National Library of Energy BETA

Sample records for near-term product problem

  1. Analysis of near-term production and market opportunities for hydrogen and related activities

    SciTech Connect (OSTI)

    Mauro, R.; Leach, S.

    1995-09-01

    This paper summarizes current and planned activities in the areas of hydrogen production and use, near-term venture opportunities, and codes and standards. The rationale for these efforts is to assess industry interest and engage in activities that move hydrogen technologies down the path to commercialization. Some of the work presented in this document is a condensed, preliminary version of reports being prepared under the DOE/NREL contract. In addition, the NHA work funded by Westinghouse Savannah River Corporation (WSRC) to explore the opportunities and industry interest in a Hydrogen Research Center is briefly described. Finally, the planned support of and industry input to the Hydrogen Technical Advisory Panel (HTAP) on hydrogen demonstration projects is discussed.

  2. Advanced wind turbine near-term product development. Final technical report

    SciTech Connect (OSTI)

    None

    1996-01-01

    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  3. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

  4. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  5. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The International CHPDHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHPDHC Collaborative - Advancing Near-Term Low Carbon ...

  6. Near-term acceleration of hydroclimatic change in the western...

    Office of Scientific and Technical Information (OSTI)

    Near-term acceleration of hydroclimatic change in the western U.S. Citation Details In-Document Search Title: Near-term acceleration of hydroclimatic change in the western U.S. ...

  7. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications On November 16, 2009, the National Renewable Energy Laboratory and the California Fuel Cell Partnership conducted a workshop on near-term applications of renewable hydrogen. Held in Palm Springs, California, the workshop consisted of several presentations in addition to a special show-and-tell session on hydrogen systems analysis models.

  8. Identification and Characterization of Near-Term Direct Hydrogen Proton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchange Membrane Fuel Cell Markets | Department of Energy Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells. pemfc_econ_2006_report_final_0407.pdf (3.88 MB) More Documents &

  9. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, ...

  10. Identification and Characterization of Near-Term Direct Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells. pemfcecon2006reportfinal0407...

  11. Identification and Evaluation of Near-term Opportunities for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Evaluation of Near-term Opportunities for Efficiency Improvement First- and Second-Law thermodynamic evaluation of experimental engine data and detailed modeling ...

  12. Identification and Characterization of Near-Term Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets ... More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems ...

  13. Identification and Characterization of Near-Term Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets ... Full Fuel-Cycle Comparison of Forklift Propulsion Systems Early Markets: Fuel Cells ...

  14. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout in Southern California | Department of Energy a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_nicholas.pdf (1.64 MB) More Documents & Publications Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January

  15. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen Workshop held Nov. 16, 2010, in Palm Springs, CA renewable_hydrogen_workshop_nov16_agenda.pdf (80.14 KB) More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Hydrogen Infrastructure Market Readiness Workshop Agenda

  16. Identification and Evaluation of Near-term Opportunities for Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement | Department of Energy Evaluation of Near-term Opportunities for Efficiency Improvement Identification and Evaluation of Near-term Opportunities for Efficiency Improvement First- and Second-Law thermodynamic evaluation of experimental engine data and detailed modeling of engine and components provide new insight into strategies for improving efficiency. deer08_edwards.pdf (1.63 MB) More Documents & Publications Defining engine efficiency limits Achieving and Demonstrating

  17. Delivering Renewable Hydrogen: A Focus on Near-Term Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivering Renewable Hydrogen A Focus on Near-Term Applications A One-Day Workshop Presented by the National Renewable Energy Laboratory and the California Fuel Cell Partnership Palm Springs, California, November 16, 2009 Palm Springs Convention Center, Wyndham Hotel - Catalina Room, 9:00 AM to 5:00 PM With Modeling Show-and-Tell at 5:15 PM and Reception Presentation at 6:15 PM (Mesquite Room G) AGENDA 8:30 am Registration 9:00 am Welcome and Opening Remarks: Robert Remick, NREL 9:10 am Session

  18. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  19. Near-Term Acceleration In The Rate of Temperature Change

    SciTech Connect (OSTI)

    Smith, Steven J.; Edmonds, James A.; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine V.

    2015-03-09

    Anthropogenically-driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature . The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt . We find that current trends in greenhouse gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the last 1000 years. The rate of global-mean temperature increase in the CMIP5 archive over 40-year periods increases to 0.25±0.05 (1σ) °C per decade by 2020, an average greater than peak rates of change during the previous 1-2 millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  20. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  1. NSTX: Facility/Research Highlights and Near Term Facility Plans

    SciTech Connect (OSTI)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  2. Heliostat Manufacturing for Near-Term Markets: Phase II Final Report

    SciTech Connect (OSTI)

    Energy Products Division: Science Applications International Corporation: Golden, Colorado

    1998-12-21

    This report describes a project by Science Applications International Corporation and its subcontractors Boeing/Rocketdyne and Bechtel Corp. to develop manufacturing technology for production of SAIC stretched membrane heliostats. The project consists of three phases, of which two are complete. This first phase had as its goals to identify and complete a detailed evaluation of manufacturing technology, process changes, and design enhancements to be pursued for near-term heliostat markets. In the second phase, the design of the SAIC stretched membrane heliostat was refined, manufacturing tooling for mirror facet and structural component fabrication was implemented, and four proof-of-concept/test heliostats were produced and installed in three locations. The proposed plan for Phase III calls for improvements in production tooling to enhance product quality and prepare increased production capacity. This project is part of the U.S. Department of Energy's Solar Manufacturing Technology Program (SolMaT).

  3. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  4. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    SciTech Connect (OSTI)

    Mahadevan, K.; Judd, K.; Stone, H.; Zewatsky, J.; Thomas, A.; Mahy, H.; Paul, D.

    2007-04-15

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  5. Jefferson Lab Upgrade named near-term priority in Department of Energy's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-year facility plan | Jefferson Lab Upgrade named near-term priority in Department of Energy's 20-year facility plan Jefferson Lab Upgrade named near-term priority in Department of Energy's 20-year facility plan November 11, 2003 The Thomas Jefferson National Accelerator Facility's 12 GeV (billion electron-volt) Upgrade was among the 12 projects identified as near-term priorities when Energy Secretary Spencer Abraham outlined the Department of Energy's 20-year facility plan on Nov. 10.

  6. Impact of Biodiesel on the Near-term Performance and Long-term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Compare SCR catalyst performance with ULSD and Soy B20 through engine ...

  7. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Markets | Department of Energy Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets July 9th presentation for the U.S. DOE HFCIT bi-montly informational call series for state and regional initiatives mahadevan.pdf (1.13 MB) More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems Early Markets: Fuel Cells for Material Handling

  8. Near-term Fuel Cell Applications in Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Near-term Fuel Cell Applications in Japan Near-term Fuel Cell Applications in Japan Presented at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_akiba.pdf (6.38 MB) More Documents & Publications U.S. Department of Energy Building Energy Data Exchange Specification Quadrennial Energy Review: Scope, Goals, Vision, Approach, Outreach Final Report - Sun Rise New England - Open for Buisness

  9. Impact of Biodiesel on the Near-term Performance and Long-term Durability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Aftertreatment Systems | Department of Energy on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Compare SCR catalyst performance with ULSD and Soy B20 through engine testing deer09_williams.pdf (1.02 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices

  10. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  11. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  12. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets Kathya Mahadevan, Battelle July 11, 2007 2 Project Objectives To assist DOE in developing fuel cell systems by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell (H-PEMFC) adoption. 2006 support included the following: * Market segmentation of 1-250 kW H-PEMFC into near-term (2008) and mid-term (2012) market opportunities * Lifecycle cost analysis of H-PEMFC and competing

  13. Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.

    SciTech Connect (OSTI)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.; Tidwell, Vincent Carroll; Stamber, Kevin Louis; Reinert, Rhonda K.; Backus, George A.; Warren, Drake E.; Zagonel, Aldo A.; Ehlen, Mark Andrew; Klise, Geoffrey T.; Vargas, Vanessa N.

    2010-04-01

    Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-model ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.

  14. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Michnick; R. Reynolds

    1997-10-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  15. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; M. Cichnick; R. Reynolds

    1998-07-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  16. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

    1998-04-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  17. M2 priority screening system for near-term activities: Project documentation. Final report December 11, 1992--May 31, 1994

    SciTech Connect (OSTI)

    1993-08-12

    From May through August, 1993, the M-2 Group within M Division at LANL conducted with the support of the LANL Integration and Coordination Office (ICO) and Applied Decision Analysis, Inc. (ADA), whose purpose was to develop a system for setting priorities among activities. This phase of the project concentrated on prioritizing near-tenn activities (i.e., activities that must be conducted in the next six months) necessary for setting up this new group. Potential future project phases will concentrate on developing a tool for setting priorities and developing annual budgets for the group`s operations. The priority screening system designed to address the near-term problem was developed, applied in a series of meeting with the group managers, and used as an aid in the assignment of tasks to group members. The model was intended and used as a practical tool for documenting and explaining decisions about near-term priorities, and not as a substitute for M-2 management judgment and decision-making processes.

  18. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    SciTech Connect (OSTI)

    Feldman, D.; Barbose, G.; Margolis, R.; Wiser, R.; Darghouth, N.; Goodrich, A.

    2012-11-01

    This report helps to clarify the confusion surrounding different estimates of system pricing by distinguishing between past, current, and near-term projected estimates. It also discusses the different methodologies and factors that impact the estimated price of a PV system, such as system size, location, technology, and reporting methods.These factors, including timing, can have a significant impact on system pricing.

