Sample records for neat methanol flex

  1. A sandwich structured membrane for direct methanol fuel cells operating with neat methanol

    E-Print Network [OSTI]

    Zhao, Tianshou

    A sandwich structured membrane for direct methanol fuel cells operating with neat methanol Q.X. Wu membrane enables improvements in cell performance. a r t i c l e i n f o Article history: Received 31 October 2012 Received in revised form 4 December 2012 Accepted 3 January 2013 Keywords: Fuel cell Direct

  2. Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat

    E-Print Network [OSTI]

    Zhao, Tianshou

    to achieve the neat-methanol operation is to passively transport the water produced at the cathode throughEnhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang Department of Mechanical Engineering

  3. FlexEnergy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides a company overview of FlexEnergy, Inc.

  4. Flex PACE Program (North Dakota)

    Broader source: Energy.gov [DOE]

    The Flex PACE Program designed to provide interest buy down to non-PACE qualifying businesses where the community determines eligibility and accountability standards. The PACE family of programs...

  5. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

  6. Natural Gas Ethanol Flex-Fuel

    E-Print Network [OSTI]

    Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

  7. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov (indexed) [DOE]

    of a cost effective and reliable dual combustion mode engine (multi-cylinder and flex fuel) using cost effective actuating system (two-step valves and electrical cam phasing...

  8. Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating

    E-Print Network [OSTI]

    Zhao, Tianshou

    significantly increase the methanol-crossover rate, producing an unfavorable * Corresponding author. DepartmentEffect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a

  9. Sandia National Laboratories: OrcaFlex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong Range RadarFacilityOptics LabOrcaFlex

  10. SCS-2005-18 Roundup Ready Flex Cotton System

    E-Print Network [OSTI]

    Mukhtar, Saqib

    SCS-2005-18 6-05 Roundup Ready Flex Cotton System Robert Lemon, Ph.D., Professor and Extension Agronomist - Cotton Randy Boman, Ph.D., Associate Professor and Extension Agronomist - Cotton Todd Baughman Specialist Peter Dotray, Ph.D., Professor and Extension Weed Specialist R oundup Ready Flex cotton provides

  11. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

  12. U-050: Adobe Flex SDK Input Validation Flaw Permits Cross-Site Scripting Attacks

    Broader source: Energy.gov [DOE]

    Flex applications created using the Flex SDK may not properly filter HTML code from user-supplied input before displaying the input.

  13. DOE-Flex Bulletin-Worker Injury While on a DOE-Flex Arrangement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's UseFlex Bulletin The

  14. NEAT-o-Games: Ubiquitous Activity-based Gaming

    E-Print Network [OSTI]

    (NEAT-o-games) is fueled by activity data recorded by small wearable sensors. Data from the sensors combines unobtrusive physiologic sensing and novel Human-Computer Interaction (HCI) technologies are logged wirelessly to a Personal Digital Assistant/Cell Phone (PDA), which acts as the central computing

  15. FlexGP : a scalable system for factored learning in the cloud

    E-Print Network [OSTI]

    Derby, Owen C

    2013-01-01T23:59:59.000Z

    This work presents FlexGP, a new system designed for scalable machine learning in the cloud. FlexGP presents a learner-agnostic, data-parallel approach to cloud-based distributed learning using existing single-machine ...

  16. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered...

    Energy Savers [EERE]

    Economy program for producing flex-fuel vehicles, which run on E-85, a blend of 85% ethanol and 15% gasoline, andor gasoline. Number of Flex Fuel Vehicle Models by...

  17. National Energy AudiT (NEAT) user`s manual

    SciTech Connect (OSTI)

    Krigger, J.K.; Adams, N. [Saturn Resource Management, Helena, MT (United States); Gettings, M. [Oak Ridge National Lab., TN (United States). Energy Div.

    1997-10-01T23:59:59.000Z

    Welcome to the US Department of Energy`s (DOE`s) energy auditing tool called ``NEAT``. NEAT, an acronym for National Energy AudiT, is a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the program as well as those anticipated from new regulations pertaining to waiver of the 40% materials requirements. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measured for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many buildings energy consumption algorithms are taken from Lawrence Berkeley Laboratory`s to the computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  18. Conveyorized Photoresist Stripping Replacement for Flex Circuit Fabrication

    SciTech Connect (OSTI)

    Megan Donahue

    2009-02-24T23:59:59.000Z

    A replacement conveyorized photoresist stripping system was characterized to replace the ASI photoresist stripping system. This system uses the qualified ADF-25c chemistry for the fabrication of flex circuits, while the ASI uses the qualified potassium hydroxide chemistry. The stripping process removes photoresist, which is used to protect the copper traces being formed during the etch process.

  19. Blending world map projections with Flex Projector Bernhard Jennya

    E-Print Network [OSTI]

    Jenny, Bernhard

    Projector and then documents the new approaches to projection blending. The integration of the three methods into Flex Projector makes creating new projections simple and easy to control and allows the user.flexprojector.com) is a free, open- source, cross-platform application with a graphical user interface for designing world map

  20. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Gurau, Bogdan

    2013-05-31T23:59:59.000Z

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  1. Synthesis of poly-(P-aryleneethynylene)s in neat water under aerobic conditions

    DOE Patents [OSTI]

    Kang, Youn K; Deria, Pravas; Therien, Michael J

    2012-10-16T23:59:59.000Z

    Provided are ethyne synthons comprising boron and related methods. Also provided are related water-soluble arylethynylene polymers capable of being synthesized in neat water under aerobic conditions.

  2. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Wayne Moore, Matt Foster, Kevin Hoyer, Keith Confer Delphi Advanced Powertrain DEER Conference September 29, 2010...

  3. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  4. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  5. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  6. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24T23:59:59.000Z

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  7. A Demonstration of FlexPref: Extensible Preference Evaluation Inside the DBMS Engine

    E-Print Network [OSTI]

    Mokbel, Mohamed F.

    A Demonstration of FlexPref: Extensible Preference Evaluation Inside the DBMS Engine Justin J This demonstration presents FlexPref, a framework imple- mented inside the DBMS query processor that enables effi, a fundamental issue is how we can realize each existing and future method inside a DBMS This work is supported

  8. Produce syngas for methanol

    SciTech Connect (OSTI)

    Farina, G.L. (Foster Wheeler International Corp., Milan (IT))

    1992-03-01T23:59:59.000Z

    Combined reforming, in which an oxygen reforming reactor is added downstream from a conventional tubular reactor to produce syngas for methanol, achieves a substantial reduction in energy consumption with the least impact on the environment. This paper reports that the advantages of this process scheme are as follows: 8% to 10% reduction in the consumption of natural gas per ton of methanol, The size of the primary reformer is reduced, Reduction of syngas compression requirement due to increased syngas pressure, Reduced steam consumption, Production of syngas with the stoichiometric composition required by methanol synthesis. Synthesis gases for the production of methanol and synfuels are basically mixtures of hydrogen and carbon oxides. They have been produced from natural gas by steam reforming, autothermal reforming and noncatalytic partial oxidation.

  9. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31T23:59:59.000Z

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

  10. Methanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis Jump to:DecMethanol Jump to:

  11. Methanol-reinforced kraft pulping

    SciTech Connect (OSTI)

    Norman, E.; Olm, L.; Teder, A. (STFI, Stockholm (Sweden))

    1993-03-01T23:59:59.000Z

    The addition of methanol to a high-sulfidity kraft cook on Scandinavian softwood chips was studied under different process conditions. Delignification and the degradation of carbohydrates were accelerated, but the effect on delignification was greater. Thus, methanol addition improved selectivity. The positive effect of methanol could also be observed for modified kraft cooks having a leveled out alkali concentration and lower concentration of sodium ions and dissolved lignin at the end of the cook. Methanol addition had no discernible effect on pulp strength or on pulp bleachability.

  12. MTBE, methanol prices rise

    SciTech Connect (OSTI)

    Morris, G.D.L.; Cornitius, T.

    1995-12-20T23:59:59.000Z

    After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

  13. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    Coal The economics of producing methanol and other fuels aresome discussion of producing methanol as a by-product from

  14. Automatic Parameter Identification in FlexRay based Automotive Communication Networks

    E-Print Network [OSTI]

    Automatic Parameter Identification in FlexRay based Automotive Communication Networks Eric-Triggered Architectures are being introduced in safety-critical automotive systems ("X-by-wire") to cope with the growing and explore its limitations. I. INTRODUCTION Nowadays most automotive innovations stem from elec- tronic

  15. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  16. Assessing the operational life of flexible printed boards intended for continuous flexing applications : a case study.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2011-01-01T23:59:59.000Z

    Through the vehicle of a case study, this paper describes in detail how the guidance found in the suite of IPC (Association Connecting Electronics Industries) publications can be applied to develop a high level of design assurance that flexible printed boards intended for continuous flexing applications will satisfy specified lifetime requirements.

  17. E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse gas regulations

    E-Print Network [OSTI]

    Kammen, Daniel M.

    E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse.................................................................................................. 5 1.1.3 CALIFORNIA CLEAN FUELS PROGRAM ....................................... 6 1.1.5 AB 1007: THE ALTERNATIVE FUELS PLAN

  18. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

  19. Semi-flexible gas-insulated transmission line using sandwiched discs for intermittent flexing joints

    DOE Patents [OSTI]

    Kommineni, P.R.

    1983-02-15T23:59:59.000Z

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by the use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements are formed by sandwiching together, by fusing, a pair of thin hollow discs which are fixedly secured to both the main conductor sections and the conductor hub section. 4 figs.

  20. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01T23:59:59.000Z

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  1. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22T23:59:59.000Z

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  2. 6, 39453963, 2006 Methanol inside aged

    E-Print Network [OSTI]

    . The oxidation of methane (and other hydrocarbons) can also produce methanol primarily via the self reactionACPD 6, 3945­3963, 2006 Methanol inside aged tropical biomass burning plumes G. Dufour et al. Title Chemistry and Physics Discussions First space-borne measurements of methanol inside aged tropical biomass

  3. Enhanced methanol utilization in direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    2001-10-02T23:59:59.000Z

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  4. ProtoFlex Corp formerly Alpha Optics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to:USGSMeanReservoirTemp JumpProterra Jump to:ProtoFlex Corp

  5. Direct methanol fuel cell and system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2004-10-26T23:59:59.000Z

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  6. Methanol production method and system

    DOE Patents [OSTI]

    Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

    1984-01-01T23:59:59.000Z

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  7. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot ethanol release (E100, 76 l) onto residual hydrocarbons in sandy soil was evaluated in a continuous-flow 8 shifts were assessed using quantitative real-time PCR analysis. High ethanol concentrations

  8. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01T23:59:59.000Z

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  9. FlexFetch: A History-Aware Scheme for I/O Energy Saving in Mobile Computing , Song Jiang2

    E-Print Network [OSTI]

    Jiang, Song

    FlexFetch: A History-Aware Scheme for I/O Energy Saving in Mobile Computing Feng Chen1 , Song Jiang, energy consumption caused by I/O operations becomes increasingly large. In a per- vasive computing be adaptively selected to achieve maximum energy reduction. To this end, we propose a profile-based I

  10. Fabrication and long-wavelength characterization of neat and chemically modified graphene

    SciTech Connect (OSTI)

    Kalugin, Nikolai G. [Departments of Materials Engineering and Chemistry, New Mexico Tech, Socorro, NM 87801 (United States)

    2014-03-31T23:59:59.000Z

    Graphene, a single- or several layer-thick carbon, attracts significant research activity because of its exceptional material properties. Graphene is a promising material for optoelectronic applications. Neat graphene demonstrates potential as a material for long wavelength photodetectors working at elevated temperatures. Chemical modification of graphene opens up many new applications of this material in electronics, in new composite materials, and in new catalysts for different chemical processes. Chemical vapor deposition-grown large-area graphene can be successfully modified with the creation of benzyne attachments. The investigation of microwave properties is an important part of graphene research. Two variants of near-field long wavelength microscopy were found efficient with graphene. Measurements with a probe formed by an electrically open end of a 4 GHz half-lambda parallel-strip transmission line resonator allow the implementation of an electrodynamic model of graphene microwave impedance. The results of near-field scanning superconducting quantum interference device (SQUID) RF microscopy of graphite and graphene at 200 MHz shed light on mechanisms of AC graphene response: screening currents induced in graphene by an external RF magnetic field tend to localize near structural defects.

  11. Design of Experiments to Determine Causes of Flex Cable Solder Wicking, Discoloration and Hole Location Defects

    SciTech Connect (OSTI)

    Wolfe, Larry

    2009-04-22T23:59:59.000Z

    Design of Experiments (DoE) were developed and performed in an effort to discover and resolve the causes of three different manufacturing issues; large panel voids after Hot Air Solder Leveling (HASL), cable hole locations out of tolerance after lamination and delamination/solder wicking around flat flex cable circuit lands after HASL. Results from a first DoE indicated large panel voids could be eliminated by removing the pre-HASL cleaning. It also revealed eliminating the pre-HASL bake would not be detrimental when using a hard press pad lamination stackup. A second DoE indicated a reduction in hard press pad stackup lamination pressure reduced panel stretch in the y axis approximately 70%. A third DoE illustrated increasing the pre-HASL bake temperature could reduce delamination/solder wicking when using a soft press pad lamination stackup.

  12. Recovery of methanol in an MTBE process

    SciTech Connect (OSTI)

    Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

    1988-05-31T23:59:59.000Z

    In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

  13. Consistency in the Sum Frequency Generation Intensity and Phase Vibrational Spectra of the Air/Neat Water Interface

    SciTech Connect (OSTI)

    Feng, Ranran; Guo, Yuan; Lu, Rong; Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2011-06-16T23:59:59.000Z

    Tremendous progresses have been made in quantitative understanding and interpretation of the hydrogen bonding and ordering structure at the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement on the neat air/water interface by Q. Du et al. in 1993 (PRL, 70, 2312-2316, 1993.). However, there are still disagreements and controversies on the consistency between the different experiment measurements and the theoretical computational results. One critical problem lies in the inconsistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts trying to understand them. In this report, the reliability of the SFG-VS intensity spectra of the neat air/water interface is to be quantitatively examined, and the sources of possible inaccuracies in the SFG-VS phase spectral measurement is to be discussed based on the non-resonant SHG phase measurement results. The conclusion is that the SFG-VS intensity spectra data from different laboratories are now quantitatively converging and in agreement with each other, and the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against the properly corrected phase standard.

  14. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Presentation...

  15. Methanol synthesis in a trickle bed reactor

    E-Print Network [OSTI]

    Tjandra, Sinoto

    1992-01-01T23:59:59.000Z

    kinetic models for methanol synthesis under the assumption that the rate limiting step was the reaction between an adsorbed CO molecule and two adsorbed H2 molecules. The experiment was conducted over a Cu/ZnO/Cr~03 catalyst in a fixed bed reactor... to account for the large degree of initial deactivation. However, Rozovskii (1980) claimed the opposite and stated that methanol is made from carbon dioxide and no methanol is produced from Hz/CO mixtures over the Cu/ZnO/Alz03 catalyst. Liu et al. (1984...

  16. Methanol engine conversion feasibility study: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

  17. Total to withdraw from Qatar methanol - MTBE?

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

  18. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1991-02-12T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  19. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1990-01-01T23:59:59.000Z

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  20. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01T23:59:59.000Z

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  1. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-03-21T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  2. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-09-05T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  3. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect (OSTI)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12T23:59:59.000Z

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  4. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect (OSTI)

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24T23:59:59.000Z

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  5. Technology and economics of gas utilization: Methanol

    SciTech Connect (OSTI)

    Seddon, D.

    1994-12-31T23:59:59.000Z

    The paper reviews the current and emerging technology for the conversion of natural gas into methanol and assesses its impact on the production economics. Technologies of potential use for offshore developments of large gas reserves or associated gas are discussed. New technologies for the production of methanol synthesis-gas, such as autothermal reforming and GHR technology, are described and the economic advantages over conventional steam reforming are quantified. New methanol synthesis technology, such as slurry phase reactors, are outlined but appear to offer little advantage over conventional technology for offshore gas utilization. The purification of methanol for fuel and chemical grade product is outlined and the cost of transport presented. The data presented gives an overview of the production costs for production of methanol from large gas reserves (> 1Tcf, 25--35PJ/a) and smaller scale reserves (10--20MMscfd, 4--10PJ/a). The variation of the production cost of methanol with gas price indicates that the gas price is the principal economic consideration. However, adoption of new technology will improve production economics by an amount equivalent to an incremental gas cost of about $0.5/GJ. For gas reserves of low development cost, the adoption of new technology is not a prerequisite to economic viability.

  6. Electronic Effect in Methanol Dehydrogenation on Pt Surfaces: Potential Control during Methanol Electrooxidation

    E-Print Network [OSTI]

    Park, Byungwoo

    advanced insight into the design of an optimal catalyst as the anode for direct methanol fuel cells. SECTION: Energy Conversion and Storage; Energy and Charge Transport Fuel cells are promising alternative energy conversion. Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs

  7. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect (OSTI)

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A. [Los Alamos National Lab., NM (United States)

    1993-07-01T23:59:59.000Z

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  8. NEAT, An Astrometric Telescope To Probe Planetary Systems Down To The Earth Mass Around Nearby Solar-Type Stars

    E-Print Network [OSTI]

    Malbet, F; Goullioud, R; Shao, M; Lagage, P -O; Cara, C; Durand, G; Feautrier, P; Jakobsson, B; Hinglais, E; Mercier, M

    2011-01-01T23:59:59.000Z

    The NEAT (Nearby Earth Astrometric Telescope) mission is a proposition submitted to ESA for its 2010 call for M-size mission. The main scientific goal is to detect and characterize planetary systems in an exhaustive way down to 1 Earth mass in the habitable zone and further away, around nearby stars for F, G, and K spectral types. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to that mass limit. Extremely- high-precision astrometry, in space, can detect the dynamical effect due to even low mass orbiting planets on their central star, reaching those scientific goals. NEAT will continue the work performed by Hipparcos (1mas precision) and Gaia (7{\\mu}as aimed) by reaching a precision that is improved by two orders of magnitude (0.05{\\mu}as, 1{\\sigma} accuracy). The two modules of the payload, the telescope and the focal plane, must be placed 40m away leading to a formation flying opt...

  9. Falling MTBE demand bursts the methanol bubble

    SciTech Connect (OSTI)

    Wiesmann, G.; Cornitius, T.

    1995-03-01T23:59:59.000Z

    Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

  10. Opportunities for coal to methanol conversion

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

  11. Thermally integrated staged methanol reformer and method

    DOE Patents [OSTI]

    Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

    2001-01-01T23:59:59.000Z

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  12. Methanex considers methanol, MTBE in Qatar

    SciTech Connect (OSTI)

    NONE

    1995-12-13T23:59:59.000Z

    CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

  13. Liquid phase methanol reactor staging process for the production of methanol

    DOE Patents [OSTI]

    Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

    1988-01-01T23:59:59.000Z

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  14. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Feng, Guang [Clemson University; Sumpter, Bobby G [ORNL; Qiao, Rui [ORNL; Meunier, Vincent [ORNL

    2011-01-01T23:59:59.000Z

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF4]; (2) the capacitance of EDLs near negative electrodes (with BMIM+ ion as the counter-ion) is smaller than that near positive electrodes (with BF4as counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.

  15. Theoretical study of syngas hydrogenation to methanol on the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001)...

  16. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect (OSTI)

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15T23:59:59.000Z

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  17. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    of NO and N02 in a Turbulent Propane/Air Di fusion Flame,"Fuel Methanol Ethanol Ethane Propane i so Octane n - Cetanestage of the secondary Propane, at A spark air line contains

  18. Methanol production from Eucalyptus wood chips. Final report

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

  19. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

    1995-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  20. Photoelectron imaging of large anionic methanol clusters: ,,n70460...

    E-Print Network [OSTI]

    Neumark, Daniel M.

    been described elsewhere.9 Methanol cluster anions were produced by passing argon through a reservoirPhotoelectron imaging of large anionic methanol clusters: ,,MeOH...n - ,,n�70­460... Aster Kammrath Electron solvation in methanol anion clusters, MeOH n - n 70­460 , is studied by photoelectron imaging. Two

  1. Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    ultrafast hydrogen migration.7,8 The 38 fs 800 nm pump pulse produced methanol monocation, and a probe pulseMolecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS

  2. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    energy density of 1.5 Wh/cc; 1.5Wh/g = X5; x10 energy density of Li ion battery * Direct & complete Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Micro Fuel Cells TM State of MTI Micro Fuel Cells Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  3. ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel vehicles (FFV). A FFV is capable of operating on

    E-Print Network [OSTI]

    Kirschner, Denise

    ALTERNATIVE FUEL VEHICLE (AFV) INFORMATION Over 98% of the U-M auto passenger fleet is flex fuel of both. FFV's are equipped with an engine and fuel system designed specifically to be compatible with ethanol's chemical properties. FFV's qualify as alternative fuel vehicles under the Energy Policy Act

  4. Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices

    SciTech Connect (OSTI)

    Obert, R.; Dave, B.C.

