National Library of Energy BETA

Sample records for ne sd mn

  1. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  2. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  3. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  4. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays

  5. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  6. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  7. Category:Pierre, SD | Open Energy Information

    Open Energy Info (EERE)

    SVFullServiceRestaurant Pierre SD Black Hills Power Inc.png SVFullServiceRestauran... 68 KB SVHospital Pierre SD Black Hills Power Inc.png SVHospital Pierre SD B... 67 KB...

  8. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ž. Pavlović Los Alamos National Laboratory Fermilab Users' Meeting, 2012 SciBooNE/MiniBooNE 2 Outline * Booster Neutrino Beamline * SciBooNE & MiniBooNE experiments * New results - MB Updated neutrino appearance analysis - MB Antineutrino appearance analysis - MB Joint Neutrino & Antineutrino appearance analysis - Joint SciBooNE/MiniBooNE numubar disappearance analysis * Future prospects 3 Booster Neutrino Beam * Horn focused beam/8GeV protons from Booster * Horn polarity → neutrino

  9. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  10. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  11. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that ... R. Dharmapalan et al. MiniBooNE Collaboration, arXiv:1211.2258 hep-ex (2012).

  12. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration...

  13. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  14. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  15. OPTIONAL I-""... ..o SD

    Office of Legacy Management (LM)

    OPTIONAL I-""... ..o SD , * ' y)IP-lW ' a * UNITED S T A T E S COVEKNMENT TO : Files DATE: September 25, 1962 M o m 4' Materials Branch; Division of Licensing & Regulation SUBJECT: PRE-LICENSING VISIT TO THE CONTEMPORARY METALS CORPORATION PROPOSED FACILITY AT HAZELWOOD, M ISSOURI, AND RESIDUE STOCKPILES AT ROBERTSON, M ISSOURI, DOCKET NO, 40-6811 The Contemporary Metals Corporation was awarded a contract by the AEC for the removal of uranium -bearing residues from stock- pile

  16. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The MiniBooNE Detector Tracking the traces of neutrino interactions. Of Neutrino Mass, and Oscillation What oscillates in neutrino oscillations, and why it matters

  17. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  18. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  19. MiniBooNE

    SciTech Connect (OSTI)

    Mahn, Kendall Brianna Mcconnel; /Columbia U.

    2007-03-01

    MiniBooNE is a short baseline neutrino experiment designed to confirm or refute the LSND observed excess of electron anti neutrinos in a muon anti neutrino beam. The experimental setup, data samples, and oscillation fit method are discussed. Although the result was not public at the time of the talk, MiniBooNE has since published results, which are discussed briefly as well.

  20. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  1. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  2. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  3. head_sd_logo.gif | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information head_sd_logo.gif

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  6. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  7. Microsoft Word - SD 351-1 FINAL.doc

    National Nuclear Security Administration (NNSA)

    Supply Management NNSA SUPPLEMENTAL DIRECTIVE Approved: 02-05-09 MANAGEMENT AND OPERATING CONTRACTOR SERVICE CREDIT RECOGNITION NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Acquisition & Supply Management NA SD O 350.1 NA SD-1 O 350.1 1 02-05-09 MANAGEMENT AND OPERATING CONTRACTOR SERVICE CREDIT RECOGNITION 1. PURPOSE. The objective of this Supplemental Directive is to address Management and Operating (M&O) contractor service credit recognition for employees transferring to a

  8. DOE - Office of Legacy Management -- Edgemont Mill Site - SD 01

    Office of Legacy Management (LM)

    Edgemont Mill Site - SD 01 FUSRAP Considered Sites Site: Edgemont Mill Site (SD.01) Licensed to DOE for long-term custody and managed by the Office of Legacy Management Designated Name: Edgemont, South Dakota, Disposal Site Alternate Name: Edgemont Mill Site Ore Buying Station at Edgemont Location: Edgemont, South Dakota Evaluation Year: Site Operations: Site Disposition: Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II site Radioactive Materials Handled: Primary Radioactive

  9. US NE MA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE MA Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 3,000 US NE MA ... 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours 0 250 500 750 1,000 ...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  13. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 042916 MicroBooNE Project ...

  14. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  15. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  16. NNSA Supplemental Guidance: NA-1 SD G 1027 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Guidance: NA-1 SD G 1027 NNSA Supplemental Guidance: NA-1 SD G 1027 Guidance on using Release Fraction and Modern Dosimetric information consistently with DOE STD ...

  17. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  18. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations...

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  20. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) ...

  1. HNF-SD-WM-TI-740, Rev. OA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84045. HNF-SD-WM-TI-740, Rev. OA Standard Inventories of Chemicals and Radionuclides in Hanford Site Ta nk Wastes M. J. Kupfer, A. L. Boldt, B. A. Higley, K. M. Hodgson, L. W. Shelton, B. C. Simpson, and R. A. Watrous (LMHC); M. 0. LeClair (SAIC); G. 1. Borsheim (BA); R. T. Winward (MA); R. M. Orme (NHC); N. 6. Colton (PNNL); S. 1. Lambert and D. E. Place (SESC); and W. W. SchulZ (W 2 S) Lockheed Martin Hanford Corporation, Richland, WA 99352 U.S. Department of Energy Contract DE-AC06-96RL13200

  2. HNF-SD-WM-TI-740, Rev. OC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84047 HNF-SD-WM-TI-740, Rev. OC Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes M. J. Kupfer, A. L. Boldt, K. N. Hodgson, L. W. Shelton, B. C. Simpson, and R. A. Watrous (LMHC); M. D. LeClair (SAIC); G. 1. Borsheim (BA); R. T. Winward (MA); B. A. Higley and R. M. Orme (NHC); N. G. Colton (PNNL); S. L. Lambert and D. E. Place (Cogema); and W. W. Schulz (112S) Lockheed Martin Hanford Corporation, Richland, WA 99352 U.S. Department of Energy Contract

  3. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  4. Migration of Nuclear Shell Gaps Studied in the d({sup 24}Ne,p{gamma}){sup 25}Ne Reaction

    SciTech Connect (OSTI)

    Catford, W. N.; Timis, C. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Labiche, M.; Orr, N. A.; Achouri, N. L.; Chapman, R.; Amzal, N.; Burns, M.; Liang, X.; Spohr, K.; Freer, M.; Ashwood, N. I.

