Sample records for near-field scanning optical

  1. Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method

    E-Print Network [OSTI]

    Texas at Austin. University of

    Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method G and quality factor of the tip oscillations was used to control the scanning near-field optical microscope SNOM0021-8979 00 04017-2 I. INTRODUCTION Scanning near-field optical microscopy SNOM is in- creasingly

  2. Near-Field Scanning Optical Microscopy of Temperature-and Thickness-Dependent Morphology and

    E-Print Network [OSTI]

    Buratto, Steve

    Near-Field Scanning Optical Microscopy of Temperature- and Thickness-Dependent Morphology 21, 2000 We use near-field scanning optical microscopy (NSOM) to probe the local optical spectroscopy with bulk techniques such as differ- ential scanning calorimetry (DSC) and X-ray diffractom- etry

  3. Fabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors

    E-Print Network [OSTI]

    Aeschlimann, Martin

    -electromechanical (MEMS) fabrication technology in or- der to produce sensors with reproducible optical and mechanicalFabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors M. Salomo *, D. Bayer, B.R. Schaaf, M. Aeschlimann, E. Oesterschulze * Department of Physics

  4. Single Defect Center Scanning Near-Field Optical Microscopy on Graphene

    E-Print Network [OSTI]

    J. Tisler; T. Oeckinghaus; R. Stöhr; R. Kolesov; F. Reinhard; J. Wrachtrup

    2013-01-02T23:59:59.000Z

    We demonstrate high resolution scanning fluorescence resonance energy transfer 10 microscopy between a single nitrogen-vacancy center as donor and graphene as acceptor. 11 Images with few nanometer resolution of single and multilayer graphene structures were 12 attained. An energy transfer efficiency of 30% at distances of 10nm between a single 13 defect and graphene was measured. Further the energy transfer distance dependence of 14 the nitrogen-vacancy center to graphene was measured to show the predicted d-4 15 dependence. Our studies pave the way towards a diamond defect center based versatile 16 single emitter scanning microscope.

  5. Focused ion beam modification of atomic force microscopy tips for near-field scanning optical microscopy

    E-Print Network [OSTI]

    Krogmeier, Jeffrey R.; Dunn, Robert C.

    2001-12-01T23:59:59.000Z

    spatial resolution be- yond the classical diffraction limit.1–3 While the technique can be implemented in several configurations, the most popular utilizes a metal-coated, tapered fiber optic probe to deliver light to nanometric dimensions. Introduced... by Betzig et al. in 1991,2 these metal-coated fiber optic probes have been successfully utilized to study single molecules, thin films, and in limited cases, biological samples.1,3 For the latter, the high spring constant of the fiber optic probes has...

  6. Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues

    SciTech Connect (OSTI)

    Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-02-04T23:59:59.000Z

    Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

  7. Numerical solution of inverse scattering for near-field optics

    E-Print Network [OSTI]

    2007-04-30T23:59:59.000Z

    May 2, 2007 ... tering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous me- dium located on a substrate from data ...

  8. Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study

    E-Print Network [OSTI]

    Fan, Shanhui

    optical microscopy NSOM imaging to simultaneously obtain both the eigenfield distribution and the band

  9. Near-Field Magneto-Optical Microscope

    DOE Patents [OSTI]

    Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

    2005-12-06T23:59:59.000Z

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  10. NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC FIELD DISTRIBUTIONS

    E-Print Network [OSTI]

    Anlage, Steven

    WEIF-49 NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC>;ics, University of Maryland, College Park, MD 2OY@-4lll, USA Abstract We describe the near-field scanning methods of scanning probe microscopy have been developed. Generally spea- king one can divide

  11. Near-field Mapping System to Scan in Time Domain the Magnetic Emissions of Integrated Circuits

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    low amplitude and need to be amplified. This is achieved, as shown figure 1, by a low noise 63db of instructions. Application of this measurement system is given to an industrial chip designed with a 180nm CMOS a low cost near-field mapping system. This system scans automatically and dynamically, in the time

  12. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna

    E-Print Network [OSTI]

    Xu, Xianfan

    Three-dimensional mapping of optical near field of a nanoscale bowtie antenna Rui Guo*, Edward C. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie

  13. Enhanced optical near field from a bowtie aperture Eric X. Jin and Xianfan Xua

    E-Print Network [OSTI]

    Xu, Xianfan

    Enhanced optical near field from a bowtie aperture Eric X. Jin and Xianfan Xua School of Mechanical 2006; published online 11 April 2006 The enhanced optical near field from a bowtie aperture of the same opening area. Light concentration and transmission enhancement of bowtie apertures promise

  14. Near field optical probe for critical dimension measurements

    DOE Patents [OSTI]

    Stallard, B.R.; Kaushik, S.

    1999-05-18T23:59:59.000Z

    A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.

  15. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    SciTech Connect (OSTI)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-07-01T23:59:59.000Z

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. {copyright} 2001 American Institute of Physics.

  16. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging

    E-Print Network [OSTI]

    Xu, Xianfan

    High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging Liang Wang probe integrated with nanoscale bowtie aperture for enhanced optical transmission is demonstrated. The bowtie-shape aperture allows a propagating mode in the bowtie gap region, which enables simultaneous

  17. NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify

    E-Print Network [OSTI]

    Solar cell producers are facing urgent pressures to lower module production cost.This achievementNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

  18. Decision making based on optical excitation transfer via near-field interactions between quantum dots

    SciTech Connect (OSTI)

    Naruse, Makoto, E-mail: naruse@nict.go.jp [Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 (Japan); Nomura, Wataru; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Aono, Masashi [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Sonnefraud, Yannick; Drezet, Aurélien; Huant, Serge [Université Grenoble Alpes, Inst. NEEL, F-38000 Grenoble (France); CNRS, Inst. NEEL, F-38042 Grenoble (France); Kim, Song-Ju [WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-21T23:59:59.000Z

    Optical near-field interactions between nanostructured matters, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here, we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.

  19. Near field optical scanning system employing microfabricated solid immersion lens

    DOE Patents [OSTI]

    Cozier, Kenneth B. (Stanford, CA); Fletcher, Daniel A. (Menlo Park, CA); Kino, Gordon S. (Stanford, CA); Quate, Calvin F. (Stanford, CA); Soh, Hyongsok T. (Stanford, CA)

    2002-08-27T23:59:59.000Z

    A solid immersion lens integrated on a flexible support such as a cantilever or membrane is described, together with a method of forming the integrated structure.

  20. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    SciTech Connect (OSTI)

    Prof.Dr. Lukas Novotny

    2004-10-18T23:59:59.000Z

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  1. Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes

    E-Print Network [OSTI]

    Hollars, Christopher W.; Dunn, Robert C.

    1998-01-01T23:59:59.000Z

    The effects that the thermal evaporation conditions have on the roughness of aluminum-coated near-field fiber-optic probes were investigated using the high-resolution capabilities of atomic force microscopy. The coating ...

  2. Modification of the Absorption Cross Section in the Optical Near-field

    E-Print Network [OSTI]

    Moritz Striebel; Jeff F. Young; Jörg Wrachtrup; Ilja Gerhardt

    2014-11-20T23:59:59.000Z

    The optical interaction of light and matter is modeled as an oscillating dipole in a plane wave. We analyze absorption, scattering and extinction for this system by the energy flow, which is depicted by streamlines of the Poynting vector. Depending on the dissipative damping of the oscillator, the streamlines end up in the dipole. Based on a graphical investigation of the streamlines, this represents the absorption cross section, and forms a far-field absorption aperture. In the near-field of the oscillator, a modification of the aperture is observed. This scheme can be adapted to a single dipolar emitter, interacting with a light field. In the case of the absorption by a single atom, where the oscillator has a circular dipole characteristics, we model the energy flow and derive the apertures.

  3. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    E-Print Network [OSTI]

    Kotsifaki, Domna G; Lagoudakis, Pavlos G

    2015-01-01T23:59:59.000Z

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force, the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, expected from the evanescent plasmon field.

  4. Optical near-field induced visible response photoelectrochemical water splitting on nanorod TiO{sub 2}

    SciTech Connect (OSTI)

    Thu Hac Huong Le; Mawatari, Kazuma; Pihosh, Yuriy; Kitamori, Takehiko [Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawazoe, Tadashi; Yatsui, Takashi; Ohtsu, Motoichi [Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Tosa, Masahiro [Micro-Nano Component Materials Group, Materials Engineering Laboratory, National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-11-21T23:59:59.000Z

    Here we report a way to induce the visible response of non-doped TiO{sub 2} in the photocatalytic electrochemical water splitting, which is achieved by utilizing the optical near-field (ONF) generated on nanorod TiO{sub 2}. The visible response is attributed to the ONF-induced phonon-assisted excitation process, in which TiO{sub 2} is excited by sub-bandgap photons via phonon energy. Our approach directly gets involved in the excitation process without chemical modification of materials; accordingly it is expected to have few drawbacks on the photocatalytic performance. This study may offer another perspective on the development of solar harvesting materials.

  5. Transmittance and near-field characterization of sub-wavelength tapered optical fibers

    E-Print Network [OSTI]

    Fedja Orucevic; Valérie Lefèvre-Seguin; Jean Hare

    2008-02-20T23:59:59.000Z

    We have produced high transmission sub-wavelength tapered optical fibers for the purpose of whispering gallery mode coupling in fused silica microcavities at 780 nm. A detailed analysis of the fiber transmittance evolution during tapering is demonstrated to reflect precisely the mode coupling and cutoff in the fiber. This allows to control the final size, the number of guided modes and their effective index. These results are checked by evanescent wave mapping measurements on the resulting taper.

  6. Imaging of InGaN inhomogeneities using visible apertureless near-field scanning optical microscope

    E-Print Network [OSTI]

    Stebounova, Larissa V.; Romanyuk, Yaroslav E.; Chen, Dongxue; Leone, Stephen R.

    2007-01-01T23:59:59.000Z

    InGaN dots deposited on a GaN substrate. 44 In that work, itGaN buffer layer is grown after the nitridation of the substrate.

  7. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    E-Print Network [OSTI]

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-04-07T23:59:59.000Z

    ;m. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology... the aperture, light is lost into the surrounding metal coating of the probe. This leads to the two related phenomena of tip heating and failure, the characterization of which have been problematic due to the small size of the probe.3,7,8 However, understanding...

  8. Near-field inverse scattering and image Images, projections, tomographs, reconstructions.

    E-Print Network [OSTI]

    scanning tunnelling microscopy," Journ. Opt.A: Pure and Appl. Opt. 4 S140-S144 (2002) P Scott Carney · Diffractive elements http://optics.beckman.uiuc.edu P Scott Carney #12;References P Scott Carney and John C Schotland,"Inverse scattering for near-field microscopy," Appl. Phys. Lett. 77, 2798 (2000). P Scott Carney

  9. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation

    SciTech Connect (OSTI)

    Peragut, Florian; De Wilde, Yannick, E-mail: yannick.dewilde@espci.fr [ESPCI ParisTech, PSL Research University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005, Paris (France); Brubach, Jean-Blaise; Roy, Pascale [Société Civile Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, 91192 Gif-sur-Yvette Cedex (France)

    2014-06-23T23:59:59.000Z

    We demonstrate the coupling of a scattering near-field scanning optical microscope combined with a Fourier transform infrared spectrometer. The set-up operates using either the near-field thermal emission from the sample itself, which is proportional to the electromagnetic local density of states, or with an external infrared synchrotron source, which is broadband and highly brilliant. We perform imaging and spectroscopy measurements with sub-wavelength spatial resolution in the mid-infrared range on surfaces made of silicon carbide and gold and demonstrate the capabilities of the two configurations for super-resolved near-field mid-infrared hyperspectral imaging and that the simple use of a properly chosen bandpass filter on the detector allows one to image the spatial distribution of materials with sub-wavelength resolution by studying the contrast in the near-field images.

  10. adaptive optics scanning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaptive optics scanning First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Adaptive Scanning Optical...

  11. Scanning optical microscope with long working distance objective

    DOE Patents [OSTI]

    Cloutier, Sylvain G. (Newark, DE)

    2010-10-19T23:59:59.000Z

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  12. Guided optical modes in randomly textured ZnO thin films imaged by near-field scanning optical K. Bittkau* and R. Carius

    E-Print Network [OSTI]

    Peinke, Joachim

    relevance. In particular, when designing thin-film solar cells and light emitting diodes LEDs , ran- domly

  13. Optical 2-D Scanning System for Laser - Generated Shockwave Treatment of Wound Infections

    E-Print Network [OSTI]

    Patel, Shahzad Neville

    2013-01-01T23:59:59.000Z

    biofilm structure from confocal scanning laser microscopyAngeles Optical 2-D Scanning System for Laser - GeneratedTHE THESIS Optical 2-D Scanning System for Laser-Generated

  14. Near-field single molecule spectroscopy

    SciTech Connect (OSTI)

    Xie, X.S.; Dunn, R.C.

    1995-02-01T23:59:59.000Z

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  15. Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    imaging with adaptive optics in patients with inheritedAdaptive Optics Scanning Laser Ophthalmoscopy Images in aof cone structure using adaptive optics scanning laser

  16. Near field optical probe tip manufacture.

    E-Print Network [OSTI]

    La Rosa, Andres H.

    #12;Coating · Whether pulling your tip or etching it the next step in the process of fabrication heater will evaporate the aluminum held within. #12;Ion Sputtering Ion sputtering is the bombardment

  17. Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated

    E-Print Network [OSTI]

    Cohen, Ronald C.

    for the last several years due to their potential for application in optoelectronic devices such as light-emitting diodes (LEDs),1,2 photodiodes,3 photovoltaics,4 and displays.5 It is becoming increasingly clear

  18. Tiled-Grating Compressor with Uncompensated Dispersion for Near-Field-Intensity Smoothing

    SciTech Connect (OSTI)

    Huang, H.; Kessler, T.J.

    2007-07-02T23:59:59.000Z

    A tiled-grating compressor, in which the spatial dispersion is not completely compensated, reduces the near-field-intensity modulation caused by tiling gaps and provides near-field spatial filtering of the input laser beam, thus reducing the laser damage to the final optics.

  19. Ideal near-field thermophotovoltaic cells

    E-Print Network [OSTI]

    Molesky, Sean

    2015-01-01T23:59:59.000Z

    We ask the question, what are the ideal characteristics of a near-field thermophotovoltaic cell? Our search leads us to a reexamination of near-field photonic heat transfer in terms of the joint density of electronic states. This form reveals that the presence of matched van Hove singularities resulting from quantum-confinement in the emitter and converter of a thermophotovoltaic cell boosts both the magnitude and spectral selectivity of photonic heat transfer; dramatically improving energy conversion efficiency. We provide a model near-field thermophotovoltaic design making use of this idea by employing the van Hove singularities present in carbon nanotubes. Shockely Queisser analysis shows that the predicted heat transfer characteristics of this model device are fundamentally better than existing thermophotovoltaic designs. Our work paves the way for the use of quantum dots, carbon nanotubes and two-dimensional materials as future materials for thermophotovoltaic near-field energy conversion devices.

  20. Manual-scanning optical coherence tomography probe based on position tracking

    E-Print Network [OSTI]

    Yang, Changhuei

    Manual-scanning optical coherence tomography probe based on position tracking Jian Ren,1, * Jigang to reconstruct images for a manual-scanning optical coherence tomog- raphy (OCT) probe is proposed's pose. The continuous device poses tracking, and the collected OCT depth scans can then be combined

  1. Scanning Optical Mosaic Scope for Micro-Manipulation Benjamin Potsaid, Yves Bellouard, John T. Wen

    E-Print Network [OSTI]

    Wen, John Ting-Yung

    Scanning Optical Mosaic Scope for Micro-Manipulation Benjamin Potsaid, Yves Bellouard, John T. Wen microscopy, which we call scanning optical mosaic scope (SOMS), that addresses the limitation of the field of vision. The key idea is to use high-speed scanners and a high- speed camera to scan the workspace

  2. Near-Field Nanopatterning and Associated Energy Transport Analysis with Thermoreflectance 

    E-Print Network [OSTI]

    Soni, Alok

    2013-05-31T23:59:59.000Z

    Laser nano-patterning with near-field optical microscope (NSOM) and the associated energy transport analysis are achieved in this study. Based on combined experimental/theoretical analyses, it is found that laser nano-patterning with a NSOM...

  3. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect (OSTI)

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, D-01069 Dresden (Germany); Fehrenbacher, Markus [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden (Germany)

    2014-08-04T23:59:59.000Z

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263?K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  4. Active Thermal Extraction of Near-field Thermal Radiation

    E-Print Network [OSTI]

    Ding, Ding

    2015-01-01T23:59:59.000Z

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. Our study demonstrates a new approach to manipulate thermal radiation that could find applications in thermal management.

  5. Characterization of the Structure and Function of the Normal Human Fovea Using Adaptive Optics Scanning Laser Ophthalmoscopy

    E-Print Network [OSTI]

    Putnam, Nicole Marie

    2012-01-01T23:59:59.000Z

    targeted stimulus delivery. Optics express, 15(21), 13731–tomographic scanner. Applied Optics, 28(4), 804. Enoch, J.with the adaptive optics scanning laser Ophthalmoscope.

  6. Evaluation of near-field earthquake effects

    SciTech Connect (OSTI)

    Shrivastava, H.P.

    1994-11-01T23:59:59.000Z

    Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

  7. Optical Theorem in Nonlinear Media

    E-Print Network [OSTI]

    Li, Wei

    2015-01-01T23:59:59.000Z

    We consider the optical theorem for scattering of electromagnetic waves in nonlinear media. This result is used to obtain the power extinguished from a field by a nonlinear scatterer. The cases of second harmonic generation and the Kerr effect are studied in some detail. Applications to nonlinear apertureless scanning near-field optical microscopy are considered.

  8. adaptive-optics-based scanning laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaptive-optics-based scanning laser First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Laser scanning...

  9. Introduction to Scanning Microwave Microscopy Mode

    E-Print Network [OSTI]

    Anlage, Steven

    Wenhai Han Introduction to Scanning Microwave Microscopy Mode Application Note Introduction Mapping through" and meanwhile achieve sufficient sensitivity and resolution. With the invention of scanning been developed to probe materials properties. These include scanning near-field to scanning microwave

  10. Optical scanning apparatus for indicia imprinted about a cylindrical axis

    DOE Patents [OSTI]

    Villarreal, Richard A. (Kennewick, WA)

    1987-01-01T23:59:59.000Z

    An optical scanner employed in a radioactive environment for reading indicia imprinted about a cylindrical surface of an article by means of an optical system including metallic reflective and mirror surfaces resistant to degradation and discoloration otherwise imparted to glass surfaces exposed to radiation.

  11. Improving near-field confinement of a bowtie aperture using surface plasmon polaritons

    E-Print Network [OSTI]

    Xu, Xianfan

    Improving near-field confinement of a bowtie aperture using surface plasmon polaritons Pornsak; published online 1 June 2011 Bowtie aperture is known to produce subdiffraction-limited optical spot with high intensity. In this work, we investigate integrating a bowtie aperture with circular grooves

  12. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-07-13T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  13. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-10-27T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  14. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-11-10T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  15. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-06-29T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  16. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2007-12-11T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  17. Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy

    E-Print Network [OSTI]

    -differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

  18. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-06-23T23:59:59.000Z

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  19. Infrared near-field spectroscopy of trace explosives using an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade...