    1999-12-29T23:59:59.000Z

    Strategies for effective conversion of atmospheric CO{sub 2} to methanol offer promising new technologies not only for recycling of the greenhouse gas but also for an efficient production of fuel alternatives. Partial hydrogenation of carbon dioxide has been accomplished by means of heterogeneous catalysis, electrocatalysis, and photocatalysis. Oxide-based catalysts are predominantly used for industrial fixation of carbon dioxide. A unique approach in this direction involves the use of enzymes as catalysts for conversion of carbon dioxide to methanol. The use of enzymes is particularly appealing since it provides a facile low-temperature route for generation of methanol directly from gaseous carbon dioxide. The authors report an enzymatically coupled sequential reduction of carbon dioxide to methanol by using a series of reactions catalyzed by three different dehydrogenases. Overall, the process involves an initial reduction of CO{sub 2} to formate catalyzed by formate dehydrogenase (F{sub ate}DH), followed by reduction of formate to formaldehyde by formaldehyde dehydrogenase (F{sub ald}DH), and finally formaldehyde is reduced to methanol by alcohol dehydrogenase (ADH). In this process, reduced nicotinamide adenine dinucleotide (NADH) acts as a terminal electron donor for each dehydrogenase-catalyzed reduction.

  5. Liquefaction of natural gas to methanol for shipping and storage

    SciTech Connect (OSTI)

    O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

    1986-07-01T23:59:59.000Z

    The penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development at the Brookhaven National Laboratory. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. The new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. As a result of process design factors made possible by the BNL catalyst, the plant required to convert natural gas to methanol is very simple. Conversion of natural gas to methanol requires two chemical reactions, both of which are exothermic, and thus represent a loss of heating value in the feed natural gas. This loss is about 20% of the feed gas energy, and is, therefore, higher than the 10% loss in energy in natural gas liquefaction, which is a simpler physical - not a chemical - change. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of the capital needed for the LNG plant and LNG tanker fleet. This large reduction in capital requirements is expected to make liquefaction to methanol attractive in many cases where the LNG capital needs are prohibitive. 3 tabs.

  6. List of Methanol Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of GeothermalMethanol Incentives Jump to:

  7. (Non) formation of methanol by direct hydrogenation of formate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production...

  8. Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

  9. Communication China's growing methanol economy and its implications for energy

    E-Print Network [OSTI]

    Jackson, Robert B.

    but scarce oil and natural gas. Adapting to such limitations, it has developed a chemical industry, with the rest coming from natural gas (Peng, 2011). Methanol is commonly used to produce formaldehyde, methylCommunication China's growing methanol economy and its implications for energy and the environment

  10. Adsorption of intact methanol on Ru,,0001... Pawel Gazdzicki,1

    E-Print Network [OSTI]

    in applications such as the direct methanol fuel cell, where Ru/Pt alloys are used as catalysts for dehydration and hydrogen/ deuterium as suggested in the literature is therefore discarded. At very low coverages or by annealing a low coverage methanol layer, hydrogen bonding leads to cluster formation, as evidenced

  11. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Methanol Synthesis over Cu from COCO2H2H2O Mixtures: the Source of C in Methanol and the Role of Water Mechanistic Studies of Methanol Synthesis over Cu from COCO2H2H2O...

  12. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01T23:59:59.000Z

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  13. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20T23:59:59.000Z

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  14. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  15. Methanol adsorption and decomposition on rhodium

    SciTech Connect (OSTI)

    Chuah, G.K.; Kruse, N.; Schmidt, W.A.; Block, J.H.; Abend, G. (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany, F.R.))

    1989-10-01T23:59:59.000Z

    The decomposition of methanol on rhodium probed from {approximately}200 atomic sites of the (001) or (111) planes or Rh field emitter crystals but randomly with regard to crystallographic zones was studied by pulsed field desorption mass spectrometry. High electric field pulses were used to quantitatively desorb the final products, carbon monoxide and hydrogen, thus achieving steady-state conditions. Substantial amounts of methoxy (mainly desorbed as CH{sub 3}{sup +} ions) were also present at the surface. Applying a steady electric field, F{sub R} {ge} 4 V/nm, between the field pulses, led to a deceleration of the decomposition reaction and to increase of the amount of adsorbed CH{sub 3}O and CH{sub 2}O species. There were indicators that the rate-determining step of the reaction is C-H bond cleavage in adsorbed methoxy to form the CH{sub 2}O intermediate. This was supported by the observation of a kinetic isotope effect in the formation of CD{sub 2}O and CHDO from methyl-d{sub 2}-alcohol, CHD{sub 2}OH. Here, the C-H bond breaking to form the CD{sub 2}O was found to be twice as fast as the breaking of the C-D bond which results in CHDO. Field ion microscopy was applied to investigate the influence of the reaction on the structure of the whole hemispherical single crystal surface. There were neither topographic changes nor corrosion of the Rh surface after field-free exposure to 2 Pa methanol at temperatures up to 423 K.

  16. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1993-01-01T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  17. Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the project are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.

  18. Method of converting environmentally pollutant waste gases to methanol

    SciTech Connect (OSTI)

    Pfingstl, H.; Martyniuk, W.; Hennepin, A. Ill; McNally, T.; Myers, R.; Eberle, L.

    1993-08-03T23:59:59.000Z

    A continuous flow method is described of converting environmentally pollutant by-product gases emitted during the manufacture of silicon carbide to methanol comprising: (a) operating a plurality of batch furnaces of a silicon carbide manufacturing plant thereby producing silicon carbide and emitting by-product gases during the operation of the furnaces; (b) staggering the operation of the batch furnaces to achieve a continuous emission of the by-product gases; (c) continuously flowing the by-product gases as emitted from the batch furnaces directly to a methanol manufacturing plant; (d) cleansing the by-product gases of particulate matter, including removing the element sulfur from the by-product gases, as they are flowed to the methanol manufacturing plant, sufficiently for use of the by-product gases in producing methanol; and (e) immediately producing methanol from the by-product gases at the methanol manufacturing plant whereby the producing of silicon carbide is joined with the producing of methanol as a unified process.

  19. The production of methanol by the Brookhaven National Laboratory process

    SciTech Connect (OSTI)

    Miller, D.B.; Williams, J.J.; Johnson, A.R.

    1990-11-01T23:59:59.000Z

    The purpose of this study was to develop a capital cost estimate and methanol production costs for a new methanol process under development at the Brookhaven National Laboratory (BNL). The cost of fuel delivered to the US Gulf Coast is compared with fuel produced by a conventional methanol process and a liquefied natural gas (LNG) process. The new methanol process is made possible by the development of a new liquid phase catalyst. The new liquid catalyst system can convert synthesis gas almost completely to methanol in a SINGLE pass through the methanol synthesis reactor. This catalyst system reduces synthesis reaction temperatures from about 260{degree}C to about 100{degree}C, permitting isothermal synthesis conditions, in contrast to the temperature gradients in currently available pelleted, solid catalysts. Natural gas feedstock can be processed at pressures under 250 psia. Since nitrogen in the synthesis gas can be tolerated, the autothermal reforming step (combination of partial oxidation and steam reforming over a nickel catalyst) uses preheated air rather than oxygen. However, even with nitrogen present, the volume of gas fed to the reactor can still be smaller than the volume of gas that must be circulated in a conventional reactor, which operates with low conversions and requires high recycle volumes. The characteristics of the BNL system permits a major improvement in methanol plant design and economics. 11 figs., 15 tabs.

  20. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31T23:59:59.000Z

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  1. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  2. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  4. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Here, Graciani et al. report on a new nanocatalyst that can do just that for CO2- in producing methanol, a key industrial chemical commonly used to make other chemicals and...

  5. Coadsorption of methanol and isobutene on HY zeolite

    SciTech Connect (OSTI)

    Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States); Lercher, J.A. [Univ. of Twente, Enschede (Netherlands)

    1995-05-25T23:59:59.000Z

    In order to develop a better understanding of methyl tert-butyl ether (MTBE) synthesis on zeolites, the coadsorption of methanol and isobutene on HY zeolite was investigated using IR spectroscopy. Initial adsorption of isobutene alone at 35{degree}C led to rapid oligomerization yielding strongly bound oligomers. The subsequent coadsorption of methanol did not induce any changes in the zeolite-adsorbate complexes. TPD following the coadsorption showed that the Bronsted acid sites could be restored by temperature treatment above approximately 300{degree}C. When methanol was adsorbed first and isobutene was subsequently coadsorbed, MTBE was formed even at 35{degree}C on the catalyst surface. MTBE desorbed easily at a temperature of 70{degree}C, restoring a major fraction of the Bronsted acid sites. Methanol was concluded to decrease the probability of oligomerization by effectively competing for the acid sites. 34 refs., 6 figs.

  6. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on MCM-48

    E-Print Network [OSTI]

    Bell, Alexis T.

    . Methanol reacts reversibly, at a ratio of approximately 1 methanol per V, with one V-O-Si to produce both V-state reaction conditions, CH2O is produced as the dominant product of methanol oxidation at temperatures belowMechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported

  7. Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

    E-Print Network [OSTI]

    Al-Arfaj, Muhammad A.

    , methanol recovery 1. Introduction A process of producing TAME via reactive distillation has been presented the bulk of the reaction between C5 and methanol to produce TAME and a reactive distillation. MethanolDesign of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

  8. Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion

    E-Print Network [OSTI]

    Fayer, Michael D.

    -d in a solution containing 0.8% methanol-d/23% methanol-h in carbon tetrachloride. Methanol-d molecules that both-d in an isotopically mixed solu- tion of methanol dissolved in carbon tetrachloride.11­13 The first step involved

  9. Evaluation of reformed methanol as an automotive engine fuel

    E-Print Network [OSTI]

    McCall, David M

    1983-01-01T23:59:59.000Z

    EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1903 Major Subject: Mechanical Engineering EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Approved as to style and content by: Dr. T. R. Lalk (Chairman o f Committee ) Dr. R. R. Davison (Member...

  10. Flex Fuel Vehicle Systems

    Broader source: Energy.gov (indexed) [DOE]

    & Variable Advanced Management Injection Injection Sensors Control Units Fuel Supply & Plastic Parts Control Transmission Engineering Gasoline Systems GSENS, GSENS-NA System...

  11. Methanol fumigation of a light duty automotive diesel engine

    SciTech Connect (OSTI)

    Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

    1980-01-01T23:59:59.000Z

    An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

  12. Methanol injection and recovery in a large turboexpander plant. [Canada

    SciTech Connect (OSTI)

    Nelson, K.; Wolfe, L.

    1981-01-01T23:59:59.000Z

    Methanol is used to prevent hydrate formation in Petro-Canada's 2000 MMSCFD Empress expander plant. Injection and recovery facilities have operated essentially trouble-free since start-up late in 1979. A portion of the methanol recovery section has been modified to provide removal of the H/sub 2/S and most of the COS from the propane product stream, concurrent with methanol recovery. The Empress straddle plant strips natural gas liquids from pipeline gas leaving Alberta for eastern Canadian and U.S. markets. The original cold oil absorption plant, started up in 1964 and expanded in 1967, recovered over 90% of the propane and virtually all of the heavier components. In 1976, a market for ethane was secured as feedstock for the world-scale ethylene complex under construction in Alberta, and it was decided to replace the cold oil plant with a turboexpander facility. The plant and its operations are described in some detail. 2 refs.

  13. Single-cell protein from methanol with Enterobacter aerogenes

    SciTech Connect (OSTI)

    Gnan, S.O.; Abodreheba, A.O.

    1987-02-20T23:59:59.000Z

    An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.

  14. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  15. Dislocations, Plasticity and Metal Forming: Proceedings of PLASTICITY'03: The Tenth International Symposium on Plasticity and its Current Applications, A.A. Khan, R. Kazmi and J. Zhou (eds.). Maryland: NEAT Press.

    E-Print Network [OSTI]

    Aubertin, Michel

    Dislocations, Plasticity and Metal Forming: Proceedings of PLASTICITY'03: The Tenth International Symposium on Plasticity and its Current Applications, A.A. Khan, R. Kazmi and J. Zhou (eds.). Maryland: NEAT Press. 570 A UNIFIED MULTIAXIAL FORMULATION TO DESCRIBE YIELDING, PLASTIC POTENTIAL, AND LIMIT STATES

  16. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A Combined DFT and Kinetic Study. Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model...

  17. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on...

  18. E-Print Network 3.0 - air-breathing direct methanol Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Res. 2005; 29:10411050 Summary: , U.S.A. SUMMARY An 8-cell air-breathing direct methanol fuel cell (DMFC) stack with the active area... of an air-breathing direct methanol fuel...

  19. An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells

    E-Print Network [OSTI]

    Hall, Kwame (Kwame J.)

    2009-01-01T23:59:59.000Z

    Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

  20. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

  1. The Neo-Flex LCD Arm is the perfect accessory to add flexibility to your LCD monitor or TV. Sleek and streamlined, it frees up desk space and allows you

    E-Print Network [OSTI]

    Saskatchewan, University of

    The Neo-Flex LCD Arm is the perfect accessory to add flexibility to your LCD monitor or TV. Sleek lifting the LCD with the other hand. Then position the LCD where you want it and release the button. It. Highlights · Great value at a great price · Easily position your LCD or TV for maximum comfort

  2. Direct Methanol Fuel Cell Experimental and Model Validation Study

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Direct Methanol Fuel Cell Experimental and Model Validation Study M. Mench, J. Scott, S. Thynell boundary Fuel cell performance Current density distribution measurements Conclusions #12;3 Method, flow rate, species inlet and fuel cell temperature, and humidity. Transparent polycarbonate windows

  3. Methanol market slowly tightens as Brazil starts soaking up material

    SciTech Connect (OSTI)

    Young, I.

    1992-11-25T23:59:59.000Z

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

  4. Romania program targets methanol and Fischer-Tropsch research

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

  5. ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS

    SciTech Connect (OSTI)

    MAHAJAN,D.; WEGRZYN,J.E.

    1999-03-01T23:59:59.000Z

    An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

  6. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect (OSTI)

    Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

    1995-09-01T23:59:59.000Z

    Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

  7. A new blending agent and its effects on methanol-gasoline fuels

    SciTech Connect (OSTI)

    Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

    2000-04-01T23:59:59.000Z

    The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

  8. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  9. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11T23:59:59.000Z

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  10. Performance modeling and cell design for high concentration methanol fuel cells

    E-Print Network [OSTI]

    ) it reduces the fuel efficiency (methanol is reacted without producing electrical current). We canChapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li

  11. Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles

    E-Print Network [OSTI]

    Kik, Pieter

    of this process is a limiting factor in the performance of direct methanol fuel cells, which produce electricityCorrelating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol

  12. Seasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets

    E-Print Network [OSTI]

    Cohen, Ronald C.

    , 2002] and photochemical produc- tion from hydrocarbon precursors. Methanol is often the most abundantSeasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets December 2005; published 21 February 2006. [1] Acetone and methanol have been measured hourly at a rural

  13. Catalysis Today 53 (1999) 433441 New insights into methanol synthesis catalysts from X-ray absorption

    E-Print Network [OSTI]

    Iglesia, Enrique

    O and Cr2O3 mixtures and produced methanol in low yields from CO­H2 mixtures at high temperatures (593Catalysis Today 53 (1999) 433­441 New insights into methanol synthesis catalysts from X a consistent structural picture of methanol synthesis catalysts. Copper metal is the principal Cu species

  14. Department of Energy and Mineral Engineering Spring 2012 BP Methanol Separation

    E-Print Network [OSTI]

    Demirel, Melik C.

    issues in the well heads. To counteract this problem, methanol is injected into the produced water stream-effective system that would remove methanol from the produced water stream. Objectives Our objective was to reduce the methanol concentration of either one of two produced water samples. Specifically, our goal was to reduce

  15. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures

    SciTech Connect (OSTI)

    Waller, F.J.

    1997-11-01T23:59:59.000Z

    Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

  16. Methanol production from eucalyptus wood chips. Attachment V. The Florida eucalyptus energy farm: environmental impacts

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-06-01T23:59:59.000Z

    The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.

  17. High specific power, direct methanol fuel cell stack

    DOE Patents [OSTI]

    Ramsey, John C. (Los Alamos, NM); Wilson, Mahlon S. (Los Alamos, NM)

    2007-05-08T23:59:59.000Z

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  18. Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether

    SciTech Connect (OSTI)

    Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

    1995-11-01T23:59:59.000Z

    Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

  19. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    to electric energy in a hydrogen/oxygen fuel cell was demon- strated. Although hydrogen/oxygen fuel cells): Application to Direct Methanol Fuel Cells Jeremy Kua and William A. Goddard III* Contribution from and designing new catalysts. We find that methanol dehydrogenation is most facile on Pt, with the hydrogens

  20. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment

    SciTech Connect (OSTI)

    Hsu, Po-Chun; Lin, Hong-Liang [Department of Biotechnology, Yuanpei University, Hsin Chu, Taiwan (China); Wang, Shun-Li, E-mail: wangshunli@mail.ncyu.edu.tw [Department of Applied Chemistry, National Chia Yi University, Chia Yi, Taiwan (China); Lin, Shan-Yang, E-mail: sylin@mail.ypu.edu.tw [Department of Biotechnology, Yuanpei University, Hsin Chu, Taiwan (China)

    2012-08-15T23:59:59.000Z

    To investigate the thermal behavior of cocrystal formed between anhydrous theophylline (TP) and anhydrous citric acid (CA) by neat manual cogrinding or thermal treatment, DSC and FTIR microspectroscopy with curve-fitting analysis were applied. The physical mixture and 60-min ground mixture were stored at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition to determine their stability behavior. Typical TP-CA cocrystals were prepared by slow solvent evaporation method. Results indicate that the cogrinding process could gradually induce the cocrystal formation between TP and CA. The IR spectral peak shift from 3495 to 3512 cm{sup -1} and the stepwise appearance of several new IR peaks at 1731, 1712, 1676, 1651, 1557 and 1265 cm{sup -1} with cogrinding time suggest that the mechanism of TP-CA cocrystal formation was evidenced by interacting TP with CA through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. The stability of 60-min ground mixture of TP-CA was confirmed at 55{+-}0.5 Degree-Sign C/40{+-}2% RH condition over a storage time of 60 days. - Garphical abstract: Cogrinding, thermal and solvent-evaporation methods might easily induce the theophylline-citric acid cocrystal formation. Highlights: Black-Right-Pointing-Pointer Cogrinding process could gradually induce the cocrystal formation between TP and CA. Black-Right-Pointing-Pointer The TP-CA cocrystal was formed through the intermolecular O-H{center_dot}{center_dot}{center_dot}O hydrogen bonding. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was similar to the solvent-evaporated cocrystal. Black-Right-Pointing-Pointer The thermal-induced TP-CA cocrystal formation was confirmed by pre-heating the physical mixture to 152 Degree-Sign C. Black-Right-Pointing-Pointer The 60-min TP-CA ground mixture was stable at accelerated condition over a storage time of 60 days.

  1. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-01-01T23:59:59.000Z

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  2. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol via

  3. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol

  4. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to MethanolFrom

  5. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to Methanol via

  6. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to Methanol

  7. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to MethanolFrom

  8. Liquid-liquid equilibrium of cyclohexane-n-hexane-methanol mixtures; Effect of water content

    SciTech Connect (OSTI)

    Alessi, P.; Fermeglia, M.; Kikic, I. (Istituto di Chimica Applicata e Industriale, University of Trieste, via Valerio 2, I-34127 Trieste (IT))

    1989-04-01T23:59:59.000Z

    Experimental liquid-liquid equilibrium data for the ternary system cyclohexane-n-hexane-methanol and for the binary systems n-hexane-methanol and cyclohexane-methanol are presented over a temperature range from 284 to 298{Kappa} at pressure of 0.1 MPa. Attention is given to the effect of the purity of methanol as far as the water content is concerned. The data are correlated by means of excess Gibbs energy models (NRTL and UNIQUAC), and the binary interaction parameters are reported.

  9. Indirect conversion of coal to methanol and gasoline: product price vs product slate

    SciTech Connect (OSTI)

    Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

    1980-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

  10. Optimizing membrane electrode assembly of direct methanol fuel cells for portable power.

    E-Print Network [OSTI]

    Liu, Fuqiang

    2006-01-01T23:59:59.000Z

    ??Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of… (more)

  11. Understanding the effect of modifying elements in supported vanadia bilayered catalysts for methanol oxidation to formaldehyde

    E-Print Network [OSTI]

    Vining, William Collins

    2011-01-01T23:59:59.000Z

    that methanol initially adsorbs dissociatively producingmethanol dissociatively adsorbs across a V-O- support bond, producingmethanol dissociatively adsorbs across a V-O-Si bond producing

  12. A self-regulated passive fuel-feed system for passive direct methanol fuel cells.

    E-Print Network [OSTI]

    Chan, Yeuk Him

    2007-01-01T23:59:59.000Z

    ??Unlike active direct methanol fuel cells (DMFCs) that require liquid pumps and gas compressors to supply reactants, the design of passive DMFCs eliminates these ancillary… (more)

  13. E-Print Network 3.0 - acute methanol toxicity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: that bind to transthyretin, a thyroxine binding protein. 12;Toxicity of Dioxins Acute Toxicity Varies... ) to acetaldehyde to acetate to acetyl CoA Methanol ...