  19. Panel 3, PEM Electrolysis Technology R&D and Near-Term Market Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology R&D and Near-Term Market Potential 5/15/14 Stephen Szymanski Director - Government Business sszymanski@protononsite.com 203.678.2338 Proton OnSite: Current Status * Industrial markets form base for commercial sales - 50% growth over last 2 years g y - Clear technology leader in PEM electrolysis - >2000 fielded units, 10 MW capacity shipped , p y pp * Continuing to scale output and manufacturing capability Industrial Markets Power Plants Energy Markets capability Power Plants

  20. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2013 Edition (Presentation)

    SciTech Connect (OSTI)

    Feldman, D.; Margolis, R.; James, T.; Goodrich, A.; Barbose, G.; Dargouth, N.; Weaver, S.; Wiser, R.

    2013-09-01

    This briefing provides a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States, drawing on several ongoing research activities from the Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory. It also discusses the different methodologies and factors that impact the estimated price of a PV system, such as system size, location, technology, and reporting methods. These factors, including timing, can have a significant impact on system pricing.

  1. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections. 2014 Edition (Presentation)

    SciTech Connect (OSTI)

    Feldman, D.; Barbose, G.; Margolis, R.; James, T.; Weaver, S.; Darghouth, N.; Fu, R.; Davidson, C.; Booth, S.; Wiser, R.

    2014-09-01

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the third edition from this series.

  2. Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections, 2015 Edition

    SciTech Connect (OSTI)

    Feldman, David; Barbose, Galen; Margolis, Robert; Bolinger, Mark; Chung, Donald; Fu, Ran; Seel, Joachim; Davidson, Carolyn; Darghouth, Naïm; Wiser, Ryan

    2015-08-25

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the fourth edition from this series.

  3. Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Cluster Strategy for Near term Hydrogen Infrastructure Rollout in Southern California Michael Nicholas, Joan Ogden Institute of Transportation Studies University of California, Davis November 16, 2009 Scope of study * Analyze "cluster" strategy for introducing H2 vehicles and refueling infrastructure in So. California over the next decade, to satisfy ZEV regulation. * Analyze: Station placement within the Los Angeles Basin Convenience of the refueling network (travel time to

  4. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections- 2014 Edition

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is the third edition in an annual briefing prepared jointly by LBNL and NREL intended to provide a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States. The briefing draws on several ongoing research activities at the two labs, including LBNL's annual Tracking the Sun report series, NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. The briefing examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and integrates different perspectives and methodologies for characterizing PV system pricing, in order to provide a broader perspective on underlying trends within the industry. Median reported prices for systems completed in 2013 were $4.69/W for residential installations, $3.89/W for commercial installations and $3.00/W for utility-scale installations.

  5. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feldman, David; Barbose, Galen; Margolis, Robert; Bolinger, Mark; Chung, Donald; Fu, Ran; Seel, Joachim; Davidson, Carolyn; Wiser, Ryan

    2016-05-13

    This is the fourth edition in an annual briefing prepared jointly by LBNL and NREL intended to provide a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States. The briefing draws on several ongoing research activities at the two labs, including LBNL's annual Tracking the Sun report series, NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. The briefing examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and integrates different perspectives and methodologies for characterizing PV system pricing, in order to provide a broader perspective on underlying trends within the industry.

  6. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  7. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  8. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  9. Carbon Lock-in Through Capital Stock Inertia Associated with Weak Near-term Climate Policies

    SciTech Connect (OSTI)

    Bertram, Christoph; Johnson, Nils; Luderer, Gunnar; Riahi, Keywan; Isaac, Morna; Eom, Jiyong

    2015-01-01

    Stringent long-term climate targets necessitate a strict limit on cumulative emissions in this century for which sufficient policy signals are so far lacking. Based on an ensemble of ten energy-economy models, we explore how long-term transformation pathways depend on policies pursued during the next two decades. We find that weak GHG emission targets for 2030 lead, in that year alone, to excess carbon dioxide emissions of nearly half of the annual emissions in 2010, mainly through coal electricity generation. Furthermore, by consuming more of the long-term cumulative emissions budget in the first two decades, weak policy increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions. Therefore, to be successful under weak policies, models must prematurely retire much of the additional coal capacity post-2030 and remove large quantities of carbon dioxide from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, makes the post-2030 transition easier.

  10. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  11. Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-14

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  12. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

    1999-10-29

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  13. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-11-03

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  14. Problems of organizing zero-effluent production in coking plants

    SciTech Connect (OSTI)

    Maiskii, S.V.; Kagasov, V.M.

    1981-01-01

    The basic method of protecting the environment against pollution by coking plants in the future must be the organization of zero-waste production cycles. Problems associated with the elimination of effluent are considered. In the majority of plants at present, the phenolic effluent formed during coal carbonization and chemical product processing is completely utilized within the plant as a coke quenching medium (the average rate of phenolic effluent formation is 0.4 m/sup 3//ton of dry charge, which equals the irrecoverable water losses in coke quenching operations). However, the increasing adoption of dry coke cooling is inevitably associated with increasing volumes of surplus effluent which cannot be disposed of in coke quenching towers. As a result of experiments it was concluded that: 1. The utilization of phenolic effluent in closed-cycle watercooling systems does not entirely solve the effluent disposal problem. The volume of surplus effluent depends on the volume originally formed, the rate of consuming water in circulation and the time of year. In order to dispose of surplus effluent, wet quenching must be retained for a proportion of the coke produced. 2. The greatest hazards in utilizing phenolic effluent in closed-cycle watercooling systems are corrosion and the build-up of suspended solids. The water must be filtered and biochemically purified before it is fed into the closed-cycle watercooling systems. The total ammonia content after purification should not exceed 100 to 150 mg/l. 3. Stormwater and thawed snow can be used in closed-cycle water supply systems after purification. 4. The realization of zero-effluent conditions in existing plants will require modifications to the existing water supply systems.

  15. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  16. Near-term viability of solar heat applications for the federal sector

    SciTech Connect (OSTI)

    Williams, T.A.

    1991-12-01

    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100{degrees}C currently exit within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near-term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100{degrees}--350{degrees}C) heat demands that could be met with parabolic trough systems. Federal facilities have several relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long-term planning horizon with well-defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life-cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds. 11 refs., 2 figs., 3 tabs.

  17. Near-term acceleration of hydroclimatic change in the western U.S.

    SciTech Connect (OSTI)

    Ashfaq, Moetasim [ORNL] [ORNL; Ghosh, Subimal [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Bowling, Laura C. [Purdue University] [Purdue University; Mote, Phil [Oregon State University] [Oregon State University; Touma, Danielle E [ORNL] [ORNL; Rauscher, Sara [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Diffenbaugh, Noah [Stanford University] [Stanford University

    2013-01-01

    Given its large population, vigorous and water-intensive agricultural industry, and important ecological resources, the western United States presents a valuable case study for examining potential near-term changes in regional hydroclimate. Using a high-resolution, hierarchical, five-member ensemble modeling experiment that includes a global climate model (CCSM), a regional climate model (RegCM), and a hydrological model (VIC), we find that increases in greenhouse forcing over the next three decades result in an acceleration of decreases in spring snowpack and a transition to a substantially more liquid-dominated water resources regime. These hydroclimatic changes are associated with increases in cold-season days above freezing and decreases in the cold-season snow-to-precipitation ratio. The changes in the temperature and precipitation regime in turn result in shifts toward earlier snowmelt, baseflow, and runoff dates throughout the region, as well as reduced annual and warm-season snowmelt and runoff. The simulated hydrologic response is dominated by changes in temperature, with the ensemble members exhibiting varying trends in cold-season precipitation over the next three decades, but consistent negative trends in cold-season freeze days, cold-season snow-to-precipitation ratio, and April 1st snow water equivalent. Given the observed impacts of recent trends in snowpack and snowmelt runoff, the projected acceleration of hydroclimatic change in the western U.S. has important implications for the availability of water for agriculture, hydropower and human consumption, as well as for the risk of wildfire, forest die-off, and loss of riparian habitat.

  18. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

    1997-07-15

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to

  19. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term

    SciTech Connect (OSTI)

    Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1997-04-15

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an

  20. Executive summary for assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.

    SciTech Connect (OSTI)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.; Tidwell, Vincent Carroll; Stamber, Kevin Louis; Reinert, Rhonda K.; Backus, George A.; Warren, Drake E.; Zagonel, Aldo A.; Ehlen, Mark Andrew; Klise, Geoffrey T.; Vargas, Vanessa N.

    2010-04-01

    Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-model ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.

  1. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  2. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  3. LHC 2010: Summary of the Odyssey So Far and Near-Term Prospects (3/3)

    ScienceCinema (OSTI)

    None

    2011-04-25

    In 2010, the LHC delivered proton-proton collisions at an energy of 7 TeV, significantly higher than what was previously attained. This has allowed the experiments to complete the commissioning of the detectors and to perform early measurements of key standard model processes. The inclusive production of particles, jets and photons, the observation of onia and heavy-flavored meson decays, the measurement of the W and Z cross sections, and the observation of top-quark production and decay constitute a full set of measurements which form the base from which searches for physics beyond the standard model can be launched. The results from a number of searches for supersymmetry and some exotic signatures are now appearing. The lectures will review this impressive list of physics achievements from 2010 and consider briefly what 2011 may bring.

  4. Activation characteristics of different steel alloys proposed for near-term fusion reactors

    SciTech Connect (OSTI)

    Attaya, H.; Gohar, Y.; Smith, D.; Baker, C.C.