    2010-05-14

    The transfer of neutrons onto {sup 24}Ne has been measured using a reaccelerated radioactive beam of {sup 24}Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2{sup +} level in {sup 25}Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2{sup +} level is observed simultaneously with the intruder negative parity 7/2{sup -} and 3/2{sup -} levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2{sup +} state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  6. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  11. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  12. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  14. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  15. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  16. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Collaboration Photos Click on image to view larger version April 2016 October 2014

  17. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  18. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  19. Team OptiMN

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Minnesota Team OptiMN "OptiMN Impact Home" Project Summary Designed to fit on the majority of North Minneapolis infill lots, the OptiMN Impact Home is a collaborative project between the University of Minnesota and Urban Homeworks. The overarching goal was a flexible, high-performance, energy-efficient, and affordable house that can be easily built by Urban Homeworks and purchased by eligible low-income residents of North Minneapolis through the Green Homes North program.

  20. Elastic-plastic deformations of a beam with the SD-effect

    SciTech Connect (OSTI)

    Pavilaynen, Galina V.

    2015-03-10

    The results for the bending of a cantilever beam with the SD-effect under a concentrated load are discussed. To solve this problem, the standard Bernoulli-Euler hypotheses for beams and the Ilyushin model of perfect plasticity are used. The problem is solved analytically for structural steel A40X. The SD-effect for elastic-plastic deformations is studied. The solutions for beam made of isotropic material and material with the SD-effect are compared.

  1. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m er of 2002, the cross sections for an 8 GeV proton beam on Be were m easured by the HARP ex perim ent at CERN. Harp Setup Intro ductio n Im po rtant s te ps s ince las t re v...

  2. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Andrzej Szelc Yale University 2 Outline ● The LArTPC. ● Physics with MicroBooNE. ● The MicroBooNE detector. 3 LArTPC Operation ● Charged particles in argon create electron-ion pairs and scintillation light. ● Electrons are drifted towards the anode wires. ● Multiple anode planes together with drift time allow 3D reconstruction. ● Collected charge allows calorimetric reconstruction. time 4 US LAr R&D Program 5 MicroBooNE Physics Goals 6 MiniBooNE

  3. Unique light-induced degradation in yellow-emitting K₂SiF₆:Mn²⁺ phosphor

    SciTech Connect (OSTI)

    Oyama, Takuya; Adachi, Sadao

    2014-10-07

    Photo-induced luminescence intensity degradation in yellow-emitting K₂SiF₆:Mn²⁺ phosphor is studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, PL decay analysis, and electron spin resonance (ESR) measurement. The yellow-emitting K₂SiF₆:Mn²⁺ phosphor exhibits remarkable degradation in the PL intensity under Xe lamp exposure. Coherent laser irradiation also induces degradation and its degree is in the order of He–Cd (λ = 325 nm) > Ar⁺ (488 nm) > He–Ne laser (632.8 nm). The degradation mechanism is proposed to be due to change in the valence state of manganese ions from Mn²⁺ to Mn³⁺ by the photooxidation (Mn²⁺ → Mn³⁺) or disproportionation reaction (2Mn²⁺ → Mn⁺ + Mn³⁺). The ESR measurement confirms the decreased Mn²⁺ spin density in the sample exposed with Xe lamp. The PLE spectrum suggests that the excitation of Mn³⁺ ions occurs through energy transfer upon absorption of exciting radiation by the Mn²⁺ ions. Thermal annealing of the degraded samples at ≥200 °C causes a blueshift in the PL emission band with an appearance of the Mn⁴⁺-related sharp red emission lines.

  4. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE publications. Other MiniBooNE Data Releases: Data Released with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Antineutrino Double-Differential Charged-Current Quasielastic Cross section",

  6. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01, 1973DE13, 1977BU05). Electromagnetic transitions: (1972EN03, 1972LE06, 1973HA53, 1973PE09, 1977BU05). Special states: (1972EN03, 1972GA14, 1972HI17, 1972NE1B, 1972WE01, 1977BU05, 1977SC08). Complex reactions involving 19Ne: (1976HI05, 1977BU05). Astrophsyical questions: (1973CL1E). Muon capture: (1972MI11). Pion capture and

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  8. Mineralogic variation in drill holes USW NRG-6, NRG-7/7a, SD-7, SD-9, SD-12, and UZ{number_sign}14: New data from 1996--1997 analyses

    SciTech Connect (OSTI)

    Chipera, S.J.; Vaniman, D.T.; Bish, D.L.; Carey, J.W.

