm) Biomedical Sensor Array Sandia National Laboratories PO Box 5800, MS 1425 Albuquerque, NM 87185-1425 USA Stephen Casalnuovo (505) 844-6097 (505) 844-1198 (Fax) sacasal@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. (Signature)______________________________________ Not

  14. Needle Federated Search Engine

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The Idaho National Laboratory (INL) has combined a number of technologies, tools, and resources to accomplish a new means of federating search results. The resulting product is a search engine called Needle, an open-source-based tool that the INL uses internally for researching across a wide variety of information repositories. Needle has a flexible search interface that allows end users to point at any available data source. A user can select multiple sources such as commercialmore » databases (Web of Science, Engineering Index), external resources (WorldCat, Google Scholar), and internal corporate resources (email, document management system, library collections) in a single interface with one search query. In the future, INL hopes to offer this open-source engine to the public. This session will outline the development processes for making Needle™s search interface and simplifying the federation of internal and external data sources.« less

  15. Property:ExplorationOutcome | Open Energy Information

    Open Energy Info (EERE)

    "ExplorationOutcome" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Astor Pass Area (Kratt,...

  16. Needle bar for warp knitting machines

    DOE Patents [OSTI]

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  17. The Needles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  18. The Needles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    120C393.15 K 248 F 707.67 R 1 USGS Estimated Reservoir Volume: 3 km 1 USGS Mean Capacity: 17 MW 1 Click "Edit With Form" above to add content History and...

  19. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inset: Electron micrograph of the needle complex. The TTSS needle complex is found in gram-negative bacteria (e.g. Yersinia, Shigella, Salmonella, Pseudomonas, and E. coli),...

  20. Demand for superpremium needle cokes on upswing

    SciTech Connect (OSTI)

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  1. Medically relevant ElectroNeedle technology development.

    SciTech Connect (OSTI)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  2. Synthesis of nano-crystalline multifibrous zirconia needle

    SciTech Connect (OSTI)

    Biswas, Mridula; Bandyopadhyay, Siddhartha

    2013-06-01

    Graphical abstract: - Highlights: Zirconia needles have been successfully prepared by simple inorganic solgel route. The shape of the needles was retained after firing with aspect ratio > 400. Needles are composed of multiple fibres. Fibres are composed of nano crystals. - Abstract: Zirconia needles have been successfully synthesized using a simple inorganic solgel process without using any template. The method employs mixture of zirconium oxychloride octahydrate and sulphuric acid in aqueous medium. This process requires heat treatment at 40 C for 2 h in an oven for nucleus formation. Complete formation of needle occurs after 17 days. The green needle retained its original shape after calcination at 1200 C. Fired needles were of 12 cm in length and 550 ?m in diameter and possess monoclinic phase. Needles are composed of multiple fibres. Depending on the heat treatment temperature, crystallite size varies in the range of 8 to around 300 nm.

  3. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    micrograph of the needle complex. The TTSS needle complex is found in gram-negative bacteria (e.g. Yersinia, Shigella, Salmonella, Pseudomonas, and E. coli), which are all...

  4. Dual mode fuel injector with one piece needle valve member

    DOE Patents [OSTI]

    Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  5. Mixed mode fuel injector with individually moveable needle valve members

    DOE Patents [OSTI]

    Stewart, Chris; Chockley, Scott A.; Ibrahim, Daniel R.; Lawrence, Keith; Tomaseki, Jay; Azam, Junru H.; Tian, Steven Ye; Shafer, Scott F.

    2004-08-03

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. One of the needle valve members moves to an open position while the other needle valve member remains stationary for a homogeneous charge injection event. The former needle valve member stays stationary while the other needle valve member moves to an open position for a conventional injection event. One of the needle valve members is at least partially positioned in the other needle valve member. Thus, the injector can perform homogeneous charge injection events, conventional injection events, or even a mixed mode having both types of injection events in a single engine cycle.

  6. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Assembly of a Molecular Needle, from the Bottom Up Print Wednesday, 21 December 2005 00:00 Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they infect. The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex with an overall shape similar to a hypodermic needle. More

  7. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction...

    Office of Scientific and Technical Information (OSTI)

    A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts Citation Details In-Document Search Title: A Shape Memory Polymer ...

  8. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in gram-negative bacteria (e.g. Yersinia, Shigella, Salmonella, Pseudomonas, and E. coli), which are all characterized by a double-membrane cell wall. The needle complex spans...

  9. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Print Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they infect. The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex with an overall shape similar to a hypodermic needle. More than twenty unique types of proteins are required for its assembly, most of which are

  10. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Print Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they infect. The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex with an overall shape similar to a hypodermic needle. More than twenty unique types of proteins are required for its assembly, most of which are

  11. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Print Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they infect. The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex with an overall shape similar to a hypodermic needle. More than twenty unique types of proteins are required for its assembly, most of which are

  12. Assembly of a Molecular Needle, from the Bottom Up

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembly of a Molecular Needle, from the Bottom Up Print Many pathogenic bacteria use a specialized secretion system to inject virulence proteins directly into the cells they infect. The injected proteins, by mimicking host-cell mechanisms, can then subvert normal cellular function. The type III secretion system (TTSS) is a sophisticated protein complex with an overall shape similar to a hypodermic needle. More than twenty unique types of proteins are required for its assembly, most of which are

  13. Property:Reference material | Open Energy Information

    Open Energy Info (EERE)

    ARRA Spreadsheet + 2-M Probe At Gabbs Alkali Flat Area (Kratt, Et Al., 2008) + A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys...

  14. Method for fabricating arrays of micro-needles

    DOE Patents [OSTI]

    Kenney, Christopher J.

    2003-04-22

    An array of micro-needles is created by forming an array pattern on the upper surface of a silicon wafer and etching through openings in the pattern to define micro-needle sized cavities having a desired depth. The mold thus formed may be filled with electrically conductive material, after which a desired fraction of the silicon wafer bulk is removed from the bottom-up by etching, to expose an array of projecting micro-needles. The mold may instead be filled with a flexible material to form a substrate useful in gene cell probing. An array of hollow micro-needles may be formed by coating the lower wafer surface with SiN, and etching through pattern openings in the upper surface down to the SiN layer, and then conformally coating the upper surface with thermal silicon dioxide. The SiN layer is then stripped away and a desired fraction of the bulk of the wafer removed from the bottom-up to expose an array of projecting hollow micro-needles.

  15. Finding a Needle in a Crystalline Haystack | U.S. DOE Office...

    Office of Science (SC) Website

    Finding a Needle in a Crystalline Haystack New X-ray technique reveals the presence of ... Seeing the needle in the haystack. The ring pattern from the new transmission X-ray ...

  16. Precision grid and hand motion for accurate needle insertion in brachytherapy

    SciTech Connect (OSTI)

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J.

    2011-08-15

    Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on the measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2{sup 3} factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.

  17. Area C borrow Site Habitat Assessment

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2009-12-04

    A habitat quality assessment was performed within selected portions of the proposed Area C Borrow Source. The previously identified Bitterbrush / Indian ricegrass stabilized dune element occurrence was determined to be better described as a sagebrush /needle-and-thread grass element occurrence of fair to good quality. A new habitat polygon is suggested adjacent to this element occurrence, which would also be sagebrush/needle-and-thread grass, but of poor quality. The proposed site of initial borrow site development was found to be a very low quality community dominated by cheatgrass.

  18. Atomic oxygen patterning from a biomedical needle-plasma source

    SciTech Connect (OSTI)

    Kelly, Sen; Turner, Miles M.