    1988-08-01

    Analyses have been made for different structural alloys proposed for the International Thermonuclear Experimental Reactor (ITER). Candidate alloys include austenitic steels stabilized with nickel (NiSS) or manganese (MnSS). The radioactivity, the decay heat, and the waste disposal rating of each alloy have been calculated for the inboard shield of the ITER design option utilizing water cooled solid breeder blanket. The results show, for the 55 cm inboard shield and after 3 MW.yr/m2 fluence, that the long term activation problems, e.g., radioactive waste, of the MnSS are much less than that of the NiSS. All the MnSS alloys considered are qualified as Class C or better low level waste. Most of the NiSS alloys are not qualified for near surface burial. However, the short term decay heat generation rate for the MnSS is much higher than that of the NiSS. 6 refs., 8 figs., 2 tabs.

  5. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections (Presentation), Sunshot, U.S. Department of Energy (DOE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov/sunshot energy.gov/sunshot Photovoltaic System Pricing Trends Historical, Recent, and Near-Term Projections 2014 Edition David Feldman 1 , Galen Barbose 2 , Robert Margolis 1 , Ted James 1 , Samantha Weaver 2 , Naïm Darghouth 2 , Ran Fu 1 , Carolyn Davidson 1 , Sam Booth 1 , and Ryan Wiser 2 September 22, 2014 1 National Renewable Energy Laboratory 2 Lawrence Berkeley National Laboratory NREL/PR-6A20-62558 energy.gov/sunshot Contents * Introduction and Summary * Historical and Recent

  6. Social acceptability of Satellite Power Systems (SPS): the near-term outlook

    SciTech Connect (OSTI)

    Klineberg, S L

    1980-05-01

    It is important, at this early stage in the concept development and evaluation of Satellite Power Systems, to explore aspects of contemporary social change that may be expected to complicate the process of achieving the necessary support of the American public for this new technological venture. Current public attitudes make it appear unlikely that a consensus will evolve during the 1980s favoring costly efforts to develop vast new supplies of conventional energy. Opinion polls reveal a pervasive worry over inflation, a broadening of aspirations to encompass quality-of-life concerns, a growing distrust of central governments, large corporations, big science and technology, and a continuing commitment to environmental protection - all of which suggests a social environment that is likely to resist the development of a major new high-technology energy system such as the SPS. Opposition to satellite power will focus on the high front-end development costs, on environmental and technical uncertainties, and on a generalized distrust of large bureaucracies and esoteric technologies. The SPS concept is also likely to be viewed with skepticism by those with vested interests in the long-run uses of coal, shale, fission, fusion, or on-site solar technologies. The growing commitment to energy conservation and the spreading deployment of dispersed renewable-energy systems strongly suggest that the unmet US demand for centrally generated electricity is unlikely to grow sufficiently over the next twenty years to convince a reluctant public of the need for so large an investment of scarce resources in the SPS program. Satellite Power Systems will have a problem in the area of public acceptability.

  7. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T; Poore III, Willis P

    2007-09-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  8. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    SciTech Connect (OSTI)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify

  9. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    SciTech Connect (OSTI)

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  10. SOLVING THE SHUGART QUEEN SAND PENASCO UNIT DECLINING PRODUCTION PROBLEM

    SciTech Connect (OSTI)

    Lowell Deckert

    2000-08-25

    The Penasco Shugart Queen Sand Unit located in sections 8, 9, 16 & 17, T18S, 31E Eddy County New Mexico is operated by MNA Enterprises Ltd. Co. Hobbs, NM. The first well in the Unit was drilled in 1939 and since that time the Unit produced 535,000 bbl of oil on primary recovery and 375,000 bbl of oil during secondary recovery operations that commenced in 1973. The Unit secondary to primary ratio is 0.7, but other Queen waterfloods in the area had considerably larger S/P ratios. On June 25 1999 MNA was awarded a grant under the Department of Energy's ''Technology Development with Independents'' program. The grant was used to fund a reservoir study to determine if additional waterflood reserves could be developed. A total of 14 well bores that penetrate the Queen at 3150 ft are within the Unit boundaries. Eleven of these wells produced oil during the past 60 years. Production records were pieced together from various sources including the very early state production records. One very early well had a resistivity log, but nine of the wells had no logs, and four wells had gamma ray-neutron count-rate perforating logs. Fortunately, recent offset deep drilling in the area provided a source of modern logs through the Queen. The logs from these wells were used to analyze the four old gamma ray-neutron logs within the Unit. Additionally the offset well log database was sufficient to construct maps through the unit based on geostatistical interpolation methods. The maps were used to define the input parameters required to simulate the primary and secondary producing history. The history-matched simulator was then used to evaluate four production scenarios. The best scenario produces 51,000 bbl of additional oil over a 10-year period. If the injection rate is held to 300 BWPD the oil rate declines to a constant 15 BOPD after the first year. The projections are reasonable when viewed in the context of the historical performance ({approx}30 BOPD with a {approx}600 BWPD

  11. Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies

    SciTech Connect (OSTI)

    Weijo, R.O. ); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. )

    1991-03-01

    This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

  12. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Problem Scarcity of clean water leads to disease, death and often international tension. In many parts of the world, access to potable water is limited. The clean water supply...

  13. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech Transfer Success Stories * 2012 Problem Optical coatings are ubiquitous, appearing on items that range from electronic devices, photographic lenses, and windows to aircraft sensors, photovoltaic cells, and lightweight plastic goggles for troops in the field. The coatings are applied to materials such as glass and ceramics, which protect or alter the way the material reflects and transmits light. However, the two main methods of applying these coatings - sputtering and chemical vapor

  14. Near-term measurements with 21 cm intensity mapping: Neutral hydrogen fraction and BAO at z<2

    SciTech Connect (OSTI)

    Masui, Kiyoshi Wesley; McDonald, Patrick; Pen, Ue-Li

    2010-05-15

    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54

  15. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect (OSTI)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  16. SU-E-J-143: Short- and Near-Term Effects of Proton Therapy On Cerebral White Matter

    SciTech Connect (OSTI)

    Uh, J; Merchant, T; Ogg, R; Sabin, N; Hua, C; Indelicato, D

    2014-06-01

    Purpose: To assess early effects of proton therapy on the structural integrity of cerebral white matter in relation to the subsequent near-term development of such effects. Methods: Sixteen children (aged 2–19 years) with craniopharyngioma underwent proton therapy of 54 Cobalt Gray Equivalent (CGE) in a prospective therapeutic trial. Diffusion tensor imaging (DTI) was performed at baseline before proton therapy and every 3 months thereafter. Tract-based spatial statics analysis of DTI data was performed to derive the fractional anisotropy (FA) and radial diffusivity (RD) in 26 volumes of interest (VOIs). The dose distributions were spatially normalized to identify VOIs prone to high doses. The longitudinal percentage changes of the FA and RD in these VOIs at 3 and 12 months from the baseline were calculated, and their relationships were evaluated. Results: The average dose was highest to the cerebral peduncle (CP), corticospinal tract (CST) in the pons, pontine crossing tract (PCT), anterior/posterior limbs of the internal capsule (ALIC/PLIC), and genu of the corpus callosum (GCC). It ranged from 33.3 GCE (GCC) to 49.7 GCE (CP). A mild but statistically significant (P<0.05) decline of FA was observed 3 months after proton therapy in all VOIs except the PLIC and ranged from −1.7% (ALIC) to −2.8% (PCT). A significant increase of RD was found in the CP (3.5%) and ALIC (2.1%). The average longitudinal change from the baseline was reduced at 12 months for most VOIs. However, the standard deviation increased, indicating that the temporal pattern varied individually. The follow-up measurements at 3 and 12 months correlated for the CP, CST, PCT, and GCC (P < 0.04). Conclusion: DTI data suggest early (3 months) effects of proton therapy on microstructures in the white matter. The subsequent follow-up indicated individual variation of the changes, which was partly implied by the early effects.

  17. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-10-15

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  18. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near-term. Quarterly report, April 1 - June 30, 1996

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-07-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites, Stewart Field, and Savonburg Field, operated by different independent oil operators are involved in this project. General topics to be addressed are: (1) reservoir management and performance evaluation; (2) waterflood optimization; and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. For the Stewart Field project, work is summarized for the last quarter on waterflood operations and reservoir management. For the Savonburg Field project, work on water plant development, and pattern changes and wellbore cleanup are briefly described.

  19. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly report, January 1--March 31, 1998

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

    1998-04-15

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress is described for the Stewart field on the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress for the Savonburg Field includes: water plant development; profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); field operations; and technology transfer.

  20. Water: May be the Best Near-Term Benefit and Driver of a Robust Wind Energy Future (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2009-05-01

    Water may be the most critical natural resource variable that affects the selection of generation options in the next decade. Extended drought in the western United States and more recently in the Southeast has moved water management and policy to the forefront of the energy options discussions. Recent climate change studies indicate that rising ambient temperatures could increase evapotranspiration by more than 25% to 30% in large regions of the country. Increasing demand for electricity, and especially from homegrown sources, inevitably will increase our thermal fleet, which consumes 400 to 700 gal/MWh for cooling. Recovering the vast oil shale resources in the West (one of the energy options discussed) is water intensive and threatens scarce water supplies. Irrigation for the growing corn ethanol industry requires 1,000 to 2,000 gallons of water for 1 gallon of production. Municipalities continue to grow and drive water demands and emerging constrained market prices upward. As illustrated by the 20% Wind Energy by 2030 analysis, wind offers an important mitigation opportunity: a 4-trillion-gallon water savings. This poster highlights the emerging constrained water situation in the United States and presents the case for wind energy as one of the very few means to ameliorate the emerging water wars in various U.S. regions.