  20. Optical Coherence Tomography Scan Circle Location and Mean Retinal Nerve Fiber Layer

    E-Print Network [OSTI]

    Srinivasan, Vivek J.

    Optical Coherence Tomography Scan Circle Location and Mean Retinal Nerve Fiber Layer Measurement) retinal nerve fiber layer (RNFL) thickness mea- surements of varying the standard 3.4-mm-diameter circle of the variable circle placement effect. RNFL thickness was measured on this three-dimensional dataset by using

  1. Near-field Localization in Plasmonic Superfocusing: a Nanoemitter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    even resorting to a multitude of new strategies based on near-field effects, surface plasmon polaritons, and metamaterials1-7. The propagation of surface plasmon polaritons (SPP)...

  2. Inverse elastic surface scattering with near-field data

    E-Print Network [OSTI]

    Peijun Li

    2015-02-06T23:59:59.000Z

    Feb 11, 2015 ... detection of oil and ore bodies, they have played an important role in the ... is a suitable assumption in the scenario of near-field imaging.

  3. Determination of accuracy of measurements by NREL`s Scanning Hartmann Optical Test instrument

    SciTech Connect (OSTI)

    Jorgensen, G.; Wendelin, T.; Carasso, M.

    1991-04-01T23:59:59.000Z

    NREL`s Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

  4. Determination of accuracy of measurements by NREL's Scanning Hartmann Optical Test instrument

    SciTech Connect (OSTI)

    Jorgensen, G.; Wendelin, T.; Carasso, M.

    1991-04-01T23:59:59.000Z

    NREL's Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

  5. System and method for chromatography and electrophoresis using circular optical scanning

    DOE Patents [OSTI]

    Balch, Joseph W. (Livermore, CA); Brewer, Laurence R. (Oakland, CA); Davidson, James C. (Livermore, CA); Kimbrough, Joseph R. (Pleasanton, CA)

    2001-01-01T23:59:59.000Z

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  6. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials

    E-Print Network [OSTI]

    Svend-Age Biehs

    2011-03-15T23:59:59.000Z

    We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

  7. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOE Patents [OSTI]

    Chen, Diana C. (Fremont, CA); Olivier, Scot S. (Livermore, CA); Jones; Steven M. (Livermore, CA)

    2010-02-23T23:59:59.000Z

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  8. Electrically-gated near-field radiative thermal transistor

    E-Print Network [OSTI]

    Yang, Yue

    2015-01-01T23:59:59.000Z

    In this work, we propose a near-field radiative thermal transistor made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. Thick SiC plates serve as the thermal "source" and "drain", while graphene sheets function as the "gate" to modulate the near-field photon tunneling by tuning chemical potential with applied voltage biases symmetrically or asymmetrically. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials, which can tune the coupling between graphene plasmon across the vacuum gap. Thermal modulation, switching, and amplification, which are the key features required for a thermal transistor, are theoretically realized and analyzed. This work will pave the way to active thermal management, thermal circuits, and thermal computing.

  9. Thermal excitation of plasmons for near-field thermophotovoltaics

    SciTech Connect (OSTI)

    Guo, Yu; Molesky, Sean; Hu, Huan; Cortes, Cristian L.; Jacob, Zubin, E-mail: zjacob@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2014-08-18T23:59:59.000Z

    The traditional approaches of exciting plasmons consist of either using electrons (e.g., electron energy loss spectroscopy) or light (Kretchman and Otto geometry) while more recently plasmons have been excited even by single photons. A different approach: thermal excitation of a plasmon resonance at high temperatures using alternate plasmonic media was proposed by S. Molesky et al. [Opt. Express 21, A96–A110 (2013)]. Here, we show how the long-standing search for a high temperature narrowband near-field emitter for thermophotovoltaics can be fulfilled by thermally exciting plasmons. We also describe a method to control Wein's displacement law in the near-field using high temperature epsilon-near-zero metamaterials. Finally, we show that our work opens up an interesting direction of research for the field of slow light: thermal emission control.

  10. Near-field heat transfer between gold nanoparticle arrays

    SciTech Connect (OSTI)

    Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2013-12-07T23:59:59.000Z

    The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

  11. Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence

    SciTech Connect (OSTI)

    Marcinkevi?ius, S. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Gelžinyt?, K. [Department of Materials and Nano Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden); Institute of Applied Research, Vilnius University, Saul?tekio 9-3, 10222 Vilnius (Lithuania); Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-09-15T23:59:59.000Z

    Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  12. Heat assisted magnetic recording with patterned FePt recording media using a lollipop near field transducer

    SciTech Connect (OSTI)

    Ghoreyshi, Ali; Victora, R. H., E-mail: victora@umn.edu [MINT, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-05-07T23:59:59.000Z

    In heat-assisted magnetic recording, optical energy is transferred to a small optical spot on the recording media using a near field transducer. In this study, a scattered field finite difference time domain simulation is used to analyze the performance of a lollipop transducer in heat assisted magnetic recording on both a patterned FePt media and a continuous thin film. To represent wear, sharp corners of the peg are approximated with curved ones, which are found to narrow the track width without excessive loss of intensity. Compared with continuous media, the patterned media exhibits higher energy efficiency and a better concentrated optical beam spot. This effect is due to the near field effects of patterned media on the performance of the transducer.

  13. Imaging the foveal cone mosaic with a MEMS-based adaptive optics scanning laser ophthalmoscope

    E-Print Network [OSTI]

    Li, Yiang

    2010-01-01T23:59:59.000Z

    In: Porter J (ed), Adaptive optics for vision science:In: Black A (ed), Optics. Reading, MA: Addison-Wesley; 113.Optical Society of America a-Optics Image Science and Vision

  14. Report on THMC Modeling of the Near Field Evolution of a Generic...

    Energy Savers [EERE]

    Report on THMC Modeling of the Near Field Evolution of a Generic Clay Repository: Model Validation and Demonstration Rev 2 Report on THMC Modeling of the Near Field Evolution of a...

  15. Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Ilic, Ognjen

    It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance, and tune the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange ...

  16. Tungsten Nanowire Based Hyperbolic Metamaterial Emitters for Near-field Thermophotovoltaic Applications

    E-Print Network [OSTI]

    Chang, Jui-Yung; Wang, Liping

    2014-01-01T23:59:59.000Z

    Recently, near-field radiative heat transfer enhancement across nanometer vacuum gaps has been intensively studied between two hyperbolic metamaterials (HMMs) due to unlimited wavevectors and high photonic density of state. In this work, we theoretically analyze the energy conversion performance of a thermophotovoltaic (TPV) cell made of In0.2Ga0.8Sb when paired with a HMM emitter composed of tungsten nanowire arrays embedded in Al2O3 host at nanometer vacuum gaps. Fluctuational electrodynamics integrated with effective medium theory and anisotropic thin-film optics is used to calculate the near-field radiative heat transfer. It is found that the spectral radiative energy is enhanced by the epsilon-near-zero and hyperbolic modes at different polarizations. As a result, the power output from a semi-infinite TPV cell is improved by 1.85 times with the nanowire HMM emitter over that with a plain tungsten emitter at a vacuum gap of 10 nm. Moreover, by using a thin TPV cell with 10 um thickness, the conversion eff...

  17. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-03-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.

  18. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-04-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.

  19. Near field radiative heat transfer between two nonlocal dielectrics

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  20. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  1. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  2. Imaging the foveal cone mosaic with a MEMS-based adaptive optics scanning laser ophthalmoscope

    E-Print Network [OSTI]

    Li, Yiang

    2010-01-01T23:59:59.000Z

    function of axial length at the PRL Results from running theIPT LQ LQR MEMS OCT OPD PID PRL PSD PSF PSI RMF RMS RPE SLDpreferred retinal locus (PRL), and the scan angle was 1°. An

  3. Optical Character Recognition on Scanned Maps for Information Extraction and Automated Georeference 

    E-Print Network [OSTI]

    Stavropoulou, Georgia

    2014-08-13T23:59:59.000Z

    In the recent years most libraries around the world have initiated projects for the complete digitization of their map collections so as to enable easy access to information. When it comes to paper documents, optical character recognition (OCR...

  4. Evaluation of Near Field Atmospheric Dispersion Around Nuclear Facilities Using a Lorentzian Distribution Methodology

    SciTech Connect (OSTI)

    Gavin Hawkley

    2014-12-01T23:59:59.000Z

    Abstract: Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.

  5. ITERATIVE NEAR-FIELD (INF) PRECONDITIONER FOR THE MULTILEVEL FAST MULTIPOLE ALGORITHM

    E-Print Network [OSTI]

    Gürel, Levent

    ITERATIVE NEAR-FIELD (INF) PRECONDITIONER FOR THE MULTILEVEL FAST MULTIPOLE ALGORITHM LEVENT G in computa- tional electromagnetics using the multilevel fast multipole algorithm (MLFMA), preconditioners multipole method (FMM), multilevel fast multipole algorithm (MLFMA), sparse approximate inverse

  6. SVNY294-Kalinin July 17, 2006 16:18 Principles of Near-Field

    E-Print Network [OSTI]

    Anlage, Steven

    in the field, and discuss a novel quantitative modeling approach to interpreting near-field microwave images samples to eliminate de-magnetization and de-polarization effects, but such sam- ples are rarely available

  7. Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was used to characterize an interfacial electron transfer system of dye-sensitized titanium oxide (TiO2) nanoparticles. We have obtained the near-field Raman spectra that are...

  8. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26T23:59:59.000Z

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys������� that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  9. Anomalous electro-optic effect in Sr0.6Ba0.4Nb2O6 single crystals and its application in two-dimensional laser scanning

    E-Print Network [OSTI]

    Gopalan, Venkatraman

    -dimensional laser scanning L. Tian, D. A. Scrymgeour, Alok Sharan, and Venkatraman Gopalana) Materials Research-optic effect that results in laser scanning along the polarization direction of strontium barium niobate (Sr0-charge fields. Based on this effect, two-dimensional scanning is demonstrated by using a combination of SBN:60

  10. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-18T23:59:59.000Z

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10?nm gap.

  11. 1 x N^2 wavelength-selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system

    E-Print Network [OSTI]

    Tsai, J C; Huang, STY; Hah, D; Wu, Ming C

    2006-01-01T23:59:59.000Z

    optical microelectromechanical systems (MEMS), optical ?berinclude optical microelectromechanical systems (MEMS),

  12. Single molecule detection and underwater fluorescence imaging with cantilevered near-field fiber optic probes

    E-Print Network [OSTI]

    Talley, Chad E.; Lee, M. Annie; Dunn, Robert C.

    1998-04-03T23:59:59.000Z

    resonance, 25–50 kHz, shifts approximately 100–150 Hz, the amplitude dampens less than 40% and the Q factor is reduced from 300–500 to 100–200....

  13. Near-field dispersal modeling for liquid fuel-air explosives

    SciTech Connect (OSTI)

    Gardner, D.R.

    1990-07-01T23:59:59.000Z

    The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

  14. Sub-THz Beam-forming using Near-field Coupling of Distributed Active Radiator Arrays

    E-Print Network [OSTI]

    Hajimiri, Ali

    91125, USA Abstract -- The paper demonstrates Distributed Active Radiator (DAR) arrays as a novel way for mutually locking multiple DARs to beam-form and generate high EIRP. As proofs of concept, 2x1 and 2x2 arrays of DARs, mutually synchronized through near-field coupling, are implemented in 65nm bulk CMOS

  15. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Graphene-based photovoltaic cells for near-field thermal energy conversion Riccardo Messina to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular important source of energy. By approaching a photovoltaic (PV) cell3 in proximity of a thermal emitter

  16. Particle resuspension in the Columbia River plume near field Emily Y. Spahn,1

    E-Print Network [OSTI]

    Particle resuspension in the Columbia River plume near field Emily Y. Spahn,1 Alexander R. Horner are used to investigate the mechanisms of sediment resuspension and entrainment into the plume. An east, the plume is much less stratified during low-discharge conditions, and large resuspension events

  17. EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EMC-ORIENTED ANALYSIS OF ELECTRIC NEAR-FIELD IN HIGH FREQUENCY Ali Alaeldine12 , Olivier Maurice3 - 35043 Rennes Cedex - France 3 EMC for Automotive Systems Group - Research and Development Center - PSA - Route de Gachet - 44300 Nantes - France Abstract. This paper introduces an EMC-oriented study

  18. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect (OSTI)

    So, Jin-Kyu, E-mail: js1m10@orc.soton.ac.uk; MacDonald, Kevin F. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2014-05-19T23:59:59.000Z

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50?keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300?nm (free-space) wavelength range.

  19. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    E-Print Network [OSTI]

    Joffe, R; Shavit, R

    2015-01-01T23:59:59.000Z

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  20. Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    E-Print Network [OSTI]

    Giovanni Cerchiari; Fabrizio Croccolo; Frédéric Cardinaux; Frank Scheffold

    2012-09-15T23:59:59.000Z

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit (GPU). We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  1. Photon sorting in the near field using subwavelength cavity arrays in the near-infrared

    SciTech Connect (OSTI)

    Mandel, Isroel M., E-mail: imandel@gc.cuny.edu; Lansey, Eli [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States)] [Department of Physics, Graduate Center and City College of the City University of New York, New York 10016 (United States); Gollub, Jonah N.; Sarantos, Chris H.; Akhmechet, Roman [Phoebus Optoelectronics, New York, New York 10013 (United States)] [Phoebus Optoelectronics, New York, New York 10013 (United States); Golovin, Andrii B.; Crouse, David T. [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)] [Department of Electrical Engineering, The City College of New York, New York, New York 10031 (United States)

    2013-12-16T23:59:59.000Z

    A frequency selective metasurface capable of sorting photons in the near-infrared spectral range is designed, fabricated, and characterized. The metasurface, a periodic array of dielectric cylindrical cavities in a gold film, localizes and transmits light of two spectral frequency bands into spatially separated cavities, resulting in near-field light splitting. The design and fabrication methodologies of the metasurface are discussed. The transmittance and photon sorting properties of the designed structure is simulated numerically and the measured transmission is presented.

  2. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect (OSTI)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

    2014-08-15T23:59:59.000Z

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18?100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  3. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  4. Fiber optic probe of free electron evanescent fields in the optical frequency range Jin-Kyu So, Kevin F. MacDonald, and Nikolay I. Zheludev

    E-Print Network [OSTI]

    Zheludev, Nikolay

    Fiber optic probe of free electron evanescent fields in the optical frequency range Jin-Kyu So fabrication of bent near-field optical fiber probes by electric arc heating Rev. Sci. Instrum. 69, 3843 (1998 of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes Rev. Sci. Instrum

  5. Circuit Analysis in Metal-Optics, Theory and Applications

    E-Print Network [OSTI]

    Staffaroni, Matteo

    2011-01-01T23:59:59.000Z

    B. Hecht, Principles of Nano-Optics , Cambridge Press, (with an LC circuit model,” Optics Express, Vol. 17, No. 8,S. Kawata, Near-Field Optics and Surface Plasmon Polaritons,

  6. Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Peterman, Zell E. [Yucca Mountain Project Branch, U.S. Geological Survey, MS 963 Box 25046 Denver Federal Center, 6th and Kipling Sts., Denver, CO, 80225 (United States); Oliver, Thomas A. [c/o U.S. Geological Survey, S.M. Stoller Corporation, MS 421 Box 25046 Denver Federal Center, Denver, CO, 80225 (United States)

    2007-07-01T23:59:59.000Z

    The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage, and pore water. The chemical compositions of these components have been determined for assessing possible chemical and mineralogical reactions that may occur after nuclear waste is emplaced. The rock hosting the proposed repository is relatively uniform as shown by a mean coefficient of variation (CV) of 9 percent for major elements. In contrast, compositional variations of dust (bulk and water-soluble fractions), pore water, and seepage are large with mean CVs ranging from 28 to 64 percent. (authors)

  7. Nonlocal study of the near field radiative heat transfer between two n-doped semiconductors

    E-Print Network [OSTI]

    Singer, F; Joulain, Karl

    2015-01-01T23:59:59.000Z

    We study in this work the near-field radiative heat transfer between two semi-infinite parallel planes of highly n-doped semiconductors. Using a nonlocal model of the dielectric permittivity, usually used for the case of metallic planes, we show that the radiative heat transfer coefficientsaturates as the separation distance is reduced for high doping concentration. These results replace the 1/d${}^2$ infinite divergence obtained in the local model case. Different features of the obtained results are shown to relate physically to the parameters of the materials, mainly the doping concentration and the plasmon frequency.

  8. Shape-independent limits to near-field radiative heat transfer

    E-Print Network [OSTI]

    Miller, Owen D; Rodriguez, Alejandro W

    2015-01-01T23:59:59.000Z

    We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\\chi$ can emit and absorb radiation at enhanced rates bounded by $|\\chi|^2 / \\operatorname{Im} \\chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and s...

  9. Expected near-field thermal performance for nuclear waste repositories at potential salt sites: Technical report

    SciTech Connect (OSTI)

    McNulty, E.G.

    1987-08-01T23:59:59.000Z

    Thermal analyses were made for the environmental assessments of seven potential salt sites for a nuclear waste repository. These analyses predicted that potential repository sites in domal salts located in the Gulf Coast will experience higher temperature than those in bedded salts of Paradox and Palo Duro Basins, mainly because of higher ambient temperatures at depth. The TEMPV5 code, a semi-analytical heat transfer code for finite line sources, calculated temperatures for commercial high-level waste (CHLW) and spent fuel from pressurized-water reactors (SFPWR). Benchmarks with HEATING6, THAC-SIP-3D, STEALTH, and SPECTROM-41 showed that TEMPV5 agreed closely in the very near field around the waste package and approximately in the near-field and far-field regions of the repository. The analyses used site-specific thermal conductivities that were increased by 40% to compensate for reductions caused by testing technique, salt impurities, and other heterogeneities, and sampling disturbance. Analyses showed peak salt temperatures of 236/sup 0/C (CHLW) and 134/sup 0/C (SFPWR) for the bedded salt and 296/sup 0/C (CHLW) and 180/sup 0/C (SFPWR) for the domal salt. Analyses with uncorrected laboratory thermal conductivities would increase peak salt temperatures by about 120/sup 0/C for CHLW and about 60/sup 0/C for SFPWR. These temperature increases would increase the thermally induced flow of brine and accelerate corrosion of the waste package. 30 refs., 35 figs., 48 tabs.

  10. Graphene-based photovoltaic cells for near-field thermal energy conversion

    E-Print Network [OSTI]

    Riccardo Messina; Philippe Ben-Abdallah

    2012-07-05T23:59:59.000Z

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.

  11. Near-field heat transfer between a nanoparticle and a rough surface

    E-Print Network [OSTI]

    Svend-Age Biehs; Jean-Jacques Greffet

    2011-03-11T23:59:59.000Z

    In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the surface profile. We discuss the different distance regimes for the local density of states above the rough material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the rough surface can be replaced by an equivalent surface layer.