    2013-09-28

    A plasma needle is a cold plasma source operating at atmospheric pressure. Such sources interact strongly with living cells, but experimental studies on bacterial samples show that this interaction has a surprising pattern resulting in circular or annular killing structures. This paper presents numerical simulations showing that this pattern occurs because biologically active reactive oxygen and nitrogen species are produced dominantly where effluent from the plasma needle interacts with ambient air. A novel solution strategy is utilised coupling plasma produced neutral (uncharged) reactive species to the gas dynamics solving for steady state profiles at the treated biological surface. Numerical results are compared with experimental reports corroborating evidence for atomic oxygen as a key bactericidal species. Surface losses are considered for interaction of plasma produced reactants with reactive solid and liquid interfaces. Atomic oxygen surface reactions on a reactive solid surface with adsorption probabilities above 0.1 are shown to be limited by the flux of atomic oxygen from the plasma. Interaction of the source with an aqueous surface showed hydrogen peroxide as the dominant species at this interface.

  19. Hot wire needle probe for thermal conductivity detection

    SciTech Connect (OSTI)

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  20. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect (OSTI)

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  1. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    SciTech Connect (OSTI)

    Xia, Wenfeng Desjardins, Adrien E.; Mari, Jean Martial; West, Simeon J.; Ginsberg, Yuval; David, Anna L.; Ourselin, Sebastien

    2015-10-15

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With

  2. Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section EMC2 News Archived News Stories Forty-Six-Foot Tall Needle Sculpture Rises Over Arts Quad September 14th, 2014 By ANUSHKA MEHROTRA Students walking around campus this...

  3. Linking instantaneous rate of injection to X-ray needle lift measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for a direct-acting piezoelectric injector | Argonne National Laboratory Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector Title Linking instantaneous rate of injection to X-ray needle lift measurements for a direct-acting piezoelectric injector Publication Type Journal Article Year of Publication 2016 Authors Viera, JP, Payri, R, Swantek, A, Duke, D, Sovis, N, Kastengren, A, Powell, CF Journal Energy Conversion and

  4. Driven Around the Bend: Novel Use of a Curved Steerable Needle

    SciTech Connect (OSTI)

    Murphy, Darra T. Korzan, Jeffrey R.; Ouellette, Hugue A.; Liu, David M.; Clarkson, Paul W.; Munk, Peter L.

    2013-04-15

    This technical note describes the novel use of a curved, steerable needle to access symptomatic osseous lesions in the pelvis and sacrum for palliative percutaneous treatment that would otherwise be difficult to treat using conventional straight needles. Seven patients with lytic bone lesions were treated. One patient had multiple myeloma; the remaining had metastatic disease: breast carcinoma (n = 2), colorectal carcinoma (n = 1), renal cell carcinoma (n = 1), squamous cell carcinoma (n = 1), and leiomyosarcoma (n = 1). Five of the seven patients had lesions in the posterior acetabulum, and the two other patients had lesions in the sacrum. Four of the seven patients received radiofrequency ablation followed by cementoplasty; three patients received cementation alone. We used a novel needle designed for vertebroplasty, which has an articulating tip allowing it to be guided into lytic bone lesions located in difficult-to-access regions of the pelvis and sacrum. All patients were successfully treated with cementoplasty either with or without thermal ablation. No serious adverse events were reported. The needle was difficult to withdraw in two patients. Steerable curved needles can be successfully used to treat lytic osseous metastases with cementoplasty when lesions are located in sites that may be difficult to reach using conventional straight needles.

  5. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    SciTech Connect (OSTI)

    Cepek, Jeremy Fenster, Aaron; Lindner, Uri; Trachtenberg, John; Davidson, Sean R. H.; Haider, Masoom A.; Ghai, Sangeet

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table is provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.

  6. Prostate Brachytherapy With Oblique Needles to Treat Large Glands and Overcome Pubic Arch Interference

    SciTech Connect (OSTI)

    Ryu, Bon; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario ; Bax, Jeff; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario ; Edirisinge, Chandima; Lewis, Craig; Chen, Jeff; D'Souza, David; Radiation Treatment Program, London Regional Cancer Program, London Health Sciences Centre, London, Ontario ; Fenster, Aaron; Department of Medical Biophysics, University of Western Ontario, London, Ontario; Department of Biomedical Engineering, University of Western Ontario, London, Ontario; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario; Department of Oncology, University of Western Ontario, London, Ontario ; Wong, Eugene; Department of Medical Biophysics, University of Western Ontario, London, Ontario; Department of Oncology, University of Western Ontario, London, Ontario

    2012-08-01

    Purpose: First, to show that low-dose-rate prostate brachytherapy plans using oblique needle trajectories are more successful than parallel trajectories for large prostates with pubic arch interference (PAI); second, to test the accuracy of delivering an oblique plan by using a three-dimensional (3D) transrectal ultrasonography (TRUS)-guided mechatronic system. Methods and Materials: Prostates were contoured for 5 subjects' 3D TRUS images showing a maximum PAI of {<=}1 cm and a prostate volume of <50 cc. Two planning studies were done. First, prostate contours were artificially enlarged to 45 to 80 cc in 5- to 10-cc increments for a single subject. Second, all subject prostate contours were enlarged to 60 cc. For each study, three types of plans were manually created for comparison: a parallel needle template (PT) plan, a parallel needle no-template (PNT) plan, and an oblique needle no-template (OBL) plan. Needle positions and angles were not discretized for nontemplate plans. European Society for Therapeutic Radiology and Oncology dose-volume histogram guidelines, iodine-125 (145-Gy prescription, 0.43 U), and needle angles of <15 Degree-Sign were used. An OBL plan was delivered to a pubic arch containing a 60-cc prostate phantom that mimicked the anatomy of the subject with the greatest PAI (23% by volume). Results: In the increasing-prostate volume study, OBL plans were successful for prostates of {<=}80 cc, and PT plans were successful for prostates of <65 cc. In paired, one-sided t tests for the 60-cc volume study, OBL plans showed dosimetric improvements for all organs compared to both of the parallel type plans (p < 0.05); PNT plans showed a benefit only in planning target volumes receiving more than 100 Gy compared to PT plans. A computed tomography scan of the phantom showed submillimeter seed placement accuracy in all directions. Conclusion: OBL plans were significantly better than parallel plans, and an OBL plan was accurately delivered to a 60-cc

  7. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    SciTech Connect (OSTI)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  8. *** CANCELED *** SCIENCE ON SATURDAY- "Finding a Needle in A (Genomic)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haystack or How Can Computers Help Cure Cancer" | Princeton Plasma Physics Lab February 9, 2013, 9:30am Science On Saturday MBG Auditorium *** CANCELED *** SCIENCE ON SATURDAY- "Finding a Needle in A (Genomic) Haystack or How Can Computers Help Cure Cancer" Professor Olga G. Troyanskaya Lewis-Sigler Institute for Integrative Genomics & Department of Computer Science, Princeton University Science on Saturday is a series of lectures given by scientists, mathematicians, and

  9. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  10. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  11. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  12. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore » and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less

  13. Hot wire needle probe for in-reactor thermal conductivity measurement

    SciTech Connect (OSTI)

    JE Daw; JL Rempe; DL Knudson

    2012-08-01

    Thermal conductivity is a key property that must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses recent efforts to develop and evaluate an in-pile thermal conductivity sensor based on a hot wire needle probe. Testing has been performed on samples with thermal conductivities ranging from 0.2 W/m-K to 22 W-m-K in temperatures ranging from 20 °C to 600 °C. Thermal conductivity values measured using the needle probe match data found in the literature to within 5% for samples tested at room temperature, 5.67% for low thermal conductivity samples tested at high temperatures, and 10% for high thermal conductivity samples tested at high temperatures. Experimental results also show that this sensor is capable of operating in various test conditions and of surviving long duration irradiations.