    1997-05-30

    New quantitative X-ray diffraction (QXRD) mineralogic data have been obtained for samples from drill holes NRG-6, NRG-7/7A, SD-7, SD-9, SD- 12, and UZ{number_sign}14. In addition, new QXRD analyses were obtained on samples located in a strategic portion of drill hole USW H-3. These data improve our understanding of the mineral stratigraphy at Yucca Mountain, and they further constrain the 3-D Mineralogic Model of Yucca Mountain. Some of the unexpected findings include the occurrence of the zeolite chabazite in the vitric zone of USW SD-7, broad overlap of vitric and zeolitic horizons (over vertical ranges up to 70 m), and the previously unrecognized importance of the bedded tuft beneath the Calico Hills Formation as a subunit with generally more extensive zeolitization than the Calico Hills Formation in the southern part of the potential repository area. Reassessment of data from drill hole USW H-5 suggests that the zeolitization of this bedded unit occurs in the northwestern part of the repository exploration block as well. Further analyses of the same interval in USW H-3, however, have not permitted the same conclusion to be reached for the southwestern part of the repository block because of the much poorer quality of the cuttings in H-3 compared with those from H-5. X-ray fluorescence (XRF) chemical data for drill holes USW SD-7, 9, and 12 show that the zeolitic horizons provide a >10 million year record of retardation of Sr transport, although the data also show that simplistic models of one-dimensional downward flow in the unsaturated zone (UZ) are inadequate. Complex interstratification of zeolites and glass, with highly variable profiles between drill cores, point to remaining problems in constructing detailed mineral stratigraphies. However, the new data in this report provide important information for constructing bounding models of zeolite stratigraphy for transport calculations.

  9. Beyond standard model searches in the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the Δm<mn>2mn>~>1mn>eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  11. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  12. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  13. ADMINISTRATIVE CHANGE TO SD 251.1, Policy Letters: NNSA Policies, Supplemental Directives, and Business Operating

    National Nuclear Security Administration (NNSA)

    NA SD 251.1 Admin Chg 1 1 10-7-13 ADMINISTRATIVE CHANGE TO SD 251.1, Policy Letters: NNSA Policies, Supplemental Directives, and Business Operating Procedures Locations of Changes: Page Paragraph Changed To Cover Footer Office of Management and Budget Office of Business Operations 1, 2, A1-1 multiple locations the Administration NNSA 2 6.a.(1) (1) Concurred in by the NNSA Management Council Deleted 3 7.b. Once a NAP, SD, or BOP has been reviewed and comments addressed by the originating

  14. FY16 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget ...

  15. File:USDA-CE-Production-GIFmaps-SD.pdf | Open Energy Information

    Open Energy Info (EERE)

    SD.pdf Jump to: navigation, search File File history File usage South Dakota Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  16. Session Name: Data Transfer (session D2SD) Co-Chairs: Andrew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer (session D2SD) Co-Chairs: Andrew Cherry, Eli Dart 1 Contributors * Curt ... monitoring o Most sites run perfSONAR * Dedicated data paths for some programs (e.g. ...

  17. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 ...

  18. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  19. NE - Nuclear Energy - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible.

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  1. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents and Publications Public Notes See the Public Notes Page for a list of notes with results made public by the MicroBooNE collaboration. Presentations See the Talks Page for copies of slides and posters presented at conferences and workshops. MicroBooNE DocDB Like most experiments at Fermilab, MicroBooNE uses DocDB - a documents database. Much of the contents of the DocDB are restricted to members of the collaboration, but some items are public. Use the link below to enter the public

  2. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  3. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  4. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  5. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  6. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  7. UCB-NE-107 user's manual

    SciTech Connect (OSTI)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as /sup 135/Cs, /sup 137/Cs, and /sup 129/I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs.

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and...

  9. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on how to use MiniBooNE public data or for enquiries about additional data not linked from this page, please contact: Steve Brice or Richard Van de Water Acknowledgments If...

  10. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  11. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles,...

  12. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  13. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 18Ne) GENERAL: See Table Prev. Table 18.35 preview 18.35 [General Table] (in PDF or PS) and Table Prev. Table 18.36 preview 18.36 [Table of Energy Levels] (in PDF or PS). For B(E2) of 18Ne*(1.89) and other parameters see (1987RA01) and Table Prev. Table 2 preview 2 in the Introduction. 1. 18Ne(β+)18F Qm = 4.446 The half-life of 18Ne is 1672 ± 8 ms: see (1978AJ03) and (1983AD03). The decay is primarily to 18F*(0, 1.04, 1.70 MeV). In addition there is an

  14. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 20Ne) GENERAL: See also Table 20.6 [Table of Energy Levels] (in PDF or PS). Theory: See (GA55B, HE55F, MO56, BA57, RA57). 1. 9Be(14N, t)20Ne Qm = 6.323 See (GO58E). 2. 16O(α, γ)20Ne Qm = 4.753 An unsuccessful attempt has been made to observe the isobaric spin-forbidden transition between the T = 0 states at 7.19 MeV (J = 3-) and 1.63 MeV (J = 2+). The radiative width is < 6 x 10-3 eV, indicating an admixture of T = 1 of < 1.3 x 10-3 in 20Ne*(7.19)

  15. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0704.1500 hep-ex, Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastic cross-section paper is on the archive (arXiv:1309.7257) and has been published in Phys. Rev. D91, 012004 (2015). MiniBooNE's antineutrino charged current quasi-elastic...

  17. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Anti-Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0904.1958 hep-ex, Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009...

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  20. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  1. {beta} decay of {sup 26}Ne

    SciTech Connect (OSTI)

    Weissman, L.; Lisetskiy, A.F.; Arndt, O.; Dillmann, I.; Hallmann, O.; Kratz, K.L.; Pfeiffer, B.; Bergmann, U.; Cederkall, J.; Fraile, L.; Koester, U.; Franchoo, S.; Gaudefroy, L.; Sorlin, O.; Tabor, S.

    2004-11-01

    A pure neutron-rich {sup 26}Ne beam was obtained at the ISOLDE facility using isobaric selectivity. This was achieved by a combination of a plasma ion source with a cooled transfer line and subsequent mass separation. The high quality of the beam and good statistics allowed us to obtain new experimental information on the {sup 26}Ne {beta}-decay properties and resolve a contradiction between earlier experimental data and prediction of shell-model calculations.