  1. Shale oil deemed best near-term synfuel for unmodified diesels and gas turbines. [More consistent properties, better H/C ratios

    SciTech Connect (OSTI)

    Not Available

    1980-06-16

    Among synthetic fuels expected to be developed in the next decade, shale oil appears to be the prime near-term candidate for use in conventional diesel engines and gas turbines. Its superiority is suggested in assessments of economic feasibility, environmental impacts, development lead times and compatibility with commercially available combustion systems, according to a report by the Exxon Research and Engineering Co. Other studies were conducted by the Westinghouse Electric Corp., the General Motors Corp., the General Electric Co. and the Mobil Oil Co. Coal-derived liquids and gases also make excellent fuel substitutes for petroleum distillates and natural gas, these studies indicate, but probably will be economic only for gas turbines. Cost of upgrading the coal-derived fuels for use in diesels significantly reduces economic attractiveness. Methane, hydrogen and alcohols also are suitable for turbines but not for unmodified diesels. The Department of Energy supports studies examining the suitability of medium-speed diesels for adaptation to such fuels.

  2. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Seventh quarterly report, February 1, 1995--April 1, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-04-15

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflood: on both field demonstration sites.

  3. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Eighth quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-07-15

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by North American Resources Company General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration, of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  4. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term. Annual report, June 18, 1993--June 18, 1994

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.

    1995-10-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  5. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near - term. Technical progress report, June 17, 1994--June 17, 1995

    SciTech Connect (OSTI)

    1996-07-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas, and was operated by Sharon Resources, Inc. and is now operated by North American Resources Company. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  6. Identifying and Remediating High Water Production Problems in Basin-Centered Formations

    SciTech Connect (OSTI)

    R.L. Billingsley

    2005-12-01

    Through geochemical analyses of produced waters, petrophysics, and reservoir simulation we developed concepts and approaches for mitigating unwanted water production in tight gas reservoirs and for increasing recovery of gas resources presently considered noncommercial. Only new completion research (outside the scope of this study) will validate our hypothesis. The first task was assembling and interpreting a robust regional database of historical produced-water analyses to address the production of excessive water in basin-centered tight gas fields in the Greater Green (GGRB ) and Wind River basins (WRB), Wyoming. The database is supplemented with a sampling program in currently active areas. Interpretation of the regional water chemistry data indicates most produced waters reflect their original depositional environments and helps identify local anomalies related to basement faulting. After the assembly and evaluation phases of this project, we generated a working model of tight formation reservoir development, based on the regional nature and occurrence of the formation waters. Through an integrative approach to numerous existing reservoir concepts, we synthesized a generalized development scheme organized around reservoir confining stress cycles. This single overarching scheme accommodates a spectrum of outcomes from the GGRB and Wind River basins. Burial and tectonic processes destroy much of the depositional intergranular fabric of the reservoir, generate gas, and create a rock volume marked by extremely low permeabilities to gas and fluids. Stress release associated with uplift regenerates reservoir permeability through the development of a penetrative grain bounding natural fracture fabric. Reservoir mineral composition, magnitude of the stress cycle and local tectonics govern the degree, scale and exact mechanism of permeability development. We applied the reservoir working model to an area of perceived anomalous water production. Detailed water analyses

  7. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator M.W. Melaina, D. Steward, and M. Penev National Renewable Energy Laboratory S. McQueen Energetics S. Jaffe and C. Talon IDC Energy Insights Technical Report NREL/BK-5600-55961 August 2012 NREL is a national laboratory of the U.S. Department of Energy,

  8. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator M.W. Melaina, D. Steward, and M. Penev National Renewable Energy Laboratory S. McQueen Energetics S. Jaffe and C. Talon IDC Energy Insights Technical Report NREL/BK-5600-55961 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of

  9. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

    1997-01-15

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress in the Stewart field project is described for the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress in the Savonburg field project is described for the following tasks: profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); and technology transfer.

  10. Open Problems, Solved Problems !

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problems, Solved Problems and Non-Problems in DOE's Big Data Kathy Y elick Professor o f E lectrical E ngineering a nd C omputer S ciences University o f C alifornia a t B...

  11. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  12. Known Problems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problems Known Problems Viewing entries posted in 2001 There are no blog entries Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2016-04-29 11:34:51

  13. Known Problems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Known Problems Known Problems No Open Issues There are currently no open issues with Euclid. Read the full post Subscribe via RSS Subscribe Browse by Date January 2016 Last edited: 2016-04-29 11:34:51

  14. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  15. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  16. Fuel Cycle Technologies Near Term Planning for Storage and Transporta...

    Office of Environmental Management (EM)

    Secretary plans to transport spent nuclear fuel or high-level radioactive waste to an ... for the transportation of used nuclear fuel and high-level radioactive waste. 6 ...

  17. Fuel Cycle Technologies Near Term Planning for Storage and Transporta...

    Office of Environmental Management (EM)

    an initial focus on accepting used nuclear fuel from shut-down reactor sites; Advances ... for acceptance of enough used nuclear fuel to reduce expected government liabilities; ...

  18. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document presents the scorecard for the United States. PDF icon chpprofileunitedstates.pdf More Documents & Publications CHP in the Midwest - Presentation from the July ...

  19. Near-term acceleration of hydroclimatic change in the western...

    Office of Scientific and Technical Information (OSTI)

    Given its large population, vigorous and water-intensive agricultural industry, and ... snowpack and a transition to a substantially more liquid-dominated water resources regime. ...

  20. Delivering Renewable Hydrogen: A Focus on Near-Term Applications...

    Broader source: Energy.gov (indexed) [DOE]

    Agenda for the Delvering Renewable Hydrogen Workshop held Nov. 16, 2010, in Palm Springs, CA renewablehydrogenworkshopnov16agenda.pdf (80.14 KB) More Documents & Publications ...

  1. Identification and Characterization of Near-Term Direct Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    ... with which to enter the broader material-handling market. ... The similar terms "tug" and "tractor" are used ...420r05022.pdfsearch%22Non- ...

  2. Battery availability for near-term (1998) electric vehicles

    SciTech Connect (OSTI)

    Burke, A.F.

    1991-06-01

    Battery Requirements were determined for a wide spectrum of electric vehicles ranging from 2-passenger sports cars and microvans to full-size vans with a payload of 500 kg. All the vehicles utilize ac, high voltage (340--360 V) powertrains and have acceleration performance (0--80 km/h in less than 15 seconds) expected to be the norm in 1988 electric vehicles. Battery packs were configured for each of the vehicles using families of sealed lead-acid and nickel-cadmium modules which are either presently available in limited quantities or are being developed by battery companies which market a similar battery technology. It was found that the battery families available encompass the Ah cell sizes required for the various vehicles and that they could be packaged in the space available in each vehicle. The acceleration performance and range of the vehicles were calculated using the SIMPLEV simulation program. The results showed that all the vehicles had the required acceleration characteristics and ranges between 80--160 km (50--100 miles) with the ranges using nickel-cadmium batteries being 40--60% greater than those using lead-acid batteries. Significant changes in the design of electric vehicles over the last fifteen years are noted. These changes make the design of the batteries more difficult by increasing the peak power density required from about 60 W/kg to 100--150 W/kg and by reducing the Ah cell size needed from about 150 Ah to 30--70 Ah. Both of these changes in battery specifications increase the difficulty of achieving low $/kWh cost and long cycle life. This true for both lead-acid and nickel-cadmium batteries. 25 refs., 6 figs., 16 tabs.

  3. Jefferson Lab Upgrade named near-term priority in Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are proposing will secure American pre-eminence in science for the better part of the 21st century." The plan prioritized a total of 28 projects, culled from the 53 projects...

  4. Commercializing solar hydrogen production

    SciTech Connect (OSTI)

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  5. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  6. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  7. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  8. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  9. The Guderley problem revisited

    SciTech Connect (OSTI)

    Ramsey, Scott D [Los Alamos National Laboratory; Kamm, James R [Los Alamos National Laboratory; Bolstad, John H [NON LANL

    2009-01-01

    The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of numerous investigations since its publication. In this paper, we review the simplifications and group invariance properties that lead to a self-similar formulation of this problem from the compressible flow equations for a polytropic gas. The complete solution to the self-similar problem reduces to two coupled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity exponent for the converging flow, and that of the second is a trajectory multiplier for the diverging regime. We provide a clear exposition concerning the reflected shock configuration. Additionally, we introduce a new approximation for the similarity exponent, which we compare with other estimates and numerically computed values. Lastly, we use the Guderley problem as the basis of a quantitative verification analysis of a cell-centered, finite volume, Eulerian compressible flow algorithm.

  10. Public problems: Still waiting on the marketplace for solutions

    SciTech Connect (OSTI)

    Gover, J.; Carayannis, E.; Huray, P.

    1997-10-01

    This report addresses the need for government sponsored R and D to address real public problems. The motivation is that a public benefit of the money spent must be demonstrated. The areas identified as not having appropriate attention resulting in unmet public needs include healthcare cost, cost and benefits of regulations, infrastructure problems, defense spending misaligned with foreign policy objectives, the crime problem, energy impact on the environment, the education problem, low productivity growth industry sectors, the income distribution problem, the aging problem, the propagation of disease and policy changes needed to address the solution of these problems.

  11. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in...

  12. Bicriteria network design problems

    SciTech Connect (OSTI)

    Marathe, M.V.; Ravi, R.; Sundaram, R.; Ravi, S.S.; Rosenkrantz, D.J.; Hunt, H.B. III

    1997-11-20

    The authors study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a subgraph from a given subgraph class that minimizes the second objective subject to the budget on the first. They consider three different criteria -- the total edge cost, the diameter and the maximum degree of the network. Here, they present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, they develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same they present a black box parametric search technique. This black box takes in as input an (approximation) algorithm for the criterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs they use a cluster based approach to devise approximation algorithms. The solutions violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, they provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. The authors show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.

  13. Dynamical impurity problems

    SciTech Connect (OSTI)

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  14. The inhibiting bisection problem.