  12. Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

    E-Print Network [OSTI]

    Xu, Xianfan

    in a bowtie or half-bowtie shape are capable of generating small optical spots as well as elon- gated optical produced by three types of ridge aperture antennas: the bowtie aperture, half- bowtie aperture, and C

  13. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    E-Print Network [OSTI]

    Haiyun Xia; Mingjia Shangguan; Guoliang Shentu; Chong Wang; Jiawei Qiu; Xiuxiu Xia; Chao Chen; Mingyang Zheng; Xiuping Xie; Qiang Zhang; Xiankang Dou; Jianwei Pan

    2015-04-06T23:59:59.000Z

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  14. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    E-Print Network [OSTI]

    Xia, Haiyun; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Xia, Xiuxiu; Chen, Chao; Zheng, Mingyang; Xie, Xiuping; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2015-01-01T23:59:59.000Z

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  15. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  16. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  17. Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics

    SciTech Connect (OSTI)

    Matsuyama, S.; Mimura, H.; Yumoto, H.; Sano, Y.; Yamamura, K.; Yabashi, M.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); SPring-8/RIKEN, 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2006-10-15T23:59:59.000Z

    We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system was observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.

  18. hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00252040,version1-12Feb2008 Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution Pierre-Olivier Chapuis, Marine Laroche, Sebastian Volz, and Jean.ecp.fr We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi

  19. PHYSICAL REVIEW B 85, 155422 (2012) Near-field thermal radiation transfer controlled by plasmons in graphene

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    2012-01-01T23:59:59.000Z

    in graphene Ognjen Ilic,1,* Marinko Jablan,2 John D. Joannopoulos,1 Ivan Celanovic,3 Hrvoje Buljan,2 and Marin-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene

  20. Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment

    SciTech Connect (OSTI)

    Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

    2004-06-25T23:59:59.000Z

    CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNL’s tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

  1. Scanning computed confocal imager

    DOE Patents [OSTI]

    George, John S. (Los Alamos, NM)

    2000-03-14T23:59:59.000Z

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  2. The Effect of an Occluder on Near Field Depth Matching in Optical See-Through Augmented Reality

    E-Print Network [OSTI]

    Swan II, J. Edward

    ]. We used an AR haploscope, which allows us to independently manipulate accommodative demand the effects of accommodative demand, brightness, and participant age on depth perception. Among the additional of Edwards et al.'s [2] work was brain surgery, and therefore they used a plastic model of a human head

  3. Magnetic-field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    E-Print Network [OSTI]

    Moncada-Villa, Edwin; Garcia-Vidal, Francisco J; Garcia-Martin, Antonio; Cuevas, Juan Carlos

    2015-01-01T23:59:59.000Z

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semicond...

  4. Slide27 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    ETDEWEB - Bibliographic Citation image of report downloaded (Investigation of optical nanostructures for photovoltaics with near-field scanning microscopy...

  5. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect (OSTI)

    Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.; Molenkamp, L. W. [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany)] [Physikalisches Institut (EP3), Universität Würzburg, 97074 Würzburg (Germany); Biermann, K.; Santos, P. V. [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)] [Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin (Germany)

    2013-12-15T23:59:59.000Z

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  6. Contact optical nanolithography using nanoscale C-shaped apertures

    E-Print Network [OSTI]

    Xu, Xianfan

    . Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 75, 3560-3562 (1999). 3. S. Y. Chou, P. R. Krauss, and P. J. Renstrom , "Imprint

  7. A Combined Near-field Scanning Microwave Microscope and Transport Measurement System for Characterizing Dissipation in Conducting and High-Tc Superconducting Films at Variable Temperature

    E-Print Network [OSTI]

    Dizon, Jonathan Reyes

    2009-04-28T23:59:59.000Z

    Identifying defects and non-superconducting regions in high-temperature superconductors (HTS) is of great importance because they limit the material's capability to carry higher current densities and serve as nucleation ...

  8. Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes

    E-Print Network [OSTI]

    Hickey, Barbara

    and Washington: behavior in near-field and far-field plumes Matthew T. Brown* and Kenneth W. Bruland Department conditions (Bruland et al., 2008). The Columbia River plume also plays a key role in the delivery of both mac

  9. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  10. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  11. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  12. FSU Property Scanning Procedures To Scan Barcodes

    E-Print Network [OSTI]

    McQuade, D. Tyler

    1 of 3 FSU Property Scanning Procedures To Scan Barcodes: 1) To power up the scanner BLUE=CONTINUE ESC=DONE 4) Press the yellow button to scan your FSU location tag. When the location tag has been successfully scanned you will hear a beep and the display will look like this: ITEM

  13. Local optical spectroscopy of self-assembled quantum dots using a near-field optical fiber probe to induce a localized strain field

    E-Print Network [OSTI]

    . The dot density is 2 1010 cm 2 , the average lateral dot size is 18 nm, and the sample has a peak emission limit to the stresses: 1 the finite compressive strength of glass and 2 buckling of the tip for the buckling of a beam holds that the maximum axial force before any possibility of buckling is given by Fmax

  14. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Elders, W.A.; Cohen, L.H.

    1983-11-01T23:59:59.000Z

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  15. Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Richard D. Schaller, Claude Roth, David H. Raulet, and Richard J. Saykally*,

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Cells Richard) cells were recorded at four different wavelengths using a tunable near-infrared femtosecond laser membrane. Introduction Natural killer cells are a class of white blood cells that attack pathogen

  16. 228 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 6, NO. 3, JUNE 2012 Maximum Achievable Efficiency in Near-Field

    E-Print Network [OSTI]

    Gulak, P. Glenn

    the maximum possible power ef- ficiency under arbitrary input impedance conditions based on the general two are remotely powered by means of a power amplifier operating at a fixed carrier frequency. Additional or bidirectional command and data transfer. The power efficiency of the near-field link is a measure of: (i

  17. Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution 

    E-Print Network [OSTI]

    Stancliffe, Devin Aldin

    2011-10-21T23:59:59.000Z

    for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near...

  18. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22T23:59:59.000Z

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Danville, CA); Gao, Chen (Anhui, CN); Duewer, Fred (Albany, CA); Yang, Hai Tao (Albany, CA); Lu, Yalin (Chelmsford, MA)

    2009-06-23T23:59:59.000Z

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    imaging through adaptive optics. J Opt Soc Am A Opt Imageusing a confocal adaptive optics scanning ophthalmoscope.T, Campbell M. Adaptive optics scanning laser ophthalmosco-

  1. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R. (Fairfield, CT)

    2000-01-01T23:59:59.000Z

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  2. Scanning the Conservation Horizon

    E-Print Network [OSTI]

    Scanning the Conservation Horizon A Guide to Climate Change Vulnerability Assessment #12;Scanning.A. Stein, and N.A. Edelson, editors. 2011. Scanning the Conservation Horizon: A Guide to Climate Change.S. Geological Survey Fundamental Science Practices. Scanning the Conservation Horizon is available online at

  3. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 1: Conceptualization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three on the safety of nuclear waste repositories. To achieve the second objective, hypothetical benchmark test

  4. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2)

    SciTech Connect (OSTI)

    Antoun, T; Xu, H; Vorobiev, O; Lomov, I

    2011-10-20T23:59:59.000Z

    Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal scientific objective of the source physics experimental campaign in the Climax Stock granitic outcrop. A modeling effort has been undertaken by LLNL to complement the experimental campaign, and over the long term provide a validated computation capability for the nuclear explosion monitoring community. The approach involves performing the near-field nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be coupled together to provide a comprehensive source-to-sensor modeling capability. The technical approach involves pre-test predictions of each of the SPE experiments using their state of the art modeling capabilities, followed by code improvements to alleviate deficiencies identified in the pre-test predictions. This spiral development cycle wherein simulations are used to guide experimental design and the data from the experiment used to improve the models is the most effective approach to enable a transition from the descriptive phenomenological models in current use to the predictive, hybrid physics models needed for a science-based modeling capability for nuclear explosion monitoring. The objective of this report is to describe initial results of non-linear motion predictions of the first two SPE shots in the Climax Stock: a 220-lb shot at a depth of 180 ft (SPE No.1), and a 2570-lb shot at a depth of 150 ft (SPE No.2). The simulations were performed using the LLNL ensemble granite model, a model developed to match velocity and displacement attenuation from HARDHAT, PILE DRIVER, and SHOAL, as well as Russian and French nuclear test data in granitic rocks. This model represents the state of the art modeling capabilities as they existed when the SPE campaign was launched in 2010, and the simulation results presented here will establish a baseline that will be used for gauging progress as planned modeling improvements are implemented during the remainder of the SPE program. The initial simulations were performed under 2D axisymmetric conditions assuming the geologic medium to be a homogeneous half space. However, logging data obtained from the emplacement hole reveal two major faults that intersect the borehole at two different depth intervals (NSTec report, 2011) and four major joint sets. To evaluate the effect of these discrete structures on the wave forms generated they have performed 2D and 3D analysis with a Lagrangian hydrocode, GEODYN-L that shares the same material models with GEODYN but can explicitly take joints and fault into consideration. They discuss results obtained using these two different approaches in this report.

  5. Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides

    E-Print Network [OSTI]

    New Mexico, University of

    optical fiber taper waveguides Kartik Srinivasan,1, * Andreas Stintz,2 Sanjay Krishna,2 and Oskar Painter1 November 2005 Optical fiber taper waveguides are used to improve the efficiency of room temperature. As a near-field collection optic, the fiber taper improves the collection efficiency from microdisk lasers

  6. OPTICAL BIOPSY: COMPLEMENTING HISTOLOGY WITH NONLINEAR OPTICAL MICROSCOPY

    E-Print Network [OSTI]

    Shafer, Christina

    2006-08-16T23:59:59.000Z

    acquisition from 32 detectors. The initial task competed involved the scanning mechanism; a program was created to control motorized optical scanning mirrors. The next task required a circuit board to be built to interface the detectors with the computer. A...

  7. A robust, scanning quantum system for nanoscale sensing and imaging

    E-Print Network [OSTI]

    P. Maletinsky; S. Hong; M. S. Grinolds; B. Hausmann; M. D. Lukin; R. -L. Walsworth; M. Loncar; A. Yacoby

    2011-08-22T23:59:59.000Z

    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy.

  8. A versatile scanning acoustic platform

    E-Print Network [OSTI]

    N G Parker; P V Nelson; M J W Povey

    2010-02-01T23:59:59.000Z

    We present a versatile and highly configurable scanning acoustic platform. This platform, comprising of a high frequency transducer, bespoke positioning system and temperature-regulated sample unit, enables the acoustic probing of materials over a wide range of length scales and with minimal thermal aberration. In its bare form the platform acts as a reflection-mode acoustic microscope, while optical capabilities are readily incorporated to extend its abilities to the acousto-optic domain. Here we illustrate the capabilities of the platform through its incarnation as an acoustic microscope. Operating at 55 MHz we demonstrate acoustic imaging with a lateral resolution of 25 microns. We outline its construction, calibration and capabilities as an acoustic microscope, and discuss its wider applications.

  9. Vulnerability Scanning Policy 1 Introduction

    E-Print Network [OSTI]

    Vulnerability Scanning Policy 1 Introduction Vulnerability scanning is an important and necessary and can alert system administrators to potentially serious problems. However vulnerability scanning also to compromise system security. The following policy details the conditions under which vulnerability scans may

  10. Resonant bowtie aperture nano-antenna for the control of optical nanocavities resonance

    E-Print Network [OSTI]

    Baida, Fadi Issam

    2015-01-01T23:59:59.000Z

    Scanning Near-field Optical Microscopy (SNOM) has been successful in finely tuning the optical properties of photonic crystal (PC) nanocavities. The SNOM nanoprobes proposed so far allowed for either redshifting or blueshifting the resonance peak of the PC structures. In this Letter, we theoretically demonstrate the possibility of redshifting (up to +0.65nm) and blueshifting (up to $-5$~nm) PC cavity resonance with a single SNOM probe. This probe is obtained by opening a bowtie-aperture nano-antenna (BNA) at the apex of a metal-coated tip. This double-way PC tunability is the result of a competition between the effects of the BNA resonance (induced electric dipole leading to a redshift) and the metal-coated tip (induced magnetic dipole giving rise to a blueshift) onto the PC mode volume. The sign of the spectral shift is modified by simply controlling the tip-to-PC distance. This study opens the way to the full postproduction control of the resonance wavelength of high quality factor optical cavities.

  11. Surface skeleton generation based on 360-degree profile scan

    E-Print Network [OSTI]

    Chen, Lujie

    A rapid prototyping method is invented, which works on a specific data structure produced by an optical metrology technique: 360-degree surface profile scanning. A computer algorithm takes an object profile data, restructure ...

  12. Correlated Topographic and Spectroscopic Imaging by Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Combined Atomic Force Microscopy and Optical Microscopy. Abstract: Near-field scanning microscopy is a powerful approach to obtain topographic and spectroscopic...

  13. Adaptive optics enhanced simultaneous en-face optical coherence tomography

    E-Print Network [OSTI]

    Dainty, Chris

    Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy David Merino and Chris Dainty Applied Optics Group, Department of Experimental Physics, National and Adrian Gh. Podoleanu Applied Optics Group, School of Physical Sciences, University of Kent at Canterbury

  14. Effect of quantum well non-uniformities on lasing threshold, linewidth, and lateral near field filamentation in violet (Al,In)GaN laser diodes

    SciTech Connect (OSTI)

    Jeschke, J.; Zeimer, U.; Redaelli, L.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Kneissl, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Institute of Solid State Physics, Technical University of Berlin, 10623 Belin (Germany)

    2014-10-27T23:59:59.000Z

    The lateral near field patterns and filamentation effects of gain guided broad area (Al,In)GaN-based laser diodes emitting around 415?nm have been investigated. Diodes from the same laser bar, which are close to each other, show nearly the same number and widths of filaments. Comparison of different bars, which are from the same wafer but further apart from each other, reveals that a higher number of filaments correlates with a higher laser threshold and broader spectral linewidth. Cathodoluminescence mappings at 80?K show strong variations of the quantum well band gap and hence of the emission wavelength for the bars with strong filamentation. These observations confirm previous theoretical predictions stating that large band gap fluctuations increase the threshold current and spectral linewidth. Furthermore, filamentation is enhanced as well because of a reduction of the carrier diffusion length.

  15. Plasmon-Induced Optical Field Enhancement studied by Correlated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasmon-Induced Optical Field Enhancement studied by Correlated Scanning and Photoemission Electron Microscopy. Plasmon-Induced Optical Field Enhancement studied by Correlated...

  16. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    SciTech Connect (OSTI)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

    1997-01-30T23:59:59.000Z

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  17. High throughput optical scanner

    DOE Patents [OSTI]

    Basiji, David A. (Seattle, WA); van den Engh, Gerrit J. (Seattle, WA)

    2001-01-01T23:59:59.000Z

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  18. Scanning electron microscopy of cold gases

    E-Print Network [OSTI]

    Santra, Bodhaditya

    2015-01-01T23:59:59.000Z

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  19. Appendix 3 Document Scanning Guidelines Appendix 3 Document Scanning Guidelines

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Appendix 3 Document Scanning Guidelines App.3-1 Appendix 3 ­ Document Scanning Guidelines 1. Turn. Note: Whenever possible, it is best to convert a Word document into a PDF than to scan a document and convert it to a PDF. A Word document that has been converted is searchable; a scanned document is not. 2

  20. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  1. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  2. Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films of

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films in bulk, was studied using differential scanning calorimetry, optical microscopy, magic angle solid were investigated at the molecular level by a combination of multimode scanning force microscopy (SFM

  3. Documentation and Scanning Tips NUFinancials

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Documentation and Scanning Tips NUFinancials Documentation and Scanning Tips 2/6/2014 - RB © 2014 of a transaction (expense reports, online vouchers, journals, or requisitions) that has been scanned and attached. · All relevant backup documentation that is not scanned and attached to the transaction record should

  4. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a dye-sensitization system,... Tip-Enhanced Near-Field Raman Spectroscopy Probing Single Dye-Sensitized TiO2 Nanoparticles. The correlated metallic tip-enhanced Raman spectroscopy...

  5. Direct Nano-Patterning With Nano-Optic Devices 

    E-Print Network [OSTI]

    Meenashi Sundaram, Vijay

    2011-08-08T23:59:59.000Z

    experimental conditions, Si samples after near field laser-material interactions were processed with buffered hydrogen fluoride solution 17 (BHF 7:1) for ten minutes and then scanned again with the AFM. Note that BHF selectively etches silicon dioxide... .................................................................... 17 Figure 5: Nano-patterns generated on silicon using nanosecond laser (a) before etching with BHF (b) after etching with BHF (c) protrusion after 900 laser pulses...

  6. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 2: Effects of THM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste, Germany (7) Canadian Nuclear Safety Commission (CNSC), Ottawa, Canada (8) Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA (9) INERIS-LAEGO, Ecole des Mines de Nancy, Nancy, France (10) Japan Nuclear

  7. A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite

    SciTech Connect (OSTI)

    Nguyen, T.S.; Borgesson, L.; Chijimatsu, M.; Hernelind, J.; Jing, L.; Kobayashi, A.; Rutqvist, J.

    2009-03-01T23:59:59.000Z

    In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100 C, however the load on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems.

  8. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, Warren C. (Knoxville, TN); Blau, Peter J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  9. Scanning micro-sclerometer

    DOE Patents [OSTI]

    Oliver, W.C.; Blau, P.J.

    1994-11-01T23:59:59.000Z

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch. 2 figs.

  10. Reflective optical imaging method and circuit

    DOE Patents [OSTI]

    Shafer, David R. (Fairfield, CT)

    2001-01-01T23:59:59.000Z

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  11. Homodyne scanning holography Joseph Rosen*

    E-Print Network [OSTI]

    Rosen, Joseph

    Homodyne scanning holography Joseph Rosen* Department of Electrical and Computer Engineering, Ben developed a modified version of a scanning holography microscope in which the Fresnel Zone Plates (FZP) are created by a homodyne rather than a heterodyne interferometer. Therefore, during the scanning

  12. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores Graciosa

  13. Synchronisation in Scan-On-Scan-On-Scan I. Vaughan L. Clarkson

    E-Print Network [OSTI]

    Clarkson, Vaughan

    strategy. I. INTRODUCTION Electronic Support (ES) is that area of Electronic Warfare (EW) concerned-on-scan-on-scan' problem, important in Electronic Support. In this paper, the theory of three-way and higher

  14. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06T23:59:59.000Z

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  15. Free motion scanning system

    DOE Patents [OSTI]

    Sword, Charles K. (Pleasant Hills, PA)

    2000-01-01T23:59:59.000Z

    The present invention relates to an ultrasonic scanner system and method for the imaging of a part system, the scanner comprising: a probe assembly spaced apart from the surface of the part including at least two tracking signals for emitting radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of the waves to be reflected from the part, at least one detector for receiving the radiation wherein the detector is positioned to receive the radiation from the tracking signals, an analyzer for recognizing a three-dimensional location of the tracking signals based on the emitted radiation, a differential converter for generating an output signal representative of the waveform of the reflected waves, and a device such as a computer for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe over a complex part surface in an arbitrary scanning pattern.