  14. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect (OSTI)

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia); Fuller, G. A.; Quinn, L. J.; Avison, A., E-mail: Shari.Breen@csiro.au [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2011-06-01T23:59:59.000Z

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  15. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    SciTech Connect (OSTI)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18T23:59:59.000Z

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  16. APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

  17. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

  18. Mechanism of O2 Activation and Methanol Production by (Di(2-pyridyl)methanesulfonate)PtII

    E-Print Network [OSTI]

    Goddard III, William A.

    conversion of methane to methanol at low temper- ature is crucial for transportation of shale gas produced it to methanol and its derivatives. In this system, the kinetics of the oxidation of Pt(II) is important because activation and selective conversion of Pt(II) monomethyl complex (dpms)PtII Me(OH2) to its monomethyl Pt

  19. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    E-Print Network [OSTI]

    Kær, Søren Knudsen

    Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy]. The report forecasts even more success for fuel cells in the near future. Proton exchange membrane (PEM) fuel

  20. Electrochimica Acta 52 (2007) 43174324 Porous current collectors for passive direct methanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    2007-01-01T23:59:59.000Z

    Electrochimica Acta 52 (2007) 4317­4324 Porous current collectors for passive direct methanol fuel methanol fuel cell (DMFC) with its cathode current collector made of porous metal foam was investigated that the passive DMFC having the porous current collector yielded much higher and much more stable performance than

  1. Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells of a direct methanol fuel cell DMFC was observed to undergo an overshoot before it stabilized during at the catalyst layer, resulting in a transient reference hydrogen electrode, which allows quantifying

  2. Towards the optimal integrated production of biodiesel with internal recycling of methanol

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Towards the optimal integrated production of biodiesel with internal recycling of methanol of the production methanol from glycerol and its integration in the production of biodiesel from algae. We propose a limited superstructure where the glycerol from biodiesel is first reformed for which steam reforming

  3. Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol

    E-Print Network [OSTI]

    Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol Dean S mixtures of water with acetone, acetonitrile, and methanol over their entire range of compositions have and acetonitrile mixtures. Spatial distribution functions are reported for the acetone/water system. © 2000

  4. Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation

    E-Print Network [OSTI]

    Fayer, Michael D.

    Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. The Influence of Chain Dynamics on the Far Infrared Spectrum of Liquid Methanol-Water Mixtures

    SciTech Connect (OSTI)

    Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL; ,

    2005-07-12T23:59:59.000Z

    Far-infrared absorption spectroscopy has been used to study the low frequency ({center_dot} 100 cm{sup -1}) intermolecular modes of methanol in mixtures with water. With the aid of a first principles molecular dynamics simulation on an equivalent system, a detailed understanding about the origin of the low frequency IR modes has been established. The total dipole spectrum from the simulation suggests that the bands appearing in the experimental spectra at approximately 55 cm{sup -1} and 70 cm{sup -1} in methanol and methanol-rich mixtures arise from both fluctuations and torsional motions occurring within the methanol hydrogen-bonded chains. The influence of these modes on both the solvation dynamics and the relaxation mechanisms in the liquid are discussed within the context of recent experimental and theoretical results that have emerged from studies focusing on the short time dynamics in the methanol hydrogen bond network.

  8. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    E-Print Network [OSTI]

    Mosquera, Martín A

    2010-01-01T23:59:59.000Z

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

  9. Process for producing carbon monoxide and hydrogen from methanol

    SciTech Connect (OSTI)

    Jockel, H.; Marschner, F.; Moller, F.W.; Mortel, H.

    1982-02-23T23:59:59.000Z

    A process is described for producing carbon monoxide and hydrogen which comprises contacting methanol vapor at a temperature of 200 degrees to 300 degrees C with an indirectly heated zinc containing catalyst to obtain an effluent gas in which the components of carbon monoxide and hydrogen constitute at least 90% by volume of said gas. At least a part of the impurities from said effluent gas are removed and said effluent gas is deparated into its carbon monoxide and hydrogen components by adsorption. The effluent gas can be separated into its carbon monoxide and hydrogen components by use of a plurality of adsorbers containing zeolite-type molecular sieve material where the zeolite is substantially permeable to hydrogen but sorbs carbon monoxide.

  10. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect (OSTI)

    Carlstrom, Charles, M., Jr.

    2009-07-07T23:59:59.000Z

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

  11. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect (OSTI)

    Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

    2013-09-03T23:59:59.000Z

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

  12. In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

  13. Correlating catalytic methanol oxidation with the structure and oxidation state of size-1 selected Pt nanoparticles2

    E-Print Network [OSTI]

    Kik, Pieter

    in the performance of direct methanol fuel cells (DMFC), which produce electricity from11 liquid fuel without1 Correlating catalytic methanol oxidation with the structure and oxidation state of size-1 * Corresponding author: roldan@ucf.edu9 Keywords: platinum; methanol oxidation; operando; XAS; EXAFS; alumina

  14. Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed Rate

    E-Print Network [OSTI]

    Zhao, Tianshou

    Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed and Technology, Clear Water Bay, Kowloon, Hong Kong, China The open-circuit voltage OCV of a direct methanol fuel cell DMFC was measured by varying the cathode oxygen flow rate OFR while keeping the methanol

  15. Test method for the measurement of methanol emissions from stationary sources

    SciTech Connect (OSTI)

    Pate, B.A.; Peterson, M.R.; Rickman, E.E.; Jayanty, R.K.M.

    1994-05-01T23:59:59.000Z

    Methanol was designated under Title III of the Clean Air Act Amendments of 1990 as a pollutant to be regulated. A test method has been developed for the measurement of methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb 747. The Anasorb samples were desorbed with a 1:1 mixture of carbon disulfide and N,N-dimethylformamide. All samples were analyzed by gas chromatography with flame ionization detection. Following laboratory testing, field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) sampling method for methanol were conducted at two pulp and paper mills. In accordance with EPA Methol 301, two pairs of trains were run in parallel for six runs, collecting a total of 24 samples by each method. During each run, half of the trains were spiked with a known amount of methanol. The sampling location at the first test was an inlet vent to a softwood bleach plant scrubber where the methanol concentration was about 30 ppm. A second field test was conducted at the vent of a black liquor oxidation tank where the methanol concentration was about 350 ppm. Samples were shown to be stable for at least 2 weeks after collection.

  16. Flex Debit Card Your employer

    E-Print Network [OSTI]

    Fraden, Seth

    such as medical devices, eyeglasses, contact lenses, bandages, co-pays and deductibles. Q A Q A Q A Q A Q A What

  17. Flex Schedule | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62 16

  18. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-09-12T23:59:59.000Z

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  19. The environment of the strongest galactic methanol maser

    E-Print Network [OSTI]

    Sanna, A; Carrasco-Gonzalez, C; Reid, M J; Ellingsen, S P; Brunthaler, A; Moscadelli, L; Cesaroni, R; Krishnan, V

    2015-01-01T23:59:59.000Z

    The high-mass star-forming site G009.62-00.20E hosts the 6.7 GHz methanol maser source with the greatest flux density in the Galaxy which has been flaring periodically over the last ten years. We performed high-resolution astrometric measurements of the CH3OH, H2O, and OH maser emission and 7 mm continuum in the region. The radio continuum emission was resolved in two sources separated by 1300 AU. The CH3OH maser cloudlets are distributed along two north-south ridges of emission to the east and west of the strongest radio continuum component. This component likely pinpoints a massive young stellar object which heats up its dusty envelope, providing a constant IR pumping for the Class II CH3OH maser transitions. We suggest that the periodic maser activity may be accounted for by an independent, pulsating, IR radiation field provided by a bloated protostar in the vicinity of the brightest masers. We also report about the discovery of an elliptical distribution of CH3OH maser emission in the region of periodic v...

  20. The methanol-to-hydrocarbons reaction : Influence of acid strength on the mechanism of olefin formation.

    E-Print Network [OSTI]

    Erichsen, Marius Westgård

    2010-01-01T23:59:59.000Z

    ??The methanol-to-hydrocarbons (MTH) reaction is a flexible alternative step in the upgrading of natural gas, coal or biomass. By tuning the catalyst and process conditions,… (more)

  1. Design of high-ionic conductivity electrodes for direct methanol fuel cells

    E-Print Network [OSTI]

    Schrauth, Anthony J

    2011-01-01T23:59:59.000Z

    Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

  2. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  3. Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design

    E-Print Network [OSTI]

    Al Wahabi, Saeed M. H.

    2005-02-17T23:59:59.000Z

    design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

  4. E-Print Network 3.0 - agaricus blazei methanolic Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct methanol fuel cell DMFC and show that the overall mass... current density of an in-house-fabricated DMFC with different flow fields for various ... Source: Zhao, Tianshou -...

  5. Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions

    E-Print Network [OSTI]

    Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

    2014-01-01T23:59:59.000Z

    The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

  6. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect (OSTI)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01T23:59:59.000Z

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  7. The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol

    SciTech Connect (OSTI)

    Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL; ,

    2005-07-11T23:59:59.000Z

    Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

  8. Development of microprocessor control for a V-6 engine fueled by prevaporized methanol

    E-Print Network [OSTI]

    Schneider, Donald F.

    1985-01-01T23:59:59.000Z

    DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

  9. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01T23:59:59.000Z

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  10. Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)

    SciTech Connect (OSTI)

    Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

    1999-05-01T23:59:59.000Z

    The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

  11. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    E-Print Network [OSTI]

    Berning, Torsten

    ) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

  12. In-situ characterization of adsorbed species on methanol synthesis catalysts by FT-IR spectroscopy

    SciTech Connect (OSTI)

    Edwards, J.F.

    1984-01-01T23:59:59.000Z

    Transmission infrared spectroscopy was used to characterize adsorbed species on methanol synthesis catalysts during reaction conditions. A copper carbonyl, bidentate formate, and methoxy species were identified as stable surface groups. An adsorbed formaldehyde species was unstable at the reaction temperature, but could be observed on the catalyst surface at the beginning of the reaction. Surface species were very similar for feed mixtures of 1) carbon monoxide and hydrogen, 2) carbon monoxide, carbon dioxide, and hydrogen, and 3) formic acid and hydrogen. The role of copper in methanol synthesis catalysts was to increase the adsorption of carbon monoxide to form a linear carbonyl species. This carbonly promoted the hydrogenation of formate groups. The formate species was adsorbed on a zinc site (Zn/sub ..beta../) different from the zinc site (Zn/sub ..gamma../) on which formaldehyde and methoxy groups were adsorbed. The rate-determining step in methanol synthesis was determined to be the reaction of hydrogen from a hydroxyl species adsorbed on another zinc site (Zn/sub ..cap alpha../) with a methoxy group to yield methanol. It was established that at the experimental conditions used in this study, the methanol synthesis reaction was far from equilibrium while the water-gas shift reaction was near equilibrium.

  13. In situ characterization of adsorbed species on methanol synthesis catalysts by FT-IR spectroscopy

    SciTech Connect (OSTI)

    Edwards, J.F.

    1984-06-01T23:59:59.000Z

    Transmission infrared spectroscopy was used to characterize adsorbed species on methanol synthesis catalysts during reaction conditions. A copper carbonyl, bidentate formate, and methoxy species were identified as stable surface groups. An adsorbed formaldehyde species was unstable at the reaction temperature, but could be observed on the catalyst surface at the beginning of the reaction. Surface species were very similar for feed mixtures of (1) carbon monoxide and hydrogen, (2) carbon monoxide, carbon dioxide, and hydrogen, and (3) formic acid and hydrogen. The role of copper in methanol synthesis catalysts was to increase the adsorption of carbon monoxide to form a linear carbonyl species. This carbonyl promoted the hydrogenation of formate groups. The formate species was adsorbed on a zinc site (Zn/sub ..beta../) different from the zinc site (Zn/sub ..gamma../) on which formaldehyde and methoxy groups were adsorbed. The rate-determining step in methanol synthesis was determined to be the reaction of hydrogen from a hydroxyl species adsorbed on another zinc site (Zn/sub ..cap alpha../) with a methoxy group to yield methanol. It was established that at the experimental conditions used in this study, the methanol synthesis reaction was far from equilibrium while the water-gas shift reaction was near equilibrium. 186 references, 83 figures, 28 tables.

  14. Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996

    SciTech Connect (OSTI)

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1996-11-01T23:59:59.000Z

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

  15. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    SciTech Connect (OSTI)

    Vishnivetskaya, Tatiana A [ORNL; Brandt, Craig C [ORNL; Madden, Andrew [University of Oklahoma, Norman; Drake, Meghan M [ORNL; Kostka, Joel [Florida State University; Akob, Denise M. [Florida State University; Kusel, Kirsten [Friedrich Schiller University Jena, Jena Germany; Palumbo, Anthony Vito [ORNL

    2010-01-01T23:59:59.000Z

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  16. Application of the Kellogg reforming exchanger system to large scale methanol plants

    SciTech Connect (OSTI)

    Joshi, G.; Schneider, R.V. III [M.W. Kellogg Co., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    In a majority of existing methanol production facilities, synthesis gas is furnished typically by a tubular fired steam reformer which uses natural gas as a feedstock. When one considers all synthesis gas produced from both ammonia and methanol plants, well over 80% is produced in a conventional reforming furnace. Steam reforming in a conventional sense, however, requires a considerable investment in both capital equipment and on-going maintenance and further, the use of such a unit operation will require heat recovery in the form of steam which forces the hand of the designer with respect to machinery driver selection. The authors have investigated alternatives to the coinventional approach with a view towards developing a process for methanol production that would be hopefully less expensive to construct, easier to operate and more reliable over the course of long term operation. In this paper, the authors present an alternative methanol plant process based on Kellogg`s proprietary reforming exchanger system (KRES). The flowsheet presented herein is for a 1500 MTPD facility that will produce US Federal Grade AA + methanol and will be compared on an economic basis to a conventional plant with respect to investment requirements and expected energy efficiency.

  17. Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol

    SciTech Connect (OSTI)

    Piccoli, R.L. (Copesul-Cia Petroquimica do Sul, Triunfo (Brazil)); Lovisi, H.R. (Petroflex-Ind. e Comercio, Duque de Caxias (Brazil))

    1995-02-01T23:59:59.000Z

    The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

  18. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, M.; Grohse, E.W.

    1995-06-27T23:59:59.000Z

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  19. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

    1995-01-01T23:59:59.000Z

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  20. Vapor-liquid equilibria for the system benzene-thiophene-methanol

    SciTech Connect (OSTI)

    Triday, J.O.; Rodriguez, P.

    1985-01-01T23:59:59.000Z

    Isothermal vapor pressure data over the whole range of composition were obtained for the system benzene-thiophene-methanol. Data were taken at temperatures of 35, 40, and 45 /sup 0/C by using a static equilibrium cell. The systems benzene-methanol and thiophene-methanol are highly nonideal, while the system benzene-thiophene shows a very small deviation from ideality. The models suggested by Wilson and by Renon and Prausnitz (NRTL) and the modified equation of Abrams and Prausnitz (UNIQUAC) were used in the reduction of data. Physical parameters of these equations obtained from the binary data were used to predict the ternary system. The Wilson equation gives the best fit for the binary as well as the ternary data. Also, this equation gives the best prediction for the ternary system.

  1. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  2. Kinetics of liquid phase catalytic dehydration of methanol to dimethyl ether

    SciTech Connect (OSTI)

    Gogate, M.R.; Lee, B.G.; Lee, S. (Akron Univ., OH (USA). Dept. of Chemical Engineering); Kulik, C.J. (Electric Power Research Inst., Palo Alto, CA (USA))

    1990-01-01T23:59:59.000Z

    This paper reports the kinetics of the liquid phase catalytic dehydration of methanol to dimethyl ether investigated. The experiments were carried out under low concentrations of feed in a 1-L stirred autoclave, according to a statistical experimental design. The inert liquid phase used for this investigation was a 78:22 blend of paraffinic and naphthenic mineral oils. A complete thermodynamic analysis was carried out in order to determine the liquid phase concentrations of the dissolved species. A global kinetic model was developed for the rate of dimethyl ether synthesis in terms of the liquid phase concentration of methanol. The activation energy of the reaction was found to be 18,830 cal/gmol. Based on a step-wise linear regression analysis of the kinetic data, the order of the reaction which gave the best fit was 0.28 with respect to methanol.

  3. WIDESPREAD METHANOL EMISSION FROM THE GALACTIC CENTER: THE ROLE OF COSMIC RAYS

    SciTech Connect (OSTI)

    Yusef-Zadeh, F.; Royster, M. [Department of Physics and Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208 (United States); Cotton, W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower St. London, WCIE 6BT (United Kingdom); Wardle, M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia)

    2013-02-20T23:59:59.000Z

    We report the discovery of a widespread population of collisionally excited methanol J = 4{sub -1} to 3{sub 0} E sources at 36.2 GHz from the inner 66' Multiplication-Sign 18' (160 Multiplication-Sign 43 pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of 16.6 km s{sup -1} taken from 41 channels of a Very Large Array continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2-1) and CH{sub 3}OH emission from four Galactic center clouds: the +50 and +20 km s{sup -1} clouds and G0.13-0.13 and G0.25 + 0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H{sub 2}. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH{sub 3}OH abundance of 10{sup -8} to 10{sup -7} on a chemical timescale of 5 Multiplication-Sign 10{sup 4} to 5 Multiplication-Sign 10{sup 5} years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.

  4. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14T23:59:59.000Z

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

  5. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  6. Conversion of synthesis gas and methanol to hydrocarbons using zeolite catalysts

    E-Print Network [OSTI]

    Matthews, Michael Anthony

    2012-06-07T23:59:59.000Z

    of methanol to hydrocarbons: 2CHsOH ~ (CH, ), O ~ C, -C, Olefinsr paraf f ins aromatics (2l coke This pathway and stoichiometry illustrates that conversion of methanol will yield a maximum of 43. 75 % by weight hydrocarbons and 56. 25% water. Langner... is readily calculated. CO + 2Ht ? + CHsOH /)G tppx = 12. 1 kcal/mol (3) With a feed ratio of 2/1 Hz/CO, the equilibrium CO conversion at 573K and 1, 500 psi is 46. 1%. Commercially, the conversions are much less than equilibrium. It would be desirable...

  7. The role of specific solvent modes in the non-radiative relaxation of an excess electron in methanol

    E-Print Network [OSTI]

    in methanol A.A. Mosyak, O.V. Prezhdo1 , P.J. Rossky* Department of Chemistry and Biochemistry, University electronic excited state of an excess electron in methanol. Compared to water, we find that the presence volume combine to produce a three-fold decrease in the magnitude of the non- adiabatic coupling

  8. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    E-Print Network [OSTI]

    Berning, Torsten

    Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer

  9. Droplet Dynamics Changes in Electrostatic Sprays of Methanol-Water Mixtures Zohra Olumee, John H. Callahan, and Akos Vertes*,

    E-Print Network [OSTI]

    Vertes, Akos

    conductivity, dielectric constant, surface tension, viscosity, and density) and on the spraying conditionsDroplet Dynamics Changes in Electrostatic Sprays of Methanol-Water Mixtures Zohra Olumee, John H generated from methanol-water mixtures. We investigated spraying conditions close to those of electrospray

  10. Catalytic conversion of methanol to low molecular weight olefins in a fluidized bed reactor

    E-Print Network [OSTI]

    Garza Tobias, Ricardo

    1983-01-01T23:59:59.000Z

    followed by a polimerization of the divalent carbenoid species to explain the olefinic formation. H-CH, -OH -----~ HaO + :CHa n:CH, -----~ (CH, )n n=2, 3, 4, 5 Swabb and Gates (1972), in their study of the dehydration of methanol over H...

  11. Three-Dimensional Simulations of Liquid Feed Direct Methanol Wenpeng Liu*,a

    E-Print Network [OSTI]

    by electrochemical kinetics and methanol crossover but also by water transport and by their complex interactions are not repeated here. In order to compete with lithium-ion batteries, a portable DMFC system must overcome several, and optimiza- tion of various interactive transport and electrochemical processes that occur in portable DMFCs

  12. The nature and formation of coke in the reaction of methanol to hydrocarbons over chabazite

    E-Print Network [OSTI]

    McLaughlin, Kenneth Woot

    1983-01-01T23:59:59.000Z

    ). Reactant: methanol t-butanol 1-heotanol Reaction conditions Temp. (K) LHSV (hr ) 644 1. 0 644 1. 0 644 0. 7 Conversion (g) 1 00 100 99. 9 Hydrocarbon distribution (wt g) methane ethane ethylene propane propylene i-butane n-butane bu...