    SciTech Connect (OSTI)

    Pinar, Ali

    2010-11-01

    Given a graph where each vertex is assigned a generation or consumption volume, we try to bisect the graph so that each part has a significant generation/consumption mismatch, and the cutsize of the bisection is small. Our motivation comes from the vulnerability analysis of distribution systems such as the electric power system. We show that the constrained version of the problem, where we place either the cutsize or the mismatch significance as a constraint and optimize the other, is NP-complete, and provide an integer programming formulation. We also propose an alternative relaxed formulation, which can trade-off between the two objectives and show that the alternative formulation of the problem can be solved in polynomial time by a maximum flow solver. Our experiments with benchmark electric power systems validate the effectiveness of our methods.

  15. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can help emergency responders fine-tune their preparations. To create the most accurate modeling scenarios, exercise planners need to know critical details of the event, such as infrastructure damage and

  16. GRAND CHALLENGE PROBLEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRAND CHALLENGE PROBLEMS Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or to

  17. Economics of large-scale thorium oxide production: assessment of domestic resources

    SciTech Connect (OSTI)

    Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

    1980-02-01

    The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

  18. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect (OSTI)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  19. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  20. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  1. Radioactive air emissions notice of construction 241-SY-101 crust growth near term mitigation

    SciTech Connect (OSTI)

    HOMAN, N.A.

    1999-04-12

    The following description and any attachments and references are provided to the Washington State Department of Health, Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with the Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of the information listed in Appendix A.'' Appendix A (WAC 246-247-110), lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 mrem/year total effective dose equivalent to the hypothetical offsite maximally exposed individual, and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this 40 CFR 61.09(a)(1) notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided at a later date.

  2. Design concept of K-DEMO for near-term implementation

    SciTech Connect (OSTI)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G -S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.

    2015-04-22

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb₃Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.

  3. Cost estimates for near-term depolyment of advanced traffic management systems. Final report

    SciTech Connect (OSTI)

    Stevens, S.S.; Chin, S.M.

    1993-02-15

    The objective of this study is to provide cost est engineering, design, installation, operation and maintenance of Advanced Traffic Management Systems (ATMS) in the largest 75 metropolitan areas in the United States. This report gives estimates for deployment costs for ATMS in the next five years, subject to the qualifications and caveats set out in following paragraphs. The report considers infrastructure components required to realize fully a functional ATMS over each of two highway networks (as discussed in the Section describing our general assumptions) under each of the four architectures identified in the MITRE Intelligent Vehicle Highway Systems (IVHS) Architecture studies. The architectures are summarized in this report in Table 2. Estimates are given for eight combinations of highway networks and architectures. We estimate that it will cost between $8.5 Billion (minimal network) and $26 Billion (augmented network) to proceed immediately with deployment of ATMS in the largest 75 metropolitan areas. Costs are given in 1992 dollars, and are not adjusted for future inflation. Our estimates are based partially on completed project costs, which have been adjusted to 1992 dollars. We assume that a particular architecture will be chosen; projected costs are broken by architecture.

  4. The Impact of Near-term Climate Policy Choices on Technology and Emissions Transition Pathways

    SciTech Connect (OSTI)

    Eom, Jiyong; Edmonds, James A.; Krey, Volker; Johnson, Nils; Longden, Thomas; Luderer, Gunnar; Riahi, Keywan; Van Vuuren, Detlef

    2015-01-01

    This paper explores the implications of delays associated with currently formulated climate policies (compared to optimal policies) for long-term transition pathways to limit climate forcing to 450ppm CO2e on the basis of the AMPERE Work Package 2 model comparison study. The paper highlights the critical importance of the 2030-2050 period for ambitious mitigation strategies. In this period, the most rapid shift to non-greenhouse gas emitting technology occurs. In the delayed response emissions mitigation scenarios, an even faster transition rate in this period is required to compensate for the additional emissions before 2030. Our physical deployment measures indicate that, without CCS, technology deployment rates in the 2030-2050 period would become considerably high. Yet the presence of CCS greatly alleviates the challenges to the transition particularly after the delayed climate policies. The results also highlight the critical role that bioenergy and CO2 capture and storage (BECCS) could play. If this technology is available, transition pathways exceed the emissions budget in the mid-term, removing the excess with BECCS in the long term. Excluding either BE or CCS from the technology portfolio implies that emission reductions need to take place much earlier.

  5. Design concept of K-DEMO for near-term implementation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G -S.; et al

    2015-04-22

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb₃Sn-based superconducting conductor is adopted,more » providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.« less

  6. Panel 3, PEM Electrolysis Technology R&D and Near-Term Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enhancement, power-to-gas, etc. * Ancillary services ... RINs (Federal), other market based credits. * Cost ... CAISO Renewable Integration (4 Hr) ITC Wind firming (DA vs ...

  7. Impact of Wireless Power Transfer in Transportation: Future Transportation Enabler, or Near Term Distraction

    SciTech Connect (OSTI)

    Onar, Omer C; Jones, Perry T

    2014-01-01

    While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to the energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.

  8. Analysis of near-term spent fuel transportation hardware requirements and transportation costs

    SciTech Connect (OSTI)

    Daling, P.M.; Engel, R.L.

    1983-01-01

    A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years.

  9. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    2001-10-30

    The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

  10. ITP Distributed Energy: The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 IEA_USA_16pp_A4:IEA_USA_16pp_A4 21/7/08 16:16 Page 1 1 CHP/DHC Country Scorecard: United States The United States has a long history of using Combined Heat and Power (CHP), and 8% of US electricity generation is provided by 85 gigawatts (GWe) of installed CHP capacity at over 3 300 facilities. The large-scale district energy systems are located in many major cities, and 330 university campuses use district energy systems as a low-carbon,

  11. The International CHP/DHC Collaborative- Advancing Near-Term Low Carbon Technologies, July 2008

    Broader source: Energy.gov [DOE]

    Combined Heat and Power (CHP)/District Heat and Cooling (DHC) Country Scorecard of the United States along with Energy Overview

  12. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    SciTech Connect (OSTI)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two advanced cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced double matrix stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  13. Report of the Production and Delivery Subgroup

    SciTech Connect (OSTI)

    Glass, R; Zalesky, R

    2004-11-01

    The Production and Delivery Subgroup was tasked with evaluating the various options that could be used for hydrogen production and delivery in terms of availability/industry readiness, technical and economic barriers, and environmental considerations. Hydrogen can be produced using a variety of feedstocks and conversion technologies. The feedstock options include water, natural gas, coal, petroleum, methanol, ethanol, biomass, and organic waste streams. Ultimately, using these domestic resources we will be able to produce all the hydrogen we will need for the complete conversion of our transportation infrastructure. The various conversion technologies include electrolysis, reforming (principally of natural gas, but also ethanol and methanol), photobiological and photoelectrochemical, biofermentation, pyrolysis and gasification of biomass and coal, high temperature thermochemical, and catalytic membranes. All of these production technologies are being actively researched by DOE's Office of Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT); and other offices within DOE support work that complements the HFCIT Program activities. In addition, private industry is also dedicating significant resources to these efforts. In establishing the California Hydrogen Highway Network (CA H2 Net) we must utilize both distributed (that is, hydrogen that is produced at the point of use) as well as centralized production of hydrogen. Because of technical and economic barriers, most of the technologies for hydrogen production listed above will not become practical for either mode of hydrogen production in large quantities until at least the 2015-2030 timeframe. In the near term, that is, the transitional period between now and 2010 when we will establish a widely available hydrogen fueling infrastructure in California, the distributed production options of reforming and electrolysis will play the dominant role. In addition, production of hydrogen at centralized plants using

  14. The Inhibiting Bisection Problem

    SciTech Connect (OSTI)

    Pinar, Ali; Fogel, Yonatan; Lesieutre, Bernard

    2006-12-18

    Given a graph where each vertex is assigned a generation orconsumption volume, we try to bisect the graph so that each part has asignificant generation/consumption mismatch, and the cutsize of thebisection is small. Our motivation comes from the vulnerability analysisof distribution systems such as the electric power system. We show thatthe constrained version of the problem, where we place either the cutsizeor the mismatch significance as a constraint and optimize the other, isNP-complete, and provide an integer programming formulation. We alsopropose an alternative relaxed formulation, which can trade-off betweenthe two objectives and show that the alternative formulation of theproblem can be solved in polynomial time by a maximum flow solver. Ourexperiments with benchmark electric power systems validate theeffectiveness of our methods.

  15. 21PF overpack problems

    SciTech Connect (OSTI)

    Kovac, F.M.

    1995-12-31

    The 21PF overpack has had severe metal corrosion and stress corrosion cracking (SCC) for many years. The US Department of Transportation (DOT) and the US Nuclear Regulatory Commission (NRC) have disallowed the use of overpacks containing high chloride foam. Corrosion and SCC of 21PF overpacks have been documented and papers have been presented at conferences about these issues. Regulatory agencies have restricted 21PF overpack use and have requested data to determine if phenolic foam overpacks not meeting original design specifications will be authorized for continued use. This paper details some of the problems experienced by users and relates actions of the DOT and NRC concerning these packages. Industry is working to correct deficiencies, but if they are not successful, the entire uranium enrichment industry will be severely impacted.

  16. Heavy crudes, stocks pose desalting problems

    SciTech Connect (OSTI)

    Bartley, D.

    1982-02-02

    The design of electrostatic desalters for crudes lighter than 30 API is well established and is no longer considered a problem. However, since 1970, the number of desalting applications involving heavy crudes (less than 20 API), syncrudes, and residual fuels has increased markedly. These stocks present unique problems that require additional design considerations. All produced crude oils, including synthetic crude from shale, tar sands, and coal liquefaction, contain impurities that adversely affect production and refining processes, the equipment used in these processes, and the final products. The most common of these impurities are water, salt, solids, metals, and sulfur. The desalting process consists of (1) adding water with a low salt content (preferably fresh) to the feedstock; (2) adequately mixing this added water with the feedstock, which already contains some quantities of salty water, sediment, and/or crystalline salt; and (3) extracting as much water as possible from the feedstock.