  16. High Efficiency Oxide-Confined High-Index-Contrast Broad-Area Lasers with Reduced Threshold Current Density and Improved Near-Field Profile

    E-Print Network [OSTI]

    Bowers, John

    High Efficiency Oxide-Confined High-Index-Contrast Broad-Area Lasers with Reduced Threshold Current. The poor lateral electrical and optical confinement, however, make current spreading unavoidable and lead), followed by non-selective O2-enhanced wet thermal oxidation [2] to grow a uniform thickness layer of high

  17. Reflective optical imaging system with balanced distortion

    DOE Patents [OSTI]

    Chapman, Henry N. (Sunol, CA); Hudyma, Russell M. (San Ramon, CA); Shafer, David R. (Fairfield, CT); Sweeney, Donald W. (San Ramon, CA)

    1999-01-01T23:59:59.000Z

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  18. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  19. Continuous scanning mode for ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-01-01T23:59:59.000Z

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  20. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  1. The Use of Infrared Scanning in the Food and Fiber Industry

    E-Print Network [OSTI]

    Kuhn, D. F.

    1980-01-01T23:59:59.000Z

    I " THE USE OF INFRARED SCANNING IN THE FOOD AND FIBER INDUSTRY Dale F. Kuhn Infrared Scanning Inc. Overland Park, Kansas During the nineteenth century came the discovery In the food and fiber industry two extremes that all objects... the fields ing can detect a malfunction before a critical of physics and optics, technologists can convert situation arises. this radiation to an electronic signal and manip- Infrared scanning serves as an excellent tOOl,1 ulate it to solve problems...

  2. Evolution of pulse shapes during compressor scans in a CPA system and control of electron

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Evolution of pulse shapes during compressor scans in a CPA system and control of electron used optical pulse compressor, the grating pair ­ with special emphasis on the pulse skewness and its is the grating pulse compressor. In contrast to the most simplistic view and practice, by scanning the grating

  3. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode- locked fiber. 134(25), 10569­10583 (2012). 4. A. Schmidt, M. Chiesa, X. Chen, and G. Chen, "An optical pump

  4. Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

  5. U-Shaped Nano-Apertures for Enhanced Optical Transmission and Mustafa Turkmen 1,2,3

    E-Print Network [OSTI]

    plasmons, near-field effects, infrared spectroscopy. 1. INTRODUCTION According to classical electrodynamics. In this work, we present experimental and calculated results on optical transmission/reflection of the U to prove the effect of geometry on resonance and enhanced fields. Theoretical calculations of transmission/reflection

  6. Eddy current scanning of niobium for SRF cavities at Fermilab

    SciTech Connect (OSTI)

    Boffo, C.; Bauer, P.; Foley, M.; Antoine, C.; Cooper, C.; /Fermilab; Brinkmann, A.; /DESY

    2006-08-01T23:59:59.000Z

    In the framework of SRF cavity development, Fermilab is creating the infrastructure needed for the characterization of the material used in the cavity fabrication. An important step in the characterization of ''as received'' niobium sheets is eddy current scanning. Eddy current scanning is a non-destructive technique first adopted and further developed by DESY with the purpose of checking the cavity material for subsurface defects and inclusions. Fermilab has received and further upgraded a commercial eddy current scanner previously used for the SNS project. This scanner is now used daily to scan the niobium sheets for the Fermilab third harmonic, the ILC, and the Proton Driver cavities. After optical inspection, more than 400 squares and disks have been scanned and when necessary checked at the optical and electron microscopes, anodized, or measured with profilometers looking for surface imperfections that might limit the performance of the cavities. This paper gives a status report on the scanning results obtained so far, including a discussion of the classification of signals being detected.

  7. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    SciTech Connect (OSTI)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28T23:59:59.000Z

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-?-carotene (?-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute ?-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of ?-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of ?-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of ?-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  8. Reflective optical imaging systems with balanced distortion

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2001-01-01T23:59:59.000Z

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  9. Eddy current scanning at Fermilab

    SciTech Connect (OSTI)

    Boffo, C.; Bauer, P.; Foley, M.; /Fermilab; Brinkmann, A.; /DESY; Ozelis, J.; /Jefferson Lab

    2005-07-01T23:59:59.000Z

    In the framework of SRF cavity development, Fermilab is creating the infrastructure needed for the characterization of the material used in the cavity fabrication. An important step in the characterization of ''as received'' niobium sheets is the eddy current scanning. Eddy current scanning is a non-destructive technique first adopted and further developed by DESY with the purpose of checking the cavity material for sub-surface defects and inclusions. Fermilab has received and further upgraded a commercial eddy current scanner previously used for the SNS project. The upgrading process included developing new filtering software. This scanner is now used daily to scan the niobium sheets for the Fermilab third harmonic and transverse deflecting cavities. This paper gives a status report on the scanning results obtained so far, including a discussion of the typology of signals being detected. We also report on the efforts to calibrate this scanner, a work conducted in collaboration with DESY.

  10. Scanning Transmission Electron Microscopy for Nanostructure

    E-Print Network [OSTI]

    Pennycook, Steve

    152 6 Scanning Transmission Electron Microscopy for Nanostructure Characterization S. J. Pennycook. Introduction The scanning transmission electron microscope (STEM) is an invaluable tool atom. The STEM works on the same principle as the normal scanning electron microscope (SEM), by forming

  11. PARALLEL ION BEAM PROFILE SCAN USING LASER WIRE

    SciTech Connect (OSTI)

    Liu, Yun [ORNL; Aleksandrov, Alexander V [ORNL; Huang, Chunning [ORNL; Long, Cary D [ORNL; Dickson, Richard W [ORNL

    2013-01-01T23:59:59.000Z

    We report on the world s first experiment of a parallel profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed at the superconducting linac of the Spallation Neutron Source (SNS) accelerator complex. The laser wire profile scanner is based on a photo-detachment process and therefore can be conducted on an operational H- beam in a nonintrusive manner. The parallel profile scanning system makes it possible to simultaneously measure profiles of the 1-MW neutron production H- beam at 9 different locations of the linac by using a single light source. This paper describes the design, optical system and software platform development, and measurement results of the parallel profile scanning system.

  12. Electron Spectrometer: Scanning Multiprobe Surface Analysis System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Multiprobe Surface Analysis System - Versaprobe Electron Spectrometer: Scanning Multiprobe Surface Analysis System - Versaprobe The SMSAS is a multi-technique surface...

  13. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  14. Sandia National Laboratories: scanning tunneling microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  15. Optical Distance Measurement Device And Method Thereof

    DOE Patents [OSTI]

    Bowers, Mark W. (Patterson, CA)

    2004-06-15T23:59:59.000Z

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  16. Computer animation via optical video disc

    E-Print Network [OSTI]

    Bender, Walter

    1981-01-01T23:59:59.000Z

    This paper explores the notion of marrying two technologies: raster-scan computer animation and optical video discs. Animated sequences, generated at non real-time rates, then transfered to video disc, can be recalled under ...

  17. Franz Leberl & Michael Gruber PHOTOGRAMMETRIC COLOR SCANNING

    E-Print Network [OSTI]

    Binford, Michael W.

    Franz Leberl & Michael Gruber 231 PHOTOGRAMMETRIC COLOR SCANNING Franz Leberl 1 , Michael Gruber 2 II, WG II/6 KEY WORDS: Photogrammetric scanning systems, color scanning, masked negative film, calibration, density standards, scanner testing ABSTRACT: Scanning of analog image material remains a key

  18. CASE SERIES Scanning Eye Movements in Homonymous

    E-Print Network [OSTI]

    Peli, Eli

    CASE SERIES Scanning Eye Movements in Homonymous Hemianopia Documented by Scanning Laser not be real but instead may be due to an artifact such as scanning eye movement. This article illustrates a way to separate the actual visual field sparing from scanning eye movement artifact by using perimetry

  19. Scanning tunneling microscope nanoetching method

    DOE Patents [OSTI]

    Li, Yun-Zhong (West Lafayette, IN); Reifenberger, Ronald G. (West Lafayette, IN); Andres, Ronald P. (West Lafayette, IN)

    1990-01-01T23:59:59.000Z

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  20. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging

    E-Print Network [OSTI]

    Pohl, Karsten

    An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope of the scanner tube. The total scanning area is about 8 8 m2 . The sample temperature can be adjusted by a few

  1. katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology

    E-Print Network [OSTI]

    katherine henderson Pathology Slide Scanning rev1 Page 1 10/21/14 Scanning in Pathology Pathology offers several scanning methods: · Whole slide scans to be used as virtual microscopy ­ Aperio or Bioimager · Flatbed scans for gels, art work, radiology film, transparencies (12in x 17in max.) · Nikon

  2. Automation of BESSY scanning tables

    E-Print Network [OSTI]

    Hanton, J

    1981-01-01T23:59:59.000Z

    A microprocessor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the microprocessor are: control of spooling of the four asynchronous film winding devices and switching on and off the 4 projection lamps; preprocessing of the data coming from a bipolar coordinates measuring device; bidirectional interchange of information between the operator, the BESSY table and the DEC PDP 11/34 mini computer controlling the scanning operations; control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with the last of these, study is being made for the use of BESSY tables for accurate measurements (+/- 5 microns), by encoding the displacements of the projection lenses. (0 refs).

  3. High Gain, Fast Scan, Broad Spectrum, Parallel Beam Wavelength Dispersive X-ray Spectrometer for SEM

    SciTech Connect (OSTI)

    David OHara; Dr. Eric Lochmer

    2003-09-12T23:59:59.000Z

    Parallax Research, Inc. proposes to produce a new type of x-ray spectrometer for use with Scanning Electron Microscopy (SEM) that would have the energy resolution of WDS and the ease of use of EDS with sufficient gain for lower energies that it can be used at low beam currents as is EDS. Parallax proposes to do this by development of new multiple reflection x-ray collimation optics, new diffractor technology, new detector technology and new scan algorithms.

  4. Convergence analysis in near-field imaging

    E-Print Network [OSTI]

    Gang Bao

    2014-07-24T23:59:59.000Z

    Jul 25, 2014 ... power series in the deformation parameter by using the transformed field and ... deformation parameter, measurement distance, noise level of the ...... Taking the real part, and applying lemma 2.5 and lemma 2.1, we obtain.

  5. Near-field characterization of photonic nanodevices

    E-Print Network [OSTI]

    Abashin, Maxim

    2009-01-01T23:59:59.000Z

    High transmission nanoscale bowtie-shaped aperture probe forlocalize the light spot bowtie or small monopole antennas

  6. SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE

    E-Print Network [OSTI]

    Minnesota, University of

    #12;SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE: LESSONS LEARNED...........................................................................................1 2. PURPOSE OF SCANNING TOUR..........................................................................................................................30 PARTICIPANTS IN SCANNING TOUR SCANNING TOUR HOSTS #12;Scanning Tour Summary Report 1 October 20

  7. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  8. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  9. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bharadwaj, Nitin; Widener, Kevin

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  10. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  11. Three-dimensional scanning confocal laser microscope

    DOE Patents [OSTI]

    Anderson, R. Rox (Lexington, MA); Webb, Robert H. (Lincoln, MA); Rajadhyaksha, Milind (Charlestown, MA)

    1999-01-01T23:59:59.000Z

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  12. Scanning Options at the MSU Libraries

    E-Print Network [OSTI]

    Scanning Options at the MSU Libraries The Main Library, Engineering Library and Gast Business Library each have scanning services available. Service hours for each location are available at lib scanned copies of non-electronic journal articles and individual book chapters that the MSU Libraries own

  13. Understanding Localized-Scanning Worms Zesheng Chen

    E-Print Network [OSTI]

    Ji, Chuanyi

    Understanding Localized-Scanning Worms Zesheng Chen School of Electrical & Computer Engineering Email: jic@ece.gatech.edu Abstract-- Localized scanning is a simple technique used by attackers to search for vulnerable hosts. Localized scanning trades off between the local and the global search

  14. Optimal worm-scanning method using

    E-Print Network [OSTI]

    Ji, Chuanyi

    Optimal worm-scanning method using vulnerable-host distributions Zesheng Chen and Chuanyi Ji School}@ece.gatech.edu Abstract: Most Internet worms use random scanning. The distribution of vulnerable hosts on the Internet, however, is highly non-uniform over the IP-address space. This implies that random scanning wastes many

  15. Automatic building modeling from terrestrial laser scanning

    E-Print Network [OSTI]

    Pu, Shi

    Automatic building modeling from terrestrial laser scanning Shi Pu International Institute for Geo hard to recover 3D building structures from 2D image. Recent studies ([2] [6]) show that laser scanning imagery, airborne and terrestrial laser scanning give explicit 3D information, which enables the rapid

  16. Scanning/Transmission Electron Microscopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffectsScanning/Transmission Electron Microscopes

  17. Fast scanning mode and its realization in a scanning acoustic microscope

    SciTech Connect (OSTI)

    Ju Bingfeng; Bai Xiaolong; Chen Jian [The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027 (China)

    2012-03-15T23:59:59.000Z

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  18. Method for producing damage resistant optics

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Burnham, Alan K. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Brusasco, Raymond M. (Livermore, CA); Wegner, Paul J. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Kozlowski, Mark R. (Windsor, CA); Feit, Michael D. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.

  19. EXPERIMENT #3 REFLECTANCE SPECTROSCOPY We will use the reflectance attachment and fiber optics OceanOptics spectrophotometer to

    E-Print Network [OSTI]

    Nazarenko, Alexander

    EXPERIMENT #3 REFLECTANCE SPECTROSCOPY We will use the reflectance attachment and fiber optics OceanOptics spectrophotometer to measure the reflectance spectrum of several paint samples in the special optically flat-bottomed cell so that the bottom is completely covered. Scan the reflectance

  20. Scanning Tunneling Microscopy currents on locally disordered graphene

    E-Print Network [OSTI]

    Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

    2009-01-01T23:59:59.000Z

    Scanning Tunneling Microscopy currents on locally disorderedcharacteristic curves of Scanning Tunneling Microscopy (STM)for the calculation of Scanning Tunneling Microscopy (STM)

  1. Methodology for assessing coastal change using terrestrial laser scanning

    E-Print Network [OSTI]

    Olsen, Michael J.

    2009-01-01T23:59:59.000Z

    Michelangelo Project: 3D Scanning of Large Statues,” Proc.for terrestrial laser scanning of long cliff sections inPress). Terrestrial laser scanning based structural damage

  2. Scanning Tunneling Spectroscopy of Graphene and Magnetic Nanostructures

    E-Print Network [OSTI]

    Brar, Victor Watson

    2010-01-01T23:59:59.000Z

    C. J. Chen, Introduction to Scanning Tunneling Microscopy (Scanning Tunneling Spectroscopy of Graphene and MagneticAli Javey Fall 2010 Scanning Tunneling Spectroscopy of

  3. Methodology for assessing coastal change using terrestrial laser scanning

    E-Print Network [OSTI]

    Olsen, Michael James

    2009-01-01T23:59:59.000Z

    for terrestrial laser scanning of long cliff sections inPress). Terrestrial laser scanning based structural damageresolution 3d laser scanning to slope stability studies. ”

  4. Sustainable Transportation: Findings from an International Scanning Review

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2006-01-01T23:59:59.000Z

    FROM AN INTERNATIONAL SCANNING REVIEW AND INIPLICATIONS FORpart through an international scanning tour funded by the USThe group that conducted the scanning tour contributed ideas

  5. Scanning strategies for imaging arrays

    E-Print Network [OSTI]

    A. Kovacs

    2008-06-30T23:59:59.000Z

    Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage -- all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

  6. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    SciTech Connect (OSTI)

    Sun, Wei

    2010-12-15T23:59:59.000Z

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

  7. Scanning thermoacoustic tomography in biological tissue Geng Ku and Lihong V. Wanga)

    E-Print Network [OSTI]

    Wang, Lihong

    Scanning thermoacoustic tomography in biological tissue Geng Ku and Lihong V. Wanga) Optical-induced thermoacoustic tomography was explored to image biological tissue. Short microwave pulses irradiated tissue to generate acoustic waves by thermoelastic expansion. The microwave-induced thermoacoustic waves were

  8. Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity

    E-Print Network [OSTI]

    Chan, Jasper; Camacho, Ryan; Painter, Oskar

    2008-01-01T23:59:59.000Z

    Design of a doubly-clamped beam structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which patterning of a nanoscale-cross-section beam can result in strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths ((\\lambda_{c})^3). By placing two identical nanobeams within the near field of each other, strong optomechanical coupling can be realized for differential motion between the beams. Current designs for thin film silicon nitride beams at a wavelength of 1.5 microns indicate that such structures can simultaneously realize an optical Q-factor of 7x10^6, motional mass m~40 picograms, mechanical mode frequency ~170 MHz, and an optomechanical coupling factor (g_{OM}=d\\omega_{c}/dx = \\omega_{c}/L_{OM}) with effective length L_{OM} ~ \\lambda = 1.5 microns.

  9. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect (OSTI)

    Rejeena, I. [International School of Photonics, Cochin University of Science and Technology, Cochin Kerala, India and M.S.M. College, Kayamkulam, Kerala (India); Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P. [International School of Photonics, Cochin University of Science and Technology, Cochin Kerala (India); Rahimkutty, M. H. [M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15T23:59:59.000Z

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  10. North RTL grid scan'' studies

    SciTech Connect (OSTI)

    Emma, P.

    1990-10-17T23:59:59.000Z

    This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs.

  11. Nanomaterials Analysis using a Scanning Electron Microscope ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomaterials Analysis using a Scanning Electron Microscope Technology available for licensing: Steradian X-ray detection system increases the detection capability of SEMs during...

  12. Scanning Probe AFM Compound Microscope | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe AFM Compound Microscope Scanning Probe AFM Compound Microscope The atomic force microscope (AFM) compound microscope is designed primarily for fluorescence imaging in the...

  13. Imaging - Clearer brain scans ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging - Clearer brain scans ... A clever signal noise reduction strategy developed by a team that includes Oak Ridge National Laboratory's Ben Lawrie could dramatically improve...

  14. Fiber optic compass development

    E-Print Network [OSTI]

    Park, Kyongtae

    2005-11-01T23:59:59.000Z

    is illustrated schematically in Fig. 3-1. The light source is an erbium doped fiber (EDF) laser in the ring configuration [11-12]. Total amplified spontaneous emission (ASE) power is 7 mW at 45 mW pump power. The laser is spectrally scanned in the 1525 ~ 1565... optic modulator and amplified by a commercial erbium- doped fiber amplifier (EDFA). The spectrum of the laser after amplification at 6 different wavelengths is shown in Fig. 3-3. After amplification, the light passes through a fiber coupler...

  15. City of College Station's Thermographic Mobile Scan

    E-Print Network [OSTI]

    Shear, C. K.

    1986-01-01T23:59:59.000Z

    During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

  16. 13:30-14:45 Octreotide Scan

    E-Print Network [OSTI]

    Wu, Yih-Min

    ; CT MRI RFA PET Octreotide Scan 24 #12;? ? · 1. ! ! · 2 2012-09-21 13:30-14:45 #12; 1. 2. 3. -, 4. 4. 5. 6. - 7. 8. Q&A #12; CT MRI RFA PET Octreotide Scan 24 #12; 2006 McGraw-Hill Higher Education

  17. Scanning tunneling microscope assembly, reactor, and system

    DOE Patents [OSTI]

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18T23:59:59.000Z

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  18. Near-field microscopy maps semiconductors Near-field microscopy maps semiconductors

    E-Print Network [OSTI]

    technology is new, the combination represents a potentially important advance in high-resolution thermography

  19. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

    2001-01-01T23:59:59.000Z

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  20. Fast scanning two-photon microscopy

    E-Print Network [OSTI]

    Chang, Jeremy T

    2010-01-01T23:59:59.000Z

    Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

  1. Scanning Transmission Electron Microscopy Investigations of Complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

  2. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, Daniel L. (Albuquerque, NM); Tangyunyong, Paiboon (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  3. Scanning fluorescent microthermal imaging apparatus and method

    DOE Patents [OSTI]

    Barton, D.L.; Tangyunyong, P.