  13. Author's personal copy Methanol oxidation in nanostructured platinum/cerium-phosphate thin films

    E-Print Network [OSTI]

    Park, Byungwoo

    rights reserved. 1. Introduction Direct methanol fuel cells (DMFCs) have been considered to be one chosen metals in low-temperature fuel cells. However, it is hard to avoid CO adsorption on a bare Pt and optimize several types of catalysts [1]. Pure platinum as an anode catalyst is one of the most frequently

  14. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-09-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  15. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01T23:59:59.000Z

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  16. A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 as the Oxidant

    E-Print Network [OSTI]

    Bell, Alexis T.

    approach for producing methanol from methane in a three-step, liquid phase process is reported is hydrolyzed in the presence of an organic solvent, to produce an organic phase con- taining methanol the facile separation of methanol. Con- centrated sulfuric acid is produced as a by-product, which can either

  17. A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces

    SciTech Connect (OSTI)

    Liu P.; Yang, Y.; White, M.G.

    2012-01-12T23:59:59.000Z

    Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

  18. COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS

    SciTech Connect (OSTI)

    E.C. Heydorn; B.W. Diamond; R.D. Lilly

    2003-06-01T23:59:59.000Z

    This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project. Overall plant availability (defined as the percentage of time that the LPMEOH{trademark} demonstration unit was able to operate, with the exclusion of scheduled outages) was 97.5%, and the longest operating run without interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced; Eastman accepted all of the available methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic acid.

  19. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    SciTech Connect (OSTI)

    None

    1998-12-21T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per day, which represented a significant improvement over the 3.4Yi per day decline measured during the initial six weeks of operation in April and May of 1997. The deactivation rate also improved from the longer-term rate of 1.6% per day calculated throughout the summer and autumn of 1997.

  20. MAJOR STRUCTURES OF THE INNER GALAXY DELINEATED BY 6.7 GHz METHANOL MASERS

    SciTech Connect (OSTI)

    Green, J. A.; Caswell, J. L.; McClure-Griffiths, N. M.; Breen, S. L.; Voronkov, M. A. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Avison, A.; Fuller, G. A.; Gray, M. D. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL (United Kingdom); Burton, M. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Pestalozzi, M. [INAF/IFSI, via del Fosso del Cabaliere 100, I-00133 Roma (Italy); Thompson, M. A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2011-05-20T23:59:59.000Z

    We explore the longitude-velocity distribution of 6.7 GHz methanol masers in the context of the inner structure of our Galaxy. We analyze the correlation in velocities within this distribution and identify density enhancements indicating large-scale regions of enhanced star formation. These are interpreted as the starting points of the spiral arms and the interaction of the Galactic bar with the 3 kpc arms. The methanol masers support the presence of a long thin bar with a 45{sup 0} orientation. Signatures of the full 3 kpc arm structure are seen, including a prominent tangent at approximately -22{sup 0} Galactic longitude. We compare this distribution with existing models of the gas dynamics of our Galaxy. The 3 kpc arm structure appears likely to correspond to the radius of corotation resonance of the bar, with the bar on its inner surface and the starting points of the spiral arms on its outer surface.

  1. Theoretical model for methanol formation from CO and H/sub 2/ on zinc oxide surfaces

    SciTech Connect (OSTI)

    Baetzold, R.C.

    1985-09-12T23:59:59.000Z

    Models are developed for the polar (0001) and nonpolar (1010) surfaces of ZnO in order to consider methanol formation from adsorbed carbon monoxide and hydrogen atoms. The heats of adsorption of H/sub x/CO and OH/sub x/CO (x = 0-3) species involved in methanol formation are computed to determine the enthalpy changes of reaction. Reaction sequences involving formyl or formate intermediates are considered. The reaction mechanism is catalyzed by the Cu/sup +/ to proceed through a methoxy intermediate on Cu/sup +//ZnO with a lower of the energy pathway. The ZnO surfaces are poor donors and function primarily as acceptors of electron density from CO. The donor role of Cu/sup +/ is demonstrated on the polar surface by increasing the heat of adsorption of acceptor adspecies and decreasing the heat of adsorption of donor adspecies. 22 references, 8 figures, 4 tables.

  2. Mechanism of methanol synthesis from carbon monoxide and hydrogen on copper catalysts

    SciTech Connect (OSTI)

    Fakley, M.E.; Jennings, J.R.; Spencer, M.S. (ICI Chemicals and Polymers Ltd, Billingham, Cleveland (England))

    1989-08-01T23:59:59.000Z

    The authors examine possible mechanisms of methanol synthesis from carbon monoxide and hydrogen on supported copper catalysts. Two broad categories of reaction mechanism can be identified: (a) Type I: Carbon monoxide, adsorbed on the copper surface, is hydrogenated by the addition of hydrogen atoms while the C-O bond remains intact. A second C-O bond is neither formed nor broken. (b) Type II: Carbon monoxide (or a partially hydrogenated intermediate, e.g., HCO) reacts with an oxygen atom on the catalyst surface to give an intermediate, typically a formate, which contains two C-O bonds. Subsequent reaction leads overall to methanol and the reformation of the surface oxygen atom. Both mechanisms are discussed.

  3. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-01-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  4. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-04-01T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  5. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-06-30T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  6. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-06-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  7. Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and their mixture

    E-Print Network [OSTI]

    Guevara-Carrion, Gabriela; Vrabec, Jadran; Hasse, Hans

    2009-01-01T23:59:59.000Z

    Transport properties of liquid methanol and ethanol are predicted by molecular dynamics simulation. The molecular models for the alcohols are rigid, non-polarizable and of united-atom type. They were developed in preceding work using experimental vapor-liquid equilibrium data only. Self- and Maxwell-Stefan diffusion coefficients as well as the shear viscosity of methanol, ethanol and their binary mixture are determined using equilibrium molecular dynamics and the Green-Kubo formalism. Non-equilibrium molecular dynamics is used for predicting the thermal conductivity of the two pure substances. The transport properties of the fluids are calculated over a wide temperature range at ambient pressure and compared with experimental and simulation data from the literature. Overall, a very good agreement with the experiment is found. For instance, the self-diffusion coefficient and the shear viscosity are predicted with average deviations of less 8% for the pure alcohols and 12% for the mixture. The predicted thermal...

  8. Effect of under-inhibition with methanol and ethylene glycol on the hydrate control process

    SciTech Connect (OSTI)

    Yousif, M.H.

    1996-12-31T23:59:59.000Z

    Hydrate control can be achieved by chemical injection. Currently, methanol and ethylene glycol are the most widely used inhibitors in offshore hydrate control operations. To achieve effective hydrate inhibition, a sufficient amount of inhibitor must be injected to shift the thermodynamic equilibrium condition for hydrate formation outside the pipeline operating pressure and temperature. Recently published field experiments showed that hydrate blockages form more readily in under-inhibited systems than in systems completely without inhibitor. A laboratory study is conducted to determine the effect of low concentration (1--5wt%) methanol and ethylene glycol on the hydrate formation process. The results show that, although these chemicals are effective hydrate inhibitors when added in sufficient quantities, they actually enhance the rate of hydrate formation when added at low concentrations to the water. Furthermore, the presence of these chemicals seems to affect the size of the forming hydrate particles.

  9. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  10. EVN observations of 6.7 GHz methanol masers from Medicina survey

    E-Print Network [OSTI]

    Voronkov, M A; Palagi, F; Tofani, G

    2002-01-01T23:59:59.000Z

    We report VLBI observations of methanol masers in the brightest 5(1)-6(0) A+ transition at 6.7 GHz in NGC 281W, 18151-1208 and 19388+2357. Using the fringe rate method absolute positions were obtained for all observed sources. A linear ordered structure with a velocity gradient was revealed in NGC 281W. Under assumption that such structure is an edge-on Keplerian disk around the central object with a mass of 30Msun located at a distance of 3.5 kpc from the Sun, we estimated that methanol masers are situated at the distance about 400 a.u. from the center of the disk. A second epoch of observations was reported for L1206, GL2789 and 20062+3550. The upper limits on the relative motions of maser spots are estimated to be 4.7 km/s and 28 km/s for L1206 and GL2789 respectively.

  11. EVN observations of 6.7 GHz methanol masers from Medicina survey

    E-Print Network [OSTI]

    M. A. Voronkov; V. I. Slysh; F. Palagi; G. Tofani

    2002-05-31T23:59:59.000Z

    We report VLBI observations of methanol masers in the brightest 5(1)-6(0) A+ transition at 6.7 GHz in NGC 281W, 18151-1208 and 19388+2357. Using the fringe rate method absolute positions were obtained for all observed sources. A linear ordered structure with a velocity gradient was revealed in NGC 281W. Under assumption that such structure is an edge-on Keplerian disk around the central object with a mass of 30Msun located at a distance of 3.5 kpc from the Sun, we estimated that methanol masers are situated at the distance about 400 a.u. from the center of the disk. A second epoch of observations was reported for L1206, GL2789 and 20062+3550. The upper limits on the relative motions of maser spots are estimated to be 4.7 km/s and 28 km/s for L1206 and GL2789 respectively.

  12. Isobaric vapor-liquid equilibria of methanol + 1-octanol and ethanol + 1-octanol mixtures

    SciTech Connect (OSTI)

    Arce, A.; Blanco, A.; Soto, A.; Tojo, J. [Univ. of Santiago de Compostela (Spain). Chemical Engineering Dept.

    1995-07-01T23:59:59.000Z

    Isobaric vapor-liquid equilibrium data for methanol + 1-octanol and ethanol + 1-octanol have been measured at 101.325 kPa. The results were checked for thermodynamic consistency using Fredenslund et al.`s test, correlated using Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficients, and compared with the predictions of the ASOG, UNIFAC, and modified UNIFAC group contribution methods.

  13. Total pressure measurements for pentane + methanol + ethanol at 303. 15 K

    SciTech Connect (OSTI)

    Reimers, J.L.; Bhethanabotla, V.R.; Campbell, S.W. (Dept. of Chemical Engineering, Univ. of South Florida, Tampa, FL (US))

    1992-01-01T23:59:59.000Z

    In this paper total pressure is reported as a function of liquid-phase composition for pentane + methanol + ethanol at 303.15 K. The data were reduced using Barker's method. The excess Gibbs energy of the liquid phase is represented by a rational function obtained by making an empirical modification to the nonrandom two-liquid (NRTL) equation. The resulting fit to the data is superior to that obtained using a previous representation based on a modified Margules equation.

  14. Kinetics of methyl radical-hydroxyl radical collisions and methanol decomposition.

    SciTech Connect (OSTI)

    Jasper, A. W.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B.; Chemistry

    2007-01-01T23:59:59.000Z

    The CH{sub 3} + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH{sub 3} + OH barrierless association reaction and for the H + CH{sub 2}OH and H + CH{sub 3}O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH{sub 3} + OH {yields} {sup 3}CH{sub 2} + H{sub 2}O abstraction reaction and the H{sub 2} + HCOH and H{sub 2} + H{sub 2}CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The {sup 1}CH{sub 2} + H{sub 2}O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH{sub 3} + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.

  15. Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

  16. Technoeconomic Comparison of Biofuels: Ethanol, Methanol, and Gasoline from Gasification of Woody Residues (Presentation)

    SciTech Connect (OSTI)

    Tarud, J.; Phillips, S.

    2011-08-01T23:59:59.000Z

    This presentation provides a technoeconomic comparison of three biofuels - ethanol, methanol, and gasoline - produced by gasification of woody biomass residues. The presentation includes a brief discussion of the three fuels evaluated; discussion of equivalent feedstock and front end processes; discussion of back end processes for each fuel; process comparisons of efficiencies, yields, and water usage; and economic assumptions and results, including a plant gate price (PGP) for each fuel.

  17. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: the Source of C in Methanol and the Role of Water

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.

    2013-02-01T23:59:59.000Z

    The low temperature (403 – 453K) conversions of CO:hydrogen and CO2:hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction ~0.04%-0.5%). For CO2:hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO:D2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2:D2, yet the steady state rates are similar. Tracer experiments in 13CO:12CO2:hydrogen (with or without added water), show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2:hydrogen, is not visible in CO:moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water gas shift, with formate playing a spectator co-adsorbate role.

  18. Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation1

    E-Print Network [OSTI]

    Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy methanol fuel cells (DMFC's) at 60 °C show that the best Pt-Ru-Os-Ir compositions are markedly superior

  19. Vibrational relaxation of the free terminal hydroxyl stretch in methanol oligomers: Indirect pathway to hydrogen bond breaking

    E-Print Network [OSTI]

    Fayer, Michael D.

    Vibrational relaxation of methanol-d MeOD in carbon tetrachloride has been investigated via ultrafast infrared such as carbon tetrachloride (CCl4) or alkanes. Unlike water, which is only sparingly soluble in nonpolar

  20. Membranen aus [(A)n(B)m]x-Multiblockcopolymeren für den Einsatz in der Direkt-Methanol-Brennstoffzelle (DMFC).

    E-Print Network [OSTI]

    Taeger, Antje

    2005-01-01T23:59:59.000Z

    ??Aramide and arylene ether multiblock copolymers of (AB)n-type with various degrees of sulfonation have been prepared for use in direct methanol fuel cells. Aramid- und… (more)

  1. EXPANDED VERY LARGE ARRAY DETECTION OF 36.2 GHz CLASS I METHANOL MASERS IN SAGITTARIUS A

    E-Print Network [OSTI]

    Sjouwerman, Loránt O.

    We report on the interferometric detection of 36.2 GHz Class I methanol emission with the new 27-40 GHz Ka-band receivers available on the Expanded Very Large Array (EVLA). The brightness temperatures of the interferometric ...

  2. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    SciTech Connect (OSTI)

    Murph, S.

    2011-04-20T23:59:59.000Z

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  3. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM)

    2006-04-04T23:59:59.000Z

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  4. National Energy Audit (NEAT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof EnergyNapaInformationand Reform

  5. Promotive SMSI effect for hydrogenation of carbon dioxide to methanol on a Pd/CeO{sub 2} catalyst

    SciTech Connect (OSTI)

    NONE

    1994-11-01T23:59:59.000Z

    This article reports strong metal support interaction (SMSI) appearing in supported palladium catalysts which improves greatly the selectivity and lifetime of the catalysts for methanol synthesis from CO{sub 2} hydrogenation. Catalytic hydrogenation of carbon dioxide into valuable chemicals and fuels such as methanol has recently been recognized as one of the promising recycling technologies for emitted CO{sub 2}. 33 refs., 1 fig., 3 tabs.

  6. A Comparative Study of the Adsorption of Water and Methanol in Zeolite BEA: A Molecular Simulation Study

    SciTech Connect (OSTI)

    Nguyen, Van T.; Nguyen, Phuong T.; Dang, Liem X.; Mei, Donghai; Wick, Collin D.; Do, Duong D.

    2014-09-15T23:59:59.000Z

    Grand Canonical Monte Carlo (GCMC) simulations were carried out to study the equilibrium adsorption concentration of methanol and water in all-silica zeolite BEA over the wide temperature and pressure ranges. For both water and methanol, their adsorptive capacity increases with increasing pressure and decreasing temperature. The onset of methanol adsorption occurs at much lower pressures than water adsorption at all temperatures. Our GCMC simulation results also indicate that the adsorption isotherms of methanol exhibit a gradual change with pressure while water adsorption shows a sharp first-order phase transition at low temperatures. To explore the effects of Si/Al ratio on adsorption, a series of GCMC simulations of water and methanol adsorption in zeolites HBEA with Si/Al=7, 15, 31, 63 were performed. As the Si/Al ratio decreases, the onsets of both water and methanol adsorption dramatically shift to lower pressures. The type V isotherm obtained for water adsorption in hydrophobic BEA progressively changes to type I isotherm with decreasing Si/Al ratio in hydrophilic HBEA. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  7. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

  8. The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1990-02-01T23:59:59.000Z

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

  9. Experimental Observations in the Morita Baylis-Hillman Reaction in Methanol

    E-Print Network [OSTI]

    Plata, Robert Erik

    2013-05-22T23:59:59.000Z

    -energy barrier of 63.2 kcal/mol would lead to rates that are roughly 1030 lower than experimentally observed rates. Fan and coworkers B3LYP/6- 311+G**/CPCM study of a trimethylamine / acrolein / formaldehyde /methanol model reaction supports the Aggarwal... / Harvey proton-shuttle mechanism.28 The calculated ?G? of 50 kcal/mol would lead to rates that are 20 orders of magnitude lower than experimentally observed rates. Li and Jiang did a B3LYP/6-31+G**/CPCM study of a trimethylamine / acrolein...

  10. Salt effect on the isobaric vapor-liquid equilibrium of the methyl acetate + methanol system

    SciTech Connect (OSTI)

    Iliuta, M.C.; Thyrion, F.C. [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.] [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.; Landauer, O.M. [Univ. Politehnica Bucharest (Romania)] [Univ. Politehnica Bucharest (Romania)

    1996-07-01T23:59:59.000Z

    The effect of sodium thiocyanate at constant salt mole fraction from 0.01 to 0.05 and at saturation on the vapor-liquid equilibrium (VLE) of methyl acetate + methanol has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited both salting-in and salting-out effects on the methyl acetate, the azeotrope being eliminated at saturation. The results were correlated using the extended UNIQUAC model of Sander et al. and the electrolytic NRTL model of Mock et al.

  11. Catalytic decomposition of methanol at various temperatures and several liquid hourly space velocities

    E-Print Network [OSTI]

    Gupta, Yashpal Satyapal

    1975-01-01T23:59:59.000Z

    DISTRIBUTION FOR COMPOSITE CATALYST B POSSIBLE REACTOR CONFIGURATION FOR THE PRODUCTION OF A GASEOUS FUEL ~Pa e 12 15 21 23 26 28 33 35 37 CHAPTER I INTRODUCTION Methanol can be produced from coal, and natural gas from foreign sources can... increase in 0 temperature resulted in a rapid increase in the production of C02, CO, C2H4, H2 and CH4 with a corresponding decrease in the production of dimethyl ether. In the case of zinc oxide catalyst the formation of dimethyl ether was almost...

  12. Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process

    SciTech Connect (OSTI)

    None

    1996-03-31T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOEP") Demonstration Project at K.ingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L, P. (the Partnership). The LPMEOHY Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. On 4 October 1994, Air Products and Chemicals, Inc. (Air Products) and signed the agreements that would form the Partnership, secure the demonstration site, and provide the financial commitment and overall project management for the project. These partnership agreements became effective on 15 March 1995, when DOE authorized the commencement of Budget Period No. 2 (Mod. AO08 to the Cooperative Agreement). The Partnership has subcontracted with Air Products to provide the overall management of the project, and to act as the primary interface with DOE. As subcontractor to the Partnership, Air Products will also provide the engineering design, procurement, construction, and commissioning of the LPMEOHTM Process Demonstration Unit, and will provide the technical and engineering supervision needed to conduct the operational testing program required as part of the project. As subcontractor to Air Products, Eastman will be responsible for operation of the LPMEOHTM Process Demonstration Unit, and for the interconnection and supply of synthesis gas, utilities, product storage, and other needed sewices. The project involves the construction of an 80,000 gallons per day (260 tons-per-day (TPD)) methanol unit utilizing coal-derived synthesis gas fi-om Eastman's integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOHTM process is ideally suited for directly processing gases produced by modern day coal gasifiers. Originally tested at a small 3,200 gallons per day, DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates.

  13. Role of Water in Methanol Photochemistry on Rutile TiO2(110). | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy InnovationSludgeWater in Methanol

  14. Site-site memory equation approach in study of density/pressure dependence of translational diffusion coefficient and rotational relaxation time of polar molecular solutions: acetonitrile in water, methanol in water, and methanol in acetonitrile

    E-Print Network [OSTI]

    Kobryn, A E; Hirata, F

    2005-01-01T23:59:59.000Z

    We present results of theoretical study and numerical calculation of the dynamics of molecular liquids based on combination of the memory equation formalism and the reference interaction site model - RISM. Memory equations for the site-site intermediate scattering functions are studied in the mode-coupling approximation for the first order memory kernels, while equilibrium properties such as site-site static structure factors are deduced from RISM. The results include the temperature-density(pressure) dependence of translational diffusion coefficients D and orientational relaxation times t for acetonitrile in water, methanol in water and methanol in acetonitrile, all in the limit of infinite dilution. Calculations are performed over the range of temperatures and densities employing the SPC/E model for water and optimized site-site potentials for acetonitrile and methanol. The theory is able to reproduce qualitatively all main features of temperature and density dependences of D and t observed in real and comp...