  17. Kyrgyzstan: Problems, opportunities

    SciTech Connect (OSTI)

    Banks, J.; Ebel, R. )

    1993-03-15

    Kyrgyzstan is a country of 4.3 million persons in Central Asia with Kazakhstan bordering to the north, China to the southeast, Uzbekistan to the west, and Tajikistan to the southwest. Among Kyrgyzstan's major ethnic groups, Kyrgyz account of 52% of the population, Russians 22%, and Uzbeks 13%. Since independence Sept. 7, 1991, from the Soviet Union, Kyrgyzstan has found itself in a very difficult position. The situation in the energy sector is particularly strained. Oil and gas production are minimal, there are no refineries in the country, and all petroleum products are brought in from Russia, Kazakhstan, and Uzbekistan. Natural gas in supplied from Turkmenistan. Although there are domestic reserves of coal, imports from Russia and Kazakhstan account for 55% of supply. However, there is significant hydropower potential in Kyrgyzstan. Energy officials have clearly identified development of this resource as the path to energy independence and economic progress. An overview of Kyrgyzstan's energy sector is given in this article for crude oil, natural gas, coal resources, electrical power, and investment opportunities.

  18. Smoothing of mixed complementarity problems

    SciTech Connect (OSTI)

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  19. V-145: IBM Tivoli Federated Identity Manager Products Java Multiple...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    V-145: IBM Tivoli Federated Identity Manager Products Java Multiple Vulnerabilities April 30, 2013 - 12:09am Addthis PROBLEM: IBM Tivoli Federated Identity Manager Products Java ...

  20. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  1. About an Optimal Visiting Problem

    SciTech Connect (OSTI)

    Bagagiolo, Fabio Benetton, Michela

    2012-02-15

    In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.

  2. PCI Capability Development and Challenge Problem Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-000 PCI Capability Development and Challenge Problem Progress Joe Rashid 1 , Brian D. Wirth 2 , Rich Williamson 3 1 ANATECH Corp 2 University of Tennessee 3 Idaho National Laboratory 2 CASL-U-2016-1086-000 Outline * State of the art of PCI & Fuel Performance Codes (FPCs) * FPCs compatibility with Utilities needs - what are the gaps? Can BISON close these gaps? * PCI Capability Development: BISON progress to-date * BISON as a Phase-2 product - will it fulfill its promise? 3

  3. Municipal solid waste (garbage): problems and benefits

    SciTech Connect (OSTI)

    Stillman, G.I.

    1983-05-01

    The average person in the USA generates from 3 1/2 to 7 lb of garbage/day. The combustible portion of garbage consists primarily of paper products, plastics, textiles, and wood. Problems connected with energy production from municipal solid waste (garbage), and the social, economic, and environmental factors associated with this technology are discussed. The methods for using garbage as a fuel for a combustion process are discussed. One method processes the garbage to produce a fuel that is superior to raw garbage, the other method of using garbage as a fuel is to burn it directly - the mass burning approach. The involvement of the Power Authority of the State of New York in garbage-to-energy technology is discussed.

  4. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy solutions, Sandia and Princeton Power Systems have teamed up to develop the Demand Response Inverter (DRI). Innovative Edge The DRI is a power flow control system...

  5. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    They can reduce the size and weight of existing next-generation smart grid power electronics systems, allowing greater application in such areas as weapons systems and pulsed...

  6. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, Sandia's method is compatible with conventional spray processing and, ... process include high-definition flat panel displays, sensor coatings for both ...

  7. Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    But what if the batteries had the ability to recharge themselves? What if they were covered by a thin photovoltaic (PV) film that could harvest energy from the sun? Just as on ...

  8. Quantum Computing: Solving Complex Problems

    ScienceCinema (OSTI)

    DiVincenzo, David [IBM Watson Research Center

    2009-09-01

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  9. Surrogate Guderley Test Problem Definition

    SciTech Connect (OSTI)

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-07-06

    The surrogate Guderley problem (SGP) is a 'spherical shock tube' (or 'spherical driven implosion') designed to ease the notoriously subtle initialization of the true Guderley problem, while still maintaining a high degree of fidelity. In this problem (similar to the Guderley problem), an infinitely strong shock wave forms and converges in one-dimensional (1D) cylindrical or spherical symmetry through a polytropic gas with arbitrary adiabatic index {gamma}, uniform density {rho}{sub 0}, zero velocity, and negligible pre-shock pressure and specific internal energy (SIE). This shock proceeds to focus on the point or axis of symmetry at r = 0 (resulting in ostensibly infinite pressure, velocity, etc.) and reflect back out into the incoming perturbed gas.

  10. Gas production apparatus

    DOE Patents [OSTI]

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  11. Production Planning Model

    Energy Science and Technology Software Center (OSTI)

    1998-04-20

    PRODMOD is an integrated computational tool for performing dynamic simulation and optimization for the entire high level waste complex at the Savannah River Site (SRS) It is being used at SRS for planning purposes so that all waste can be processed efficiently. The computational tool 1) optimizes waste blending sequences, 2) minimizes waste volume production, 3) reduces waste processing time, 4) provides better process control and understanding, and 5) assists strategic planning, scheduling, and costmore » estimation. PRODMOD has been developed using Aspen Technology''s software development package SPEEDUP. PRODMOD models all the key HLW processing operations at SRS: storage and evaporation: saltcake production and dissolution: filtration (dewatering): precipitation: sludge and precipitate washing: glass, grout, and organics production. Innovative approaches have been used in making PRODMOD a very fast computational tool. These innovative approaches are 1) constructing a dynamic problem as a steady state problem 2) mapping between event-space (batch processes) and time-space (dynamic processes) without sacrificing the details in the batch process. The dynamic nature of the problem is constructed in linear form where time dependence is implicit. The linear constructs and mapping algorithms have made it possible to devise a general purpose optimization scheme which couples the optimization driver with the PRODMOD simulator. The optimization scheme is capable of generating single or multiple optimal input conditions for different types of objective functions over single or multiple years of operations depending on the nature of the objective function and operating constraints.« less

  12. Challenge problems for artificial intelligence

    SciTech Connect (OSTI)

    Selman, B.; Brooks, R.A.; Dean, T.

    1996-12-31

    AI textbooks and papers of ten discuss the big questions, such as {open_quotes}how to reason with uncertainty{close_quotes}, {open_quotes}how to reason efficiently{close_quotes}, or {open_quotes}how to improve performance through learning.{close_quotes} It is more difficult, however, to find descriptions of concrete problems or challenges that are still ambitious and interesting, yet not so open-ended. The goal of this panel is to formulate a set of such challenge problems for the field. Each panelist was asked to formulate one or more challenges. The emphasis is on problems for which there is a good chance that they will be resolved within the next five to ten years.

  13. Substation automation problems and possibilities

    SciTech Connect (OSTI)

    Smith, H.L.

    1996-10-01

    The evolutionary growth in the use and application of microprocessors in substations has brought the industry to the point of considering integrated substation protection, control, and monitoring systems. An integrated system holds the promise of greatly reducing the design, documentation, and implementation cost for the substation control, protection, and monitoring systems. This article examines the technical development path and the present implementation problems.

  14. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  15. 97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production

    SciTech Connect (OSTI)

    Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.

    2008-01-01

    With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the bio

  16. Retrofitting and the mu Problem

    SciTech Connect (OSTI)

    Green, Daniel; Weigand, Timo; /SLAC /Stanford U., Phys. Dept.

    2010-08-26

    One of the challenges of supersymmetry (SUSY) breaking and mediation is generating a {mu} term consistent with the requirements of electro-weak symmetry breaking. The most common approach to the problem is to generate the {mu} term through a SUSY breaking F-term. Often these models produce unacceptably large B{mu} terms as a result. We will present an alternate approach, where the {mu} term is generated directly by non-perturtative effects. The same non-perturbative effect will also retrofit the model of SUSY breaking in such a way that {mu} is at the same scale as masses of the Standard Model superpartners. Because the {mu} term is not directly generated by SUSY breaking effects, there is no associated B{mu} problem. These results are demonstrated in a toy model where a stringy instanton generates {mu}.

  17. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  18. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  19. Solving the Dark Matter Problem

    ScienceCinema (OSTI)

    Baltz, Ted

    2009-09-01

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  20. Vision for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... represents a near-term opportunity to help offset petroleum demand and rising oil imports. ... alcohol (ethanol or methanol) in the presence of a catalyst to form ethyl or methyl ester. ...

  1. Forest Products

    Broader source: Energy.gov [DOE]

    Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

  2. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  3. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  4. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to

  5. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  6. Inconsistent Investment and Consumption Problems

    SciTech Connect (OSTI)

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  7. Bottom production

    SciTech Connect (OSTI)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  8. Natural Gas Storage in the United States in 2001: A Current Assessment and Near-Term Outlook

    Reports and Publications (EIA)

    2001-01-01

    This report examines the large decline of underground natural gas storage inventories during the 2000-2001 heating season and the concern that the nation might run out of working gas in storage prior to the close of the heating season on March 31, 2001. This analysis also looks at the current profile and capabilities of the U.S. natural gas underground storage sector.

  9. Continuing Clean-up at Oak Ridge, Portsmouth and Paducah-Successes and Near-Term Plans

    SciTech Connect (OSTI)

    Fritz, L. L.; Houser, S. M.; Starling, D. A.