    1998-01-06T23:59:59.000Z

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  4. adaptive optics views: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optics views First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design of an Adaptive Scanning Optical...

  5. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect (OSTI)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01T23:59:59.000Z

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  6. Scanning Gate Spectroscopy and Its Application to Carbon Nanotube Defects

    E-Print Network [OSTI]

    Collins, Philip G

    2011-01-01T23:59:59.000Z

    24) Sarid, D. Exploring Scanning Probe Microscopy withS. V. ; Gruverman, A. Scanning probe microscopy: electricalLETTER pubs.acs.org/NanoLett Scanning Gate Spectroscopy and

  7. Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni,

    E-Print Network [OSTI]

    Dalang, Robert C.

    Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni, Graham Knott. Scanning Electron Microscopy (SEM) is an invaluable tool for biologists and neuroscientists to study brain earlier methods, we explicitly balance the conflicting requirements of spending enough time scanning

  8. Scanning probe characterization of novel semiconductor materials and devices

    E-Print Network [OSTI]

    Zhou, Xiaotian

    2007-01-01T23:59:59.000Z

    InGaN/GaN quantum wells by scanning capacitance microscopywell heterostructures by scanning capacitance microscopy”InGaN/GaN quantum wells by scanning capacitance microscopy”

  9. All-codon scanning identifies p53 cancer rescue mutations

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    interactions by alanine-scanning mutagenesis. Science, 244,10.1093/nar/gkq571 All-codon scanning identifies p53 cancer2010 ABSTRACT In vitro scanning mutagenesis strategies are

  10. An environmental sample chamber for reliable scanning transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor. An environmental sample chamber for reliable scanning transmission...

  11. A New Interpretation of the Scanning Tunneling Microscope Image...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpretation of the Scanning Tunneling Microscope Image of Graphite. A New Interpretation of the Scanning Tunneling Microscope Image of Graphite. Abstract: In this work,...

  12. Subsurface Examination of a Foliar Biofilm Using Scanning Electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam...

  13. CFN | Hitachi HD2700C Scanning Transmission Electron Microscope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hitachi HD2700C Scanning Transmission Electron Microscope Contacts: Dong Su | Lihua Zhang | Huolin Xin The Hitachi 2700C is a dedicated Scanning Transmission Electron Microscope...

  14. affecting electronically scanned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: Middle Drive, Knoxville, TN 37996 The scanning electron microscope (SEM) has long been used-chamber scanning...

  15. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    SciTech Connect (OSTI)

    Lumpkin, Alex H.; /Fermilab

    2010-08-01T23:59:59.000Z

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  16. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

  17. Optimal alignment of mirror based pentaprisms for scanning deflectometric devices

    SciTech Connect (OSTI)

    Barber, Samuel K.; Geckeler, Ralf D.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2011-03-04T23:59:59.000Z

    In the recent work [Proc. of SPIE 7801, 7801-2/1-12 (2010), Opt. Eng. 50(5) (2011), in press], we have reported on improvement of the Developmental Long Trace Profiler (DLTP), a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory, achieved by replacing the bulk pentaprism with a mirror based pentaprism (MBPP). An original experimental procedure for optimal mutual alignment of the MBPP mirrors has been suggested and verified with numerical ray tracing simulations. It has been experimentally shown that the optimally aligned MBPP allows the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of the bulk pentaprism. In the present article, we provide the analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror based pentaprisms. We also provide an analytical description for the mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices.

  18. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OF HIGH-STRENGTH SILICON CARBIDES

    E-Print Network [OSTI]

    Krivanek, O.L.

    2012-01-01T23:59:59.000Z

    Society HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFCalifornia. HIGH RESOLUTION SCANNING AUGER MICROANALYSIS OFhelium, by high resolution scanning Auger microanalysis and

  19. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  20. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, G.W.

    1996-10-22T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  1. Scanning and storage of electrophoretic records

    DOE Patents [OSTI]

    McKean, Ronald A. (Royal Oak, MI); Stiegman, Jeff (Ann Arbor, MI)

    1990-01-01T23:59:59.000Z

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  2. Importance-Scanning Worm Using Vulnerable-Host Distribution

    E-Print Network [OSTI]

    Ji, Chuanyi

    Importance-Scanning Worm Using Vulnerable-Host Distribution Zesheng Chen School of Electrical scanning. The distribution of vulnerable hosts on the Internet, however, is highly non- uniform over the IP-address space. This implies that random scanning wastes many scans on invulnerable addresses, and more virulent

  3. A new screen scanning system based on clustering screen objects

    E-Print Network [OSTI]

    Robinson, Peter

    A new screen scanning system based on clustering screen objects Pradipta Biswas Research Student with a computer through one or two switches with the help of a scanning mechanism. In this paper we present a new scanning technique based on clustering screen objects and then compare it with two other scanning systems

  4. Simultaneous Operation of Multiple Collocated Radios and the Scanning Problem

    E-Print Network [OSTI]

    Barbeau, Michel

    Simultaneous Operation of Multiple Collocated Radios and the Scanning Problem Michel Barbeau. The radio interface scans channels to uncover beacons periodically sent by transmitters. The goal of the scanning activity is to uncover the beacons within the shortest possible time. We call this the scanning

  5. Universal Scanning and Sequential Decision Making for Multidimensional Data

    E-Print Network [OSTI]

    Weissman, Tsachy

    Universal Scanning and Sequential Decision Making for Multidimensional Data Asaf Cohen Department in scanning of multidimensional data arrays, such as universal scanning and prediction ("scandiction, it is natural to ask what is the optimal method to scan and predict a given image, what is the resulting minimum

  6. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  7. PNNL SA 95506 Scan to learn more

    E-Print Network [OSTI]

    PNNL SA 95506 Scan to learn more www.pnnl.gov At Pacific Northwest National Laboratory, we are transforming the world through courageous discovery and innovation. The evidence is all around us. PNNL called PNNL) developed the standards and devices for setting and measuring radiation doses received

  8. Department of Transportation I. Internal Scan

    E-Print Network [OSTI]

    Tipple, Brett

    Department of Transportation I. Internal Scan The number of older drivers in the United States-driver basis, older adults are among the safest. The average annual number of crashes in the United States million vehicle miles traveled (MVMT), drivers over the age of 75 have a fatality rate of 3.7 deaths per

  9. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19T23:59:59.000Z

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  10. Department of Health I. Internal Scan

    E-Print Network [OSTI]

    Tipple, Brett

    and cholesterol; and working with consumers, health plans and providers to improve the quality of care and other non- institutional settings. CURRRENT PLANS: The Division of Health care Financing has been takingDepartment of Health I. Internal Scan There are a variety of areas that will be impacted

  11. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

  12. Laser scanning system for object monitoring

    DOE Patents [OSTI]

    McIntyre, Timothy James [Knoxville, TN; Maxey, Lonnie Curtis [Powell, TN; Chiaro, Jr; John, Peter [Clinton, TN

    2008-04-22T23:59:59.000Z

    A laser scanner is located in a fixed position to have line-of-sight access to key features of monitored objects. The scanner rapidly scans pre-programmed points corresponding to the positions of retroreflecting targets affixed to the key features of the objects. The scanner is capable of making highly detailed scans of any portion of the field of view, permitting the exact location and identity of targets to be confirmed. The security of an object is verified by determining that the cooperative target is still present and that its position has not changed. The retroreflecting targets also modulate the reflected light for purposes of returning additional information back to the location of the scanner.

  13. Macroscopic model of scanning force microscope

    DOE Patents [OSTI]

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05T23:59:59.000Z

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  14. Controlled Growth of ZnO Nanowires and Their Optical Properties**

    E-Print Network [OSTI]

    Yang, Peidong

    , Samuel Mao, Richard Russo, Justin Johnson, Richard Saykally, Nathan Morris, Johnny Pham, Rongrui He-field scanning optical microscopy (NSOM) studies on single nanowires. ± [*] Prof. P. Yang, H. Yan, J. Johnson

  15. Systematic Sampling of Scanning Lidar Swaths

    E-Print Network [OSTI]

    Marcell, Wesley Tyler

    2011-02-22T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Marian Eriksson Sorin Pospescu Committee Members, Cristine Morgan Ross Nelson Head of Department, Steven Whisenant December 2009 Major Subject: Forestry... iii ABSTRACT Systematic Sampling of Scanning Lidar Swaths. (December 2009) Wesley Tyler Marcell, B.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. Marian Eriksson Dr. Sorin...

  16. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  17. T3PS: Tool for Parallel Processing in Parameter Scans

    E-Print Network [OSTI]

    Maurer, Vinzenz

    2015-01-01T23:59:59.000Z

    T3PS is a program that can be used to quickly design and perform parameter scans while easily taking advantage of the multi-core architecture of current processors. It takes an easy to read and write parameter scan definition file format as input. Based on the parameter ranges and other options contained therein, it distributes the calculation of the parameter space over multiple processes and possibly computers. The derived data is saved in a plain text file format readable by most plotting software. The supported scanning strategies include: grid scan, random scan, Markov Chain Monte Carlo, numerical optimization. Several example parameter scans are shown and compared with results in the literature.

  18. Optical coupler

    DOE Patents [OSTI]

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15T23:59:59.000Z

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  19. Optical analyzer

    DOE Patents [OSTI]

    Hansen, A.D.

    1987-09-28T23:59:59.000Z

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  20. Optical memory

    DOE Patents [OSTI]

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02T23:59:59.000Z

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  1. Optical switch

    DOE Patents [OSTI]

    Reedy, R.P.

    1987-11-10T23:59:59.000Z

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  2. Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    E-Print Network [OSTI]

    Winston, Donald

    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article ...

  3. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast

    E-Print Network [OSTI]

    Wang, Lihong

    Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast Geng Ku Scanning thermoacoustic tomography was explored in the microwave region of the electromagnetic spectrum ultrasonic transducer detected the time-resolved thermoacoustic signals. Based on the microwave

  4. Toward nano-accuracy in scanning beam interference lithography

    E-Print Network [OSTI]

    Montoya, Juan, 1976-

    2006-01-01T23:59:59.000Z

    Scanning beam interference lithography is a technique developed in our laboratory which uses interfering beams and a scanning stage to rapidly pattern gratings over large areas (300x300 mm2) with high precision. The ...

  5. Design and Construction of a Low Temperature Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Chen, Chi

    2010-10-12T23:59:59.000Z

    A low temperature scanning tunneling microscope (LTSTM) was built that we could use in an ultra high vacuum (UHV) system. The scanning tunneling microscope (STM) was tested on an existing 3He cryostat and calibrated at room, liquid nitrogen...

  6. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26T23:59:59.000Z

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  7. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect (OSTI)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01T23:59:59.000Z

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  8. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    SciTech Connect (OSTI)

    Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A. [Vienna Center for Quantum Science and Technology, TU Wien—Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2014-04-21T23:59:59.000Z

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  9. nanostructures: Theoretical

    E-Print Network [OSTI]

    Zimmermann, Roland

    for the interpretation of optical measurements. The focus is on spatially resolved spectroscopy, such as micro photoluminescence (¯­PL) and near­field scanning optical microscopy (NSOM). A related technique which al­ lows be derived [5] : ` \\Gamma ¯ h 2 \\DeltaR 2MX +v(R) ' /ff (R) = Eff /ff (R) : (2.1) Here a factorization

  10. prsente par Blandine Romain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the interpretation of optical measurements. The focus is on spatially resolved spectroscopy, such as micro photoluminescence (¯­PL) and near­field scanning optical microscopy (NSOM). A related technique which al­ lows be derived [5] : ` \\Gamma ¯ h 2 \\DeltaR 2MX +v(R) ' /ff (R) = Eff /ff (R) : (2.1) Here a factorization

  11. Hadamard multimode optical imaging transceiver

    DOE Patents [OSTI]

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30T23:59:59.000Z

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  12. Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration

    SciTech Connect (OSTI)

    Wolthaus, J. W. H.; Sonke, J.-J.; Herk, M. van; Damen, E. M. F. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2008-09-15T23:59:59.000Z

    Purpose: lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. Methods and Materials: 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Results: Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods <0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of 'shape differences' was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. Conclusions: We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.

  13. FDF: Frequency Detection-Based Filtering of Scanning Worms

    E-Print Network [OSTI]

    Bahk, Saewoong

    FDF: Frequency Detection-Based Filtering of Scanning Worms Byungseung Kim and Saewoong Bahk School@korea.ac.kr Abstract-- In this paper, we propose a simple algorithm for detecting scanning worms with high detection characteristic of scanning worms from a monitored network. Its low complexity allows it to be used on any network

  14. SCANNING TUNNELING MICROSCOPE ASSEMBLY INSTRUCTIONS FOR NANOSCOPE II

    E-Print Network [OSTI]

    SCANNING TUNNELING MICROSCOPE ASSEMBLY INSTRUCTIONS FOR NANOSCOPE II 1) Set monitor #1 on top side of the able. 3) Set the keyboard on top and front of the computer. 4) Set the scanning head on gel into the scanning head. 12) Suspend bungee cords, as necessary, from a secure point in the ceiling. 13) Fasten onto

  15. Rapid mapping of protein functional epitopes by combinatorial alanine scanning

    E-Print Network [OSTI]

    Weiss, Gregory A.

    Rapid mapping of protein functional epitopes by combinatorial alanine scanning Gregory A. Weiss for review March 2, 2000) A combinatorial alanine-scanning strategy was used to determine simultaneously previously determined by conventional alanine-scanning mutagenesis and suggest that this technology should

  16. IEEE 802.11 scanning algorithms: cross-layer experiments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IEEE 802.11 scanning algorithms: cross-layer experiments German Castignani (Télécom Bretagne.11 Scanning Algorithms: Cross-Layer Experiments German Castignani1 , Nicolas Montavont1 , Andr´es Arcia-Moret2 scanning functions. For both, timers are usually constant (within the 802.11 driver

  17. CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING

    E-Print Network [OSTI]

    Marco, Shmuel "Shmulik"

    CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING Sagi Filin1 , Amit@tau.ac.il Commission VIII/8 KEY WORDS: Airborne laser scanning, Geomorphology, Dead Sea, Land Degradation, Sinkholes of collapse sinkholes in high resolution using airborne laser scanning technology. As a study case, we use

  18. Computer-intensive rate estimation, diverging statistics, and scanning

    E-Print Network [OSTI]

    Politis, Dimitris N.

    Computer-intensive rate estimation, diverging statistics, and scanning Tucker McElroy U.S. Bureau in a very general setting without requiring the choice of a tun- ing parameter. The notion of scanning method is ap- plied to different scans, and the resulting estimators are then combined to improve

  19. Image Scanning Microscopy Claus B. Muller and Jorg Enderlein*

    E-Print Network [OSTI]

    Enderlein, Jörg

    Image Scanning Microscopy Claus B. Mu¨ller and Jo¨rg Enderlein* III. Institute of Physics, Georg microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral

  20. 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra example the subject's face could be rapidly scanned while his or her smart-card ID is being examined, and the system could then match the scan with data on the ID); (b) identification at a secure site or even

  1. Analysing PET scans data for predicting response to chemotherapy in

    E-Print Network [OSTI]

    Sleeman, Derek

    (CT1, CT2,. . .) and PET scans (PT1 to PT4). cancer cells tend to grow more rapidly than other tissueAnalysing PET scans data for predicting response to chemotherapy in breast cancer patients Elias the use of Positron Emission Tomography (PET) [11, 13]. PET scans can be used to visualise

  2. Circular zig-zag scan video format

    DOE Patents [OSTI]

    Peterson, C.G.; Simmons, C.M.

    1992-06-09T23:59:59.000Z

    A circular, ziz-zag scan for use with vidicon tubes is disclosed. A sine wave is generated, rectified and its fourth root extracted. The fourth root, and its inverse, are used to generate horizontal ramp and sync signals. The fourth root is also used to generate a vertical sync signal, and the vertical sync signal, along with the horizontal sync signal, are used to generate the vertical ramp signal. Cathode blanking and preamplifier clamp signals are also obtained from the vertical sync signal. 10 figs.

  3. ScanArc ASA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°, -122.0230146° ShowSavannahSavvasScanArc

  4. WorldScan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters Jump to:Technologies IncWorldScan

  5. H2Scan LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon State - LandScan LLC Jump

  6. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cureEnergy StorageRapid Scan

  7. Sandia Energy - Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Optics Home Energy Research EFRCs Solid-State Lighting Science EFRC Quantum Optics Quantum OpticsTara Camacho-Lopez2015-03-30T16:37:03+00:00 Quantum Optics with a Single...

  8. Scan welding: Thermomechanical model and experimental validation

    SciTech Connect (OSTI)

    Fourligkas, N.; Doumanidis, C.C. [Tufts Univ., Medford, MA (United States)

    1996-12-31T23:59:59.000Z

    This article presents a comparative thermomechanical analysis of classical versus the new scan welding methods, that have been recently developed to achieve simultaneous control of multiple weld quality features. Unlike conventional welding with a concentrated heat source in sequential motion, the scan welding torch reciprocates rapidly on dynamic trajectories, and its power is modulated in-process, to provide a regulated heat input distribution on the entire weld surface. The new process was modeled by a real-time analytical, lumped model, consisting of a composite heat source description, double-cell circulation in the weld puddle, dynamic solid conduction and estimation of the mechanical strength of the joint. The process is computationally and experimentally shown to generate a smooth and uniform temperature field, and to deposit the full length of the weld bead simultaneously at a controlled solidification rate. The observed interlacing of grains on the bead interface and the regulated material microstructure yield improved tensile joint strength. The model can be used for design of a closed-loop thermal controller, using temperature feedback from an infrared pyrometer and model-referenced parameter identification.

  9. Library Scanning Service for Academic The University subscribes to the Copyright Licensing Agency's (CLA) photocopying and scanning licence for higher

    E-Print Network [OSTI]

    Rzepa, Henry S.

    Library Scanning Service for Academic Staff The University subscribes to the Copyright Licensing Agency's (CLA) photocopying and scanning licence for higher education. This grants library staff as the material meets the terms of the Licence. What can be scanned? Printed material in the Library

  10. Scanning using the Axon GenePix scanner Time on the scanner is scheduled for both scanning and data

    E-Print Network [OSTI]

    Grünwald, Niklaus J.

    1 5/15/07 Scanning using the Axon GenePix scanner Time on the scanner is scheduled for both scanning and data extraction tasks at http://calendar.oregonstate.edu/cgrb-genepix/. To reserve time scanning. Turn on the scanner using the toggle switch (low center on the back of the instrument). Turn

  11. The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling

    E-Print Network [OSTI]

    Van Vliet, Krystyn J.