  15. Analysis of depolarization ratios of ClNO{sub 2} dissolved in methanol

    SciTech Connect (OSTI)

    Trimithioti, Marilena; Hayes, Sophia C., E-mail: shayes@ucy.ac.cy [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia (Cyprus); Akimov, Alexey V. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States) [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973 (United States); Prezhdo, Oleg V. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)] [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

    2014-01-07T23:59:59.000Z

    A detailed analysis of the resonance Raman depolarization ratio dispersion curve for the N–O symmetric stretch of nitryl chloride in methanol at excitation wavelengths spanning the D absorption band is presented. The depolarization ratios are modeled using the time-dependent formalism for Raman scattering with contributions from two excited states (2{sup 1}A{sub 1} and 3{sup 1}B{sub 1}), which are taken as linearly dissociative along the Cl–N coordinate. The analysis focuses on the interplay between different types of broadening revealing the importance of inhomogenous broadening in determining the relative contributions of the two electronic transitions. We find that the transition dipole moment (M) for 2{sup 1}A{sub 1} is greater than for 3{sup 1}B{sub 1}, in agreement with gas phase calculations in the literature [A. Lesar, M. Hdoscek, M. Muhlhauser, and S. D. Peyerimhoff, Chem. Phys. Lett. 383, 84 (2004)]. However, we find that the polarity of the solvent influences the excited state energetics, leading to a reversal in the ordering of these two states with 3{sup 1}B{sub 1} shifting to lower energies. Molecular dynamics simulations along with linear response and ab initio calculations support the evidence extracted from resonance Raman intensity analysis, providing insights on ClNO{sub 2} electronic structure, solvation effects in methanol, and the source of broadening, emphasizing the importance of a contribution from inhomogeneous linewidth.

  16. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01T23:59:59.000Z

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  17. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    None

    1996-12-31T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOH(TM)) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOIWM Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. During this quarter, the Cooperative Agreement was modified (Mod AO11) on 8 October 1996, authorizing the transition born Budget Period No. 2 (Design and Construction) to the . final Budget Period (Commissioning, Start-up, and Operation), A draft Topical Report on Process Economics Studies concludes that methanol coproduction with integrated gasification combined cycle (IGCC) electric power utilizing the LPMEOW process technology, will be competitive in serving local market needs. Planning for a proof-of- concept test run of the liquid phase dimethyl ether (DME) process at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended; and a deeision to proceed is pending. Construction (Task 2.2) is 97'Mo complete, asof31 December 1996. Completion of pipe pressure testing has taken longer than expected. This will delay completion of construction by about three weeks. Commissioning activities (Task 2.3) commenced in mid-October of 1996, and the demonstration unit is scheduled to be mechanically complete on 24 January 1997.

  18. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-09-30T23:59:59.000Z

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  19. On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte

    SciTech Connect (OSTI)

    Alonso-Vante, N.; Bogdanoff, P.; Tributsch, H.

    2000-03-10T23:59:59.000Z

    The reactivity with water and methanol of oxygen-reducing (Ru{sub 1{minus}x}Mo{sub x}SeO{sub z}) and oxygen (from water)-evolving electrocatalysts (RuS{sub 2}, RuO{sub 2}), which permit electron transfer via ruthenium d-states, was studied using electrochemical techniques and differential electrochemical mass spectroscopy (DEMS). In contrast to platinum, which is depolarized by methanol, ruthenium compounds show a high reactivity with water species and an extremely low reactivity with methanol. The authors conclude that the ruthenium-centered coordination chemical reactivity with water channels electrochemical currents, thus producing kinetic selectivity. The reason for the higher reactivity with water of Ru d-states as compared to platinum is seen in the higher density of d-states near the Fermi level as shown by this comparative study.

  20. Photochemistry of "Super" Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Kyril M. Solntsev,*,, Dan Huppert, Noam Agmon, and Laren M. Tolbert

    E-Print Network [OSTI]

    Agmon, Noam

    Photochemistry of "Super" Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Mixtures of ultrafast excited-state proton transfer reactions of exceptionally strong photoacids in methanol/waterVed: December 23, 1999; In Final Form: March 6, 2000 Excited-state proton transfer to solvent (PTTS) of 5-cyano

  1. An Electro-osmotic Fuel Pump for Direct Methanol Fuel Cells C. R. Buie, D. Kim, S. Litster, and J. G. Santiagoz

    E-Print Network [OSTI]

    Santiago, Juan G.

    An Electro-osmotic Fuel Pump for Direct Methanol Fuel Cells C. R. Buie, D. Kim, S. Litster, and J cell DMFC integrated with an electro-osmotic EO pump for methanol delivery. Electro-osmotic pumps, an electro-osmotic pump is realized from a commercially available porous glass frit. We characterize a custom

  2. Size-selected Pt Nanoparticles Synthesized via Micelle Encapsulation: Effect of Pretreatment and Oxidation State on the Activity for Methanol Decomposition and

    E-Print Network [OSTI]

    Kik, Pieter

    and Oxidation State on the Activity for Methanol Decomposition and Oxidation Jason R. Croya , S. Mostafaa,b , H-synthesized Pt nanoparticles supported on ZrO2 was studied for methanol decomposition and oxidation reactions. An O2-pretreatment is observed to be effective for producing clean, stable, and active nanoparticles

  3. EXPERIMENTAL STUDY OF A DIRECT METHANOL FUEL CELL M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C.Y. Wang

    E-Print Network [OSTI]

    Wang, Chao-Yang

    EXPERIMENTAL STUDY OF A DIRECT METHANOL FUEL CELL M. M. Mench, S. Boslet, S. Thynell, J. Scott in this area. INTRODUCTION The liquid-fed direct methanol fuel cell (DMFC) has received enormous interest compared to H2 polymer electrolyte membrane fuel cells (H2 PEMFC). Several studies have examined

  4. *sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer for a HTPEM fuel cell system

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    of the fuel water/methanol mixture is done by electrical heaters, but could be integrated with the burner side reformed hydro- carbon as fuel for fuel cells can redu- ce fuel storage volume considerably. The PBI of evaporated water and methanol is presented and steam-reformed to a hydrogen rich gas. The steam reforming

  5. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov (indexed) [DOE]

    mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

  6. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-25T23:59:59.000Z

    The JM proposes to establish the notice as an Order. The directive is required by the Telework Enhancement Act (TEA) of 2010.

  7. Flex-flame burner and combustion method

    SciTech Connect (OSTI)

    Soupos, Vasilios (Chicago, IL); Zelepouga, Serguei (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Abbasi, Hamid A. (Naperville, IL)

    2010-08-24T23:59:59.000Z

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  8. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30T23:59:59.000Z

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combust

  10. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-05T23:59:59.000Z

    The directive establishes the requirements and responsibilities for the Department’s telework program. Canceled by DOE O 314.1.

  11. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-11T23:59:59.000Z

    The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

  12. Flex Fuel Vehicle Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf

  13. Flex Fuel Vehicle Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf2009 DOE Hydrogen

  14. UtiliFlex | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoading

  15. Deployment of FlexCHP System

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit ReportNextConditionalDepartment Federaland PaducahDavid

  16. Global Flex Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation,GigaCrete Inc JumpGland,GlenrockGlobal

  17. Basic metal oxides as cocatalysts for Cu/SiO{sub 2} catalysts in the conversion of synthesis gas to methanol

    SciTech Connect (OSTI)

    Gotti, A.; Prins, R. [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-09-10T23:59:59.000Z

    The catalytic behavior of Cu catalysts supported on ultrapure silica and promoted with Ca, Zn, and La oxides was investigated in the hydrogenation of CO and CO{sub 2} to methanol at high pressure. Cu on very pure silica produces hardly any methanol, while the addition of basic oxides and the use of {gamma}-alumina as support improve the catalyst performance. The strong promoting effect of Ca and La oxide on the silica-supported Cu and the weak promoting effect for alumina-supported Cu suggest that the basic oxide additives must be close to or in contact with the Cu particles to be effective in methanol synthesis. The methanol activity of Zn/Cu/SiO{sub 2} increased with increasing CO{sub 2} content in a CO-CO{sub 2}-H{sub 2} mixture, suggesting that CO{sub 2} is the main carbon source for methanol.

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    None

    1997-06-30T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons per day) took place on 06 April 1997. Pressure drop and resistance coefficient across the gas sparger at the bottom of the reactor increased over this initial operating period. The demonstration unit was shut down from 08 May -17 June 1997 as part of a scheduled complex outage for the Kingsport site. During this outage, the gas sparger was removed, cleaned, and reinstalled. After completion of other maintenance activities, the demonstration unit was restarted, and maintained stable operation through the remainder of the reporting period. Again, the gas sparger showed an increase in pressure drop and resistance since the restart, although not as rapidly as during the April-May operation. Fresh oil was introduced online for the first time to a new flush connection on the gas inlet line to the reactov the flush lowered the pressure drop by 1 psi. However, the effects were temporary, and the sparger resistance coefficient continued to increase. Additional flushing with both fresh oil and entrained slurry recovered in the cyclone and secondary oil knock-out drum will be attempted in order to stabilize the sparger resistance coefficient.

  19. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2010-06-16T23:59:59.000Z

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  20. Gas phase synthesis of MTBE from methanol and isobutene over dealuminated zeolites

    SciTech Connect (OSTI)

    Collignon, F.; Mariani, M.; Moreno, S.; Remy, M.; Poncelet, G. [Universite Catholique de Louvain (Belgium)] [Universite Catholique de Louvain (Belgium)

    1997-02-01T23:59:59.000Z

    Gas phase synthesis of MTBE from methanol and isobutene has been investigated over different zeolites. It is shown that bulk Si/Al ratio has a marked influence on the formation of MTBE. H-beta zeolite was found to be as active as acid Amberlyst-15 (reference catalyst), and noticeably superior to non- and dealuminated forms of H-Y, H-ZSM-5, zeolite omega, and H-mordenites. Screening test results obtained over other catalysts (SAPOs and pillared clays) are briefly commented. The contribution of the external surface of the zeolites to the reaction is discussed. In the case of H-Y zeolites, it is shown that extra framework Al species ({sup 27}Al NMR signal at 30 ppm) have a detrimental effect on the reaction. 64 refs., 12 figs., 3 tabs.

  1. New processes to recovery methanol and remove oxygenates from Valero MTBE unit

    SciTech Connect (OSTI)

    Hillen, P.; Clemmons, J.

    1987-01-01T23:59:59.000Z

    The refiner today has to evaluate every available option to increase octane in the gasoline pool to make up for the loss in octane created by lead phase down. Production of MTBE is one of the most attractive options. MTBE is produced by selectivity reacting isobutylene with methanol. Valero Refining's refinery at Corpus Christie, Texas (formerly Saber Refining) is one of the most modern refineries built in the last decade to upgrade resids. As part of the gasoline upgrading Valero had built a Butamer Unit to convert normal butane to isobutane upstream of their HF Alkylation Unit. In 1984 as an ongoing optimization of its operations, Valero Refining evaluated various processes to enable it to increase the octane output, and decided to build an MTBE unit. Valero selected the MTBE process licensed by Arco Technology, Inc. and contracted with Jacobs Engineering Group, Inc., Houston, Texas to provide detailed engineering and procurement services.

  2. Corrosion, Passivation, and the Effect of Water Addition on an n-GaAs(100)/Methanol Photoelectrochemical Cell

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Corrosion, Passivation, and the Effect of Water Addition on an n-GaAs(100)/Methanol of corrosion of the cell on the PL-V profile is examined in detail. It is found that the inclusion of the redox couple gives some protection from corrosion, but the addition of a small amount of water

  3. Liquid-liquid equilibria of water + methanol + 1-octanol and water + ethanol + 1-octanol at various temperatures

    SciTech Connect (OSTI)

    Arce, A.; Blanco, A.; Souza, P.; Vidal, I. (Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering)

    1994-04-01T23:59:59.000Z

    This study is part of a wider program of research on the recovery of light alcohols from dilute aqueous solutions using high molecular weight solvents. The authors report liquid-liquid equilibrium data and binodal curves for the systems water + methanol + 1-octanol and water + ethanol + 1-octanol at 25, 35, and 45 C. The data were fitted to the NRTL and UNIQUAC equations.

  4. Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. II. Amino acid composition of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. II. Amino Beaumont, France. Summary. The aim of this trial was to study the balance of the amino acid digestion digestibility of all the amino acids assayed was lower in the terminal small intestine than in the whole

  5. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26T23:59:59.000Z

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  6. Electrochimica Acta 133 (2014) 815 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Zhao, Tianshou

    with neat methanol to produce diluted methanol solutions [4]. Corresponding author. Tel.: +00852 2358 8647 advantage of the carbon dioxide produced from the anode reaction to dilute methanol vapor before it enters of passive direct methanol fuel cells fed with concentrated fuel Q.X. Wua , L. Anb , X.H. Yanb , T.S. Zhaob

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Doug Strickland; Albert Tsang

    2002-10-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  8. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  9. A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol

    SciTech Connect (OSTI)

    Siu, Michelle T.; Shapiro, Aaron M. [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Wiley, Michael J. [Division of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2013-12-15T23:59:59.000Z

    Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6 h later in embryonic ROS formation, measured by 2?,7?-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2?-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde. - Highlights: • In vivo, a free radical scavenger did not block methanol (MeOH) teratogenesis. • MeOH did not increase embryonic reactive oxygen species formation or DNA oxidation. • MeOH teratogenesis was enhanced by glutathione (GSH) depletion. • GSH may protect as the cofactor for formaldehyde dehydrogenase (ADH3). • Formaldehyde may be a ROS-independent proximate teratogenic species in vivo.

  10. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

  11. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  12. Exhaust-catalyst development for methanol-fueled vehicles. II. Synergism between palladium and silver in methanol and carbon monoxide oxidation over an alumina-supported palladium-silver catalyst

    SciTech Connect (OSTI)

    McCabe, R.W.; Mitchell, P.J.

    1987-02-01T23:59:59.000Z

    Methanol and carbon monoxide oxidation were examined over 0.01 Pd, 5% Ag, and 0.01% Pd/5% Ag catalysts - all supported on ..gamma..-alumina. The bimetallic catalyst showed greater CO and CH/sub 3/OH oxidation activity than either of the single-component catalysts; moreover, the Pd and Ag interacted synergistically in the bimetallic catalyst to produce greater CO and CH/sub 3/OH oxidation rates and lower yields of methanol partial oxidation products than expected from a mixture of the single-component catalysts. Temperature-programmed oxidation experiments and reactivity experiments involving changes in O/sub 2/ partial pressure both provided evidence that the Pd-Ag synergism results from Pd promoting the rate of O/sub 2/ adsorption and reaction with CO and CH/sub 3/OH on Ag. The data also indicate that virtually all of the Pd in the bimetallic catalyst is present in Pd-Ag crystallites.

  13. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    SciTech Connect (OSTI)

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A., E-mail: rmata@gwdg.de [Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstr. 6, 37077 Göttingen (Germany)

    2014-09-14T23:59:59.000Z

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about ?121 cm{sup ?1} upon dimerization, somewhat more than in the anharmonic experiment (?111 cm{sup ?1})

  14. Pressure dependence of diffusion coefficient and orientational relaxation time for acetonitrile and methanol in water: DRISM/mode-coupling study

    E-Print Network [OSTI]

    Kobryn, A E; Hirata, F

    2005-01-01T23:59:59.000Z

    We present results of theoretical description and numerical calculation of the dynamics of molecular liquids based on the Reference Interaction Site Model / Mode-Coupling Theory. They include the temperature-pressure(density) dependence of the translational diffusion coefficients and orientational relaxation times for acetonitrile and methanol in water at infinite dilution. Anomalous behavior, i.e. the increase in mobility with density, is observed for the orientational relaxation time of methanol, while acetonitrile does not show any deviations from the usual. This effect is in qualitative agreement with the recent data of MD simulation and with experimental measurements, which tells us that presented theory is a good candidate to explain such kind of anomalies from the microscopical point of view and with the connection to the structure of the molecules.

  15. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-20T23:59:59.000Z

    A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

  16. Methanol and methyl fuel catalysts. Final technical report, September 1978-August 1980

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.

    1980-12-15T23:59:59.000Z

    The Cu/ZnO methanol synthesis catalysts were investigated for (1) the role of additives such as alumina, ceria, and lanthana, (2) the effect of carbon dioxide in the H/sub 2//CO synthesis gas, (3) the chemisorption of hydrogen and carbon monoxide on the catalysts, and (4) the chemical poisoning of the catalysts by sulfur- and chlorine-containing compounds. Maximum activity and selectivity were obtained with a binary catalyst having a composition of Cu/ZnO = 30/70 metal atomic percent and with a synthesis gas of H/sub 2//CO/CO/sub 2/ = 70/28/2 volume percent in the absence of strongly reducing or strongly oxidizing chemical poisons. Both the binary and the ternary catalysts were fully characterized by scanning transmission electron microscopy (STEM), X-ray diffraction, electron spectroscopy, diffuse reflectance spectroscopy, and surface area-pore distribution measurements. Structural and morphologic information is presented in this report in detail for very active Cu/ZnO/Al/sub 2/O/sub 3/ catalysts prepared from acetates and for other catalysts in which the third component caused a loss of activity.

  17. Methanol Fractionation of Softwood Kraft Lignin: Impact on the Lignin Properties

    SciTech Connect (OSTI)

    Saito, Tomonori [ORNL] [ORNL; Perkins, Joshua H [ORNL] [ORNL; Vautard, Frederic [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Messman, Jamie M [ORNL] [ORNL; Tolnai, Balazs [ORNL] [ORNL; Naskar, Amit K [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The development of technologies to tune lignin properties for high-performance lignin-based materials is crucial for the utilization of lignin in various applications. Here, the effect of methanol (MeOH) fractionation on the molecular weight, molecular weight distribution, glass transition temperature (Tg), thermal decomposition, and chemical structure of lignin were investigated. Repeated MeOH fractionation of softwood Kraft lignin successfully removed the low-molecular-weight fraction. The separated high-molecular-weight lignin showed a Tg of 211 C and a char yield of 47%, much higher than those of asreceived lignin (Tg 153 C, char yield 41%). The MeOH-soluble fraction of lignin showed an increased low-molecular-weight fraction and a lower Tg (117 C) and char yield (32%). The amount of low-molecular-weight fraction showed a quantitative correlation with both 1/Tg and char yield in a linear regression. This study demonstrated the efficient purification or fractionation technology for lignin; it also established a theoretical and empirical correlation between the physical characteristics of fractionated lignins.

  18. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    SciTech Connect (OSTI)

    None

    1997-09-30T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

  19. Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin was excited at

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Supporting information Figure S1: Pump-rePump-Probe kinetics of peridinin in methanol. Peridinin was excited at 400-nm, and then repumped, at a delay of 1 ps, by pulses of 620-nm. (A) Pump-Probe (blue), Pump-rePump. The inset zooms on the repump. (C): Pump-Probe (blue) and Pump-rePump-Probe (red) and (D) OD (black) spectra

  20. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.

  1. Study of Adsorption of Methanol in an Activated Carbon and Carbon Nanotube Matrix for Use in a Solar Based Refrigeration Cycle

    E-Print Network [OSTI]

    Sambath, Srivaths

    2012-07-16T23:59:59.000Z

    This thesis seeks to investigate the adsorption capabilities of activated carbon and carbon nanotubes. The adsorption of methanol on both of these substances was tested for their application in a solar based refrigeration cycle. Research on carbon...

  2. The effect of acid strength on the MTO reaction : Conversion of methanol to hydrocarbons over H-SAPO-34 and high silica Chabazite (H-SSZ-13).

    E-Print Network [OSTI]

    Bleken, Francesca

    2007-01-01T23:59:59.000Z

    ??The Methanol-to-Olefins (MTO) process for the production of polymer-grade olefins is a possible step in the upgrading of natural gas. The preferred MTO catalyst is… (more)

  3. Mechanism of methanol synthesis on Cu(100) and Zn/Cu(100) surfaces: Comparative dipped adcluster model study

    SciTech Connect (OSTI)

    Nakatsuji, Hiroshi; Hu, Zhenming

    2000-03-05T23:59:59.000Z

    The mechanism of methanol synthesis from CO{sub 2} and H{sub 2} on Cu(100) and Zn/Cu(100) surfaces was studied using the dipped adcluster model (DAM) combined with ab initio Hartree-Fock (HF) and second-order Moeller-Plesset (MP2) calculations. On clean Cu(100) surface, calculations show that five successive hydrogenations are involved in the hydrogenation of adsorbed CO{sub 2} to methanol, and the intermediates are formate, dioxomethylene, formaldehyde, and methoxy. The rate-limiting step is the hydrogenation of formate to formaldehyde, and the Cu-Cu site is responsible for the reaction on Cu(100). The roles of Zn on Zn/Cu(100) catalyst are to modify the rate-limiting step of the reaction: to lower the activation energies of this step and to stabilize the dioxomethylene intermediate at the Cu-Zn site. The present comparative results indicate that the Cu-Zn site is the active site, which cooperates with the Cu-Cu site to catalyze methanol synthesis on a Cu-based catalyst. Electron transfer from surface to adsorbates is the most important factor in affecting the reactivity of these surface catalysts.