  2. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS July 6, 2016 Energy Department To Fund Radiochemistry Traineeship Program The Energy Department's offices of Nuclear Energy (NE) and Environmental Management (EM) are co-funding a new traineeship program in radiochemistry at Washington State University (WSU) in Pullman. June 14, 2016 Energy Department Invests $82 Million to Advanced Nuclear Technology In total, 93 projects were selected to receive funding that will help push innovative nuclear technologies

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost Particles": Interview with Janet Conrad Columbia Magazine "The Nature of the Neutrino": MiniBooNE and neutrinos The Los Angeles Times "It's No Small Matter": K. C. Cole's article detailing her summer 2003 stint at Fermilab working on MiniBooNE [text only]

  4. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  5. MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE Collaboration June 30, 2016 Abstract The Micro Booster Neutrino Experiment (MicroBooNE) is designed to explore the low- energy excess in the ν e event spectrum reported by the MiniBooNE experiment [1] and to measure ν-Ar cross sections in the 1 GeV energy range. The detector is a liquid argon time projection chamber with wire readout, supplemented with a light detection system based on photo-multiplier tubes (PMTs). The

  6. MN Office of Energy Security | Open Energy Information

    Open Energy Info (EERE)

    MN Office of Energy Security Jump to: navigation, search Name: MN Office of Energy Security Place: St. Paul, MN Website: www.mnofficeofenergysecurity.c References: MN Office of...

  7. FY17 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation (2.07 MB) More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

  8. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100807 MiniBooNE Status Report R.G. Van de Water 100107 MiniBooNE Status Report R.G. Van de Water 080607 MiniBooNE Status Report Steve Brice 073007 MiniBooNE Status...

  9. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  10. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 19Ne) GENERAL: See Table Prev. Table 19.26 preview 19.26 [General Table] (in PDF or PS) and Table Prev. Table 19.27 preview 19.27 [Table of Energy Levels] (in PDF or PS) here. μg.s. = -1.88542 (8) nm (1982MA39) μ0.239 = -0.740 (8) nm (1978LEZA) 1. 19Ne(β+)19F Qm = 3.238 We adopt the half-life of 19Ne suggested by (1983AD03): 17.34 ± 0.09 s. See also (1978AJ03). The decay is principally to 19Fg.s.: see Table Prev. Table 19.29 preview 19.29 (in PDF or

  11. Canister storage building compliance assessment SNF project NRC equivalency criteria - HNF-SD-SNF-DB-003

    SciTech Connect (OSTI)

    BLACK, D.M.

    1999-08-11

    This document presents the Project's position on compliance with the SNF Project NRC Equivalency Criteria--HNF-SD-SNF-DE-003, Spent Nuclear Fuel Project Path Forward Additional NRC Requirements. No non-compliances are shown The compliance statements have been reviewed and approved by DOE. Open items are scheduled to be closed prior to project completion.

  12. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  13. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  14. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Results and Implications Michael H. Shaevitz for the MiniBooNE Collaboration Abstract. The MiniBooNE Collaboration has reported ...rst results of a search for e appearance in a beam. With two largely independent analyses, no signi...cant excess was observed of events above background for reconstructed neutrino energies above 475 MeV and the data are consistent with no oscillations within a two neutrino appearance-only oscillation model. An excess of events (186 27 33 events) is

  15. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 May 2006 1 MiniBooNE Steve Brice Fermilab * Oscillation Analysis * Issues of the Past Year - Normalization - Optical Model -  0 MisIDs * Summary * Future DOE Review 17 May 2006 2 MiniBooNE Goal * Search for  e appearance in a   beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND DOE Review 17 May 2006 3 Particle ID * Identify electrons (and thus candidate  e events) from characteristic hit topology * Non-neutrino background easily removed     n p W

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  17. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  18. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979DA15, 1979SA31, 1980ZH01). Electromagnetic transitions: (1977HA1Z, 1979SA31, 1982LA26). Special states: (1977HE18, 1978KR1G, 1979DA15, 1979SA31, 1980OK01, 1982ZH1D). Astrophysical questions: (1978WO1E). Complex reactions involving 18Ne: (1979HE1D). Pion-induced capture and reactions (See also reaction 6.): (1977PE12, 1977SP1B, 1978BU09,

  19. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37, 1985RO1G). Special states:(1982ZH01, 1983BI1C, 1983BR29, 1984SA37, 1985RO1G, 1986AN10, 1986AN07). Electromagnetic transitions:(1982BR24, 1982RI04, 1983BR29, 1985AL21, 1986AN10). Astrophysical questions:(1982WI1B, 1987WI11). Complex reactions involving 18Ne:(1986HA1B). Pion capture and reactions (See also reaction

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  3. Category:Minneapolis, MN | Open Energy Information

    Open Energy Info (EERE)

    16 total. SVFullServiceRestaurant Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png SVFullServiceRestauran... 89 KB SVHospital Minneapolis MN Northern States...

  4. Elasticity and magnetocaloric effect in MnFe4Si3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herlitschke, Marcus; Klobes, B.; Sergueev, I.; Hering, Paul; Persson, Joerg; Hermann, Raphael P.

    2016-03-16

    The room temperature magnetocaloric material MnFe4Si3 was investigated with nuclear inelastic scattering (NIS) and resonant ultrasound spectroscopy (RUS) at different temperatures and applied magnetic fields in order to assess the infuence of the magnetic transition and the magnetocaloric effect on the lattice dynamics. The NIS data give access to phonons with energies above 3 meV, whereas RUS probes the elasticity of the material in the MHz frequency range and thus low energy, ~5 neV, phonon modes. A significant infuence of the magnetic transition on the lattice dynamics is observed only in the low energy region. Here, MnFe4Si3 and other compoundsmore » in the Mn5-xFexSi3 series were also investigated with vibrating sample magnetometry, resistivity measurements and Moessbauer spectroscopy in order to study the magnetic transitions and to complement the obtained results on the lattice dynamics.« less

  5. UCB-NE-108 user's manual

    SciTech Connect (OSTI)

    Kang, C.H.; Lee, W.W.L.