  14. SciFri PM: Topics 08: The Role and Benefits of Electromagnetic Needle-Tracking Technologies in Brachytherapy

    SciTech Connect (OSTI)

    Beaulieu, L.; Racine, E.; Boutaleb, S.; Filion, O.; Poulin, E.; Hautvast, G.; Binnekamp, D.

    2014-08-15

    In modern brachytherapy, application of large doses of ionizing radiation in a limited number of fractions is frequent. Furthermore, as with any surgical procedures, brachytherapy is subject to learning curve effects. In this context, there could be advantages of integrating real-time tracking of needles/catheters to existing protocols given the recent prominent advances in tracking technologies. In this work, we review the use of an electromagnetic tracking system (EMTS) based on the second generation Aurora Planar Field Generator (Northern Digital Inc) and custom design needles (Philips Healthcare) for brachytherapy applications. The position and orientation information is obtained from 5 degrees of freedom sensors. Basic system performance characterization is performed in well-controlled conditions to establish accuracy and reproducibility as well as potential interference from standard brachytherapy equipment. The results show that sensor locations can be tracked to within 0.04mm (la) when located within 26cm of the generator. Orientation accuracy of the needle remained within 1 in the same region, but rose quickly at larger distances. The errors on position and orientation strongly dependent the sensor position in the characterization volume (500500500mm{sup 3}). The presence of an ultrasound probe was shown to have negligible effects on tracking accuracy. The use of EMTS for automatic catheter/applicator reconstruction was also explored. Reconstruction time was less than 10 sec/channel and tips identification was within 0.690.29mm of the reference values. Finally, we demonstrate that hollow needle designs with special EM adaptation also allow for real-time seed drop position estimation. In phantom experiments showed that drop positions were on average within 1.60.9mm of the reference position measured from ?CT. Altogether, EMTS offer promising benefits in a wide range of brachytherapy applications.

  15. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  16. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect (OSTI)

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  17. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7,more » 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less

  18. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    SciTech Connect (OSTI)

    Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-07-28

    Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range between 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m2m-2) compared to Y1&2 cohorts (LAI 0.67 m2m-2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.

  19. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  20. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  1. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  2. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so ...

  3. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect ...

  4. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  5. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  6. Image-Guided Radiofrequency Ablation (RFA) of Unresectable Hepatic Tumors Using a Triple-Spiral-Shaped Electrode Needle: Initial Experience in 34 Patients

    SciTech Connect (OSTI)

    Thanos, Loukas; Poulou, Loukia S.; Ziakas, Panayiotis D.; Kelekis, Alexis D.; Pomoni, Maria; Kelekis, Dimitrios A.

    2010-02-15

    We evaluated the safety and efficacy of image-guided radiofrequency ablation (RFA) using a triple-spiral-shaped electrode needle for unresectable primary or metastatic hepatic tumors. Thirty-four patients with 46 index tumors were treated. Ablation zone, morbidity, and complications were assessed. The lesions were completely ablated with an ablative margin of about 1 cm. Five patients (14.7%) with a lesion larger than 4.5 cm had local tumor progression after 1 month and were retreated. Hemothorax, as a major complication, occurred in 1 of 34 patients (3.0%) or 1 of 46 lesions ablated (2.2%). RFA using this new electrode needle can be effective in the treatment of large unresectable hepatic tumors.

  7. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Controls by light, temperature and stomatal conductance

    SciTech Connect (OSTI)

    Harley, P.; Eller, Allyson; Guenther, Alex B.; Monson, Russell K.

    2014-07-14

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in ?-3-carene.

  8. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  9. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  10. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  11. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  12. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  13. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  14. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  15. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  16. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  17. A Novel Fenestration Technique for Abdominal Aortic Dissection Membranes Using a Combination of a Needle Re-entry Catheter and the 'Cheese-wire' Technique

    SciTech Connect (OSTI)

    Kos, Sebastian; Guerke, Lorenz; Jacob, Augustinus L.

    2011-12-15

    Purpose: This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and 'cheese-wire' technique for fenestration of abdominal aortic dissection membranes. Methods: Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. The membrane was then fenestrated using the cheese-wire maneuver. Results: We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. Conclusions: The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.

  18. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  19. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  20. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  1. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  2. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  3. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  4. Figure 1. Project Area, Focused Study Area, Potential Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  5. Figure 1. Project Area, Focused Study Area, Potential Access...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  6. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  7. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  8. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  9. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  10. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  11. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  12. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  13. SSL Demonstration: Area Lighting Yuma Sector Border Patrol Area...

    Energy Savers [EERE]

    DEMONSTRATION: Area Lighting Yuma Sector Border Patrol Area, AZ A unique GATEWAY evaluation on a stretch of border between the U.S. and Mexico looks at how high-flux LED lighting ...

  14. Rapid characterization of drill core and cutting mineralogy using...

    Open Energy Info (EERE)

    Authors W. Calvin, A. Lamb and C. Kratt Published Journal Geothermal Resources Council Transactions, 2010 DOI Not Provided Check for DOI availability: http:crossref.org...

  15. Field Mapping At Northern Basin & Range Region (Shevenell, Et...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  16. Field Mapping At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  17. Field Mapping At Nw Basin & Range Region (Shevenell, Et Al.,...

    Open Energy Info (EERE)

    References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris Kratt, James Faulds, Robin Penfield (2008) Our Evolving Knowledge Of Nevada'S Geothermal Resource...

  18. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  19. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  20. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  1. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect (OSTI)

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  2. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  3. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  4. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  5. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  6. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  7. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  8. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  9. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  10. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  11. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  12. Why SRS Matters - L Area

    SciTech Connect (OSTI)

    Hunt, Paul

    2015-01-28

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features L Area's mission and operations.

  13. Why SRS Matters - E Area

    SciTech Connect (OSTI)

    Howell, Steve; Mooneyhan, Verne; Tempel, Kevin; Bullington, Michele

    2015-03-09

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features E Area's mission and operations.

  14. Why SRS Matters - F Area

    SciTech Connect (OSTI)

    Howell, Steve; Tadlock, Bill; Beeler, Dewitt; Gardner, Curt

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features F Area's mission and operations.

  15. AREA

    Broader source: Energy.gov (indexed) [DOE]

    or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO...

  16. AREA

    Office of Environmental Management (EM)

    DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the ...

  17. Vital area analysis using sets

    SciTech Connect (OSTI)

    Stack, D.W.; Francis, K.A.

    1980-05-01

    This report describes the use of the Set Equation Transformation System (SETS) for vital area analysis. Several concepts are introduced which enable the analyst to construct more efficient SETS user programs to perform vital area analysis. The advantages of performing the transformation of variables without first determining the minimal cut sets of the fault tree are discussed. A ''bottom-up'' approach to solving a fault tree is presented. The techniques described for vital area analysis are also suitable and efficient for many kinds of common cause analysis.

  18. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for ...

  19. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  20. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  1. CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA

    Office of Legacy Management (LM)

    CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY ... Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, ...

  2. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  3. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo ...

  4. Focus Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward

  5. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  6. Carlsbad Area Office Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The

  7. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  8. Java - Dieng Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Dieng Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Dieng Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  9. Java - Kamojang Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Kamojang Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Kamojang Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  10. Java - Darajat Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Darajat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Darajat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  11. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  12. Sacramento Area Technology Alliance | Open Energy Information

    Open Energy Info (EERE)

    Sacramento Area Technology Alliance Jump to: navigation, search Logo: Sacramento Area Technology Alliance Name: Sacramento Area Technology Alliance Address: 5022 Bailey Loop Place:...