    2002-02-26

    This paper describes the complexities and challenges associated with the Oak Ridge Environmental Management (EM) cleanup program and the steps that DOE and Bechtel Jacobs Company LLC (the Oak Ridge EM team) have collaboratively taken to make significant physical progress and get the job done. Maintaining significant environmental cleanup progress is a daunting challenge for the Oak Ridge EM Team. The scale and span of the Oak Ridge Operations (ORO) cleanup is immense-five major half-century-old installations in three states (three installations are complete gaseous diffusion plants), with concurrent cleanup at the fully operational Oak Ridge National Laboratory and Y-12 National Security Complex, and with regulatory oversight from three states and two United States (US) Environmental Protection Agency (EPA) Regions. Potential distractions arising from funding fluctuations and color-of-money constraints, regulatory negotiations, stakeholder issues, or any one of a number of other potential delay phenomena can not reduce the focus on safely achieving project objectives to maintain cleanup momentum.

  10. Upgrading liquid products: Notes from the workshop at the international conference research in thermochemical biomass conversion

    SciTech Connect (OSTI)

    Elliott, D.C.

    1988-07-01

    A workshop was held at the International Energy Agency conference, Research in Thermochemical Biomass Conversion, on the subject of upgrading liquid products. The workshop discussion focused on the two prominent methods of liquids upgrading, catalytic hydroprocessing and catalytic cracking. Catalytic hydroprocessing as applied to biomass liquids relies heavily on petroleum developed technology; similar catalysts and operating conditions are used, although lower space velocities are typical. The need for stabilization of the pyrolytic products prior to hydroprocessing was also discussed. Catalytic cracking of biomass liquids also relies heavily on petroleum processing technology. Zeolite catalyst development has focused on the ZSM-5 of Mobil and its application to pyrolysis products. Significant olefinic gas yields are obtained in the zeolitic processing of biomass pyrolyzates and the conversion of these to liquid fuels is a primary research goal. Aromatic gasoline is the primary product in both catalytic processes. A general conclusion of the workshop participants was that the cost of liquid fuels for internal combustion engines would be higher in the foreseeable future. Due to the high cost of initial biomass liquefaction plants (including upgrading) a more likely near-term product would be aromatic chemicals produced under constrained economic circumstances. 16 refs.

  11. Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials

    SciTech Connect (OSTI)

    Peter C. Kong

    2011-12-01

    INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The

  12. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  13. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  14. Petroleum products

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is the first of three volumes devoted to petroleum products and lubricants. This volume begins with standard D 56 and contains all petroleum standards up to D 1947. It contains specifications and test methods for fuels, solvents, burner fuel oils, lubricating oils, cutting oils, lubricating greases, fluids measurement and sampling, liquified petroleum gases, light hydrocarbons, plant spray oils, sulfonates, crude petroleum, petrolatam, and wax.

  15. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  16. Product separator

    DOE Patents [OSTI]

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  17. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  18. GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products

    SciTech Connect (OSTI)

    Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

    2008-10-06

    and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

  19. Student's algorithm solves real-world problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Student's algorithm solves real-world problem Supercomputing Challenge: student's algorithm solves real-world problem Students learn how to use powerful computers to analyze, model, and solve real-world problems. April 3, 2012 Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge Jordon Medlock of Albuquerque's Manzano High School won the 2012 Lab-sponsored Supercomputing Challenge by creating a computer algorithm that automates the process of

  20. Longer-term domestic supply problems for nonrenewable materials with special emphasis on energy-related applications

    SciTech Connect (OSTI)

    Goeller, H.E.

    1980-01-01

    An examination is made on how materials are used in present and future energy production and use. Problem areas which are discussed include by-products production, import limitations, substitution and recycle, accelerated use, synthesis, and the adequacy of the data bases availability. (FS)

  1. Approximate resolution of hard numbering problems

    SciTech Connect (OSTI)

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  2. design problem | OpenEI Community

    Open Energy Info (EERE)

    design problem Home Dc's picture Submitted by Dc(266) Contributor 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu...

  3. PCx: Optimization Problem Solver | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programming problems. Windows 95 version includes a user-friendly graphical interface Java graphical interface is available for all environments Source code is available and...

  4. Statewide Power Problems May Affect SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statewide Power Problems May Affect SSRL The power crisis affecting California and the northwestern US may have some implication for SSRL users during the current run. As the...

  5. Engineering report standard hydrogen monitoring system problems

    SciTech Connect (OSTI)

    Golberg, R.L.

    1996-09-25

    Engineering Report to document moisture problems found during the sampling of the vapors in the dome space for hydrogen in the storage tanks and a recommended solution.

  6. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instability Problems in North American Interconnections Prepared by: Energy Sector Planning and Analysis (ESPA) ... would make the situation worse during an emergency event. ...

  7. Literature survey and documentation on organic solid deposition problem. Status report

    SciTech Connect (OSTI)

    Chung, Ting-Horng

    1993-12-01

    Organic solid deposition is often a major problem in petroleum production and processing. Recently, this problem has attracted more attention because operating costs have become more critical to the profit of oil production. Also, in miscible gas flooding, asphaltene deposition often occurs in the wellbore region after gas breakthrough and causes plugging. The organic deposition problem is particularly serious in offshore oil production. Cooling of crude oil when it flows through long-distance pipelines under sea water may cause organic deposition in the pipeline and result in plugging. NIPER`s Gas EOR Research Project has been devoted to the study of the organic solid deposition problem for three years. NIPER has received many requests for technical support. Recently, the DeepStar project committee on thermo-technology development and standardization has asked NIPER to provide them with NIPER`s expertise and experience. To assist the oil industry, NIPER is preparing a state-of-the-art review on the technical development for the organic deposition problem. In the first quarter, this project has completed a literature survey and documentation. total of 258 publications (114 for wax, 124 for asphaltene, and 20 for related subjects) were collected and categorized. This literature survey was focused on the two subjects: wax and asphaltene. The subjects of bitumen, asphalt, and heavy oil are not included. Also, the collected publications are mostly related to production problems.

  8. AMRH and High Energy Reinicke Problem

    SciTech Connect (OSTI)

    Shestakov, A I; Greenough, J A

    2001-05-14

    The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.

  9. Integrated network design and scheduling problems :

    SciTech Connect (OSTI)

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  10. Novel Cyclotron-Based Radiometal Production

    SciTech Connect (OSTI)

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  11. Municipal garbage disposal: A problem we cannot ignore

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In 1980 the US generated 150 million metric tons of municipal solid waste, and this figure is expected to increase to over 200 million metric tons by 1990. This comment discusses the traditional approaches to waste management, as well as current options available for waste disposal and the federal environmental laws that impinge on these options. Next, the national dimensions of the garbage disposal problem, as epitomized by the garbage barge and the international export of waste generated by this country, are discussed. This Comment concludes with recommendations for a change in public policy to foster recycling, taxing non-biodegradable products, as well as more stringent regulatory controls on solid waste disposal.

  12. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production onmore » the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  13. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  14. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  15. SIENA Customer Problem Statement and Requirements

    SciTech Connect (OSTI)

    L. Sauer; R. Clay; C. Adams; H. Walther; B. Allan; R. Mariano; C. Poore; B. Whiteside; B. Boughton; J. Dike; E. Hoffman; R. Hogan; C. LeGall

    2000-08-01

    This document describes the problem domain and functional requirements of the SIENA framework. The software requirements and system architecture of SIENA are specified in separate documents (called SIENA Software Requirement Specification and SIENA Software Architecture, respectively). While currently this version of the document describes the problems and captures the requirements within the Analysis domain (concentrating on finite element models), it is our intention to subsequent y expand this document to describe problems and capture requirements from the Design and Manufacturing domains. In addition, SIENA is designed to be extendible to support and integrate elements from the other domains (see SIENA Software Architecture document).

  16. Modeling the black hole excision problem

    SciTech Connect (OSTI)

    Szilagyi, B.; Winicour, J.; Kreiss, H.-O.

    2005-05-15

    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.

  17. Creative problem solving at Rocky Reach

    SciTech Connect (OSTI)

    Bickford, B.M.; Garrison, D.H.

    1997-04-01

    Tainter gate inspection and thrust bearing cooling system problems at the 1287-MW Rocky Reach hydroelectric project on the Columbia River in Washington are described. Gate inspection was initiated in response to a failure of similar gates at Folsom Dam. The approach involved measuring the actual forces on the gates and comparing them to original model study parameters, rather than the traditional method of building a hydraulic model. Measurement and visual inspection was completed in one day and had no effect on migration flows. Two problems with the thrust bearing cooling system are described. First, whenever a generating unit was taken off line, cooling water continued circulating and lowered oil temperatures. The second problem involved silt buildup in flow measuring device tubes on the cooling water system. Modifications to correct cooling system problems and associated costs are outlined.

  18. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequency Instability Problems in North American Interconnections May 1, 2011 DOE/NETL-2011/1473 Frequency Instability Problems in North American Interconnections Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  19. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  20. Thick diffusion limit boundary layer test problems

    SciTech Connect (OSTI)

    Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.

    2013-07-01

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  1. ARM - VAP Product - armbestns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Products : ARMBESTNS Measurements The measurements below provided by this product are those considered scientifically relevant. Atmospheric moisture Atmospheric...

  2. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-07-01

    Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

  3. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-10-01

    Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

  4. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2002-01-01

    Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

  5. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  6. Thermoeconomic optimization of OC-OTEC electricity and water production plants

    SciTech Connect (OSTI)

    Block, D.L.; Valenzuela, J.A.