    The AFM was originally developed as an adaptation of another scanning probe microscopy technology, the scanning tunneling microscope, to image nonconductive materials through direct physical contact between-scale displacement resolutions of the AFM enable the topographical scanning of mechanically compliant materials

  12. Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy

    SciTech Connect (OSTI)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-20T23:59:59.000Z

    Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

  13. Parallel optical sampler

    DOE Patents [OSTI]

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20T23:59:59.000Z

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  14. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    E-Print Network [OSTI]

    Kimura, Hikari

    2010-01-01T23:59:59.000Z

    Title Josephson scanning tunneling microscopy – a local andthe sample using a novel scanning tunneling microscope (STM)discussed. I. INTRODUCTION Scanning tunneling microscopy (

  15. Scanning X-ray Microscopy Investigations into the Electron Beam Exposure Mechanism of Hydrogen Silsesquioxane Resists

    E-Print Network [OSTI]

    Olynick, Deirdre L.; Tivanski, Alexei V.; Gilles, Mary K.; Tyliszczak, Tolek; Salmassi, Farhad; Liddle, J. Alexander

    2006-01-01T23:59:59.000Z

    Scanning X-ray Microscopy Investigations into the Electronchemistry is investigated by Scanning Transmission X-raythe area exposed. 15 Recently, scanning transmission x-ray

  16. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC INVESTIGATION OF INTERGRANULAR FRACTURE IN AS-QUENCHED Fe-12Mn

    E-Print Network [OSTI]

    Lee, H.J.

    2013-01-01T23:59:59.000Z

    contents in Fe-Mn alloys. Scanning electron fractographsTransactions HIGH RESOLUTION SCANNING AUGER MICROSCOPICof Califomia. HIGH RESOLUTION SCANNING AUGER MICROSCOPIC

  17. Development of a Scanning Probe Microscope and Studies of Graphene Grown on Copper

    E-Print Network [OSTI]

    Rasool, Haider Imad

    2012-01-01T23:59:59.000Z

    1: INTRODUCTION 1.1. BRIEF DISCUSSION OF SCANNING PROBEhighly stable electrochemical scanning probe microscope forincorporated it into a scanning probe microscope, performed

  18. Particle Formation from Pulsed Laser Irradiation of Soot Aggregates studied with scanning

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    incandescence method with scanning mobility particle sizerAde, "Interferometer-controlled scanning transmission X-rayto hamiche@ca.sandia.gov A scanning mobility particle sizer

  19. Ultrafast optics For optics and photonics course,

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    ultrafast and ultrashort generally describe pulses of widths in the nanosecond to femtosecond, or shorterUltrafast optics For optics and photonics course, Spring 2012 By :Alireza Moheghi Ultrafast optics, regimes. · Interest in ultrashort optical pulses began with the invention of the laser, · Ultrashort

  20. Towards a warped inflationary brane scanning

    E-Print Network [OSTI]

    Heng-Yu Chen; Jinn-Ouk Gong

    2009-08-31T23:59:59.000Z

    We present a detailed systematics for comparing warped brane inflation with the observations, incorporating the effects of both moduli stabilization and ultraviolet bulk physics. We explicitly construct an example of the inflaton potential governing the motion of a mobile D3 brane in the entire warped deformed conifold. This allows us to precisely identify the corresponding scales of the cosmic microwave background. The effects due to bulk fluxes or localized sources are parametrized using gauge/string duality. We next perform some sample scannings to explore the parameter space of the complete potential, and first demonstrate that without the bulk effects there can be large degenerate sets of parameters with observationally consistent predictions. When the bulk perturbations are included, however, the observational predictions are generally spoiled. For them to remain consistent, the magnitudes of the bulk effects need to be highly suppressed via fine tuning.

  1. Optics and Optical Engineering Program Assessment Plan Program Learning Objectives

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Optics and Optical Engineering Program Assessment Plan Program Learning, and processes that underlie optics and optical engineering. 2. Strong understanding of the fundamental science, mathematics, and processes that underlie optics and optical

  2. Optical microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-01-11T23:59:59.000Z

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  3. Optical devices

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn Jr., William A.

    2010-07-13T23:59:59.000Z

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  4. Optical microfluidics

    SciTech Connect (OSTI)

    Kotz, K.T.; Noble, K.A.; Faris, G.W. [Molecular Physics Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (United States)

    2004-09-27T23:59:59.000Z

    We present a method for the control of small droplets based on the thermal Marangoni effect using laser heating. With this approach, droplets covering five orders of magnitude in volume ({approx}1.7 {mu}L to 14 pL), immersed in decanol, were moved on an unmodified polystyrene surface, with speeds of up to 3 mm/s. When two droplets were brought into contact, they spontaneously fused and rapidly mixed in less than 33 ms. This optically addressed microfluidic approach has many advantages for microfluidic transport, including exceptional reconfigurability, low intersample contamination, large volume range, extremely simple substrates, no electrical connections, and ready scaling to large arrays.

  5. Direct-Write Piezoelectric Nanogenerator by Near-Field Electrospinning

    E-Print Network [OSTI]

    Chang, Chieh

    2009-01-01T23:59:59.000Z

    P. Jacob, “Harvesting ocean wave energy,” Science, vol. 323,ocean waves, into electricity [1,2] to small-scale energy

  6. Near-Field Focused Photoemission from Polystyrene Microspheres...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron microscopy (PEEM) to image 3 ?m diameter polystyrene spheres supported on a metal thin film illuminated by 400 nm (?3.1 eV) and 800 nm (?1.5 eV) femtosecond...

  7. Near-Field Imaging of Interior Cavities 1 Introduction

    E-Print Network [OSTI]

    2014-10-21T23:59:59.000Z

    The scattering data is taken on a circle centered at the source. The ... where a>0 is the base radius and f(?) is the cavity surface function. We assume that f is.

  8. NEAR-FIELD RECEIVING WATER MONITORING OF A BENTHIC

    E-Print Network [OSTI]

    CONTROL PLANT IN SOUTH SAN FRANCISCO BAY: FEBRUARY 1974 THROUGH DECEMBER 2003 By Michelle K. Shouse ..........................................................................................................B 3 #12;FIGURES Figure 1. Map of sampling station located on Sand Point in Palo Alto in South San Francisco Bay with the location of Palo Alto Regional Water Quality Control Plant (PARWQCP) effluent noted

  9. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-11-06T23:59:59.000Z

    and sensors. Depending on the ... method in order to capture fine structures of grating profiles with multiple ..... For the stability test, some relative random ... g only contains a couple of low Fourier modes. .... will report the results elsewhere.

  10. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-08-29T23:59:59.000Z

    Aug 29, 2013 ... reflective interfaces, beam splitters, and sensors. De- pending on the ... capture fine structures of grating profiles with multi- ..... grating profile func- tion g only contains a couple of low Fourier modes. ... We considered two exam- ples, one of ... tions should be considered, and will report the results elsewhere.

  11. Near-field imaging of perfectly conducting grating surfaces

    E-Print Network [OSTI]

    2013-11-06T23:59:59.000Z

    We consider the diffraction when a time-harmonic electro- magnetic plane wave is ... ness and stability for the inverse problem have been studied by many ...

  12. Near-field imaging of quantum cascade laser transverse modes

    E-Print Network [OSTI]

    . Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near

  13. INVERSE ELASTIC SURFACE SCATTERING WITH NEAR-FIELD ...

    E-Print Network [OSTI]

    2015-03-20T23:59:59.000Z

    reconstruction formulas are derived for two types of measurement data. The method ... can penetrate the surface into the substrate, as well as the obstacle problem where the surface is bounded and .... Let us first specify the problem geometry.

  14. Multi-level scanning method for defect inspection

    DOE Patents [OSTI]

    Bokor, Jeffrey (Oakland, CA); Jeong, Seongtae (Richmond, CA)

    2002-01-01T23:59:59.000Z

    A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.

  15. Scanning Probe Direct-Write of Germanium Nanostructures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probe Direct-Write of Germanium Nanostructures. Scanning Probe Direct-Write of Germanium Nanostructures. Abstract: Bottom-up nanostructure synthesis has played a pivotal role in...

  16. Variable-ambient scanning stage for a laser scanning confocal microscope D. J. Sirbuly, J. P. Schmidt, M. D. Mason, M. A. Summers, and S. K. Burattoa)

    E-Print Network [OSTI]

    Buratto, Steve

    Variable-ambient scanning stage for a laser scanning confocal microscope D. J. Sirbuly, J. P A variable-ambient scanning stage for a laser scanning confocal microscope was designed and tested. The stage attempts to remove deleterious species such as oxygen in laser scanning confocal microscopy experiments

  17. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  18. SURFACE NONLINEAR OPTICS

    E-Print Network [OSTI]

    Shen, Y.R.

    2010-01-01T23:59:59.000Z

    B. de Castro, and Y. R. Shen, Optics Lett. i, 393 See, for3, 1980 SURFACE NONLINEAR OPTICS Y.R. Shen, C.K. Chen, andde Janiero SURFRACE NONLINEAR OPTICS Y. R. Shen, C. K. Chen,

  19. NONLINEAR OPTICS AT INTERFACES

    E-Print Network [OSTI]

    Chen, Chenson K.

    2010-01-01T23:59:59.000Z

    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1977) p.Research Division NONLINEAR OPTICS AT INTERFACES Chenson K.ED LBL-12084 NONLINEAR OPTICS AT INTERFACES Chenson K. Chen

  20. The SLS optics beamline

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    The SLS Optics Beamline U. Flechsig ? , R. Abela ? , R.in the ?eld of x-ray optics and synchrotron radiation in-radiation, beamline optics, channel cut monochromator,

  1. Optical manifold

    DOE Patents [OSTI]

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23T23:59:59.000Z

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  2. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect (OSTI)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  3. Optical absorption measurement system

    DOE Patents [OSTI]

    Draggoo, Vaughn G. (Livermore, CA); Morton, Richard G. (San Diego, CA); Sawicki, Richard H. (Pleasanton, CA); Bissinger, Horst D. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  4. Joint estimation of attenuation and emission images from PET scans

    E-Print Network [OSTI]

    Fessler, Jeffrey A.

    Joint estimation of attenuation and emission images from PET scans Hakan Erdogan and Jeffrey A Motivation · Attenuation correction needed for quantitatively accurate PET · Post-injection transmission scans necessitated by whole-body PET Inject (in waiting room) Radioisotope Uptake 40-60 minutes 10

  5. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  6. Saline absorption in calcium silicate brick observed by NMR scanning

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Saline absorption in calcium silicate brick observed by NMR scanning L. Pel #3; , K. Kopinga #3 in calcium-silicate brick was investigated by nuclear magnetic resonance scanning. This method hasCl solution in a calcium silicate brick will be discussed. 2 Theory If gravity is neglected, the isothermal

  7. ProxiScan?: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema (OSTI)

    Ralph James

    2010-01-08T23:59:59.000Z

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  8. Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter

    SciTech Connect (OSTI)

    Gregory L. Kok; Athanasios Nenes

    2013-03-13T23:59:59.000Z

    This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

  9. Optical 2-D Scanning System for Laser - Generated Shockwave Treatment of Wound Infections

    E-Print Network [OSTI]

    Patel, Shahzad Neville

    2013-01-01T23:59:59.000Z

    TSB into a 50 mL conical centrifuge tube (BD Falcon #352070)in water to 1:7 mL micro centrifuge tubes (Eppendorf #of overnight stock into micro centrifuge tubes 9. Vortex and

  10. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Chen, Shun-Le (Long Island City, NY)

    1991-01-15T23:59:59.000Z

    A means and method for producing linerization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linerization is accomplished by considering sets of criteria for different scanning applications.

  11. Linearization of scan velocity of resonant vibrating-mirror beam deflectors

    DOE Patents [OSTI]

    Yeung, E.S.; Chen, S.L.

    1991-01-15T23:59:59.000Z

    A means and method for producing linearization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linearization is accomplished by considering sets of criteria for different scanning applications. 6 figures.

  12. Anomalous optical nonlinearity of dielectric nanodispersions

    SciTech Connect (OSTI)

    Milichko, V A; Dzyuba, V P; Kul'chin, Yurii N

    2013-06-30T23:59:59.000Z

    We present the results of studying the nonlinear optical response of nanodispersions of semiconductor (TiO{sub 2}, ZnO) and dielectric (SiO{sub 2}, Al{sub 2}O{sub 3}) nanoparticles of spherical, spheroidal and flake shape, suspended in polar and nonpolar dielectric matrices (water, isopropanol, polymethylsiloxane and transformer oil) by means of z-scanning in the field of low-intensity visible laser radiation. It is found that, unlike semiconductor nanoparticles and particles of spherical shape, flake-shaped SiO{sub 2} and Al{sub 2}O{sub 3} nanoparticles suspended in nonpolar matrices exhibit nonlinear optical response within the intensity interval from 0 to 500 W cm{sup -2} that vanishes at higher intensities. The diagrams of energy states of the optical electrons in nanoparticles that allow explanation of differences in the nonlinear-optical properties of nanodispersions are proposed. Good agreement between the experimental and theoretical dependences of nonlinear refractive indices and absorption coefficients on the intensity of radiation is observed. (optical nanostructures)

  13. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  14. Note: Simple vacuum feedthrough for optical fiber with SubMiniature version A connectors at both ends

    SciTech Connect (OSTI)

    Kirilov, K. M., E-mail: kirilowk@phys.uni-sofia.bg; Tsutsumanova, G. G.; Russev, S. C. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University, 5, blvd. J. Bourchier, Sofia-1164 (Bulgaria); Denkova, D. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University, 5, blvd. J. Bourchier, Sofia-1164 (Bulgaria); INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-07-15T23:59:59.000Z

    We present a simple way to insert an optical fiber, with existing standard SubMiniature version A connectors on both ends into a vacuum system. The fitting is tested in scanning electron microscope, at working pressures down to 2 × 10{sup ?5} mbar for cathodoluminescent measurements. With slight modifications this fitting could be successfully adapted for optical fiber insertion into pressurized systems.

  15. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12T23:59:59.000Z

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  16. Theoretical and Experimental Study of the Forces Between Different SNOM Probes and

    E-Print Network [OSTI]

    La Rosa, Andres H.

    , in vacuum [5] or with hydrophobically treated surfaces [6], damping is related to dry friction friction forces resulting from electrostatic interactions. However, if the sample surface is hydrophilic, friction, hydrophilicity, hydrophobicity, scanning near-field optical mi- croscopy, shear force. I

  17. Instructions for Scanning with Public LC Scanners/Library-Side Use these instructions to

    E-Print Network [OSTI]

    Schweik, Charles M.

    Instructions for Scanning with Public LC Scanners/Library-Side Use these instructions to: · Scan a single document · Scan a document into editable text, rather than in a picture format · Email scanned light near the buttons on the scanner will be lit)** Scanning a Single (One-Page) Document 1.) Place

  18. Scanning probe microscopy with inherent disturbance suppression using micromechanical systems

    E-Print Network [OSTI]

    Sparks, Andrew William, 1977-

    2005-01-01T23:59:59.000Z

    All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

  19. Hydrogen adsorption on Ru(001) studied by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Tatarkhanov, Mous; Rose, Franck; Fomin, Evgeny; Ogletree, D. Frank; Salmeron, Miquel

    2008-01-01T23:59:59.000Z

    001) and first hydrogen adsorption structure with (?3×?3)R30Hydrogen adsorption on Ru(001) studied by Scanning TunnelingCA 94720 Keywords: STM, Adsorption, Dissociation; Hydrogen,

  20. Scanning Tunneling Microscopy and Theoretical Study of Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Theoretical Study of Water Adsorption on Fe3O4: Implications for Catalysis. Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on Fe3O4: Implications...

  1. Dynamic study of tunable stiffness scanning microscope probe

    E-Print Network [OSTI]

    Vega González, Myraida Angélica

    2005-01-01T23:59:59.000Z

    This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for ...

  2. Genome scanning : an AFM-based DNA sequencing technique

    E-Print Network [OSTI]

    Elmouelhi, Ahmed (Ahmed M.), 1979-

    2003-01-01T23:59:59.000Z

    Genome Scanning is a powerful new technique for DNA sequencing. The method presented in this thesis uses an atomic force microscope with a functionalized cantilever tip to sequence single stranded DNA immobilized to a mica ...

  3. INSTANTANEOUS DAMAGE IDENTIFICATION AND LOCALIZATION THROUGH SPARSE LASER ULTRASONIC SCANNING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INSTANTANEOUS DAMAGE IDENTIFICATION AND LOCALIZATION THROUGH SPARSE LASER ULTRASONIC SCANNING This study proposes an instantaneous damage identification and localization technique through sparse laser ultrasonic signals are obtained, a damage index (DI) representing the violation of the linear reciprocity

  4. Achieving sub-10-nm resolution using scanning electron beam lithography

    E-Print Network [OSTI]

    Cord, Bryan M. (Bryan Michael), 1980-

    2009-01-01T23:59:59.000Z

    Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications have driven demand for ...

  5. Remote infrared imaging system for scanning hazardous waste tanks

    SciTech Connect (OSTI)

    Morris, K.L.H.

    1994-01-01T23:59:59.000Z

    This paper provides a description of the deployment of an infrared imaging system in an underground radioactive waste storage tank. The system was made for surface scanning to detect regions of high heat if present. The deployment described was for testing the system`s capabilities as well as the logistics of deployment and the system`s functionality in the field. The system was deployed and removed successfully providing a surface scan of the tank. Some improvements are recommended.

  6. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  7. LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY

    SciTech Connect (OSTI)

    Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G. [Instituto de Automatica Industrial-CSIC, Carretera de Campo Real, km 0.200, La Poveda, Arganda del Rey, Madrid, E-28500 (Spain); Higuti, R. T. [UNESP-Universidade Estadual Paulista, Dep. Electrical Engineering, Av. Brasil, 56, 15385-000, Ilha Solteira, SP (Brazil)

    2010-02-22T23:59:59.000Z

    This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.

  8. Optical and mechanical behavior of the optical fiber infrasound sensor

    E-Print Network [OSTI]

    DeWolf, Scott

    2009-01-01T23:59:59.000Z

    1.2 The Optical Fiber Infrasound Sensor . . . . . . .Fiber Infrasound Sensor Optical fibers are well known forSchnidrig. An optical fiber infrasound sensor: A new lower

  9. Scanning facility to irradiate mechanical structures for the LHC upgrade programme

    E-Print Network [OSTI]

    Dervan, P; Hodgson, P; Marin-Reyes, H; Parker, K; Wilson, J; Baca, M

    2015-01-01T23:59:59.000Z

    The existing luminosity of the LHC will be increased in stages to a factor of 10 above its current level (HL-LHC) by 2022. This planned increase in luminosity results in significantly higher levels of radiation inside the proposed ATLAS Upgrade detector. This means existing detector technologies together with new components and materials need to be re-examined to evaluate their performance and durability at these higher fluences. Of particular interest is the effect of radiation on the upgraded ATLAS tracker. To study these effects a new ATLAS irradiation scanning facility has been developed using the Medical Physics Cyclotron at the University of Birmingham. The intense cyclotron beams allow irradiated samples to receive in minutes fluences corresponding to years of operation at the HL-LHC. Since commissioning in early 2013, this facility has been used to irradiate silicon sensors, optical components and carbon fibre sandwiches for the ATLAS upgrade programme. Irradiations of silicon sensors and passive mate...

  10. Picosecond Z-scan measurements on bulk GaN crystals

    SciTech Connect (OSTI)

    Pacebutas, V.; Stalnionis, A.; Krotkus, A.; Suski, T.; Perlin, P.; Leszczynski, M.