  13. Wild Rose Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Wild Rose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wild Rose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  14. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  15. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  16. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  17. Alum Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Alum Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alum Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  18. Aurora Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Aurora Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  19. Berln Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Berln Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Berln Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  20. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  1. Krafla Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Krafla Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Krafla Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  2. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  3. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Rye Patch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rye Patch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  4. Amedee Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  5. Miravalles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Miravalles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Miravalles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  6. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oita Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oita Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  7. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  8. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  9. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Larderello Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Larderello Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  10. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  11. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  12. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  13. Los Humeros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase:...

  14. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  15. AreaMapWeb copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL ETTP CITY OF OAK RIDGE MAP AREA (below) 170 170 62 162 162 62 62 61 61 62 61 95 95 61 61 58 95 62 129 321 411 411 321 321 129 11W 11E 11 70 11 11 70 11 11 70 70 40 40 140 140 40 75 40 40 40 640 640 75 75 75 75 61 62 ALCOA MARYVILLE LENOIR CITY FARRAGUT LOUDON OLIVER SPRINGS OAK RIDGE KNOXVILLE AIRPORT McGhee Tyson Municipal Airport (Knoxville Airport) Route between Knoxville Airport, Downtown Knoxville, and Oak Ridge area Take left lane for I-40 West to Nashville, Chattanooga No. 376A Oak

  16. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  17. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  18. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  19. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  20. Final DOE Areas Feasibility Study

    Office of Legacy Management (LM)

    Management, Washington, DC Weiss Associates Environmental Science, Engineering and Management FINAL DOE AREAS FEASIBILITY STUDY for the: LABORATORY FOR ENERGY-RELATED HEALTH RESEARCH UNIVERSITY OF CALIFORNIA, DAVIS Prepared for: SM Stoller Corporation 2597 B ¾ Road Grand Junction, Colorado 81503 Prepared by: Weiss Associates 5801 Christie Avenue, Suite 600 Emeryville, California 94608-1827 March 07, 2008 Rev. 0 J:\DOE_STOLLER\4110\143\FEASIBILITY_STUDY\20080307_FS_TEXT_REV0.DOC WEISS ASSOCIATES

  1. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  2. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  3. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  4. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development...

  5. Fenton Hill Hdr Area | Open Energy Information

    Open Energy Info (EERE)

    Hill Hdr Area Redirect page Jump to: navigation, search REDIRECT Fenton Hill Hdr Geothermal Area Retrieved from "http:en.openei.orgwindex.php?titleFentonHillHdrArea&oldid...

  6. Carlsbad Area Office strategic plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

  7. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  8. Western Area Power Administration | Open Energy Information

    Open Energy Info (EERE)

    Western Area Power Administration Jump to: navigation, search Name: Western Area Power Administration Place: Colorado Phone Number: 720-962-7000 Website: ww2.wapa.govsites...

  9. Canby Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Transition Zone GEA Development Phase: Coordinates: 41.438, -120.8676 Resource Estimate...

  10. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Magnetized High Energy Density Plasma Physics Specific areas of interest include, but are ... Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest ...

  11. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  12. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  13. La Primavera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  14. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  15. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  16. Cerro Prieto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  17. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  18. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  19. Los Azufres Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  20. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  1. Kizildere Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Denizli, Turkey Exploration Region: Aegean-West Anatolian Extensional Province - Western Anatolian...

  2. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Coordinates: 32.99, -115.35 Resource...

  3. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  4. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase:...

  5. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  6. Wide area continuous offender monitoring

    SciTech Connect (OSTI)

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  7. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  8. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  9. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  10. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  11. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. Outdoor Area Lighting (June 2008) (3.16 MB) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  12. Categorical Exclusion Determinations: Western Area Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Administration Categorical Exclusion Determinations: Western Area Power Administration Categorical Exclusion Determinations issued by Western Area Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  13. West Flank Cosa, CA FORGE Test Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Doug Blankenship

    2015-11-15

    A map with the Coso West Flank FORGE test area outlined, along with regional seismicity, the aeromagnetic data set and the area currently being utilized for the creation of the 3D model.

  14. Magnetotellurics At Truckhaven Area (Layman Energy Associates...

    Open Energy Info (EERE)

    9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers,...

  15. WASTE AREA GROUP 7 PROPOSED PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AREA GROUP 7 PROPOSED PLAN The Idaho National Laboratory (INL) Citizens Advisory Board (CAB) has provided its input to the Department of Energy on the Waste Area Group 7 (WAG 7)...

  16. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  17. Transfer Area Mechanical Handling Calculation

    SciTech Connect (OSTI)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  18. Sandia National Laboratories: About Sandia: Mission Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Areas Mission Statements The Laboratory Leadership Team decided on a set of integrated Mission Areas that best reflect Sandia's mission based on three key characteristics: synergy with nuclear weapons capabilities, national security impact, and strategic value needed to ensure Sandia's enduring contribution to the nation. The Mission Areas bring focus to the work we conduct in national security. The middle tier Mission Areas are strongly interdependent with and essential to the nuclear

  19. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  20. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Bay Area San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of

  1. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach

  2. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  3. Functional Area Qualification Standard Reference Guides

    Broader source: Energy.gov [DOE]

    The reference guides have been developed to address the competency statements in DOE Functional Area Qualification Standard.

  4. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  5. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  6. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  7. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration Activity...

  8. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A.; Paik, I.R.

    1998-04-01

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  9. Fire Protection Engineering Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical ... by applied engineering fundamentals, research, fire hazard ...

  10. Considering LEDs for Street and Area Lighting

    Broader source: Energy.gov [DOE]

    View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

  11. Navy 1 Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navy 1 Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the project produced more than 273 megawatts of electricity that was sold into the local utility grid under a long-term power sales agreement. Photo of the Coso Geothermal Area

  12. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  13. Beryllium Facilities & Areas - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities & Areas About Us Hanford Cultural Resources Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Facilities & Areas Email

  14. Casa Diablo Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough power for approximately 40,000 homes. The power is sold to Southern California Edison under long-term contracts. Photo of the Casa Diablo Geothermal area.

  15. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  16. 2016 DOE Project Management Workshop - Area Restaurants | Department...

    Office of Environmental Management (EM)

    Area Restaurants 2016 DOE Project Management Workshop - Area Restaurants Information on surrounding area restaurants PDF icon Area restaurants Key Resources PMCDP EVMS PARS IIe FPD ...

  17. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  18. 2010sr29[M Area].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, October 20, 2010 Paivi Nettamo, SRNS, (803) 952-6938 Savannah River Site Marks Recovery Act Cleanup Milestone M Area cleanup work was finished nearly two years ahead of schedule AIKEN, S.C. (October 20) - Department of Energy, contractor and regulatory representatives gathered today to celebrate the completion of cleanup work at Savannah River Site's M Area, nearly two years ahead of schedule. This area cleanup was the first at SRS to be completed with the help of American Recovery

  19. Pengalengan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: Bandung Regency, Indonesia Exploration Region: West Java GEA Development Phase: Operational"Operational" is not in the list of possible values...

  20. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  1. NSTB Summarizes Vulnerable Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSTB Summarizes Vulnerable Areas Experts at the National SCADA Test Bed (NSTB) discovered ... Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems ...

  2. Alaska Special Area Regulations | Open Energy Information

    Open Energy Info (EERE)

    to library Web Site: Alaska Special Area Regulations Author Alaska Department of Fish & Game Published Publisher Not Provided, 2014 DOI Not Provided Check for DOI...

  3. Berkshire East Ski Area | Open Energy Information

    Open Energy Info (EERE)

    Energy Development Energy Purchaser Berkshire East Ski Area Location Charlemont MA Coordinates 42.61621237, -72.86660671 Show Map Loading map... "minzoom":false,"mapp...

  4. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  5. Hawthorne Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Coordinates: 38.53, -118.65...