    1989-04-01

    The purpose of this manual is to provide users of UCB-NE-108 with the information necessary to use UCB-NE-108 effectively. UCB-NE-108 is a computer code for calculating the fractional release rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media, and transported through layers of porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. In a spent-fuel waste package the soluble cesium and iodine accumulated in fuel-cladding gaps, voids, and grain boundaries of spent fuel rods are expected to dissolve rapidly when groundwater penetrates the fuel cladding. UCB-NE-108 is a code for calculating the release rate at the interface of two layers of porous material, such as the backfill around a high-level waste package and natural rock, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 6 refs., 2 figs.

  6. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J....

  7. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  8. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  9. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagram for 17Ne) GENERAL: See also Table 17.22 Table of Energy Levels (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L,...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project was started on October 15, 1999. The 8-GeV Beamline and Target Hall: This project started on June 7, 2000.

  11. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trigger ReconstructionpID: LArSoft LAr fill w.o. evacuation Surface Running UV Laser Calibration System Spring-Summer, 2014 16 February 22, 2014 MicroBooNE ...

  12. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 hep-ex, Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu...

  13. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz Columbia University Los Alamos National Lab Fermilab 31 Aug 2012 Friday, August 31, 2012 Acknowledgements * Teppei Katori * Joe Grange * Zarko Pavlovic * Kendall Mahn and Yasuhiro Nakajima 2 * Muon Neutrino CCQE Cross Section Analysis (Phys. Rev. D81, 092005 (2010)) * Neutrino Contamination in Antineutrino Mode (Phys. Rev. D84, 072005 (2011) and arXiv: 1107.5327) * Electron Neutrino (Antineutrino) Appearance (Phys. Rev. Lett.

  14. ADMINISTRATIVE CHANGE TO NNSA SD G-1027, "GUIDANCE ON USING RELEASE FRACTION AND MODERN

    National Nuclear Security Administration (NNSA)

    G 1027 Admin Change 1 1 5-13-14 ADMINISTRATIVE CHANGE TO NNSA SD G-1027, "GUIDANCE ON USING RELEASE FRACTION AND MODERN DOSIMETRIC INFORMATION CONSISTENTLY WITH DOE STD 1027-92, HAZARD CATEGORIZATION AND ACCIDENT ANALYSIS TECHNIQUES FOR COMPLIANCE WITH DOE ORDER 5480.23, NUCLEAR SAFETY ANALYSIS REPORTS, CHANGE NOTICE NO. 1" Locations of Changes: Page Paragraph Changed To 2 / 3 Added Revision History Table 3 2 CANCELLATION. None. When implemented for a nuclear facility, the methodology

  15. Inversion for Eigenvalues and Modes Using Sierra-SD and ROL.

    SciTech Connect (OSTI)

    Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis; Kouri, Drew Philip

    2015-12-01

    In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

  16. Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-11-01

    Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

  17. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  18. A=18Ne (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations: (1957WI1E, 1969BE1T, 1970BA2E, 1970EL08, 1970HA49, 1972KA01). Electromagnetic transitions: (1970EL08, 1970HA49). Special levels: (1966MI1G, 1969KA29, 1972KA01). Pion reactions: (1965PA1F). Other theoretical calculations: (1965GO1F, 1966KE16, 1968BA2H, 1968BE1V, 1968MU1B, 1968NE1C, 1968VA1J, 1968VA24, 1969BA1Z, 1969GA1G, 1969KA29, 1969MU09, 1969RA28,

  19. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06, 1979DA15, 1979MA27, 1979PE16, 1982KI02). Electromagnetic transitions: (1978PE09, 1978SC19, 1979MA27, 1979PE16). Special states: (1978MA2H, 1978PE09, 1978PI06, 1978SC19, 1979DA15, 1980OK01, 1982KI02). Astrophysical questions: (1977SI1D, 1978WO1E, 1979RA1C). Applied topics: (1979AL1Q). Complex reactions involving 19Ne:

  20. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 [Table of Energy Levels] (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states: (1983BI1C, 1983BR29, 1983PO02, 1986AN07). Electromagnetic transitions: (1982BR24, 1983BR29, 1985AL21). Astrophysical questions: (1981WA1Q, 1982WI1B, 1986LA07). Applications:(1982BO1N). Complex reactions involving 19Ne:(1981DE1P, 1983JA05, 1984GR08, 1985BE40, 1986GR1A, 1986HA1B, 1987RI03). Pion capture and reactions (See

  1. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Results Zelimir Djurcic Zelimir Djurcic Argonne National Laboratory Argonne National Laboratory NuFact2010: 12th International Workshop on Neutrino Factories, NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams Superbeams and and Beta Beams Beta Beams October 20-25, 2010. Mumbai, India October 20-25, 2010. Mumbai, India Outline Outline * * MiniBooNE MiniBooNE Experiment Description Experiment Description * * MiniBooNE MiniBooNE ' ' s s Neutrino Results Neutrino

  2. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities

  3. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Identification (PID) We use hit topology and timing to identify events. Particles produce Cherenkov light in our tank, as well as some scintillation light, dependent on particle type. Two independent methods to identify electron neutrinos in MiniBooNE: Boosted Decision Trees, and Track Based. The two methods use different event reconstruction fitters. Boosted Decision Trees (BDT) Decision trees are similar to neural nets, but don't suffer from the same pathologies. To form a decision

  6. NA-SD 243.1B NNSA Records Management Suplemental Directive

    National Nuclear Security Administration (NNSA)