  4. Vapor-liquid equilibrium data at 298. 15 K for binary systems containing methyl acetate or methanol with 2-methoxyethanol or 2-ethoxyethanol

    SciTech Connect (OSTI)

    Martin, M.C.; Cocero, M.J.; Mato, F.B. (Univ. de Valladolid (Spain))

    1994-07-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured at 298.15 K for the systems containing methyl acetate or methanol with 2-methoxyethanol or 2-ethoxyethanol. Mixtures containing methanol show a behavior close to ideal, while those containing methyl acetate exhibit positive deviations from ideality and satisfy the Redlich-Kister thermodynamic consistency test. The liquid-phase activity coefficients were fitted by using the van Laar, Wilson, NRTL, and NRTL-m (a modified NRTL equation) equations.

  5. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    SciTech Connect (OSTI)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07T23:59:59.000Z

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  6. DOE-Flex Bulletin-Worker Injury While on a DOE-Flex Arrangement |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Departmentto DevelopMark Duff (LATA KY),|March 12,

  7. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  8. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01T23:59:59.000Z

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  9. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    SciTech Connect (OSTI)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01T23:59:59.000Z

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  10. Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons

    E-Print Network [OSTI]

    Mehta, Shirish Ramniklal

    1982-01-01T23:59:59.000Z

    for fixed H /0 ratio and average s particle diameter is shown in Figures 3 and 4 respectively. The smooth curve for the 5 micron plate reflects uniform density throughout the bed due to good distribution of the gas phase. The curves for the 40 and 100...COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment...

  11. Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object Damage 3 B.Catalysts. | EMSL Methanol and

  12. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14T23:59:59.000Z

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  13. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31T23:59:59.000Z

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995

    SciTech Connect (OSTI)

    McCormick, R.L.

    1995-12-07T23:59:59.000Z

    This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

  16. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect (OSTI)

    Natesakhawat, Sittichai; Ohodnicki, Paul R., Jr.; Howard, Bret H.; Lekse, Jonathan W.; Baltrus, John P.; Matranga, Christopher

    2013-12-01T23:59:59.000Z

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO{sub 2} hydrogenation. The addition of Ga{sub 2}O{sub 3} and Y{sub 2}O{sub 3} promoters is shown to increase the Cu surface area and CO{sub 2}/H{sub 2} adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO{sub 2} adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N{sub 2}O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  17. A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al2O3 catalyst

    E-Print Network [OSTI]

    Al-Adwani, Hamad Abdulwahab

    1992-01-01T23:59:59.000Z

    with the CuO/ZnO, CuO/ZnO/Cr203 and CuO/ZnO/A1203 catalysts, other catalysts are being investigated for practical use. Maj et al. (1985) prepared and characterized ?Th02 snd NH4-Th02 catalysts for methanol production that produced CO conversions of 3'/o.../Thx were reported to demonstrate activity towards methanol synthesis. Recently, Stiles et al. (1991) prepared a catalyst system (~Zn/Co/Cr/(K+Cs) = 4/3/1/0. 028/(15 wt. '/o+4. 0 wt '/o)) with high activity for producing higher alcohols. 1. 2 Objectives...

  18. VLE measurements of binary mixtures of methanol, ethanol, 2-methoxy-2-methylpropane, and 2-methoxy-2-methylbutane at 101.32 kPa

    SciTech Connect (OSTI)

    Arce, A.; Martinez-Ageitos, J.; Soto, A. [Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering] [Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering

    1996-07-01T23:59:59.000Z

    Isobaric vapor-liquid equilibrium data for 2-methoxy-2-methylpropane + methanol, 2-methoxy-2-methylpropane + ethanol, methanol + 2-methoxy-2-methylbutane, ethanol + 2-methoxy-2-methylbutane, and 2-methoxy-2-methylpropane + 2-methoxy-2-methylbutane were determined at 101.32 kPa. Fredenslund et al.`s test confirmed the results to be thermodynamically consistent. The VLE data were satisfactorily correlated using the Wilson, NRTL, and UNIQUAC equations for liquid phase activity coefficients and adequately predicted using the ASOG, UNIFAC, UNIFAC-Dortmund, and UNIFAC-Lyngby group contribution methods.

  19. Methanol Synthesis over Cu/ZnO/Al2O3: The Active Site in Industrial Catalysis

    SciTech Connect (OSTI)

    Behrens, Malte

    2012-03-28T23:59:59.000Z

    Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

  20. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  1. First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming on Cu(111) and Pd(111)

    E-Print Network [OSTI]

    Li, Weixue

    , and the final products are dominated by carbon dioxide and hydrogen. On Pd(111), formaldehyde is also found is considered as a promising alternative because of its high hydrogen to carbon ratio, no carbon-carbon bond, and easy storage and handling requirements.4,5 Hydrogen production from methanol can be performed by three

  2. Influence of the pressure on the properties of chromatographic columns I. Measurement of the compressibility of methanol-water mixtures on a mesoporous silica adsorbent

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2005-03-01T23:59:59.000Z

    The compressibilities of aqueous solutions of methanol or acetonitrile containing 0, 20, 40, 60, 80 and 100% (v/v) organic solvent were measured with a dynamic chromatographic method. The elution volumes of thiourea samples (2 {micro} L) in these solutions were measured at different average column pressures, adjusted by placing suitable capillary restrictors on-line, after the detector. The reproducibility of the measurements was better than 0.2%. In the range of average pressures studied (10-350 bar), the maximum change in elution volume of thiourea is 1.3% (in pure water) and 4.0% (in pure methanol). This difference is due to the different compressibilities of these pure solvents. For mixtures, the plots of the elution volume of thiourea versus the pressure are convex downward, which is inconsistent with the opposite curvature predicted by the classical Tait model of liquid compressibility. This difference is explained by the variation of the amount of thiourea adsorbed with the pressure. The deconvolution of the two effects, adsorption of thiourea and solvent compressibility, allows a fair and consistent determination of the compressibilities of the methanol-water mixtures. A column packed with non-porous silica particles was also used to determine the compressibility of methanol-water and acetonitrile-water mixtures. A negative deviation by respect to ideal behavior was observed.

  3. Influence of the pressure on the properties of chromatographic columns I. Measurement of the compressibility of methanol-water mixtures on a mesoporous silica adsorbent

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2005-04-01T23:59:59.000Z

    The compressibilities of aqueous solutions of methanol or acetonitrile containing 0, 20, 40, 60, 80 and 100% (v/v) organic solvent were measured with a dynamic chromatographic method. The elution volumes of thiourea samples (2 {micro} L) in these solutions were measured at different average column pressures, adjusted by placing suitable capillary restrictors on-line, after the detector. The reproducibility of the measurements was better than 0.2%. In the range of average pressures studied (10-350 bar), the maximum change in elution volume of thiourea is 1.3% (in pure water) and 4.0% (in pure methanol). This difference is due to the different compressibilities of these pure solvents. For mixtures, the plots of the elution volume of thiourea versus the pressure are convex downward, which is inconsistent with the opposite curvature predicted by the classical Tait model of liquid compressibility. This difference is explained by the variation of the amount of thiourea adsorbed with the pressure. The deconvolution of the two effects, adsorption of thiourea and solvent compressibility, allows a fair and consistent determination of the compressibilities of the methanol-water mixtures. A column packed with non-porous silica particles was also used to determine the compressibility of methanol-water and acetonitrile-water mixtures. A negative deviation by respect to ideal behavior was observed.

  4. Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. I. Kinetics and balance in the terminal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Digestion of milk protein and methanol-grown bacteria protein in the preruminant calf. I. Kinetics the digestion of two milk replacers (control and bacteria), containing different protein sources, in the end of the small intestine and of the digestive tract in the preruminant calf. The protein in the control diet

  5. Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts

    E-Print Network [OSTI]

    Gulari, Erdogan

    rights reserved. Keywords: Methanol decomposition; Pt/alumina; Ceria; Hydrogen; PEM fuel cell 1 exchange mem- brane (PEM) fuel cell system. PEM fuel cells convert hydrogen gas into useful electric power is seen as an attractive means of providing the necessary hydrogen to the fuel cell. With the exception

  6. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01T23:59:59.000Z

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  7. Copper- and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide

    SciTech Connect (OSTI)

    Koeppel, R.A.; Stoecker, C.; Baiker, A. [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-10-25T23:59:59.000Z

    Copper- and silver-zirconia aerogels containing 10 at% IB metal were prepared from tetra-n-butoxy zirconium(IV) and IB metal acetates using the solution sol-gel method and ensuring high-temperature (HT) and low-temperature (LT) supercritical drying, respectively. The influence of preparation parameters and calcination on the structural and catalytic properties of the aerogels for the synthesis of methanol from carbon dioxide and hydrogen was investigated. After calcination in air at 573 K, the catalysts had BET surface areas in the range of 100--143 m{sup 2}/g (Cu/ZrO{sub 2}) and 77--125 m{sup 2}/g (Ag/ZrO{sub 2}), respectively. Due to the reductive alcoholic atmosphere during high-temperature supercritical drying, metallic copper and silver existed in all raw HT-aerogels. The mean size of the copper crystallites wa/s 30 nm. The silver crystallite size for the HT-aerogel prepared with nitric acid was 10 nm, whereas for samples prepared with acetic acid it was 5--7 nm. Calcination in air at 573 K led to the formation of highly dispersed amorphous copper oxide and silver. Comparing the catalytic behavior of the calcined copper-zirconia aerogels with corresponding xerogels prepared by coprecipitation revealed highest activity for the LT-aerogel, whereas the HT-aerogels were least active. In contrast, similar catalytic behavior was observed for the differently dried silver-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia aerogels was markedly higher than that of the corresponding silver-zirconia aerogels, whereas methanol selectivity was similar.

  8. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01T23:59:59.000Z

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  9. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report No. 1, October 1, 1993--June 30, 1994

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products and Chemicals, Inc. (Air Products). This document describes major accomplishments in project development for Fiscal Year 1993. The preliminary process hazards review, project safety plan, schedule, and cost management report are included as appendices. The demonstration is sited at the Eastman Chemical Company (Eastman) complex in Kingsport. Air Products and Eastman are working on a partnership agreement which will form the Air Products Liquid Phase Conversion Company, L.P. As a limited partner in the venture, Eastman will own and operate the demonstration unit. The project involves the construction of a 260 tons-per-day (TPD) or 80,000 gallon per day methanol demonstration unit utilizing an existing coal-derived synthesis gas from Eastman. The new equipment consists of synthesis gas feed preparation and compression, liquid phase reactor and auxiliaries, product distillation, and utilities. The technology to be demonstrated was developed by Air Products in a DOE sponsored program that started in 1981. Originally tested at a small, DOE-owned experimental facility in LaPorte, Texas, the LPMEOH{trademark} process offers several advantages over current methods of making methanol. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The liquid dissipates heat from the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the gas-to-methanol reaction to proceed at higher rates. The process is ideally suited to the type of gas produced by modem coal gasifiers. At the Eastman Chemical complex, the technology will be integrated with existing coal gasifiers to demonstrate the commercially important aspects of the operation of the LPMEOH{trademark} Process to produce methanol.

  10. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst: A Combined DFT and Kinetic Study

    SciTech Connect (OSTI)

    Ye, Jingyun; Liu, Changjun; Mei, Donghai; Ge, Qingfeng

    2014-08-01T23:59:59.000Z

    Methanol synthesis from CO2 hydrogenation on Pd4/In2O3 has been investigated using density functional theory (DFT) and microkinetic modeling. In this study, three possible routes in the reaction network of CO2 + H2 ? CH3OH + H2O have been examined. Our DFT results show that the HCOO route competes with the RWGS route whereas a high activation barrier kinetically blocks the HCOOH route. DFT results also suggest that H2COO* + H* ? H2CO* +OH* and cis-COOH* + H* ?CO* + H2O* are the rate limiting steps in the HCOO route and the RWGS route, respectively. Microkinetic modeling results demonstrate that the HCOO route is the dominant reaction route for methanol synthesis from CO2 hydrogenation. We found that the activation of H adatom on the small Pd cluster and the presence of H2O on the In2O3 substrate play important roles in promoting the methanol synthesis. The hydroxyl adsorbed at the interface of Pd4/In2O3 induces the transformation of the supported Pd4 cluster from a butterfly structure into a tetrahedron structure. This important structure change not only indicates the dynamical nature of the supported nanoparticle catalyst structure during the reaction but also shifts the final hydrogenation step from H2COH to CH3O.

  11. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-06T23:59:59.000Z

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.

  12. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution...

  13. Flex Fuel Polygeneration: Optimizing Cost, Sustainability, and Resiliency

    E-Print Network [OSTI]

    Daniels, Thomas E.

    a system to perform high level techno-economic analysis (TEA) · Determine economic feasibility of each · Energy sources · Energy carriers 2 #12;Initial Analysis of FFPG Systems · Design power plants;Conventional Approaches to Energy Conversion (Coal, Biomass, Wind, Natural Gas, Photons) ( Fuel, Chemicals

  14. DC Students Flex Their Mental Muscles in Regional Science Bowl...

    Energy Savers [EERE]

    a top spot in the Department of Energy's National Science Bowl competition. High school students in the nation's capital were able to showcase their love and knowledge of...

  15. Numerical Model of a Tensioner System and Flex Joint

    E-Print Network [OSTI]

    Huang, Han

    2013-07-27T23:59:59.000Z

    Top Tensioned Riser (TTR) and Steel Catenary Riser (SCR) are often used in a floating oil/gas production system deployed in deep water for oil transport. This study focuses on the improvements to the existing numerical code, known as CABLE3D...

  16. Watching individual molecules flex within lipid membranes using SERS

    E-Print Network [OSTI]

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-12T23:59:59.000Z

    calculations for plasmonic coupling across a gap of 5 nm, corresponding to the height of the HBL of 4.4 6 0.6 nm measured by atomic force microscopy (AFM, Fig.S3), with a dielec- tric constant er , 218. The reproducibility of the gap mode is attrib- uted... subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 13, 5033–5038 (2013). 8. Taylor, R. W. et al. In situ SERS monitoring of photochemistry within a nanojunction reactor. Nano Lett. 13, 5985–5990 (2013). 9. Lingwood, D. & Simons, K. Lipid rafts...

  17. FLEX TIME (ALTERNATIVE WORK SCHEDULE) REQUEST EMPLOYEE INFORMATION

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    (Hours) Proposed Alternative Work Schedule (Hours) Days On-Site Off-Site On-Site Off-Site Monday Tuesday

  18. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf2

  19. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf21

  20. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf210

  1. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss063bazzi2012...

  2. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss063bazzi2011...

  3. Flex Your Electric Vehicle Knowledge Muscle On Jeopardy! Tonight |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 , M.62

  4. Desk Reference on DOE-Flex (July 2011)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations &EnergyDesigning aDesireeJuly

  5. Desk Reference on DOE-Flex | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Battery Plant |Department

  6. Flex power perspectives of indirect power system control through dynamic

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdfFiskdale,Five447753°, -84.1124406°power

  7. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof Energy

  8. The Effects of Trans-Esterification of Castor Seed Oil Using Ethanol, Methanol and their Blends on the Properties and Yields of Biodiesel

    E-Print Network [OSTI]

    Vincent Enontiemonria; Ayoola Ayodeji; Anawe Paul; Apeye Lucky; Oteri Ogheneofego

    The effects of ethanol, methanol and their blends at different percentage mixtures on the properties and yields of biodiesel at varied trans-esterification times and temperatures using sodium hydroxide as a base catalyst have been investigated. At 70 o C, the optimum yields were: for ethanol 88.4%, 94.2%, 94.8%, and 95.2 % and for methanol, 90.6%, 95.6%, 96.0%, and 96.4% at 1 hour, 2 hours, 3 hours and 4 hours respectively. The biodiesel yields increased as time of reaction progressed for both solvents but the yields obtained from methanol were generally higher than those from ethanol. A mixture of both solvents at 50 % each produced the overall highest of biodiesel yield of 98.6 % at 70 o C and in 4 hours compared to either solvent used alone at the same time and temperature. The properties such as densities, viscosities, flash points and pour points of the biodiesels tested were found to conform to ASTM standards. The average values were as follows: densities at 15 o C, were 0.8951, 0.8876 and 0.8832g/cm 3; viscosities (at 40 o C) were 4.7160cSt, 4.7380cSt and 4.5055cSt; flash points were 140.9 o C, 147.4 o C and 161.6 o C while for pour points they were-2.4375 o C,-1.6875 o C and-6 o C for ethyl, methyl and ethyl/methyl biodiesel respectively.

  9. The effects of zirconia morphology on methanol synthesis from COand H2 over Cu/ZrO2 catalysts: Part I -- Steady-State Studies

    SciTech Connect (OSTI)

    Rhodes, Michael J.; Bell, Alexis T.

    2005-03-21T23:59:59.000Z

    The effect of zirconia phase on the activity and selectivityof Cu/ZrO2 for the hydrogenation of CO has been investigated. Relativelypure t-ZrO2 and m-ZrO2 were prepared with high surface areas (~; 145m2/g). Copper was then deposited onto the surface of these materials byeither incipient-wetness impregnation or deposition-precipitation. For afixed Cu surface area, Cu/m-ZrO2 was tenfold more active for methanolsynthesis than Cu/t-ZrO2 from a feed of 3/1 H2/CO at 3.0 MPa andtemperatures between 473 and 523 K. Cu/m-ZrO2 also exhibited a higherselectivity to methanol. Increasing the Cu surface area on m-ZrO2resulted in further improvement in activity with minimal change inselectivity. Methanol productivity increased linearly for both Cu/t-ZrO2and Cu/m-ZrO2 with increasing Cu surface area. The difference in inherentactivity of each phase paralleled the stronger and larger CO adsorptioncapacity of the Cu/m-ZrO2 as quantified by CO-TPD. The higher COadsorption capacity of Cu/m-ZrO2 is attributed to the presence of a highconcentration of anionic vacancies on the surface of m-ZrO2. Suchvacancies expose cus-Zr4+ cations, which act as Lewis acid centers andenhance the Bronsted acidity of adjacent Zr-OH groups. The presence ofcus-Zr4+ sites and adjacent Bronsted acidic Zr-OH groups contributes tothe adsorption of CO as HCOO-Zr groups, which are the initial precursorsto methanol.

  10. Methane conversion for highway fuel use (methanol plantship project). Volume 2. Executive summary. Resource materials. Executive summary, November 1991-May 1993 (Phase 2)

    SciTech Connect (OSTI)

    Fink, C.; Wright, S.; Jackson, I.; Booras, P.

    1995-12-01T23:59:59.000Z

    The Executive Summary includes abbreviated presentations of the information in the final report and in an earlier interim report. FHWA-RD-92-085. The study covered: the impact of recent permitting, licensing, and environmental regulations on methanol plantship (MPS) design and operation; analysis of other MPS programs; updating of the process technology, alternative natural gas supplies, MPS design, and economic analysis; and the development of detailed cost estimates for the design and construction of the MPS. An MPS specification and quotation assembly drawings were also prepared.

  11. Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352 (United States); Monckton, Rhiannon J.; Koehler, Sven P. K. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); UK Dalton Cumbrian Facility, The University of Manchester, Moor Row, Whitehaven CA24 3HA (United Kingdom)

    2014-05-28T23:59:59.000Z

    Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10–50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ?60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

  12. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    SciTech Connect (OSTI)

    De Buizer, James M. [Stratospheric Observatory for Infrared Astronomy-USRA, NASA Ames Research Center, MS N232-12, Moffett Field, CA 94035 (United States); Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu [Torun Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Torun (Poland)

    2012-08-01T23:59:59.000Z

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  13. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor ? agonist

    SciTech Connect (OSTI)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan) [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia)] [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan)] [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)] [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

    2013-10-18T23:59:59.000Z

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPAR? agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor ? (PPAR?). Fibrogenesis caused by hepatic stellate cells is inhibited by PPAR? whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPAR? agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPAR? agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPAR? in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPAR?-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPAR? agonists.

  14. CO Coverage/Oxidation Correlated with PtRu Electroscatalyst Particle Morphology in 0.3 M Methanol by In Situ XAS

    SciTech Connect (OSTI)

    Scott,F.; Mukerjee, S.; Ramaker, D.

    2007-01-01T23:59:59.000Z

    In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) at the Pt L{sub 3} and Ru K edges, were carried out on three different carbon-supported PtRu electrocatalysts in an electrochemical cell in 1 M HClO{sub 4} with 0.3 M methanol. The CO and OH adsorbate coverage on Pt and Ru were determined as a function of the applied potential via the novel delta XANES technique, and the particle morphology was determined from the EXAFS and a modeling technique. Both the bifunctional and direct CO oxidation mechanisms, the latter enhanced by electronic ligand effects, were evident for all three electrocatalysts; however, the dominant mechanism depended critically on the particle size and morphology. Both the Ru island size and overall cluster size had a very large effect on the CO oxidation mechanism and activation of water, with the bifunctional mechanism dominating for more monodispersed Ru islands, and the direct surface ligand effect dominating in the presence of larger Ru islands.