  6. Wendel Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Operational"Operational" is not in the...

  7. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  8. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    ... of traditional ideal-plasma theory and standard condensed matter theory do not apply. ... This includes investigations in related areas of plasma physics, inertial fusion, atomic ...

  9. Takigami Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  10. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  11. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. South Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  15. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  16. Trial Demonstration of Area Lighting Retrofit

    Energy Savers [EERE]

    Trial Demonstration of Area Lighting Retrofit Host Site: Yuma Border Patrol, Yuma, Arizona December 2014 Prepared for: Solid-State Lighting Program Building Technologies Office ...

  17. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  18. Maibarara Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Inc.. updated 20140209;cited 20150422. Available from: http:maibarara.com.ph List of existing Geothermal Resource Areas. Print PDF Retrieved from "http:...

  19. Honey Lake Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are ...

  20. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  1. Area Information | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge: Convention and Visitors Bureau Oak Ridge: Oak Ridger Oak Ridge: Secret City History Area Attractions: To Do and See Knoxville: Clarence Brown Theater Knoxville: Frank...

  2. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  3. Adak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  4. Hellisheidi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  5. Maui Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  6. Romania Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  7. Ndunga Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  8. Bjarnaflag Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. Yangbajain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. RMOTC Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. Langjiu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  18. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  4. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    establishes common functional area competency requirements for DOE personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical QA...

  10. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical...

  11. Molokai Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Geothermal Available for Case Study Geothermal Resource Areas...

  12. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  13. Cathedral Rock Picnic Area Rehabilitation Environmental Assessment

    National Nuclear Security Administration (NNSA)

    ... Visitor Experience Additional parking spaces allow for more vehicles in the area, which increases associated noise and air pollution. This diminishes the experience of visitors who ...

  14. Bruchsal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  15. Garching Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  16. Facility Representative Functional Area Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    ... knowledge of chemistry fundamentals in the areas of ... water prior to use in nuclear and non-nuclear systems. e. ... working level knowledge of engineering prints and drawings. ...

  17. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  18. Property:Focus Area | Open Energy Information

    Open Energy Info (EERE)

    and Greenhouse Gas Baselining Transportation Energy Supply Load Reduction Policy and Human Behavior Renewable Energy Food Supply Pages using the property "Focus Area" Showing 1...

  19. Public participation in a DOE national program: The mixed waste focus area`s approach

    SciTech Connect (OSTI)

    1997-05-01

    The authors describe the Mixed Waste Focus Area`s approach to involving interested Tribal and public members in the mixed waste technology development process. Evidence is provided to support the thesis that the Focus Area`s systems engineering process, which provides visible and documented requirements and decision criteria, facilitates effective Tribal and public participation. Also described is a status of Tribal and public involvement at three levels of Focus Area activities.

  20. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  1. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-02

    The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s defense nuclear facilities.

  2. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-22

    Replaced by DOE-1150-2013 This QA Functional Area Qualification Standard establishes common functional area competency requirements for DOE personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical QA activities impacting the safe operation of defense nuclear facilities.

  3. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  4. Apex or Salient of Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of...

  5. Displacement Transfer Zone | Open Energy Information

    Open Energy Info (EERE)

    H. Hinz,Mark F. Coolbaugh,Patricia H. Cashman,Christopher Kratt,Gregory Dering,Joel Edwards,Brett Mayhew,Holly McLachlan. 2011. Assessment of Favorable Structural Settings of...

  6. Hawaii Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Geothermal Area Hawaii Geothermal Area The Hawaii geothermal area includes the Puna Geothermal Venture, which is located about 21 miles south of Hilo on the Big Island of Hawaii. The facility is situated along the Lower East Rift Zone of the Kilauea Volcano. At the Puna Geothermal Venture, geothermal fluid is brought to the surface through production wells, which tap into the resource at a depth of almost a mile. The steam, along with its non-condensable gases, is routed to the power

  7. 200 North Aggregate Area source AAMS report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

  8. : H. Jack Elackwell, Area Manager, LAAO DATE:

    Office of Legacy Management (LM)

    O.&E b.&AORANDti~ l > : H. Jack Elackwell, Area Manager, LAAO DATE: June 5, 1973 70~ : ~$?$Z~H-Division Leader ,WE~,T : ENVIRONMENTAL RADIOACTIVITY SURVEY OF LOS ALAMOS COMIMUNITY LAND AREAS ' MBOL : H8M-73-102 At your request an environmental radioactivity survey of four' .tracts of AEC-owned land in Los Alamos County was conducted. The monitoring and analysis of samples paralleled that described in Los Alamos Scientific Laboratory Report LA5097-MS, "Los Alamos Land Areas

  9. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  10. Nagqu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Extensional Tectonics Controlling...

  11. Improving the environment in urban areas

    SciTech Connect (OSTI)

    Adamkus, V.V.

    1994-12-31

    The author discusses the need for improvements to the environment in urban areas, and efforts being made under the direction of the Environmental Protection Agency (EPA) to address these problems. The impact the new Clean Air Act can have on emissions from gasoline powered autos, diesel burning trucks, fixed emission sources ranging from utilities to chemical plants, and consumer products like hair sprays and charcoal starters, will all work together to improve air quality in urban areas. The author also discusses Brownfields Economic Redevelopment Plan efforts being supported by the EPA in a coordinated plan to get municipalities involved in cleaning up areas with pollution, to remove the blight on the urban areas, provide new land for development, and promote additional jobs.

  12. Coulee Area Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    entity proposing to develop, own and operate a large-scale corn-to-ethanol plant in Sparta, Wisconsin. References: Coulee Area Renewable Energy1 This article is a stub. You...

  13. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  14. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  15. Astor Pass Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    been conducted in the area - and logged on OpenEI. To add an additional NEPA-related analysis, see the NEPA Database. CSV No NEPA-related documents listed. Exploration Activities...

  16. SCHEDULE: Bay Area Maker Faire 2016

    Broader source: Energy.gov [DOE]

    Find out where and when to meet some of our top innovators and explore the technologies on display from the Department of Energy at the 11th annual Bay Area Maker Faire.

  17. 300 area TEDF permit compliance monitoring plan

    SciTech Connect (OSTI)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  18. Estimating Temperature Distributions In Geothermal Areas Using...

    Open Energy Info (EERE)

    "education level" (which depends on the amount and structure of information used for teaching) and (b) the distance of the point at which the estimate is made from the area for...

  19. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and later the US Department of Energy (DOE) which was formed by joining the Federal Energy Administration and ERDA in 1977.3 The Raft River site was identified as an area...

  20. Technical Area 21 Integrated Closure Strategy

    Broader source: Energy.gov [DOE]

    At the July 30, 2014 Board meeting David Rhodes DOE, Supplied Information on the Strategy that is Being Implemented to Close Technical Area 21. Information Provided Included Demolition of Buildings Reaming Environmental Clean-up Work and Future Site Use.