    243.1 Admin Change 1 1 3-21-16 ADMINISTRATIVE CHANGE TO NA SD 243.1, Records Management Program Locations of Changes: Page Paragraph From To Throughout Document * NNSA Records Management (Update name and hyperlink to new SharePoint site.) * NNSA Records Program Office (Update name and hyperlink to new SharePoint site.) 2 5.a.(1) * Office of the Administrator (NA-1) * Office of Defense Programs (NA- 10) * Office of Defense Nuclear Nonproliferation (NA-20) * Office of Naval Reactors (NA-30) *

  7. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02

  8. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and

  9. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Resources The following is a randomly ordered set of useful resources for people writing MiniBooNE publications:- Have a journal in mind when first putting together the paper. Each journal has LaTeX style files that can be downloaded from their web pages. There is a nice little LaTeX macro that will put line numbers by each line of your document. This makes it much easier for people to feedback comments on the paper. To use it just put \RequirePackage{lineno} just before the

  11. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations: (1972EN03, 1974LO04). Electromagnetic transitions: (1970SI1J, 1972EN03, 1974LO04, 1976SH04, 1977BR03, 1977SA13). Special states: (1972EN03, 1972RA08). Muon- and pion-induced capture and reactions (See also reaction 5.): (1972MI11, 1974LI1N, 1975LI04, 1976HE1G, 1977MA2Q, 1977RO1U). Other theoretical calculations: (1970SI1J, 1972CA37, 1972RA08,

  12. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Proton beam 8.89 GeV/c protons from the Fermilab Booster are incident on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and different focus points of the beam. The typical proton beam contains 4 x 10¹² protons delivered in a spill approximately 1.6 µs in duration. The absolute number of protons on target (p.o.t) is measured by two toroids upstream of the target.

  14. Prospects for antineutrino running at MiniBooNE

    SciTech Connect (OSTI)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  15. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  16. Microsoft Word - HQ-#465026-v1-NNSA_SD_350_2_-_FINAL_9-6-CLEAN

    National Nuclear Security Administration (NNSA)

    and Project Management NNSA SUPPLEMENTAL DIRECTIVE Approved: 10-18-12 USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES FOR SERVICES TO THE NATIONAL NUCLEAR SECURITY ADMINISTRATION IN THE WASHINGTON, DC, AREA NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Acquisition and Project Management NA SD 350.2 Rev 1 NA SD 350.2 Rev 1 1 10-18-12 USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES FOR SERVICES TO THE NATIONAL NUCLEAR SECURITY ADMINISTRATION IN THE WASHINGTON, DC, AREA 1. PURPOSE.

  17. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F) indicates

  18. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Step One First, make sure the PI of your institution has sent an email to the MicroBooNE spokespeople letting them know that

  19. Source identification in acoustics and structural mechanics using Sierra/SD.

    SciTech Connect (OSTI)

    Walsh, Timothy Francis; Aquino, Wilkins; Ross, Michael

    2013-03-01

    In this report we derive both time and frequency-domain methods for inverse identification of sources in elastodynamics and acoustics. The inverse/design problem is cast in a PDE-constrained optimization framework with efficient computation of gradients using the adjoint method. The implementation of source inversion in Sierra/SD is described, and results from both time and frequency domain source inversion are compared to actual experimental data for a weapon store used in captive carry on a military aircraft. The inverse methodology is advantageous in that it provides a method for creating ground based acoustic and vibration tests that can reduce the actual number of flight tests, and thus, saving costs and time for the program.

  20. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 20Ne) GENERAL: See also (1972AJ02) and Table 20.18 [Table of Energy Levels] (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13, 1972BO38, 1972BR1G, 1972JA24, 1972KA39, 1972KA67, 1972KH08, 1972KR1D, 1972KU1F, 1972LE13, 1972LE38, 1972MA07, 1972NI14, 1972RE03, 1972SA1B, 1972VO09, 1972WH04, 1973CO03, 1973DH1A, 1973EL04, 1973EN1C, 1973GI09, 1973HA05, 1973HE1F, 1973IC01, 1973IR01, 1973MA1K, 1973MC06, 1973MC1E,

  1. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  2. Mn4+ emission in pyrochlore oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to thatmore » of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.« less

  3. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT workshop Trento, Italy, 1211 Outline: introduction, motivation MiniBooNE experiment MiniBooNE ...

  4. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    An accumulatorcompressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulatorcompressor ring for Ne+ ions The primary goal of the High Energy Density ...

  5. CRAD, NNSA - Maintenance (MN) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA - Maintenance (MN) CRAD, NNSA - Maintenance (MN) CRAD for Maintenance (MN). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs. CRADs consist of a Performance Objective that identifies the expectation(s) or requirement(s) to be verified, which reflect the complete scope of the assessment; Criteria that provide specifics by which the performance objectives are measured, including

  6. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    SciTech Connect (OSTI)

    Latour, M.; Fontaine, G.; Brassard, P.; Green, E. M.; Chayer, P.

    2014-06-10

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 to 8.7 , and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are: T {sub eff} = 29,850 60 K, log g = 5.46 0.01, and log N(He)/N(H) = 2.88 0.02. We also modeled, for the first time, the He II line at 1640 from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.

  7. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Zelimir Djurcic Argonne National Laboratory NuFact2011: 13th International Workshop on Neutrino Factories, Super Beams and Beta Beams August 1-6, 2011. Geneva, Switzerland 1 Outline * MiniBooNE Experiment Description * MiniBooNE s Neutrino Results * (New) MiniBooNE s Anti-neutrino Results * Summary 2 This signal looks very different from the others... * Much higher !m 2 = 0.1 - 10 eV 2 * Much smaller mixing angle * Only one experiment! In SM there are only 3 neutrinos !m 13 !m 12 !m 23 2

  8. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  9. DOE-NE-STD-1004-92 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE-STD-1004-92 DOE-NE-STD-1004-92 July 27, 2005 Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A. DOE-NE-STD-1004-92, Root Cause Analysis Guidance Document (689.62 KB) More

  10. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic e 20 Background prediction Intrinsic nue External measurements - HARP p+Be for - Sanford-Wang fits to world K + K 0 data MiniBooNE data...