  15. CO Coverage/Oxidation Correlated with PtRu Electrocatalyst Particle Morphology in 0.3 M Methanol by in situ XAS

    SciTech Connect (OSTI)

    Scott, F.; Mukerjee, S; Ramaker, D

    2007-01-01T23:59:59.000Z

    In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) at the Pt L{sub 3} and Ru K edges, were carried out on three different carbon-supported PtRu electrocatalysts in an electrochemical cell in 1 M HClO{sub 4} with 0.3 M methanol. The CO and OH adsorbate coverage on Pt and Ru were determined as a function of the applied potential via the novel delta XANES technique, and the particle morphology was determined from the EXAFS and a modeling technique. Both the bifunctional and direct CO oxidation mechanisms, the latter enhanced by electronic ligand effects, were evident for all three electrocatalysts; however, the dominant mechanism depended critically on the particle size and morphology. Both the Ru island size and overall cluster size had a very large effect on the CO oxidation mechanism and activation of water, with the bifunctional mechanism dominating for more monodispersed Ru islands, and the direct surface ligand effect dominating in the presence of larger Ru islands.

  16. OnLocation, Inc., Energy Systems Consulting Hydrogen Scenarios

    E-Print Network [OSTI]

    -Gate Storage and Compressor or liquefier Natural Gas Reforming Storage and Dispensing Retail markup Consulting 7 NEMS-H2 Light Duty Vehicle Representation · Fuel price and availability varies among 3 markets, there are 16 vehicle technologies arranged in 5 groups ­ Conventional: gasoline, diesel, flex-fuel methanol

  17. Methanol tailgas combustor control method

    DOE Patents [OSTI]

    Hart-Predmore, David J. (Rochester, NY); Pettit, William H. (Rochester, NY)

    2002-01-01T23:59:59.000Z

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  18. Hybrid direct methanol fuel cells.

    E-Print Network [OSTI]

    Joseph, Krishna Sathyamurthy

    2012-01-01T23:59:59.000Z

    ??A new type of fuel cell that combines the advantages of a proton exchange membrane fuel cells and anion exchange membrane fuel cells operated with… (more)

  19. Alternative Fuels Data Center: Methanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricityAlternative Fuels

  20. EnviroDB: Applied Database Systems Design for the National Environmental Assessment Toolkit (NEAT)

    E-Print Network [OSTI]

    Kim, S. H.; Srivastava, V.; Aziz, A.

    2005-01-01T23:59:59.000Z

    (CO 2 ), carbon monoxide (CO), volatile organic compounds (VOC), particulates (PM), air velocity (AIR_VEL), light levels at 3 locations (LGH), and a photometric camera that analyzes brightness/contrast and glare. The sensor outputs are recorded...

  1. Evaluation and Comparison of Test Methods to Measure the Oxidation Stability of Neat Biodiesel

    SciTech Connect (OSTI)

    Westbrook, S. R.

    2005-11-01T23:59:59.000Z

    The purpose of this project was to compare and evaluate several candidate test methods for evaluating oxidation stability of biodiesel.

  2. Microstructure determines the yield of free charge in neat semiconducting polymers.

    E-Print Network [OSTI]

    , is essential if we are to realize their full potential as low-cost active layers for coal-competitive solar power generation. Yet, the value of one of the most basic photophysical parameters of these materials power generation. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

  3. Immunization Consent for Persons Under 18 (please fill in blanks neatly)

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    . Hoarseness; sore, red or itchy eyes; cough, fever, aches. PNEUMONIA VACCINE ADVERSE REACTIONS: redness

  4. High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetak’s new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetak’s use of semiconductor manufacturing methods leads to less material use—facilitating cheaper production.

  5. Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography

    SciTech Connect (OSTI)

    Djerki, R.A.; Laub, R.J.

    1988-01-01T23:59:59.000Z

    The Raoult's-law activity coefficients of 3- to 7-carbon aliphatic aldehyde, ketone, ester, and alcohol solutes at infinite dilution in methanol, water, and mixtures of the two and in polydimethysiloxane, all at 293-308 K, have been determined for the first time by appropriate combination of GLC and LLC retention data. The latter data are reported in terms of mole factions, while the former are given in concentration units of molality. However, interpretation of the data is difficult because of the multiplicity of the retention mechanisms. Nevertheless, the combined GLC/LLC technique, which had been applied previously only to pure solvents, is said to offer a number of advantages over static techniques for the determination of solute infinite-dilution activity coefficients with volatile solvents, especially with mixtures of solvents.

  6. FlexSplit: A Workload-Aware, Adaptive Load Balancing Strategy for Media Cluster

    E-Print Network [OSTI]

    Smirni, Evgenia

    Hewlett-Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94303 lucy.cherkasova@hp.com Evgenia Smirni and medium videos (2 min-15 min), and the encoding bit rates, targeting the current Internet population

  7. 2010-01-0166 Ethanol Content Estimation in Flex Fuel Direct Injection

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    (FFVs) are able to operate on a blend of ethanol and gasoline in any volumetric concen- tration of up of gasoline and ethanol in any concentration of up to 85% ethanol. This blend is denoted by the EXX nomenclature, where XX represents the volumetric percentage of ethanol in the gasoline-ethanol blend. E85

  8. TOLERANT ETHANOL ESTIMATION IN FLEX-FUEL VEHICLES DURING MAF SENSOR DRIFTS

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    in ethanol-gasoline blend em Mass fraction of ethanol in ethanol-gasoline blend pm Intake manifold absolute operate on a blend of ethanol and gasoline in any concentration of up to 85% ethanol. This blend Engineering Dearborn, Michigan 48121 ABSTRACT Flexible fuel vehicles (FFVs) can operate on a blend of ethanol

  9. Optimizations of an Application-Level Protocol for Enhanced Dependability in FlexRay

    E-Print Network [OSTI]

    Seshia, Sanjit A.

    manufacturers and Tier1 (automotive electronics) suppliers. It supports up to 10 Mb/s communication speed] is an automotive standard for high-speed and reliable communication that is being widely deployed for next based on an experimental vehicle designed at General Motors. I. Introduction In future automotive

  10. Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the Circle: TheDraft Sample

  11. DC Students Flex Their Mental Muscles in Regional Science Bowl Competition

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FY 2012 FY 2013 FYCurrentCyndi|

  12. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July|Rise | Department of2011 |

  13. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow.4.3.100ananValvetrain

  14. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of EnergyMini-Van PHEV DOE

  15. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of EnergyMini-Van PHEV

  16. Energy Upgrade California in Los Angeles County - The Flex Path Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications -Sessionfor Review | Department

  17. DC Students Flex Their Mental Muscles in Regional Science Bowl Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015) CIO, DCIO, COO, CTO, CA,and the5-16 DATE: MarchOPC|

  18. Alternative Fuels Data Center: City of Hoover Fleet Boasts 200-Plus Flex

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative FuelInfrastructureFirst-of-Its-KindatFuel

  19. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    , . promoter . 1.2 CO2 HBGS process CO2 , CO2 . CO2 , IGCC (Integrated Gasification Combined Cycle) (fuel gas) CO2 . IGCC CO2 H2 . (gasification) CO H2 (water gas shift reaction) H2 CO CO2 . CO2 H2 turbine H2 . H2 , CO2 #12;. fuel gas CO2 40%, 60% H2 . fuel gas (gasification) HBGS process . CO2 CO2 . venture

  20. Methanol and hydrogen from biomass for transportation

    E-Print Network [OSTI]

    . In the light of increasing air pollution in megacitites like Mexico City and São Paulo [UNEP/WHO, 1992 for biomass to be used for road transportation, with zero or near-zero local air pollution and very low levels

  1. Direct Methanol Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of Shewanella Oneidensis OuterDirectDirect

  2. THE IMPACT OF ANCHOR ITEM EXPOSURE ON MEAN/SIGMA LINKING AND IRT TRUE SCORE EQUATING UNDER THE NEAT DESIGN

    E-Print Network [OSTI]

    Barri, Moatasim Asaad

    2013-08-31T23:59:59.000Z

    have evaluated the impact of exposed anchor items on the IRT equating process using Monte Carlo investigations (Jurich, DeMars, & Goodman, 2012; Jurich, Goodman, & Becker, 2010). However, studies of item exposure up to this date 3 have not placed... condition that included examinees with a low level of ability or the condition with the organized item theft group. Few studies have investigated the impact of exposed anchor items on the IRT equating process using Monte Carlo investigations. Jurich, De...

  3. Secondary kinetics of methanol decomposition : theoretical rate coefficients for {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3}.

    SciTech Connect (OSTI)

    Jasper, A. W.; Klippenstein, S. J.; Harding, L. B.; Chemistry

    2007-09-06T23:59:59.000Z

    Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3} barrierless association reactions. The predicted rate coefficient for the {sup 3}CH{sub 2} + OH reaction ({approx} 1.2 x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the {sup 3}CH{sub 2} + CH{sub 3} and {sup 3}CH{sub 2} + {sup 3}CH{sub 2} reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C{sub 2}H{sub 2} + 2H and C{sub 2}H{sub 2} + H{sub 2} products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH{sub 3} and OH and for the CH{sub 3} + OH reaction, are used to test the geometric mean rule for the CH{sub 3}, {sup 3}CH{sub 2}, and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the {sup 3}CH{sub 2} + OH and {sup 3}CH{sub 2} + CH{sub 3} reactions to better than 20%, with a larger (up to 50%) error for the CH{sub 3} + OH reaction.

  4. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol Estimated stoichiometric air-to-fuel ratio e Volume fraction of ethanol in gasoline-ethanol blend e Estimated volume fraction of ethanol in gasoline-ethanol blend Address all correspondence to annastef

  5. Pushing the Limits of Remote Online Diagnosis in FlexRay-based Networks Eric Armengaud1,2

    E-Print Network [OSTI]

    Abstract In an automotive distributed embedded system direct access to individual nodes for testing services to loop back information on a node's reception status to the tester. 1. Introduction Electronics automotive innovations now stem from elec- tronic systems [1]. In modern upper class vehicles several

  6. Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

  7. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  8. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    1973) Enthalpies of Combustion and Maximum Temperatures ofBurner Assembly Combustion Chamber Exhaust System. . CHAPTERIlMeasurement of NO and N02 in Combustion Systems," Western

  9. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Researchsc- Energy

  10. Flexible and Transparent Memory

    E-Print Network [OSTI]

    KIM, SUNG MIN

    2012-01-01T23:59:59.000Z

    electrical characteristics under flex. (a) Normalized resistance vs.electrical characteristics under flex. (a) Normalized resistance vs.

  11. Autothermal-reformer fuel-cell power plants. Final technical report, 11 July 1983-31 January 1984

    SciTech Connect (OSTI)

    Bloomfield, D.P.

    1984-02-28T23:59:59.000Z

    A total of six systems models were developed and analyzed. The first of these considered a hydrocarbon-fueled, ATR-based power plant. The next three systems examined three condensing approaches to a neat methanol fuel cell power plant. Finally, two non-condensing approaches to neat methanol operation were investigated. One of these, configuration G041G, was selected for extensive parametric analysis. The system used an autothermal reforming fuel processor in conjunction with an air cooled fuel-cell stack. As part of the program a systems model of the Energy Research Corp. fuel cell was developed. In addition, the existing ATR model in the PSI/S3E library was updated to permit the analysis of methanol fuel. Each of the systems developed is completely described in a separate chapter. All computer codes developed under the contract have been supplied in BASIC source code suitable for implementation of an IBM/PC computer. All codes function in the PSI/S3E environment except for the parametric analysis of G041G which also uses the LOTUS 1 2 3 environment.

  12. Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol

    SciTech Connect (OSTI)

    Murayama, T.; Ogawa, H.; Miyamoto, N.; Chikahisa, T.

    1984-01-01T23:59:59.000Z

    Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated.

  13. Achievement of stable and clean combustion over a wide operating range in a spark-assisted IDI diesel engine with neat ethanol

    SciTech Connect (OSTI)

    Murayama, T.; Chikahisa, T.; Miyamoto, N.; Ogawa, H.

    1984-02-01T23:59:59.000Z

    Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.

  14. Synthesis and characterization of the multi-photon absorption and excited-state properties of a neat liquid 4-propyl 40

    E-Print Network [OSTI]

    or accidental exposure to such intense radiation could lead to `flash blindness' or severe perma- nent damage be anywhere in the UV to infrared. Next generation organic material based electro-optical devices, e of this liquid, including 2PA and 2PA-induced process that is responsible for its non-linear optical properties

  15. A REVIEW OF THE MEASUREMENT AND DEVELOPMENT OF CRYSTALLINITY AND ITS RELATION TO PROPERTIES IN NEAT POLY(PHENYLENE SULFIDE) AND ITS FIBER REINFORCED COMPOSITES

    SciTech Connect (OSTI)

    Spruiell, J.E.

    2005-01-31T23:59:59.000Z

    This literature review paper was prepared for the Department of Energy Automotive Lightweighting Program to address materials interest expressed by the Automotive Composites Consortium and it summarizes the measurement and development of crystallinity and its relation to properties in poly(phenylene sulfide) (PPS) and its fiber reinforced composites. The objective of this effort was to broaden the understanding of low-cost, semi-crystalline thermoplastic resins and composites for use in potential future automotive applications. PPS has an excellent combination of attributes including good mechanical properties and thermal stability, high chemical resistance, low moisture absorption, good weathering resistance, high dimensional stability, low flammability, and excellent processability. Specific areas addressed in this report include: Structure of PPS; Techniques for measuring crystallinity; Crystallinity as a function of prior treatment; Crystallization kinetics and morphology; Effect of variation of crystallinity on properties of PPS and its composites; Environmental stability; Unusual effects of cooling rates and degree of crystallinity on mechanical properties of AS4/PPS composites; Recent PPS laminate data (Ten Cate Advanced Composites); and Recommendations for future research.

  16. SOLUBILITIES OF CO AND H2 IN NEAT AND CO2-EXPANDED HYDROFORMYLATION REACTION MIXTURES CONTAINING 1-OCTENE AND NONANAL UP TO 80 °C AND 90 BARS

    E-Print Network [OSTI]

    Xie, Zhuanzhuan

    2009-01-01T23:59:59.000Z

    -Robinson equation of state (PR EoS) with van der Waals mixing rules and binary interaction parameters modeled the VLE data adequately, with much better fits for the 1-octene systems compared to the more polar nonanal systems....

  17. Mechanochemistry: A versatile synthesis strategy for new materials

    E-Print Network [OSTI]

    Jones, William; Eddleston, Mark D.

    2014-09-02T23:59:59.000Z

    -polymorph appeared stable to neat grinding, addition of a few drops of a low polarity liquid (e.g. hexane) caused conversion to the ?- polymorph. More polar liquids (e.g. water, acetonitrile or methanol) appeared not to induce the transformation. The actual... -solid mixing were reported by Toda and co-workers.(Toda et al., 1987) Work by Etter and colleagues also demonstrated how solid-solid grinding could be used to produce hydrogen bonded cocrystals of adenine and thymine derivatives, where a marked selectivity...

  18. Experimental Investigation on the Interaction of Water and Methanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS). For water, three desorption states were observed in the TPD spectra at 160 K, 190 K, and 250...

  19. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    oxidizing agent than SVI ions (Eo = 1.5 V SeO4 2À /H2SeO3, Eo = 0.17 V SO4 2À /H2SO3, respec- tively) and, critically, the hydrated form, selenic acid (H2SeO4), is known to oxidize gold metal.[7] Equally impor- tant

  20. Using Rare Gas Permeation to Probe Methanol Diffusion near the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at temperatures just above the glass transition. The diffusivity near the glass transition is characterized by an activation energy and prefactor that are seven and 1030...

  1. Methanol vaporization and injection system for internal combustion engine

    SciTech Connect (OSTI)

    Bayley, R.I.

    1980-05-06T23:59:59.000Z

    An engine equipped with an alcohol vaporization injection system operates as a four stroke cycle diesel engine that transfers the heat of exiting exhaust gases and cylinder head walls to the fuel. The engine runs on alcohol. The alcohol becomes vaporized and its pressure is high enough so that when a valve is opened between the high pressure fuel line and the combustion chamber (when it is at the peak of its compression ratio) enough alcohol will enter the combustion chamber to allow proper combustion. The overall advantages to this type of alcohol vaporization injection system is that it adds relatively few new mechanisms to the spark ignition four cycle internal combustion engine to enable it to operate as a diesel engine with a high thermal efficiency. This alcohol injection system exploits the engine's need for greater volumes of alcohol caused by the alcohol's relatively low heat of combustion (When compared to gasoline) by using this greater volume of fuel to return greater quantities of heat back to the engine to a much greater degree than other fuels can.

  2. Synthesis of Methanol and Dimethyl Ether from Syngas over Pd...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of...

  3. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    Partners Budget Colorado School of Mines (CSM) Jet Propulsion Laboratory (JPL) BASF Fuel Cells (BASF) MTI MicroFuel Cells (MTI) Timeline 2009 - 2011 2009 (Aug) 2011 2010...

  4. Is Methanol the Transportation Fuel of the Future?

    E-Print Network [OSTI]

    Sperling, Daniel; DeLuchi, Mark A.

    1989-01-01T23:59:59.000Z

    and OtherParameters m m Retail price gasoline, of S/gallon,cylinders). The retail price of gasoline, including taxes,

  5. aqueous methanol solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

  6. aqueous methanol solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

  7. Advances in Energy Reduction in Methanol Plant Design

    E-Print Network [OSTI]

    Huggins, P. J.; Griffiths, G. W.

    1982-01-01T23:59:59.000Z

    which are still under development are outlined. In particular, the paper presents Davy McKee's version of the next generation of synthesis reactor. The paper also examines the economic justification of the energy saving steps. To complement advances...

  8. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingabout Influenza

  9. Direct Methanol Fuel Cell Corporation DMFCC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,

  10. Level Alignment of a Prototypical Photocatalytic System: Methanol on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C HLester toRecalcitrant

  11. Characterization of Microexplosion Phenomena of Methanol-Glycerol Mixtures

    E-Print Network [OSTI]

    Fan, Ge-Yi

    2014-07-17T23:59:59.000Z

    for the degree of MASTER OF SCIENCE Chair of Committee, Jorge L. Alvarado Committee Members, Kalyan Annamalai Alex (Gwo-Ping) Fang Head of Department, Andreas A. Polycarpou August 2014 Major Subject: Mechanical Engineering Copyright 2014...

  12. Theoretical study of syngas hydrogenation to methanol on the polar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 Members Theme 1

  13. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour the

  14. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's ImpactAppendix3Energy Political Activity atPolymer

  15. Experimental Investigation on the Interaction of Water and Methanol with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100Jefferson Lab Gwyn

  16. Injector Spray Characterization of Methanol in Reciprocating Engines

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb site and

  17. A Theoretical Study of Methanol Oxidation Catalyzed by Isolated Vanadia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSL ShellA StandardA|

  18. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.Program InformationBibliographicAnode Catalysts

  19. Methods of Conditioning Direct Methanol Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portalarticles of manufacture thereof

  20. Converting Methane to Methanol: Structural Insight into the Reaction Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops01ControllingControls onPolymers -Converting

  1. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57

  2. Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57Department1| Departmentof

  3. Process Design and Integration of Shale Gas to Methanol

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  4. Notice of Intent to Issue DOE N 314.1, DOE-Flex: DOE's Telework Program while Developing a Successor Order (5-6-11)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-06T23:59:59.000Z

    This is to develop DOE N 3XX, which will establish the requirements and responsibilities for the Department's telework/flexiplace program.

  5. Supercritical fluid extraction of lanthanides with fluorinated [beta]diketones and tributyl phosphate

    SciTech Connect (OSTI)

    Lin, Y.; Wai, C.M. (Univ. of Idaho, Moscow, ID (United States))

    1994-07-01T23:59:59.000Z

    Trivalent lanthanide ions (La[sup 3+], Eu[sup 3+], and Lu[sup 3+]) in solid materials can be effectively extracted by methanol-modified carbon dioxide containing a suitable fluorinated [beta]-diketone (such as HFA, TTA, or FOD) at 60[degree]C and 150 atm. Addition of a small amount of water to the solid samples can significantly increase the extraction efficiency. Tributyl phosphate (TBP) shows a strong positive synergistic effect with the fluorinated [beta]-diketones for the extraction of the lanthanides in supercritical CO[sub 2] without methanol modifier. Quantitative extraction of the lanthanides (92-98%) from sand or a cellulose-based solid material can be achieved using a mixture of TBP and one of the fluorinated [beta]-diketones in neat CO[sub 2] at 60[degree]C and 150 atm. The synergistic effect depends on the structure and fluorine substitution in the [beta]-diketone. In soil matrix, TBP+HFA are more effective than TBP+TTA or TBP+FOD for lanthanide extraction in supercritical CO[sub 2]. Without fluorine substitution, as in the case of acetylacetone, the positive synergistic extraction of lanthanides with TBP is negligible. With the mixed-ligand approach, high efficiencies of lanthanide extraction from aqueous solutions by neat CO[sub 2] can also be accomplished. 14 refs., 4 tabs.