  1. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  2. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  3. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following: high-pressure (> 100 kbar), high-temperature (near

  4. Radiation Protection Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEASUREMENT SENSITIVE DOE-STD-1174-2013 November 2013 DOE STANDARD RADIATION PROTECTION FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1174-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/techstds/ ii ii

  5. Nuclear Safety Specialist Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1183-2007 iv INTENTIONALLY BLANK

  6. Occupational Safety Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 July 2011 DOE STANDARD OCCUPATIONAL SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1160-2011 ii This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1160-2011 iv

  7. Quality Assurance Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE-STD-1150-2013 December 2013 DOE STANDARD QUALITY ASSURANCE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1150-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  8. LANSCE | Lujan Center | Science Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  9. Central Plateau Inner Area Cleanup Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Cleanup Principles * Cleanup Principles are the initial conditions and approaches to developing cleanup decisions in the Inner Area * These Principles will guide the development of the Remedial Investigations and Feasibility Studies (RI/FS) * These Principles will help DOE produce RI/FS documents to better meet regulator expectations * Formal agreement on cleanup, as influenced by these Principles, does not happen until the Record of Decision What are Cleanup Principles? 2 * The Inner

  10. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5

  11. Area teachers benefit from professional development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area teachers benefit from professional development Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Area teachers benefit from professional development Math and Science Academy encourages collaborative work environments. August 2, 2016 Santa Fe Community College's Early Childhood Center of Excellence Director Dr. Jennifer Duran-Sallee (left) gives a tour of the Kids Campus to Cabinet

  12. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  13. Industrial Hygiene Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38-2007 November 2007 DOE STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1138-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1138-2007 iv INTENTIONALLY BLANK

  14. Instrumentation and Control Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE-STD-1162-2013 June 2013 DOE STANDARD INSTRUMENTATION AND CONTROL FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1162-2013 This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  15. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Brady Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  16. African Renewable Energy Alliance (AREA) | Open Energy Information

    Open Energy Info (EERE)

    (AREA) Place: Online Website: area-network.ning.com?xgsour References: World Futures Council - New Alliance Established in Addis Ababa1 African Renewable Energy Alliance (AREA)...

  17. Near Fish Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  18. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  19. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  20. Great Boiling Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and...

  1. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  2. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  3. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  4. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sleeping Child Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sleeping Child Hot Springs Geothermal Area Contents 1 Area Overview 2...

  5. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Crane Hot Springs Geothermal Area (Redirected from Crane Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Crane Hot Springs Geothermal Area Contents 1...

  6. Kelly Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Kelly Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Kelly Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  7. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1...

  8. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area (Redirected from Pilgrim Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area...

  9. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and...

  10. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  11. Smith Creek Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  12. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Broadwater Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Broadwater Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  13. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  14. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sitka Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sitka Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  15. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Ishtalitna Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ishtalitna Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  16. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bradfield Canal Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bradfield Canal Hot Spring Geothermal Area Contents 1 Area Overview 2...

  17. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  18. Dann Ranch Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  19. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  20. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fisher Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fisher Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  1. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Macfarlane's Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Macfarlane's Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  2. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  3. Property:CaseStudyArea | Open Energy Information

    Open Energy Info (EERE)

    Area + CSCWWU 2014 a + Goddard Hot Springs Geothermal Area + CSCWWU 2014b + Magic Reservoir Geothermal Area + Retrieved from "http:en.openei.orgw...

  4. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Arrow Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Arrow Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Licks Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Licks Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  6. Marysville Test Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Marysville Test Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Marysville Test Well Geothermal Area Contents 1 Area Overview 2 History and...

  7. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And Training Range Geothermal Area Contents 1 Area Overview...

  8. Bac-Man Laguna Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bac-Man Laguna Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bac-Man Laguna Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  9. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and...

  10. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Valles Caldera - Redondo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History...

  11. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area...

  12. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Port Moller Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Port Moller Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  13. North End Of Tenakee Inlet Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    North End Of Tenakee Inlet Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North End Of Tenakee Inlet Geothermal Area Contents 1 Area Overview 2...

  14. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Silver Star Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Silver Star Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  15. Interfacial area transport in bubbly flow

    SciTech Connect (OSTI)

    Ishii, M.; Wu, Q.; Revankar, S.T.

    1997-12-31

    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  16. Use Areas & Availability | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Areas & Availability Use Areas & Availability Public Use Area of New Hope Center New Hope Center Lobby New Hope Center Courtyard Public use areas of Y-12's New Hope Center...

  17. Wetland survey of selected areas in the K-24 Site Area of responsibility

    SciTech Connect (OSTI)

    Rosensteel, B.A.; Awl, D.J.

    1995-07-01

    In accordance with DOE Regulations for Compliance with Floodplain/Wetlands Environmental Review Requirements, wetland surveys were conducted in selected areas within the K-25 Area of Responsibility during the summer of 1994. These areas are Mitchell Branch, Poplar Creek, the K-770 OU, Duct Island Peninsula, the Powerhouse area, and the K-25 South Corner. Previously surveyed areas included in this report are the main plant area of the K-25 Site, the K-901 OU, the AVLIS site, and the K-25 South Site. Wetland determinations were based on the USACE methodology. Forty-four separate wetland areas, ranging in size from 0.13 to 4.23 ha, were identified. Wetlands were identified in all of the areas surveyed with the exception of the interior of the Duct Island Peninsula and the main plant area of the K-25 Site. Wetlands perform functions such as floodflow alteration, sediment stabilization, sediment and toxicant retention, nutrient transformation, production export, and support of aquatic species and wildlife diversity and abundance. The forested, scrub-shrub, and emergent wetlands identified in the K-25 area perform some or all of these functions to varying degrees.

  18. Gunun-Salak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Java, Indonesia Exploration Region: Sunda Volcanic Arc GEA Development Phase:...

  19. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  20. Cuttings Analysis At Coso Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  1. Aeromagnetic Survey At Coso Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    Home Exploration Activity: Aeromagnetic Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  2. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...

  3. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: ...

  4. CY15 Livermore Computing Focus Areas

    SciTech Connect (OSTI)

    Connell, Tom M.; Cupps, Kim C.; D'Hooge, Trent E.; Fahey, Tim J.; Fox, Dave M.; Futral, Scott W.; Gary, Mark R.; Goldstone, Robin J.; Hamilton, Pam G.; Heer, Todd M.; Long, Jeff W.; Mark, Rich J.; Morrone, Chris J.; Shoopman, Jerry D.; Slavec, Joe A.; Smith, David W.; Springmeyer, Becky R; Stearman, Marc D.; Watson, Py C.

    2015-01-20

    The LC team undertook a survey of primary Center drivers for CY15. Identified key drivers included enhancing user experience and productivity, pre-exascale platform preparation, process improvement, data-centric computing paradigms and business expansion. The team organized critical supporting efforts into three cross-cutting focus areas; Improving Service Quality; Monitoring, Automation, Delegation and Center Efficiency; and Next Generation Compute and Data Environments In each area the team detailed high level challenges and identified discrete actions to address these issues during the calendar year. Identifying the Center’s primary drivers, issues, and plans is intended to serve as a lens focusing LC personnel, resources, and priorities throughout the year.

  5. Criticality Safety Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-STD-1173-2009 April 2009 DOE STANDARD CRITICALITY SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1173-2009 ii This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1173-2009 iii APPROVAL The Federal

  6. DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced the Department's designation of two National Interest Electric Transmission Corridors (National Corridors) -- the Mid-Atlantic Area National Interest Electric Transmission Corridor, and the Southwest Area National Interest Electric Transmission Corridor. These corridors include areas in two of the Nation's most populous regions with growing electricity congestion problems. The Department based its designations on data and analysis showing that persistent transmission congestion exists in these two areas.

  7. Aviation Safety Officer, Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-20

    The Aviation Safety Officer FAQS establishes common functional area competency requirements for all DOE aviation safety personnel who provide assistance, or direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s facilities.

  8. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  9. Outreach and Collaboration Functional Area Analysis Report

    Broader source: Energy.gov [DOE]

    November 2008 The Department of Energy (DOE) Office of Health, Safety and Security (HSS) has established an outreach and collaboration program to ensure continuous communications and information sharing among its managers, stakeholders (including DOE line managers), and customers in the areas of health, safety, and security performance.

  10. Functional Area Qualification Standard Job Task Analyses

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  11. Aviation Manager Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-12-09

    The Aviation Manager FAQS establishes common functional area competency requirements for all DOE Aviation Manager personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE’s defense nuclear facilities.