  11. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  12. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  13. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  14. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. ... Password access to these pages is necessary, user-name is reviewer, password on request. ...

  15. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 hep-ex, Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009...

  16. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Quasielastic Double Differential Cross section", arXiv:1002:2680 hep-ex, Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross...

  17. NE NEET-Reactor Materials Award Summaries May 2016.pdf

    Office of Environmental Management (EM)

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  18. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE MiniBooNE Oscillation Results Oscillation Results and Future and Future Prospects Prospects Mike Mike Shaevitz Shaevitz - Columbia University - Columbia University 6th International Workshop on Low Energy Neutrino Physics 6th International Workshop on Low Energy Neutrino Physics Seoul National University Seoul National University ( ( Nov. 9 - 12, 2011) Nov. 9 - 12, 2011) 2 Neutrino Oscillation Summary Confirmed by K2K and Minos accelerator neutrino exps Confirmed by Kamland reactor

  19. Neutral Current Elastic Interactions in MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

  20. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  1. DOE - Office of Legacy Management -- Elk River Reactor - MN 01

    Office of Legacy Management (LM)

    Elk River Reactor - MN 01 FUSRAP Considered Sites Site: Elk River Reactor (MN.01 ) Eliminated from consideration under FUSRAP - Reactor was dismantled and decommissioned by 1974 Designated Name: Not Designated Alternate Name: None Location: Elk River , Minnesota MN.01-1 Evaluation Year: 1985 MN.01-1 Site Operations: Boiling water reactor demonstration, research and development program MN.01-1 Site Disposition: Eliminated MN.01-1 Radioactive Materials Handled: None Indicated Primary Radioactive

  2. Magnetostructural phase transformations in Tb 1-x Mn 2 (Journal...

    Office of Scientific and Technical Information (OSTI)

    phase transformations in Tb 1-x Mn 2 Citation Details In-Document Search Title: Magnetostructural phase transformations in Tb 1-x Mn 2 Magnetism and phase transformations ...

  3. Magnetocrystalline anisotropy in UMn<mn>2mn>Ge>2mn> and related Mn-based actinide ferromagnets

    SciTech Connect (OSTI)

    Parker, David S.; Ghimire, Nirmal; Singleton, John; Thompson, J. D.; Bauer, Eric D.; Baumbach, Ryan; Mandrus, David; Li, Ling; Singh, David J.

    2015-05-04

    We present magnetization isotherms in pulsed magnetic fields up to 62 Tesla, supported by first principles calculations, demonstrating a huge uniaxial magnetocrystalline anisotropy energy - approximately 20 MJ/m3 - in UMn<mn>2mn>Ge>2mn>. This large anisotropy results from the extremely strong spin-orbit coupling affecting the uranium 5 f electrons, which in the calculations exhibit a substantial orbital moment exceeding 2 μB. Finally, we also find from theoretical calculations that a number of isostructural Mn-actinide compounds are expected to have similarly large anisotropy.

  4. Magnetic coupling in ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers

    SciTech Connect (OSTI)

    Wang, M.; Wadley, P.; Campion, R. P.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Charlton, T. R.; Kinane, C. J.; Langridge, S.

    2015-08-07

    We report on a study of ferromagnetic semiconductor (Ga,Mn)As/(Al,Ga,Mn)As bilayers using magnetometry and polarized neutron reflectivity (PNR). From depth-resolved characterization of the magnetic structure obtained by PNR, we concluded that the (Ga,Mn)As and (Al,Ga,Mn)As layers have in-plane and perpendicular-to-plane magnetic easy axes, respectively, with weak interlayer coupling. Therefore, the layer magnetizations align perpendicular to each other under low magnetic fields and parallel at high fields.

  5. SSL Demonstration: Bridge Lighting, Minneapolis, MN

    SciTech Connect (OSTI)

    2014-10-01

    DOE Solid-State Lighting GATEWAY summary brief for Phase II report on the longer-term performance of LED lighting installed in 2008 on the I-35W Bridge in Minneapolis, MN.

  6. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc

  7. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  8. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Detector Cryostat delivered Assembly Photos The MicroBooNE time projection chamber (TPC) was assembled at Fermilab in 2012-2013, sealed in the cryostat at the end of 2013, and installed in the Liquid Argon Test Facilty (LArTF) in the Booster neutrino beamline in June 2014. Watch a video of the MicroBooNE detector move! Please check Assembly Photos for a slide-show of the effort These same photos are posted here in a simpler format Photos of Wires Taken from inside the cryostat in April 2015

  9. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE at Work At Work Now The Getting Started Page holds links to help find your way around Fermilab services and prepare for working on the experiment. The MicroBooNE Contact List contains contact information for collaboration members. The Working Groups Page is a portal to these sub-sites. The Operations Page is a portal to the running detector. The Meetings Page lists the current regular meeting time slots, and also lists the collaboration meeting dates with links to the DocDB for past

  10. The MicroBooNE Experiment - Conference Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Posters Once you have given a MicroBooNE presentation, please send your talk to Sam Zeller so it can be archived. If you have written proceedings to accompany your talk, please upload them to the MicroBooNE DocDB and send the document number to Sam. Also, remember that conference proceedings are required by Fermilab policy to be submitted to the Fermilab Technical Publications archive. Instructions for doing that are here. Click here for Future talks. Conference Presentations Speaker