    2001-06-25T23:59:59.000Z

    Bulk GaN crystals were characterized by using picosecond laser pulses at {lambda}=0.527{mu}m and Z-scan techniques. The role of the free-carrier absorption was evaluated by a dynamical, pump-and-probe-type transmitivity measurement. The values of two-photon absorption coefficient (17{endash}20 cm/GW) and refractive index changes at high optical irradiances due to bound (n{sub 2}={minus}4{times}10{sup {minus}12}esu) and free ({sigma}{sub r}={minus}1.0{times}10{sup {minus}20}cm{sup 3}) electrons in that material were determined. {copyright} 2001 American Institute of Physics.

  11. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Lorenz, Matthias [ORNL] [ORNL; Ovchinnikova, Olga S [ORNL] [ORNL; Kertesz, Vilmos [ORNL] [ORNL; Van Berkel, Gary J [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  12. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28T23:59:59.000Z

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  13. Latching micro optical switch

    DOE Patents [OSTI]

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21T23:59:59.000Z

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  14. Optical limiting of layered transition metal dichalcogenide semiconductors

    E-Print Network [OSTI]

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01T23:59:59.000Z

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  15. Development of a new generation of optical slope measuring profiler

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16T23:59:59.000Z

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  16. Sandia National Laboratories: Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateQuantum Optics Quantum Optics videobanner Quantum Optics with a Single Semiconductor Quantum Dot Speaker: Weng Chow, EFRC Scientist Date: September 14, 2011 Event:...

  17. A RAPID-SCANNING AUTOCORRELATION SCHEME FOR CONTINUOUS MONITORING OF PICOSECOND LASER PULSES

    E-Print Network [OSTI]

    Yasa, Zafer A.

    2013-01-01T23:59:59.000Z

    of Califomia. A RAPID-SCANNING AUTOCORRELATION SCHEME FORHowever, they have a limited scanning range( 4- 6 ) and arelinear over a wide scanning range )9 and is dispersion-free.

  18. A New Scanning Tunneling Microscope Reactor Used for High Pressure and High Temperature Catalysis Studies

    E-Print Network [OSTI]

    Tao, Feng

    2009-01-01T23:59:59.000Z

    bowl glued at the end of the scanning tube. The arrowbowl at the end of the scanning tube. FIG. 6. (a) STM imageA New Scanning Tunneling Microscope Reactor Used for High

  19. Visual scanning deficits in schizophrenia and their relationship to executive functioning impairment

    E-Print Network [OSTI]

    Verney, Steven

    Visual scanning deficits in schizophrenia and their relationship to executive functioning Abstract Abnormal visual scanning of faces, objects, and line drawings has been observed in patients approach was used to assess whether schizophrenia patients demonstrate restricted visual scanning when

  20. Passport Scanning: User Notes Version 0.3 A. Entering the Passport Number for the Student

    E-Print Network [OSTI]

    Sussex, University of

    Passport Scanning: User Notes ­ Version 0.3 A. Entering the Passport being these details are being collected at the point of scanning the student Enter passport number here Click Save to commit record #12;B. Scanning

  1. Correction to ``Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns

    E-Print Network [OSTI]

    Laat, Jos de

    Correction to ``Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon to ``Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns, doi:10.1029/2007JD009378. [1] In the paper ``Scanning Imaging Absorption Spec- trometer

  2. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    2-ID-B intermediate-energy scanning X-ray microscope at theW. D. , Morrison, G. R. et al. Scanning transmission X-rayX-ray spectromicroscopy with the scanning transmission X-ray

  3. Test Scanning Request Form Please complete one form for each test and key.

    E-Print Network [OSTI]

    Pantaleone, Jim

    Test Scanning Request Form Please complete one form for each test and key. This Section to be completed by the Scanning Requestor Date Regarding This Scan Date Received Time Initials Number of Tests Scored: / / : A.M. P

  4. Active optical zoom system

    DOE Patents [OSTI]

    Wick, David V.

    2005-12-20T23:59:59.000Z

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  5. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20T23:59:59.000Z

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  6. High bandwidth optical mount

    SciTech Connect (OSTI)

    Bender, D.A.; Kuklo, T.

    1994-11-08T23:59:59.000Z

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  7. Surface-enhanced raman optical data storage system

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level.

  8. Surface-Enhanced Raman Optical Data Storage system

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-06-28T23:59:59.000Z

    An improved Surface-Enhanced Raman Optical Data Storage System (SERODS) is disclosed. In the improved system, entities capable of existing in multiple reversible states are present on the storage device. Such entities result in changed Surface-Enhanced Raman Scattering (SERS) when localized state changes are effected in less than all of the entities. Therefore, by changing the state of entities in localized regions of a storage device, the SERS emissions in such regions will be changed. When a write-on device is controlled by a data signal, such a localized regions of changed SERS emissions will correspond to the data written on the device. The data may be read by illuminating the surface of the storage device with electromagnetic radiation of an appropriate frequency and detecting the corresponding SERS emissions. Data may be deleted by reversing the state changes of entities in regions where the data was initially written. In application, entities may be individual molecules which allows for the writing of data at the molecular level. A read/write/delete head utilizing near-field quantum techniques can provide for a write/read/delete device capable of effecting state changes in individual molecules, thus providing for the effective storage of data at the molecular level. 18 figures.

  9. ''Atomic Optics'': Nonimaging Optics on the Nanoscale

    SciTech Connect (OSTI)

    Roland Winston Joseph O'Gallagher

    2005-01-15T23:59:59.000Z

    This is the final report for a one year close out extension of our basic research program that was established at the University of Chicago more than sixteen years ago to explore and develop the optical sub-discipline that has come to be known as ''nonimaging optics''. This program has been extremely fruitful, having both broadened the range of formalism available for workers in this field and led to the discovery of many new families of optical devices. These devices and techniques have applications wherever the efficient transport and transformation of light distributions are important, in particular in illumination, fiber optics, collection and concentration of sunlight, and the detection of faint light signals in physics and astrophysics. Over the past thirty years, Nonimaging Optics (Welford and Winston, 1989) has brought a fresh approach to the analysis of many problems in classical macro-scale optics. Through the application of phase-space concepts, statistical methods, thermodynamic arguments, etc., many previously established performance limits were able to be broken and many technical surprises with exciting practical applications were discovered. The most recent three-year phase of our long-term continuing program ended in late 2002 and emphasized extending our work in geometrical optics and expanding it to include some interesting questions in physical optics as well as in the new field of statistical optics. This report presents a survey of the basic history and concepts of nonimaging optics and reviews highlights and significant accomplishments over the past fifteen years. This is followed by a more detailed summary of recent research directions and accomplishments during the last three years. This most recent phase was marked by the broadening in scope to include a separate project involving a collaboration with an industrial partner, Science Applications International Corporation (SAIC). This effort was proposed and approved in 1998 and was incorporated into this project (September, 1998) with the required additional funding provided through this already existing grant.

  10. Frequency-Scanning Phased-Array Feed Network Based on Composite Right/Left-Handed Transmission Lines

    E-Print Network [OSTI]

    Choi, JH; Sun, JS; Itoh, T

    2013-01-01T23:59:59.000Z

    with backfire-to-endfire scanning capability,” Electron.CHOI et al. : FREQUENCY-SCANNING PHASED-ARRAY FEED NETWORKnetwork for frequency scanning antenna,” in Eur. Microw.

  11. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    Chen, Introduction to Scanning Tunneling Microscopy, Oxfordvoltages to search the scanning area on the surface. Threecontrol system for scanning tun- neling microscope (STM)

  12. A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV

    E-Print Network [OSTI]

    Kilcoyne, David

    2010-01-01T23:59:59.000Z

    and y interferometers (z is optional) sample scanning stackzone plate scanning stack FIGURE 6 Layout of functionalMagnet Beam Line for Scanning Transmission X-ray Microscopy

  13. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26T23:59:59.000Z

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  14. Fiber optic micro accelerometer

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    2005-07-26T23:59:59.000Z

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  15. University of Central Florida College of Optics & Photonics Optics

    E-Print Network [OSTI]

    Van Stryland, Eric

    University of Central Florida College of Optics & Photonics Optics Spring 2010 OSE-6432: Principles of guided wave optics; electro -optics, acousto-optics and optoelectronics. Location: CREOL-A-214 or by Appointment Reference Materials: 1. Class Notes. 2. "Fundamentals of Optical Waveguides", K. Okamoto, Academic

  16. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOE Patents [OSTI]

    Ishikawa, Muriel Y. (Livermore, CA); Wood, Lowell L. (Simi Valley, CA); Campbell, E. Michael (Danveille, CA); Stuart, Brent C. (Livermore, CA); Perry, Michael D. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  17. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01T23:59:59.000Z

    Title) Scanning Josephson Tunneling Microscopy of Singlea conventional superconducting scanning tunneling microscopeabstract} (Body) Remarkable scanning tunneling microscopy (

  18. Dose monitoring and output correction for the effects of scanning field changes with uniform scanning proton beam

    SciTech Connect (OSTI)

    Zhao, Qingya [IU Health Proton Therapy Center (IUHPTC, formerly known as Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 and School of Health Sciences, Purdue University, West Lafayette, Indianapolis, Indiana 47907 (United States); Wu, Huanmei [Purdue School of Engineering and Technology, IUPUI, Indianapolis, Indiana 46202 (United States); Cheng, Chee-Wai; Das, Indra J. [IU Health Proton Therapy Center (IUHPTC, formerly known as Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 and Department of Radiation Oncology, School of Medicine, Indiana University, Indianapolis, Indiana 46202 (United States)

    2011-08-15T23:59:59.000Z

    Purpose: The output of a proton beam is affected by proton energy, Spread-Out Bragg Peak (SOBP) width, aperture size, dose rate, and the point of measurement. In a uniform scanning proton beam (USPB), the scanning field size is adjusted (including the vertical length and the horizontal width) according to the treatment field size with appropriate margins to reduce secondary neutron production. Different scanning field settings result in beam output variations that are investigated in this study. Methods: The measurements are performed with a parallel plate Markus chamber at the center of SOBP under the reference condition with 16 cm range, 10 cm SOBP, and 5 cm air gap. The effect of dose rate on field output is studied by varying proton beam current from 0.5 to 7 nA. The effects of scanning field settings are studied by varying independently the field width and length from 12 x 12 to 30 x 30 cm{sup 2}. Results: The results demonstrate that scanning field variations can produce output variation up to 3.80%. In addition, larger output variation is observed with scanning field changes along the stem direction of the patient dose monitor (PDM). By investigating the underlying physics of incomplete charge collection and the stem effects of the PDM, an analytical model is proposed to calculate USPB output with consideration of the scanning field area and the PDM stem length that is irradiated. The average absolute difference between the measured output and calculated output using our new correction model are within 0.13 and 0.08% for the 20 and 30 cm snouts, respectively. Conclusions: This study proposes a correction model for accurate USPB output calculation, which takes account of scanning field settings and the PDM stem effects. This model may be used to extend the existing output calculation model from one snout size to other snout sizes with customized scanning field settings. The study is especially useful for calculating field output for treatment without individualized patient specific measurements.

  19. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect (OSTI)

    Bates, S.E.; Tranum, B.L.

    1982-07-15T23:59:59.000Z

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  20. Phase modulation mode of scanning ion conductance microscopy

    SciTech Connect (OSTI)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04T23:59:59.000Z

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  1. Omnidirectional fiber optic tiltmeter

    DOE Patents [OSTI]

    Benjamin, B.C.; Miller, H.M.

    1983-06-30T23:59:59.000Z

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  2. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  3. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  4. Modular Optical PDV System

    SciTech Connect (OSTI)

    Araceli Rutkowski, David Esquibel

    2008-12-11T23:59:59.000Z

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  5. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging

    SciTech Connect (OSTI)

    Kim, Suhyun, E-mail: u98kim@surface.phys.titech.ac.jp; Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum [Memory Analysis Science and Engineering Group, Samsung Electronics, San #16 Hwasung-city, Gyeonggi-Do 445-701 (Korea, Republic of); Kondo, Yukihito [EM Business Unit, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan)

    2014-10-15T23:59:59.000Z

    Scanning moiré fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  6. Recognition and Scanning Recognition is deciding if a word is in a language or not

    E-Print Network [OSTI]

    Waterloo, University of

    Scanning Recognition and Scanning · Recognition is deciding if a word is in a language or not · we know how to do this for regular languages · Scanning is the process of splitting a string into tokens · each token will be a word in the language · use recognition to identify the tokens 1 #12;Scanning

  7. Scanning and Sequential Decision Making for Multi-Dimensional Data -Part II: the Noisy Case

    E-Print Network [OSTI]

    Merhav, Neri

    Scanning and Sequential Decision Making for Multi-Dimensional Data - Part II: the Noisy Case Asaf the problem of sequentially scanning and filtering noisy random fields. In this case, the sequential filter this performance is to the choice of the scan. We formally define the problem of scanning and filtering, derive

  8. Scanning electron microscopy imaging of hydraulic cement microstructure

    E-Print Network [OSTI]

    Bentz, Dale P.

    Scanning electron microscopy imaging of hydraulic cement microstructure by Paul Stutzman Building Reprinted from Cement and Concrete Composites, Vol. 26, No. 8, 957-966 pp., November 2004. NOTE: This paper;Available online at www.sciencedirect.com SCIENCE@OIRECT@ Cement & Concrete CompositesELSEVIER Cement

  9. 100% container scanning : security policy implications for global supply chains

    E-Print Network [OSTI]

    Bennett, Allison C. (Allison Christine)

    2008-01-01T23:59:59.000Z

    On August 3, 2007, President George Bush signed into law HR1 the "Implementing Recommendations of the 9/11 Commission Act of 2007." The 9/11 Act requires 100% scanning of US-bound containers at foreign seaports by 2012 ...

  10. DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of

    E-Print Network [OSTI]

    Kim, Sehun

    DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of Graphene Sheets on SiO2** By Ki in extracting individual sheets of carbon atoms (graphene) from graphite crystals, graphene has been attracted metals or molecules.[4­6] In addition, the modification of graphene surfaces using a direct chemical

  11. Surface Science Letters Scanning tunneling microscopy study of the anatase

    E-Print Network [OSTI]

    Diebold, Ulrike

    ; Surface structure, morphology, roughness, and topography; Low index single crystal surfaces The structureSurface Science Letters Scanning tunneling microscopy study of the anatase (1 0 0) surface NancyO2 anatase (1 0 0) surface. Natural single crystals of anatase were employed; and after several

  12. Application of High-Angle Annular Dark Field Scanning Transmission

    E-Print Network [OSTI]

    Utsunomiya, Satoshi

    Transmission Electron Microscopy-Energy Dispersive X-ray Spectrometry, and Energy-Filtered Transmission field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry). Techniquesthatareusefulinanalyzingultrafineatmospheric particles, such as STEM, EELS (electron energy loss spec- trometry), AFM, and mass spectrometry

  13. A Rapid Scanning Inspection Method for Insulated Ferromagnetic Tubing

    E-Print Network [OSTI]

    Marsh, G. M.; Milewits, M.

    1984-01-01T23:59:59.000Z

    Until the present there has been no effective way to rapidly scan thermally insulated refinery or process piping for corrosion or thin wall. Such defects, if left unattended, can lead to wasteful losses of time, energy and money. To date the most...

  14. Sample measurement Choose 3D, for 3D scan

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Sample measurement M Choose 3D, for 3D scan -> load method ("3D_EEM.xml") -> Run Signal: save S1/R1 column names etc once saved, close all plots before taking next sample Processing via Matlab script "EEM

  15. Metastatic calcification of the stomach imaged on a bone scan

    SciTech Connect (OSTI)

    Goldstein, R.; Ryo, U.Y.; Pinsky, S.M.

    1984-10-01T23:59:59.000Z

    A whole body bone scan obtained on a 21-year-old woman with sickle cell disease and chronic renal failure showed localization of the radionuclide diffusely in the stomach. The localization of the radionuclide represented metastatic calcification of the stomach caused by secondary hyperparathyroidism.

  16. IBM Software IBM Security AppScan: Application

    E-Print Network [OSTI]

    in the software development lifecycle, when they are easier and less expensive to correct. IBM research drives IBM by Design integrates security through- out the software development process. To address the wide rangeIBM Software Security June 2012 IBM Security AppScan: Application security and risk management

  17. Signal processing in scanning thermoacoustic tomography in biological tissues

    E-Print Network [OSTI]

    Wang, Lihong

    Signal processing in scanning thermoacoustic tomography in biological tissues Yuan Xu and Lihong V Microwave-induced thermoacoustic tomography was explored to image biological tissues. Short microwave pulses-induced thermoacoustic waves were detected with a focused ultrasonic transducer to obtain two-dimensional tomographic

  18. Scan with your phone for a mobile campus map.

    E-Print Network [OSTI]

    Noble, William Stafford

    Scan with your phone for a mobile campus map. Drumheller Fountain Portage Bay Lake Washington Ship Meany Schmitz Hansee Haggett North Physics Laboratory Portage Bay Parking Facility Odegaard Undergrad South Experimental Education Unit PortageBayBuilding South Cam pus Center OceanTch. M arine Sciences

  19. Fabrication and characterization of high-speed integrated electro-optic lens and scanner devices

    E-Print Network [OSTI]

    Gopalan, Venkatraman

    of a laser beam with high speed is useful for many applications including optical data storage, laser elements for focusing and scanning, thus requiring multi-step manufacturing processes and sometimes difficult alignment procedures. Integration ofthese components into a single manufacturing step promises

  20. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10T23:59:59.000Z

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  1. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA)

    1990-01-01T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  2. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, S.E.

    1985-08-16T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  3. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  4. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  5. Transpiration purged optical probe

    DOE Patents [OSTI]

    2004-01-06T23:59:59.000Z

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  6. Entanglement in Classical Optics

    E-Print Network [OSTI]

    Partha Ghose; Anirban Mukherjee

    2013-09-12T23:59:59.000Z

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  7. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  8. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19T23:59:59.000Z

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  9. Video-rate Scanning Confocal Microscopy and Microendoscopy

    E-Print Network [OSTI]

    Nichols, Alexander J.

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, ...

  10. Optimal alignment of mirror based pentaprisms for scanning deflectometric devices

    E-Print Network [OSTI]

    Barber, Samuel K.

    2011-01-01T23:59:59.000Z

    Elektronenspeicherring BESSY-II, Albert-Einstein-Str. 15,for X-ray Optics at BESSY,” AIP Conference ProceedingsZentrum Berlin (HZB)/BESSY-II (Germany) 3-6 and the Extended

  11. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    SciTech Connect (OSTI)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)] [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2013-12-02T23:59:59.000Z

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  12. Prismatic optical display

    DOE Patents [OSTI]

    Veligdan, James T.; DeSanto, Leonard; Brewster, Calvin

    2004-06-29T23:59:59.000Z

    A spatially modulated light beam is projected, reflected, and redirected through a prismatic optical panel to form a video image for direct viewing thereon.

  13. Optical theorem and unitarity

    E-Print Network [OSTI]

    Valeriy Nazaruk

    2014-03-20T23:59:59.000Z

    It is shown that an application of optical theorem for the non-unitary S-matrix can lead to the qualitative error in the result.