  12. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  13. National Science Teachers Association Area Conference

    Broader source: Energy.gov [DOE]

    The National Science Teachers Association Area Conference will be hosted in Reno, Nevada, October 22–24, 2015. The conference’s theme is “Science and Literacy: Creating Connections!” The conference will provide science educators an opportunity to develop their professional skills and network. Bioenergy Technologies Office Communications Lead Sheila Dillard will be in attendance.

  14. National Science Teachers Association Area Conference

    Broader source: Energy.gov [DOE]

    The National Science Teachers Association Area Conference will be hosted in Philadelphia, Pennsylvania, November 12–14, 2015. The conference is theme is “Revolutionary Science” and will provide science educators an opportunity to develop their professional skills and network. Bioenergy Technologies Office Communications Lead Sheila Dillard will be in attendance

  15. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  16. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    1996-07-01

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  17. 100 Area and 300 Area Component of the RCBRA Fall 2005 Data Compilation

    SciTech Connect (OSTI)

    J.M. Queen

    2006-05-30

    The purpose of this report is to provide a brief description of the sampling approaches, a description of the samples collected, and the results for the Fall 2005 sampling event. This report presents the methods and results of the work to support the 100 Area and 300 Area Component of the River Corridor Baseline Risk Assessment.

  18. ElectroNeedle Biological Sensor Array

    ScienceCinema (OSTI)

    None

    2010-01-08

    A device that when pressed against the skin can make rapid, multiplexed diagnostic measurements in a point-of-care setting. 2007 R&D 100 winner (SAND2007-1053P)

  19. ElectroNeedle Biological Sensor Array

    ScienceCinema (OSTI)

    Sandia

    2009-09-01

    : A device that when pressed against the skin can make rapid, multiplexed diagnostic measurements in a point-of-care setting. 2007 R&D 100 winner (SAND2007-1053P)

  20. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  1. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  2. Kirkland gets license in hot Philippines area

    SciTech Connect (OSTI)

    Kirkland, A.S.

    1992-08-03

    This paper reports that Kirkland As, Oslo, has received a geophysical survey and exploration contract (GSEC) in a sizzling exploration and development theater off the Philippines. The license covers about 6,000 sq miles of undisputed waters, with depths mostly less than 300 ft, and lies in the Reed Bank area off Northwest Palawan Island, where several major oil and gas strikes have been made recently. Kirkland has 1 year in which to carry out its seismic work commitment. The terms of the GSEC then give an option to drill one well in a 6 month period. Once the results have been analyzed, the company can either drill another well or enter into a service contract for the license. Kirkland has a 65% share in the license, with the remainder split between Philippine companies Philodrill Corp., Beguet Mining Corp. subsidiary Petrofields, and Seafront Resources Corp. The Philippines is one of Kirkland's main areas of activity, the Kirkland Commercial Manager Ralph Baxter.

  3. Landed Costs of Imported Crude by Area

    U.S. Energy Information Administration (EIA) Indexed Site

    Area (Dollars per Barrel) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Average Landed Cost 27.34 26.97 31.99 35.42 40.63 43.87 1973-2016 Persian Gulf 30.92 30.69 34.60 38.00 42.33 45.05 1996-2016 Total OPEC 28.98 29.49 33.87 36.78 42.34 45.06 1973-2016 Non OPEC 26.25 25.42 30.39 34.42 39.56 43.08 1973-2016 Selected Countries Canada 26.21 24.61

  4. Efficient Wide Area Data Transfer Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Wide Area Data Transfer Protocols for 100 Gbps Networks and Beyond Ezra Kissel School of Informatics and Computing Indiana University Bloomington, IN 47405 ezkissel@indiana.edu Martin Swany School of Informatics and Computing Indiana University Bloomington, IN 47405 swany@iu.edu Brian Tierney Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Eric Pouyoul Lawrence Berkeley National Laboratory Berkeley, CA 94720 epouyoul@lbl.gov Due to a number of recent

  5. Fire victim helped by area programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire victim helped by area programs Fire victim helped by local nonprofit organizations A perennial helper, didn't realize that she might someday need help herself. April 3, 2012 Beatrice Dubois is grateful for the help she received from Lab-supported Beatrice Dubois is grateful for the help she received from Lab-supported, local nonprofits during her time of need. Contact Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Beatrice Dubois, dedicated fundraiser, assisted

  6. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  7. Functional Area Criteria & Review Approach Documents

    Broader source: Energy.gov [DOE]

    CRADS provided on this page are provided as examples of functional area Objectives and Criteria used to evaluate how requirements are meet. They are only examples and should not be utilized as is. In accordance with DOE Standard 3006-2010, CRADs should be developed by team members to reflect the specifics of the proposed review (i.e., breadth and depth) as defined in the approved Plan of Action.

  8. DOE Focus Areas and Panel Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Focus Areas and Panel Introduction DOE SSL Program Connected Lighting Meeting November 16, 2015 2 The emergence of Connected Lighting * Solid-State Lighting * Significant technology trends driving performance improvements and cost reductions - Computing - Mobile - Intelligence (i.e. microcontrollers), network interfaces, and sensors * Cloud storage, computing, analytics as a service * IoT focus on systems and data 1) Controllable and Intelligent SSL Source 2) Wired, Wireless Network

  9. TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS

    SciTech Connect (OSTI)

    Carey R. Butler

    2001-10-01

    This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

  10. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  11. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  12. Electrohydrodynamically driven large-area liquid ion sources

    DOE Patents [OSTI]

    Pregenzer, Arian L. (Corrales, NM)

    1988-01-01

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  13. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    SciTech Connect (OSTI)

    Eklund, B.

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  14. Property:Building/FloorAreaResidential | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaResidential Jump to: navigation, search This is a property of type Number. Floor area for Residential Pages using the property "BuildingFloorAreaResidential"...

  15. Property:Building/FloorAreaHotels | Open Energy Information

    Open Energy Info (EERE)

    BuildingFloorAreaHotels Jump to: navigation, search This is a property of type Number. Floor area for Hotels Pages using the property "BuildingFloorAreaHotels" Showing 1 page...

  16. F-Area Northeast Expansion Report, Volumes 1

    SciTech Connect (OSTI)

    Syms, F.H.

    1999-08-23

    A geotechnical program has been complexed in F-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as the ''northeast expansion'' located in the F-Area.

  17. Chapter_2_Limited_Areas_Vault-Type_Rooms_and_Temporary_Limited_Areas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Limited Areas, VTRs, and Temporary Limited Areas Chapter 2 describes the security procedures adopted by DOE HQ to implement the requirements of the following DOE directives: * DOE Order 473.3, Protection Program Operations * DOE Order 471.6, Change 1, Information Security * DOE Order 475.2A, Identifying Classified Information * Classification Bulletin TNP-32, Classification Guidance for Classified Meeting Locations at DOE/NNSA or DOE/NNSA Contractor Sites or Facilities, dated May 27, 2010 DOE

  18. Chris Bergren Director, Environment Compliance & Area Completion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deactivation & Decommissioning at SRS Chris Bergren Director, Environment Compliance & Area Completion Projects DOE Office of Environmental Management Robotics Team Visit to SRS Tuesday, December 8, 2015 Tony Long Acting Manager, Area Completion Projects T Area Completion Area Completions Then Now M Area Completion Now Then Now 2 In Situ Decommissioning of the Heavy Water Components Test Reactor (HWCTR) Before Reactor Dome Removal Reactor Vessel Removal Demolition of Dome After 3 K-Area

  19. Mixed Waste Focus Area program management plan

    SciTech Connect (OSTI)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  20. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  1. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  2. 300 Area process trench sediment analysis report

    SciTech Connect (OSTI)

    Zimmerman, M.G.; Kossik, C.D.