  6. activity sedentary behavior: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEAT, Obesity Prevention, Obesity Intervention 1 the notion that is fundamental in energy balance. NEAT may be the answer to obesity, an individual clinical people in the world...

  7. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect (OSTI)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01T23:59:59.000Z

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  8. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine?a chemotherapy agent. Focus on nanoparticulate cubosomes? of the oleyl analogue

    SciTech Connect (OSTI)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24T23:59:59.000Z

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N{sup 4} position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC{sub 50} of 100 {micro}M against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  9. COLLEGE STATION --The first thought of a barbed wire collection might be an image of a big ball of tangled, rusted wire. But Gaylon Lane, a retired soil scientist, has neatly assembled some 269 pieces of

    E-Print Network [OSTI]

    COLLEGE STATION -- The first thought of a barbed wire collection might be an image of a big ball to grow after acquiring the famed "Underwood" wire, patented in 1878. This brand of wire featured barbs

  10. CNR EMPLOYEE FUNDING APPROVAL FORM Employee ID #First name Last name

    E-Print Network [OSTI]

    Wildermuth, Mary C

    replaced 1 2 3 BU Account Fund Org Program Project Flex NIH NIH NIH Percent Requested by Payroll Transfer Account Fund Org Program Project Flex NIH NIH NIH Percent Annual payrate Percent time 1 1 1 Professor

  11. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    E-Print Network [OSTI]

    Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M; Huang, Grace L; Beauregard, Marc; Bowie, James U

    2013-01-01T23:59:59.000Z

    in terms of kg of bio- diesel produced per kg of catalyst [efficient synthesis of bio- diesel even in the presence of a

  12. E-Print Network 3.0 - advanced direct methanol Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Energy Storage, Conversion and Utilization ; Chemistry 9 Frontiers in Heat and Mass Transfer (FHMT), 2, 032001 (2011) DOI: 10.5098hmt.v2.3.2001 Summary: Digital...

  13. Supported Single Pt1/Au1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,,

    E-Print Network [OSTI]

    Li, Weixue

    , responsible for the low-temperature activity of the water-gas-shift reaction10,11 and CO oxidation,12,13 can more strongly toward the inter- mediates, improve the reaction energetics and kinetics, and change

  14. Molecular insights on the solvent effect of methanol additive in glycine polymorph selection

    E-Print Network [OSTI]

    Patala, Srikanth

    2008-01-01T23:59:59.000Z

    In an effort to improve control and design in organic crystallization, the effect of solvent on polymorph selection has gained tremendous interest in recent years. In this thesis, molecular simulation techniques are used ...

  15. A KINETIC S'FUDY OF METHANOL SYNTHESIS IN A SLURRY REACTOR USING

    Office of Scientific and Technical Information (OSTI)

    while carbon dioxide is the main route under lower temperatures and pressures The oil crisis in the early 1970's accelerated the need to find alternative fuel sources....

  16. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    SciTech Connect (OSTI)

    Brian Wells

    2008-11-30T23:59:59.000Z

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

  17. E-Print Network 3.0 - antimalarial quinoline methanols Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , AZ 85721 ABSTRACT Adsorption of quinoline (pKa 5 4.92) and background electrolyte (CaCl2) onto... M), and as a func- tion of quinoline concentration (0.2-1.55 mM) at fixed pH...

  18. ASI: Toward the Optimal Integrated Production of Biodiesel with Internal Recycling of Methanol

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    , mathematical optimization, process design INTRODUCTION The use of biomass feedstocks to obtain liquid fuels has

  19. Synthesis and characterization of bulk and coatings of hydroxyapatite using methanol precursor

    SciTech Connect (OSTI)

    Khongwar, Jasper K. [Chemistry Division, School of Science and Humanities, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Kannan, K.R. [SSCU, Indian Institute of Science, Bangalore 560012 (India); Buvaneswari, G. [Chemistry Division, School of Science and Humanities, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India)], E-mail: gopalbhu@yahoo.com

    2008-02-05T23:59:59.000Z

    Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert {alpha}-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 deg. C for 10 min. The complete crystallization of the apatite was obtained at 800 deg. C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on {alpha}-alumina and yttria stabilized zirconia substrates.

  20. Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol

    E-Print Network [OSTI]

    Osterloh, Frank

    Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water trapping and recombination processes in suspensions of exfoliated calcium niobate nanosheets derived from in exfoliated [H1-xCa2Nb3O10]x- nanosheets (x ) 0.15-0.20) and APS-functionalized (TBA,H)- Ca2Nb3O10. We

  1. An Experimental Investigation of Microexplosion in Emulsified Vegetable-Methanol Blend

    E-Print Network [OSTI]

    Nam, Hyungseok

    2012-07-16T23:59:59.000Z

    high speed imaging. When large droplets microexploded, lower frequencies were detected in all the blends. v DEDICATION This thesis is dedicated to my family, Mr. Ki-Woo Nam, Mrs. Jung-Hee Park, Mrs. Myung-Ok Won, Mrs. Ji-Hye Han, Mr... Boltzmann?s constant [1.3808 ?10-23 J/K] h Plank?s constant [6.6261?10-34 J?s] rcr Critical diameter of a vapor embryo [m] nT Number of potential nucleation sites per unit volume ellipseV Volume of ellipse [m 3] spherer Radius of sphere [m] u (x...

  2. E-Print Network 3.0 - accidental methanol ingestion Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the loops and openings of debris. Ingestion - an animal can mistake marine debris for food, accidentally... . Entanglement and ingestion of marine debris can harm marine life....

  3. anaerobic methanol-degrading consortium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baylor University, Rice University, University of Texas-Austin, and University of Texas-San Antonio Administrative Home - College of Liberal Arts, Texas A&M University TXCRDC...

  4. Control and experimental characterization of ap methanol reformer for a 350W HTPEM FC system

    E-Print Network [OSTI]

    Kolaei, Alireza Rezania

    ;Experimental system layout using H3-350 f dreformer and evaporator Heat demand: FC stack cathode exhaust heated airflowFC stack cathode exhaust is emulated using a mass flow controlled heated airflow. Burner Evaporator [L/min] MFC Air Burner [L/min] MFC H2 Burner [L/min] 300 350 MFC H2 Burner [L/min] Pump flow [m

  5. Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report

    SciTech Connect (OSTI)

    Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

    1981-03-01T23:59:59.000Z

    The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

  6. A Methanol and Hydrogen Peroxide Fuel Cell Using Non-Noble Catalysts in Alkaline Solution.

    E-Print Network [OSTI]

    Sung, Woosuk

    2006-01-01T23:59:59.000Z

    ??A primary goal of this work is to develop a novel liquid-based microscale fuel cell using non-noble metal catalysts. The developed fuel cell is based… (more)

  7. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    E-Print Network [OSTI]

    Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M; Huang, Grace L; Beauregard, Marc; Bowie, James U

    2013-01-01T23:59:59.000Z

    J, Campelo JM, Romero AA: Biodiesel as feasible petrol fueltowards ever greener biodiesel production. Biotechnol Adv 3.T, Bielecki S: Enzymatic biodiesel synthesis - key factors

  8. Photoelectrochemical hydrogen production from water/ methanol decomposition using Ag/TiO2 nanocomposite

    E-Print Network [OSTI]

    coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity A & M University, College Station, TX 77843 3136, USA a r t i c l e i n f o Article history: Received 18, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resources

  9. MECHANISTICAL STUDIES ON THE IRRADIATION OF METHANOL IN EXTRATERRESTRIAL ICES Chris J. Bennett,1

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    state and their subsequent sublimation into the gas phase can help ex- plain their high abundances models of hot molecular cores rely on rapid, high-temperature gas-phase chemistry to explain the abun- dance of these molecules; the physical processes are thought to be triggered by the sublimation

  10. Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUserUsingelectron

  11. Catalytic Consequences of Acid Strength in the Conversion of Methanol to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites ProposedOccupational Health Services|Dimethyl Ether. | EMSL

  12. A KINETIC S'FUDY OF METHANOL SYNTHESIS IN A SLURRY REACTOR USING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andA Hollow-IonHybrid

  13. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's E.GilmanKurt's

  14. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    E-Print Network [OSTI]

    Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M; Huang, Grace L; Beauregard, Marc; Bowie, James U

    2013-01-01T23:59:59.000Z

    metha- nol and 1.5 ml of canola oil. This mixture provides aconverting ~76% of the canola oil to biodiesel within 20with less than 15% of the canola oil being converted to

  15. A novel electrode architecture for passive direct methanol fuel cells R. Chen, T.S. Zhao *

    E-Print Network [OSTI]

    Zhao, Tianshou

    * Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell

  16. FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirits and Ford Econoline Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,of

  17. Imaging Adsorbate O-H Bond Cleavage: Methanol on TiO2(110). | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type|Iltt: FermiSliSANANov, 1.

  18. Importance of Diffusion in Methanol Photochemistry on TiO2(110). | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |EndecahemeEMSLImagingOregon

  19. A Comparative Study of the Adsorption of Water and Methanol in Zeolite BEA:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon,Electrocatalysis | StanfordZeise'sEMSLA

  20. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | Department ofProceedings | Department2

  1. Electron-Stimulated Reactions and O-2 Production in Methanol-Covered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as Selective SorbentsEMSL Oxidation of

  2. Methanol Partial Oxidation on MoO3/SiO2 Catalysts: Application of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Researchsc 620Vibrational

  3. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model Catalyst:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Researchsc 620VibrationalA

  4. Methanol as an alternative transportation fuel in the U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Researchsc

  5. Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethod forAThiolsSynthesis Conditions

  6. Site Competition During Coadsorption of Acetone with Methanol and Water on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smartversatileplatform chemical. |Cleanup Site

  7. (Non) formation of methanol by direct hydrogenation of formate on copper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrinceton Plasmareactions. | EMSL (100)

  8. Isotope effects in methanol synthesis and the reactivity of copper formates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/SurfacePump-Testing Sign InIsotopeIsotopeIsotopeon a

  9. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the EffectsAcknowledgment StatementGuidance6803. |

  10. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS

    E-Print Network [OSTI]

    Md. Nurun Nabi; S. M. Najmul Hoque

    Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

  12. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report

    SciTech Connect (OSTI)

    Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M.; Shapouri, H.

    1998-05-01T23:59:59.000Z

    This report presents the findings from a study of the life cycle inventories for petroleum diesel and biodiesel. It presents information on raw materials extracted from the environment, energy resources consumed, and air, water, and solid waste emissions generated. Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B1OO) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil). In the United States, initial interest in producing and using biodiesel has focused on the use of soybean oil as the primary feedstock mainly because the United States is the largest producer of soybean oil in the world. 170 figs., 148 tabs.

  13. Use of Energy Management and Control Systems for Performance Monitoring of Retrofit Projects: Preliminary Engineering Survey, USDOE Forrestal and Germantown Facility, Summary Report, USDOE Office of Conservation and Energy

    E-Print Network [OSTI]

    Claridge, D. E.; Haberl, J. S.; Bryant, J.; Poyner, B.; McBride, J.

    1991-01-01T23:59:59.000Z

    Forrestal Building Summary: Full Proposal 05/02/91 Neat Supplies E.tffo $3,000 Wire $400/1000 4 pr, $150/1000 2 pr $1,000 Misc. Electrical Supplies Neat G&A on Supplies & Materials: $3,408 | Neat Subcontract labor_Estimates: $10,000 Electrician Hot Tap...,000 Electrician Hot Tap Contractor Steam Meter Installer Plumber Neat G&A on Subcontracts: $800 Texas A&M Lqhor $10,000 Supplemental Living Allowance $8,000 Travel to & from job Neat G&A Travel: $4,500 Neat Labor $5,000 Management $3,000 Programming & Engineeering...

  14. Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign - Part 2: Model comparison and radical budget

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    ppb Methanol, ethanol, acetonitrile, ethylacetate MeasuredMethanol, ethanol, acetonitrile, acetaldehyde Benzene, C3-

  15. Methanol production from Eucalyptus wood chips. Working document I. The Florida Eucalyptus energy farm: silvicultural methods and considerations

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01T23:59:59.000Z

    The silvicultural matrix within which the nation's first large scale wood energy plantation will develop is described in detail. The relevant literature reviewed is identified and distilled. The plantation history, site preparation, planting, species selection, maintenance and management, harvesting, and the Eucalyptus biomass production estimates are presented.

  16. Abundant Methanol Masers but no New Evidence for Star Formation in GCM0.253+0.016

    E-Print Network [OSTI]

    Mills, E A C; Ludovici, D A; Lang, C C; Ott, J; Morris, M R; Schmitz, S

    2015-01-01T23:59:59.000Z

    We present new observations of the quiescent giant molecular cloud GCM0.253+0.016 in the Galactic center, using the upgraded Karl G. Jansky Very Large Array. Observations were made at wavelengths near 1 cm, at K (24 to 26 GHz) and Ka (27 and 36 GHz) bands, with velocity resolutions of 1-3 km/s and spatial resolutions of ~0.1 pc, at the assumed 8.4 kpc distance of this cloud. The continuum observations of this cloud are the most sensitive yet made, and reveal previously undetected emission which we attribute primarily to free-free emission from external ionization of the cloud. In addition to the sensitive continuum map, we produce maps of 12 molecular lines: 8 transitions of NH3 -- (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7) and (9,9), as well as the HC3N (3-2) and (4-3) lines, and CH3OH 4(-1) - 3(0) the latter of which is known to be a collisionally-excited maser. We identify 148 CH3OH 4(-1) - 3(0) (36.2 GHz) sources, of which 68 have brightness temperatures in excess of the highest temperature measured for th...

  17. 976 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 Methanol Steam Reformer on a Silicon Wafer

    E-Print Network [OSTI]

    Malen, Jonathan A.

    by wafer bonding. The reactor bed was subsequently filled with catalyst particles. Thermal control.2006.878888 Binary diffusion coefficient . Mixture diffusion coefficient . Knudsen diffusion coeffcient . Effective mixture diffusion coefficient for transport in catalyst pores . Diameter of catalyst pellet (m

  18. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Anatase

    E-Print Network [OSTI]

    Bell, Alexis T.

    with in-situ infrared spectroscopy. Infrared and Raman spectroscopy, along with XANES, show that the V/Ti-OH pairs, and (3) across V-O-Ti bonds to form V-OCH3/Ti-OH pairs. Upon heating, two desorption

  19. Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the NanoscaleMechanical Behavior ofAPS ...Mixtures: the Source of

  20. Utilizing Supplemental Ultra-Low-NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Improve System Efficiency This project developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates new burner technology into a 65-kilowatt...

  1. BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN

    E-Print Network [OSTI]

    Canet, Léonie

    BRAZILIAN'S BIOENERGY SUCCESS POWERED BY THE SUN Caroline Rayol Resources and Bioenergy Project : Market opening 2003 : Flex-fuel car 2004 : Biodiesel Production and Use National Program 2006

  2. E85 Infrastrucutre Development Project

    Broader source: Energy.gov (indexed) [DOE]

    FlexFuel Vehicle Awareness Campaign Presented by the Clean Fuels Foundation To the Department of Energy's Office of Energy Efficiency and Renewable Energy May 12, 2011 The...

  3. E85 Infrastrucutre Development Project

    Broader source: Energy.gov [DOE]

    Burl Haigwood's presentation on the Flex fuel vehicle awareness campaign from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  4. Secretary Chu Announces New Funding and Partnership with Google...

    Office of Environmental Management (EM)

    of electric vehicles and chargers, E85 flex fuel vehicles and infrastructure, biodiesel facilities that turn used cooking oil into vehicle fuel, natural gas vehicles, and...

  5. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    ESAP, and Sangemetal Ltd. ), Technip Angola (an engineeringcompany formed with Technip Group in 1999), and Ango- flex (tubing created with Technip Angola in 2002). Sonangol has

  6. Winter Weed Pressure in Winter Wheat Edward Davis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    26 Wheat ** ** * Barley *** * * Oats *** ** Canola * * * Lentil * * ** Millet ** ** Corn Beyond PrePare Maverick (Field Bioassay) #12;LENTIL OAT PEA CAMELINA CANOLA BARLEY PowerFlex ROTATIONAL

  7. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  8. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01T23:59:59.000Z

    use of pure methanol and ethanol fuels conventionally [18].x = ?3 cm (right); Fuels: ethanol ( t ), methanol ( t ), JP-various locations x. (Fuels: ethanol ( t ), methanol ( t ),

  9. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    practiced for years, producing methanol from wood is basedhypothetical) plants producing methanol from wood. Finally,~ ity of producing another alcohol, methanol, from wood.

  10. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    SciTech Connect (OSTI)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29T23:59:59.000Z

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

  11. Structure and dynamics of nonaqueous mixtures of dipolar liquids. I. Infrared and far-infrared spectroscopy

    E-Print Network [OSTI]

    ; accepted 24 May 2000 Mixtures of acetone/methanol, acetonitrile/methanol, and acetone/acetonitrile over are acetone/methanol, acetonitrile/methanol, and acetone/acetonitrile. These three systems allow us to com

  12. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  13. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect (OSTI)

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28T23:59:59.000Z

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

  14. Evaluation of Various Herbicides for Saw Greenbrier [Smilax bona-nox L.] and Southern Dewberry [Rubus trivialis Michx.] Control and Bermudagrass [Cynodon dactylon (L.) Pers.] Tolerance and Sharppod Morningglory [Ipomoea trichocarpa var. trichocarpa Ell.] Control in Roundup Ready Flex® and LibertyLink® Cotton Systems

    E-Print Network [OSTI]

    Janak, Travis Wayne

    2012-02-14T23:59:59.000Z

    of dry matter yield, and forage quality were quantified for each of the bermudagrass tolerance trials. Saw greenbriar was best controlled at approximately one year after treatment by triclopyr at 10.9% ae v/v with diesel as the carrier (88-98%), although...

  15. 2/6/2014 "Grain of rice" windmills to power smartphones of tomorrow -htxt.africa http://www.htxt.co.za/2014/01/13/tiny-windmills-could-power-the-gadgets-of-tomorrow/ 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    them falls drastically. "Imagine that they can be cheaply made on the surfaces of portable electronics by Subscribe to our Newsletter Mobile features Email * Subscribe! REVIEWED: LG G Flex Samsung openly hints at Galaxy S5 announcement on 24 February Hands On: LG's new curved and bendable G Flex UPDATE: SA Pricing 5

  16. North Carolina FY 2007-2008 Petroleum Displacement Program Report for the Joint Legislative Commission on Governmental Operations

    E-Print Network [OSTI]

    .3 % was displaced through biodiesel use. 0.2 % was added through a decrease in CNG and propane use. 0 technology vehicles with new vehicle purchases of 61 electric vehicles, 12 hybrid-electric vehicles, 1,115 flex-fueled vehicles, and 110 diesel vehicles that can use biodiesel. Flex fuel vehicles now comprise

  17. Projecting net incomes for Texas crop producers: an application of probabilistic forecasting

    E-Print Network [OSTI]

    Eggerman, Christopher Ryan

    2006-10-30T23:59:59.000Z

    for this program, and expected prices. Payment planted acreage is calculated by subtracting set-aside, diverted and flex acres from complying base acreage. Set-aside, diverted and flex acres existed under past farm programs, but are not currently included...

  18. Product Sheet Wall Mount Lift

    E-Print Network [OSTI]

    Saskatchewan, University of

    Product Sheet Wall Mount Lift Ergotron® Neo-FlexTM 870-05-061, rev. 12/11/07 www. Less effort. Feel the difference. Add greater range of movement to your LCD display or TV with the Neo-Flex Wall Mount Lift! CF patented lift-and-pivot motion technology adjusts with a light touch. Raise

  19. Discussion of Challenge from CEP Articlefrom CEP Article

    E-Print Network [OSTI]

    Wagner, Stephan

    is syngas produced from partialThe feed is syngas produced from partial oxidation of methane O· OtherMethanol synthesis flowsheet MethanolMethanol Synthesis syngas Methanol Water · The ratio of water: methanol syngas Methanol Water ½ Water · A mass balance across the process for a dry syngas gives: ½ CO + 5/2 H2

  20. Energy Efficiency Retrofits for U.S. Housing: Removing the Bottlenecks

    E-Print Network [OSTI]

    Bardhan, Ashok; Jaffee, Dwight; Kroll, Cynthia; Wallace, Nancy

    2013-01-01T23:59:59.000Z

    Saver (HES)* National Energy Audit Tool (NEAT) US EPA anda representative sample of energy audit tools, illustratingof California certifies energy audit tools, with the state