  14. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  15. LSST Camera Optics Design

    SciTech Connect (OSTI)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24T23:59:59.000Z

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  16. Integration of Ion Implantation with Scanning ProbeAlignment

    SciTech Connect (OSTI)

    Persaud, A.; Rangelow, I.W.; Schenkel, T.

    2005-03-01T23:59:59.000Z

    We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beam assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36 keV. This energy is deposited within {approx}10 fs when an ion impinges on a target. The highly localized energy deposition results in efficient resist exposure, and is associated with strongly enhanced secondary electron emission, which allows monitoring of single ion impacts [4]. The ex situ scanning probe image with line scan in Fig. 3 shows a single ion impact site in PMMA (after standard development). In our presentation, we will discuss resolution requirements for ion placement in prototype quantum computer structures [3] with respect to resolution limiting factors in ion implantation with scanning probe alignment.

  17. Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator

    SciTech Connect (OSTI)

    Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

    2011-11-11T23:59:59.000Z

    In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

  18. AN INTRODUCTION TO QUANTUM OPTICS...

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    AN INTRODUCTION TO QUANTUM OPTICS... ...the light as you've never seen before... Optics:http://science.howstuffworks.com/laser5.htm #12;5 DEFINITION Quantum Optics: "Quantum optics is a field in quantum physics, dealing OPTICS OPERATORS Light is described in terms of field operators for creation and annihilation of photons

  19. Micron-Scale Differential Scanning Calorimeter on a Chip

    DOE Patents [OSTI]

    Cavicchi, Richard E.; Poirier, Gregory Ernest; Suehle, John S.; Gaitan, Michael; Tea, Nim H.

    1998-06-30T23:59:59.000Z

    A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.

  20. Focal depth measurement of scanning helium ion microscope

    SciTech Connect (OSTI)

    Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp [Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Itoh, Hiroshi; Wang, Chunmei [Active State Technology Research Group, Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Umezono 1-Chome, Tsukuba, Ibaraki 305-8568 (Japan); Zhang, Han; Fujita, Daisuke [Nano Characterization Unit, Advanced Key Technologies Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-07-14T23:59:59.000Z

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  1. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect (OSTI)

    Bates, S.E.; Tranum, B.L.

    1982-07-15T23:59:59.000Z

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  2. Beam-Scanning Reflectarray Enabled by Fluidic Networks

    E-Print Network [OSTI]

    Long, Stephen

    2012-02-14T23:59:59.000Z

    required for a desired scan angle, are very frequency dependent. The beam direction will tilt as the operating frequency shifts, even if the phase-shifters and other active devices provide consistent, frequency-independent phase modulation. Also.... This (theoretically) frequency-independent feature suggests the reflector may have infinite bandwidth, provided the radiation patterns of the feed antenna are also frequency-independent. Also, the air between the feed and the reflector dissipates very little power...

  3. An Advanced Ultra-Low Temperature Scanning Probe Microscope

    E-Print Network [OSTI]

    An Advanced Ultra-Low Temperature Scanning Probe Microscope P R O J E C T L E A D E R : Joseph); Steven Blankenship, Alan Band (NIST) G O A L To develop an ultra-high vacuum, ultra-low temperature, high of subpicometer stability and can operate in ultra-high vacuum at 10 mK, and in magnetic fields up to 15 T

  4. Flexible optical panel

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2001-01-01T23:59:59.000Z

    A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

  5. Multimode optical fiber

    DOE Patents [OSTI]

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04T23:59:59.000Z

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  6. Apollo Ring Optical Switch

    SciTech Connect (OSTI)

    Maestas, J.H.

    1987-03-01T23:59:59.000Z

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  7. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  8. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  9. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    DOE Patents [OSTI]

    Stone, Gary F.; Trebes, James E.

    2005-08-16T23:59:59.000Z

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  10. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19T23:59:59.000Z

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  11. Fiber optic hydrophone

    DOE Patents [OSTI]

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10T23:59:59.000Z

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  12. Optical amplifier-powered quantum optical amplification

    E-Print Network [OSTI]

    John Jeffers

    2011-05-16T23:59:59.000Z

    I show that an optical amplifier, when combined with photon subtraction, can be used for quantum state amplification, adding noise at a level below the standard minimum. The device could be used to significantly decrease the probability of incorrectly identifying coherent states chosen from a finite set.

  13. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect (OSTI)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)] [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States)] [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)] [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.

  14. Projection optics box

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

    2000-01-01T23:59:59.000Z

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  15. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOE Patents [OSTI]

    Ackermann, Mark R. (Albuquerque, NM); Diels, Jean-Claude M. (Albuquerque, NM)

    2007-06-26T23:59:59.000Z

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  16. Development of a microfluidic device for patterning multiple species by scanning probe lithography

    E-Print Network [OSTI]

    Rivas Cardona, Juan Alberto

    2009-06-02T23:59:59.000Z

    Scanning Probe Lithography (SPL) is a versatile nanofabrication platform that leverages microfluidic “ink” delivery systems with Scanning Probe Microscopy (SPM) for generating surface-patterned chemical functionality on the sub-100 nm length scale...

  17. V-078: WordPress Bugs Permit Cross-Site Scripting and Port Scanning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: WordPress Bugs Permit Cross-Site Scripting and Port Scanning Attacks V-078: WordPress Bugs Permit Cross-Site Scripting and Port Scanning Attacks January 28, 2013 - 12:32am...

  18. Serial and parallel Si, Ge, and SiGe direct-write with scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting...

  19. The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing This is...

  20. Consecutive scanning scheme: applications to localization and navigation for mobile robots in a dynamic environment

    E-Print Network [OSTI]

    Lee, Jae Yong

    2002-01-01T23:59:59.000Z

    This thesis presents a mobile robot localization and obstacle detection algorithm based on consecutive range sensor scans. For a known environment, a mobile robot may scan the environment using a range sensor which can rotate 360o. The mobile robot...

  1. Optical Quadratic Measure Eigenmodes

    E-Print Network [OSTI]

    Michael Mazilu; Joerg Baumgartl; Sebastian Kosmeier; Kishan Dholakia

    2010-07-13T23:59:59.000Z

    We report a mathematically rigorous technique which facilitates the optimization of various optical properties of electromagnetic fields. The technique exploits the linearity of electromagnetic fields along with the quadratic nature of their interaction with matter. In this manner we may decompose the respective fields into optical quadratic measure eigenmodes (QME). Key applications include the optimization of the size of a focused spot, the transmission through photonic devices, and the structured illumination of photonic and plasmonic structures. We verify the validity of the QME approach through a particular experimental realization where the size of a focused optical field is minimized using a superposition of Bessel beams.

  2. Fiber optic laser rod

    DOE Patents [OSTI]

    Erickson, G.F.

    1988-04-13T23:59:59.000Z

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  3. Tuned optical cavity magnetometer

    DOE Patents [OSTI]

    Okandan, Murat (Edgewood, NM); Schwindt, Peter (Albuquerque, NM)

    2010-11-02T23:59:59.000Z

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  4. Silicon fiber optic sensors

    DOE Patents [OSTI]

    Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

    2007-10-02T23:59:59.000Z

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  5. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21T23:59:59.000Z

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  6. Methods for globally treating silica optics to reduce optical damage

    DOE Patents [OSTI]

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20T23:59:59.000Z

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  7. Monte Carlo simulation study of scanning Auger electron images

    SciTech Connect (OSTI)

    Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15T23:59:59.000Z

    Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

  8. Commissioning of output factors for uniform scanning proton beams

    SciTech Connect (OSTI)

    Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2011-04-15T23:59:59.000Z

    Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.

  9. PURDUE UNIVERSITY ULTRAFAST OPTICS AND OPTICAL FIBER COMMUNICATIONS LABORATORY Femtosecond Pulse

    E-Print Network [OSTI]

    Purdue University

    as new pulse sequence processing functionalities. #12;PURDUE UNIVERSITY ULTRAFAST OPTICS AND OPTICAL UNIVERSITY ULTRAFAST OPTICS AND OPTICAL FIBER COMMUNICATIONS LABORATORY CLEO 2002 One Guide ­ One PulsePURDUE UNIVERSITY ULTRAFAST OPTICS AND OPTICAL FIBER COMMUNICATIONS LABORATORY CLEO 2002

  10. PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform Synthesis,

    E-Print Network [OSTI]

    Purdue University

    PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER COMMUNICATIONS LABORATORY Photonic RF Waveform, Shijun Xiao Funding from ARO, DARPA, and NSF #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL FIBER performance (spectral engineering, dispersion compensation) #12;PURDUE UNIVERSITY ULTRAFAST OPTICS & OPTICAL

  11. Rapid three-dimensional manufacturing of microfluidic structures using a scanning laser system

    E-Print Network [OSTI]

    Rapid three-dimensional manufacturing of microfluidic structures using a scanning laser system Biao-dimensional manufacturing approach to the rapid processing of microfluidic structures using a scanning laser system. The scanning laser manufacturing technique could be potentially applied to a wide range of materials,10

  12. Controlling Peak Power During Scan Testing Ranganathan Sankaralingam and Nur A. Touba

    E-Print Network [OSTI]

    Touba, Nur A.

    Controlling Peak Power During Scan Testing Ranganathan Sankaralingam and Nur A. Touba Computer effective in controlling peak power. 1. Introduction The peak power drawn in a single clock cycle during. The average power dissipation during scan testing can be controlled by reducing the scan clock frequency

  13. Cutting Wi-Fi Scan Tax for Smart Devices Computer Science Department

    E-Print Network [OSTI]

    always-on Wi- Fi connectivity (e.g., Skype, Viber, Wi-Fi Finder). The Wi-Fi power drain resulting from); allowing scan to be offloaded to the Wi-Fi radio. We design WiScan, a complete system to realize scan offloading, and implement our system on the Nexus 5. Both our prototype experiments and trace

  14. 3D Scanning Technology as a Standard Archaeological Tool for Pottery Analysis: Practice and Theory

    E-Print Network [OSTI]

    3D Scanning Technology as a Standard Archaeological Tool for Pottery Analysis: Practice and Theory project, where 3D scanning technology, and newly developed software to optimally identify the rotation potsherds from several sites and periods were scanned, their symmetry axis computed, and their mean profiles

  15. Travel Reimbursement Scanning -Reminder Effective February 1, 2013, all campus units, departments, schools and colleges may

    E-Print Network [OSTI]

    Buckel, Jeffrey A.

    Travel Reimbursement Scanning - Reminder Effective February 1, 2013, all campus units, departments, schools and colleges may begin scanning Travel Reimbursement documents to the Financial System. This will be accomplished in a similar manner as we currently process small purchase voucher scanning. A barcode coversheet

  16. An Electrothermally-Actuated, Dual-Mode Micromirror for Large Bi-Directional Scanning

    E-Print Network [OSTI]

    Bowers, John

    An Electrothermally-Actuated, Dual-Mode Micromirror for Large Bi-Directional Scanning Ankur Jain-crystal-silicon (SCS)-based micromirror that can perform large bi-directional scans and can also generate large piston scan angle) at its resonance of 2.4 kHz. A maximum vertical piston motion of 200 µm is also achieved

  17. Scanning transmission x-ray microscopy of isolated multiwall carbon A. Felten,a

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes A. Felten,a H. Hody September 2006 Scanning transmission x-ray microscopy STXM has been used to study isolated carbon nanotubes- cations including biological and chemical sensors, nanoelec- tronic devices, tips for scanning probe

  18. Document Scanning Guidance for use with CSU's Kuali Finance System October 20, 2009

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Document Scanning Guidance for use with CSU's Kuali Finance System October 20, 2009 Version 1 are to be in PDF format. Hardcopy documents should be scanned directly to PDF. Documents in `native' format, such as Word, Excel, etc., are to be converted to PDF before being uploaded to KFS. Documents should be scanned

  19. Turn Scanning 133 From: Methods in Molecular Biology, vol. 168: Protein Structure, Stability, and Folding

    E-Print Network [OSTI]

    Ponder, Jay

    Turn Scanning 133 133 From: Methods in Molecular Biology, vol. 168: Protein Structure, Stability, and Folding Edited by: K. P. Murphy © Humana Press Inc., Totowa, NJ 7 Turn Scanning: Experimental extended structures. Here we present the use of turn scanning as an experimental method for assessing

  20. Entwicklung eines Qualittsmodells fr die Generierung von Digitalen Gelndemodellen aus Airborne Laser Scanning

    E-Print Network [OSTI]

    Giger, Christine

    Laser Scanning Dr. sc. ETH Jürg Lüthy Zürich, 2008 #12;#12;Diese Publikation ist eine editierte Version Geländemodellen aus Airborne Laser Scanning A B H A N D L U N G zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN Qualitätsmodells für die Generierung von Digitalen Geländemodellen aus Airborne Laser Scanning Copyright © 2008

  1. Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a

    E-Print Network [OSTI]

    Liu, Jie

    Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag to understand their role in ac- tive devices. Here we use scanning photovoltage microscopy to probe the built. Scanning the laser laterally produces a moving potential step that is capable of inducing a photovoltage

  2. A model for the ultrasonic detection of surface-breaking cracks by the Scanning

    E-Print Network [OSTI]

    Huerta, Antonio

    A model for the ultrasonic detection of surface-breaking cracks by the Scanning Laser Source, Northwestern University, Evanston, IL 60208, USA Abstract A model for the Scanning Laser Source (SLS) technique- breaking cracks. The generated ultrasonic signal is monitored as a line-focused laser is scanned over

  3. LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS

    E-Print Network [OSTI]

    Giger, Christine

    LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS Thorsten Schulz and Hilmar, EAWAG Email: michele.steiner@eawag.ch Abstract: Terrestrial laser scanning was applied to acquire 3D the catchment area of a road with respect to a pilot plant. As laser scanning requires only a few minutes

  4. SCANNING TUNNELING MICROSCOPE Operating Instructions On How To Get Atomic Resolution Images

    E-Print Network [OSTI]

    SCANNING TUNNELING MICROSCOPE Operating Instructions On How To Get Atomic Resolution Images Do: STM Set-Up: Use either a scanning tip from the tip wire box (skip to the "While holding the tip wire a 45-degree cut on one end of the tip wire, which becomes the scanning tip. Hold the tip wire

  5. A Novel Scanning Imaging DOAS System for Measurements of Air Quality

    E-Print Network [OSTI]

    A Novel Scanning Imaging DOAS System for Measurements of Air Quality R. Graves, R.J. Leigh and P Centre for Earth Observation, Surrey SatelliteTechnology Ltd and The EnvironmentAgency. CityScan uses and radiometric calibrations. · It has been demonstrated that the CityScan spectrometer can be used for high

  6. Scanning, Filtering and Prediction for Random Fields Corrupted by Gaussian Noise

    E-Print Network [OSTI]

    Weissman, Tsachy

    Scanning, Filtering and Prediction for Random Fields Corrupted by Gaussian Noise Asaf Cohen and how far is the performance of widely used scanning methods from the optimum. We formally define the problem of scanning and filtering, derive a bound on the best achievable performance and quantify

  7. Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance

    E-Print Network [OSTI]

    White, Luther

    Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance an ensemble Kalman filter is used as a criterion with which to op- timize radar network scanning strategies, is a function of the retrieval scanning parameters. It is shown that the mapping from radar parameters

  8. International Conference on Machine Control & Guidance 2008 1 Kinematic Surface Analysis by Terrestrial Laser Scanning

    E-Print Network [OSTI]

    by Terrestrial Laser Scanning Hans-Martin ZOGG*, David GRIMM* ETH Zurich, Switzerland Abstract This paper presents terrestrial laser scanning with emphasis on kinematic surface analysis. Besides an overview of terrestrial laser scanning in general, the 2D-laser scanner SICK LMS200-30106 is introduced as well

  9. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres P-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single

  10. SCANNING FOR VISUAL TRAFFIC: AN EYE TRACKING STUDY Kurt Colvin1

    E-Print Network [OSTI]

    1 SCANNING FOR VISUAL TRAFFIC: AN EYE TRACKING STUDY Kurt Colvin1 , Rahul M. Dodhia2,3 , Sean) visual scanning pattern for pilots to see and avoid other aircraft. Little research has been published on how effectively pilots actually scan. In our study, pilots fly VFR scenarios in a general aviation

  11. Interactive Scanning of Haptic Textures and Surface Compliance Sheldon Andrews and Jochen Lang

    E-Print Network [OSTI]

    Lang, Jochen

    Interactive Scanning of Haptic Textures and Surface Compliance Sheldon Andrews and Jochen Lang SITE scanning is common practise for the acquisition of the geometry of objects. How- ever, in addition of objects in arbitrary environments. In this pa- per, we introduce a hand-held scanning approach

  12. Scanning Electron Microscope Image Signal-to-Noise Ratio Monitoring for Micro-Nanomanipulation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scanning Electron Microscope Image Signal-to-Noise Ratio Monitoring for Micro ROBOTEX (ANR-10-EQPX-44-01) projects. Key words: Scanning electron microscope, signal-to-noise ratio system, scanning electron microscope (SEM) performs an important role in autonomous micro

  13. Scanning Algorithms and some of their properties Tucker McElroy

    E-Print Network [OSTI]

    Politis, Dimitris N.

    Scanning Algorithms and some of their properties Tucker McElroy U.S. Bureau of the Census Dimitris N. Politis University of California, San Diego Definition 0.1 A scan is a collection of n block-subsamples of the sequence X1, . . . , Xn with the following two properties: (a) within each scan there is a single block

  14. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  15. Massively Parallel Scanning Probe Nanolithography Daniel J. Arbuckle and Aristides A. G. Requicha

    E-Print Network [OSTI]

    Southern California, University of

    Massively Parallel Scanning Probe Nanolithography Daniel J. Arbuckle and Aristides A. G. Requicha on Scanning Probe Microscopy (SPM) are sequential, and therefore have a low throughput. This paper discusses are presented to validate the approach. Keywords-Nanorobotics, Scanning Probe Microscopy (SPM), Multi-Tip SPM

  16. A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials

    E-Print Network [OSTI]

    A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials Kechao OF SCIENTIFIC INSTRUMENTS 83, 114901 (2012) A scanning AC calorimetry technique for the analysis of nano 2012) We present a scanning AC nanocalorimetry method that enables calorimetry measurements at heating

  17. Integrated micro-scanning tunneling microscope Y. Xu and N. C. MacDonald

    E-Print Network [OSTI]

    MacDonald, Noel C.

    Integrated micro-scanning tunneling microscope Y. Xu and N. C. MacDonald School of Electrical of micro-scanning tunneling microscopes micro-STMs have been fabricated. The integrated micro metal conductor on a silicon chip. © 1995 American Institute of Physics. Scanned-probe instruments have

  18. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  19. Detection of bone disease in dogs by radioisotope scanning

    E-Print Network [OSTI]

    Morris, Earl Louis

    1971-01-01T23:59:59.000Z

    f = fractional abundance 6 = cross section thermal neutron f1~ &t (1-e ) = decay factor The usual method of administration of radio- isotopes is intravenously but some have been given orally. 4 high bone to tissue ratio must be achieved... is limited by their availability because they must be produced close to where they will be used. MATERIALS AND METHODS The use of 2 radioactive isotopes for bone scanning in dogs was studied. Sr and Sr were 85 87m selected as the isotopes to be studied...

  20. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.