    1987-12-01

    This report describes the results of a sampling program for the sediments underlying the Process Trenches serving the 300 Area on the Hanford reservation. These Process Trenches were the subject of a Closure Plan submitted to the Washington State Department of Ecology and to the US Environmental Protection Agency in lieu of a Part B permit application on November 8, 1985. The closure plan described a proposed sampling plan for the underlying sediments and potential remedial actions to be determined by the sample analyses results. The results and proposed remedial action plan are presented and discussed in this report. 50 refs., 6 figs., 8 tabs.

  3. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  4. National Electric Transmission Congestion Study 2006 Area Maps

    Broader source: Energy.gov (indexed) [DOE]

    Electric Transmission National Electric Transmission Congestion Study Congestion Study Congestion Area Maps Congestion Area Maps U.S. Department of Energy U.S. Department of Energy...

  5. Core Analysis At Desert Peak Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    Desert Peak Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Desert Peak Area (Laney, 2005) Exploration...

  6. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Brady Hot Springs Area (Combs 2006)...

  7. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  8. Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Wesnousky, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Brady Hot Springs Area...

  9. Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Desert Peak Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And...

  10. Micro-Earthquake At Brady Hot Springs Geothermal Area (2011)...

    Open Energy Info (EERE)

    At Brady Hot Springs Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Brady Hot Springs Geothermal Area...

  11. Cuttings Analysis At Desert Peak Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    Desert Peak Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Desert Peak Area (Laney, 2005) Exploration...

  12. Direct-Current Resistivity Survey At Brady Hot Springs Area ...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Brady Hot Springs Area...

  13. Canon City Area Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon...

  14. Masked Areas in Shear Peak Statistics: A Forward Modeling Approach...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Masked Areas in Shear Peak Statistics: A Forward Modeling Approach Citation Details In-Document Search Title: Masked Areas in Shear Peak Statistics: A Forward ...

  15. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  16. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  17. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Wister Area (DOE GTP) Exploration Activity...

  18. Surface Gas Sampling At Lightning Dock Area (Norman & Moore,...

    Open Energy Info (EERE)

    Surface Gas Sampling At Lightning Dock Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Lightning Dock Area (Norman & Moore, 2004)) Jump to: navigation, search...

  19. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) (Redirected from Water-Gas Samples At Colrado Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  20. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration...

  1. File:Federal Hydropower - Western Area Power Administration.pdf...

    Open Energy Info (EERE)

    Hydropower - Western Area Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Western Area Power Administration.pdf...

  2. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  3. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  4. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  5. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  6. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Form: Alaska Special Area Permit Application Form Type ApplicationNotice Form Topic Fish and Game Special Area Permit Application Organization Alaska Department of Fish and...

  7. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  8. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  9. Tampa Bay Area Ethanol Consortium | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  10. Barron's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Areas. Print PDF Retrieved from "http:en.openei.orgwindex.php?titleBarron%27sHotSpringsGeothermalArea&oldid714634" Feedback Contact needs updating Image...

  11. Gas Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

  12. Geothermometry At Desert Queen Area (Garchar & Arehart, 2008...

    Open Energy Info (EERE)

    Desert Queen Area (Garchar & Arehart, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Desert Queen Area (Garchar &...

  13. Reflection Survey At San Emidio Desert Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At San Emidio Desert Area (DOE GTP)...

  14. Refraction Survey At San Emidio Desert Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At San Emidio Desert Area (DOE GTP)...

  15. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) |...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At San Emidio Desert Area (DOE GTP)...

  16. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  17. Boston Area Solar Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Boston Area Solar Energy Association Jump to: navigation, search Name: Boston Area Solar Energy Association Address: Box 44-1017 Place: Somerville, Massachusetts Zip: 02114 Region:...

  18. Property:EnergyAccessImpactAreas | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name EnergyAccessImpactAreas Property Type String Description Impact Areas Retrieved from "http:en.openei.orgwindex.php?titleProperty:Energy...

  19. Refraction Survey At Coso Geothermal Area (1989) | Open Energy...

    Open Energy Info (EERE)

    Area (1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Coso Geothermal Area (1989) Exploration Activity Details...

  20. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  1. Development Wells At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  2. Observation Wells At Lightning Dock Geothermal Area (Reeder,...

    Open Energy Info (EERE)

    Geothermal Area (Reeder, 1957) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957)...

  3. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP) Exploration Activity...

  4. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  5. Development Wells At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Maui Area (DOE GTP) Exploration Activity Details Location...

  6. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  7. Development Wells At Coso Geothermal Area (1985) | Open Energy...

    Open Energy Info (EERE)

    Coso Geothermal Area (1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Coso Geothermal Area (1985) Exploration Activity...

  8. Observation Wells At Lightning Dock Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Area (Warpinski, Et Al., 2004)...

  9. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  10. Development Wells At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Silver Peak Area (DOE GTP) Exploration Activity...

  11. Development Wells At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Alum Area (DOE GTP) Exploration Activity Details...

  12. Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Mccoy Geothermal Area (DOE GTP) Exploration...

  13. Development Wells At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Wister Area (DOE GTP) Exploration Activity Details...

  14. Savannah River Site - L-Area Southern Groundwater | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L-Area Southern Groundwater Savannah River Site - L-Area Southern Groundwater January 1, ... InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River ...

  15. Savannah River Site - R-Area Groundwater Operable Unit | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-Area Groundwater Operable Unit Savannah River Site - R-Area Groundwater Operable Unit ... InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River ...

  16. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling - ... Video Presentation Nevada National Security Site Underground Test Area (UGTA) Flow and ...

  17. Nevada National Security Site Underground Test Area (UGTA) Tour...

    Office of Environmental Management (EM)

    Tour Nevada National Security Site Underground Test Area (UGTA) Tour Tour Booklet from the Nevada National Security Site Underground Test Area (UGTA) Tour on December 10, 2014 at ...

  18. Fluid Inclusion Analysis At Lightning Dock Area (Norman & Moore...

    Open Energy Info (EERE)

    Lightning Dock Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Lightning Dock Area...

  19. Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001...

    Open Energy Info (EERE)

    Area (Moore, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001)...

  20. Compound and Elemental Analysis At Lightning Dock Area (Norman...

    Open Energy Info (EERE)

    Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lightning Dock Area (Norman &...

  1. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) |...

    Open Energy Info (EERE)

    Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration...

  2. Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008...

    Open Energy Info (EERE)

    Chena Geothermal Area (Kolker, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Chena Geothermal Area (Kolker,...

  3. Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990...

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990)...

  4. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  5. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area...

  6. Mapping suitability areas for concentrated solar power plants...

    Office of Scientific and Technical Information (OSTI)

    Mapping suitability areas for concentrated solar power plants using remote sensing data Title: Mapping suitability areas for concentrated solar power plants using remote sensing data ...

  7. Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area...

  8. Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area...

  9. Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm,...

  10. V -209:Cisco WAAS (Wide Area Application Services) Arbitrary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    V -209:Cisco WAAS (Wide Area Application Services) Arbitrary Code Execution Vulnerabilities V -209:Cisco WAAS (Wide Area Application Services) Arbitrary Code Execution...

  11. Mount Princeton Area Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount...

  12. Reno-Moana Area (300) Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility...

  13. Core Analysis At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Core Analysis At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Alum Area (DOE GTP) Exploration Activity...

  14. Pressure Temperature Log At Colrado Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Colrado Area (DOE GTP) Exploration Activity...

  15. Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Silver Peak Area (DOE GTP) Exploration Activity...

  16. Pressure Temperature Log At Alum Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Alum Area (DOE GTP) Exploration Activity Details...

  17. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE GTP) Exploration...

  18. Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Silver Peak Area (DOE GTP) Exploration Activity...

  19. Cuttings Analysis At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Silver Peak Area (DOE GTP) Exploration Activity...

  20. Field Mapping At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Colrado Area (DOE GTP) Exploration Activity Details...