    1985-05-01

    The study on the thermoeconomic evaluation of open-cycle ocean thermal energy conversion (OC-OTEC) objectives were to assess the economic and technical viability of OC-OTEC for the production of electricity and fresh water based on the current state-of-the-art; develop conceptual designs of optimized OC-OTEC plants that produce electricity and fresh water for plant sizes that are economically attractive; and identify the research issues that must be resolved before a commercial plant can be built. Oceanographic data for six potential sites were evaluated and ''generic'' site characteristics were developed. Current and projected prices and requirements for electricity and water at potential sites were obtained. The state-of-the-art of components comprising the OC-OTEC plant was reviewed. The highest performing, least costly, and least technically uncertain design for each component was selected. Component cost and performance models were then developed and integrated into thermoeconomic system models for single- and double-stage OC-OTEC plants that produced electricity and fresh water. A computerized optimization procedure was developed to obtain optimal plant configurations for the production of electricity and fresh water. Small-scale OC-OTEC appears economically and technologically feasible for many potential sites. OC-OTEC may represent a technology with tremendous near-term potential. It is recommended that it be aggressively pursued.

  7. DYNA3D example problem manual

    SciTech Connect (OSTI)

    Lovejoy, S.C.; Whirley, R.G.

    1990-10-10

    This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.

  8. Summary of Plutonium-238 Production Alternatives Analysis Final Report

    SciTech Connect (OSTI)

    James Werner; Wade E. Bickford; David B. Lord; Chadwick D. Barklay

    2013-03-01

    The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baseline technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation

  9. New Synthetic Methods for Hypericum Natural Products

    SciTech Connect (OSTI)

    Insik Jeon

    2006-12-12

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  10. Particle physics confronts the solar neutrino problem

    SciTech Connect (OSTI)

    Pal, P.B.

    1991-06-01

    This review has four parts. In Part I, we describe the reactions that produce neutrinos in the sun and the expected flux of those neutrinos on the earth. We then discuss the detection of these neutrinos, and how the results obtained differ from the theoretical expectations, leading to what is known as the solar neutrino problem. In Part II, we show how neutrino oscillations can provide a solution to the solar neutrino problem. This includes vacuum oscillations, as well as matter enhanced oscillations. In Part III, we discuss the possibility of time variation of the neutrino flux and how a magnetic moment of the neutrino can solve the problem. WE also discuss particle physics models which can give rise to the required values of magnetic moments. In Part IV, we present some concluding remarks and outlook for the recent future.

  11. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  12. Transport Test Problems for Hybrid Methods Development

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  13. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. Solving the problems of infectious waste disposal

    SciTech Connect (OSTI)

    Hoffman, S.L.; Cabral, N.J. )

    1989-06-01

    Lawmakers are increasing pressures to ensure safe, appropriate disposal of infectious waste. This article discusses the problems, the regulatory climate, innovative approaches, and how to pay for them. The paper discusses the regulatory definition of infectious waste, federal and state regulations, and project finance.

  15. Motor operated valves problems tests and simulations

    SciTech Connect (OSTI)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  16. The scattering problem for nonlocal potentials

    SciTech Connect (OSTI)

    Zolotarev, V A

    2014-11-30

    We solve the direct and inverse scattering problems for integro-differential operators which are one-dimensional perturbations of the self-adjoint second derivative operator on the half-axis. We also describe the scattering data for this class of operators. Bibliography: 28 titles.

  17. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  18. First results, problems of French deep gasification program

    SciTech Connect (OSTI)

    Gaussens, P.

    1983-01-01

    The development of a technology for the gasification of deep coal reserves that are technically and economically not exploitable by classic mining methods was investigated. The principal problem is the very low permeability of the deep coal which makes it necessary to create an artificial connection between the injection and production wells which is done of hydrofracturing method. The possibilities of an electrical connection are studied. Difficulties related to the spontaneous ignition of the coal and the creation of a backward combustion are revealed. Exploration of the factors that might limit the quality of the gas produced or the quantity of coal extracted by doublet is suggested which should lead to obtaining criteria for site selection. Knowledge of the natural conditions of a site is essential for the decision and the selection of the operating method. The characterization can be obtained by using exploration methods such as coring, logging, surface geophysics.

  19. Inverse problems in heterogeneous and fractured media using peridynamics

    SciTech Connect (OSTI)

    Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.

    2015-12-10

    The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measured values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.

  20. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    SciTech Connect (OSTI)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.

  1. J/ψ Production

    Office of Scientific and Technical Information (OSTI)

    National Laboratory, Berkeley, California 94720, USA (Dated: October 30, 2006) We study J production at RHIC and LHC energies with both initial production and regener- ation. ...

  2. ,"Weekly Blender Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Production of Finished Motor Gasoline (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Blender Net Production of Finished Motor Gasoline (Thousand Barrels per ...

  3. Production | Department of Energy

    Energy Savers [EERE]

    Research & Development Algal Biofuels Production Production PNNL image Algae ... growth rate and high oil content, that make algae attractive to convert into biofuels. ...

  4. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD) ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  5. Practical approaches to field problems of stationary combustion systems

    SciTech Connect (OSTI)

    Lee, S.W.

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  6. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  7. Aleph Field Solver Challenge Problem Results Summary.

    SciTech Connect (OSTI)

    Hooper, Russell; Moore, Stan Gerald

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched mod- eling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challeng- ing problems important to Sandia's mission that Aleph was specifically designed to address.

  8. Scalable Adaptive Multilevel Solvers for Multiphysics Problems

    SciTech Connect (OSTI)

    Xu, Jinchao

    2014-12-01

    In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.

  9. Transmission Losses Product (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Smoothing and Intertie Service (Pilot) Firstgov Pricing for Transmission Losses Product Bonneville Power Administration (BPA) Power Services offers to sell transmission...

  10. Ergonomics problems and solutions in biotechnology laboratories

    SciTech Connect (OSTI)

    Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.

    1995-03-01

    The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.

  11. Diabaticity of nuclear motion: problems and perspectives

    SciTech Connect (OSTI)

    Nazarewicz, W [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)] [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-12-31

    The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, nonlinear dynamics, transport theory, and quantum chaos.

  12. Are shorted pipeline casings a problem

    SciTech Connect (OSTI)

    Gibson, W.F. )

    1994-11-01

    The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.

  13. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Grand Challenge Problems Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or

  14. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2001-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  15. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  16. Technical Analysis of Hydrogen Production: Evaluation of H2 Mini-Grids

    SciTech Connect (OSTI)

    Lasher, Stephen; Sinha, Jayanti

    2005-05-03

    We have assessed the transportation of hydrogen as a metal hydride slurry through pipelines over a short distance from a neighborhood hydrogen production facility to local points of use. The assessment was conducted in the context of a hydrogen "mini-grid" serving both vehicle fueling and stationary fuel cell power systems for local building heat and power. The concept was compared to a compressed gaseous hydrogen mini-grid option and to a stand-alone hydrogen fueling station. Based on our analysis results we have concluded that the metal hydride slurry concept has potential to provide significant reductions in overall energy use compared to liquid or chemical hydride delivery, but only modest reductions in overall energy use, hydrogen cost, and GHG emissions compared to a compressed gaseous hydrogen delivery. However, given the inherent (and perceived) safety and reasonable cost/efficiency of the metal hydride slurry systems, additional research and analysis is warranted. The concept could potentially overcome the public acceptance barrier associated with the perceptions about hydrogen delivery (including liquid hydrogen tanker trucks and high-pressure gaseous hydrogen pipelines or tube trailers) and facilitate the development of a near-term hydrogen infrastructure.

  17. Statistics Show Bearing Problems Cause the Majority of Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures September ...

  18. Exact Overlaps in the Kondo Problem (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Exact Overlaps in the Kondo Problem Prev Next Title: Exact Overlaps in the Kondo Problem Authors: Lukyanov, Sergei L. ; Saleur, Hubert ; Jacobsen, Jesper L. ; Vasseur, Romain ...

  19. Approaching Problems in Particle and Nuclear Physics with Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approaching Problems in Particle and Nuclear Physics with Time-Dependent Quantum Mechanics (Wednesday, Jan 20) Approaching Problems in Particle and Nuclear Physics with...

  20. Solving a Class of Nonlinear Eigenvalue Problems by Newton's...

    Office of Scientific and Technical Information (OSTI)

    We examine the possibility of using the standard Newton's method for solving a class of ... NONLINEAR PROBLEMS nonlinear eigenvalue problem, Newton's method Word Cloud More Like ...

  1. Problems with propagation and time evolution in f ( T ) gravity...

    Office of Scientific and Technical Information (OSTI)

    Problems with propagation and time evolution in f ( T ) gravity Citation Details In-Document Search Title: Problems with propagation and time evolution in f ( T ) gravity Authors: ...

  2. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  3. Studies in nonlinear problems of energy

    SciTech Connect (OSTI)

    Matkowsky, B.J.

    1992-07-01

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.

  4. Analytical solutions to matrix diffusion problems

    SciTech Connect (OSTI)

    Keklinen, Pekka

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  5. DYNA3D Non-reflecting Boundary Conditions - Test Problems

    SciTech Connect (OSTI)

    Zywicz, E

    2006-09-28

    Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

  6. Environmental consequences of energy production: Proceedings

    SciTech Connect (OSTI)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  7. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  8. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R; Chinthavali, Madhu Sudhan

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  9. Wastes and by-products - alternatives for agricultural use

    SciTech Connect (OSTI)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  10. Workshops for problem-solving and training

    SciTech Connect (OSTI)

    Ransom, H. )

    1991-01-01

    This paper documents the workshop process as a beneficial training tool for nuclear facility safeguards and security (SAS). Described are the workshop benefits, development phases, implementation steps, conduct, and follow-up. A workshop, as described there, is a directed effort that results in a written product. The workshop process is used by the DOE Central Training Academy (CTA). So far, the CTA workshop end products have been user guides, plans, or procedures. The process has benefited the SAS community by developing documented consensus positions related to DOE topics. The workshop process is especially useful when policy statements are difficult to implement and guidance is limited. The workshop process also has application at DOE sites.