  11. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Notes Page Back to the Publications Page 7/4/16 MICROBOONE-NOTE-1019-PUB Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber 7/4/16 MICROBOONE-NOTE-1017-PUB A Method to Extract the Charge Distribution Arriving at the TPC Wire Planes in MicroBooNE 7/4/16 MICROBOONE-NOTE-1016-PUB Noise Characterization and Filtering in the MicroBooNE TPC 7/4/16 MICROBOONE-NOTE-1015-PUB The Pandora multi-algorithm approach to automated pattern recognition in LAr

  12. Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University WIN'11 - Cape Town, South Africa 2 Outline of this talk: -- The LSND excess signal: Evidence for high-Δm 2 oscillations -- The MiniBooNE experiment -- MiniBooNE neutrino mode oscillation results: LSND signature refuted -- MiniBooNE antineutrino mode oscillation results: LSND signature confrmed ? -- Light sterile neutrino oscillations: Where we stand today -- Future searches: MiniBooNE, MicroBooNE 1993 -1998 1998 2001

  13. High Mn austenitic stainless steel

    DOE Patents [OSTI]

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  14. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Venkatesh, S.; Baras, A.; Lee, J. -S.; Roqan, I. S.

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  15. shaleoil1.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    ... USA CANADA SD ND MT Saskatchewan Manitoba Dunn Wa rd Dawson McL ea n McK en zie Morton ... SIGNIFICANT BAKKEN OIL FIELDS Bakken Shale Extent Canada MT ID IL IA WY NV NE SD MN ND WI ...

  16. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  17. DOE-NE Small Business Voucher Program Launched

    Broader source: Energy.gov [DOE]

    As part of the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, the NE Voucher program will provide up to $2 million in this pilot year for access to expertise, knowledge, and facilities of the National Laboratories and our partner facilities to help advance nuclear energy technologies.

  18. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Most importantly, not a region of LE where LSND observed a significant signal Energy in MiniBooNE MeV 1250 475 333 MB Neutrino mode LE (mMeV) "LSND sweet spot" LSND * 6.5E20 ...

  19. Local environment of Mn in Mn delta-doped Si layers

    SciTech Connect (OSTI)

    Xiao, Q.F.; Kahwaji, S.; Monchesky, T.L.; Gordon, R.A.; Crozier, E.D.

    2009-11-09

    Dilute magnetic semiconductors combine both magnetic ordering and semiconducting behaviour, leading to potential spintronic applications. Silicon containing dilute Mn impurities is a potential dilute magnetic semiconductor. We have grown Mn delta-doped films by deposition of 0.7 of a monolayer of Mn on Si(001) by molecular beam epitaxy and capping the film with Si. The magnetic properties are likely sensitive to the distribution of Mn on substitutional or interstitial sites and the formation of metallic precipitates. We have used polarization-dependent XAFS to examine the local structure. We compare to a thicker MnSi film grown on Si(111) and also examine the influence of lead on the manganese environment when used as a surfactant in the growth process.

  20. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> superlattices on (001)-oriented LaSrAlO<mn>4mn> substrates

    SciTech Connect (OSTI)

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La<mn>1.85mn> Sr<mn>0.15mn> CuO<mn>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  1. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  2. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  3. Morgan Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result Morgan Wascko CalTech Physics Research Conference 26 April, 2007 Outline * A short course in the physics of ν oscillations * What are neutrinos? Oscillations? * ν oscillation landscape * MiniBooNE * Experiment description * MiniBooNE's First Results * Neutrino Physics Big Picture * Next Steps for the Field * What has MiniBooNE told us? 2 Morgan Wascko CalTech Physics Research Conference 26 April, 2007 * Particle

  4. RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman University of Colorado American Physical Society Meeting Jacksonville, April 16, 2007 Results of the MiniBooNE Neutrino Oscillation Search * Introduction to MiniBooNE * The oscillation analysis * The initial results and their implications * The next steps MiniBooNE: E898 at Fermilab * Purpose is to test LSND with: * Higher energy * Different beam * Different oscillation signature * Different systematics * L=500 meters, E=0.5-1

  5. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  6. Activation of c-myb by 5' retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD') in gag

    SciTech Connect (OSTI)

    Ramirez, Jean Marie; Houzet, Laurent; Koller, Richard; Bies, Juraj; Wolff, Linda; Mougel, Marylene . E-mail: mmougel@univ-montp1.fr

    2004-12-20

    Alternative splicing in Mo-MuLV recruits a splice donor site, SD', within the gag that is required for optimal replication in vitro. Remarkably, this SD' site was also found to be utilized for production of oncogenic gag-myb fusion RNA in 100% of murine-induced myeloid leukemia (MML) in pristane-treated BALB/c mice. Therefore, we investigated the influence of silent mutations of SD' in this model. Although there was no decrease in the overall incidence of disease, there was a decrease in the incidence of myeloid leukemia with a concomitant increase in lymphoid leukemia. Importantly, there was a complete lack of myeloid tumors associated with 5' insertional mutagenic activation of c-myb, suggesting the specific requirement of the SD' site in this mechanism.

  7. Spin reorientation and Ce-Mn coupling in antiferromagnetic oxypnictide CeMnAsO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Qiang; Tian, Wei; Peterson, Spencer G.; Dennis, Kevin W.; Vaknin, David

    2015-02-18

    Structure and magnetic properties of high-quality polycrystlline CeMnAsO, a parent compound of the “1111”-type oxypnictides, have been investigated using neutron powder diffraction and magnetization measurements. We find that CeMnAsO undergoes a C-type antiferromagnetic order with Mn2+(S = 5/2) moments pointing along the c axis below a relatively high Néel temperature of TN = 347(1) K. Below TSR = 35 K, two simultaneous transitions occur where the Mn moments reorient from the c axis to the ab plane preserving the C-type magnetic order, and Ce moments undergo long-range AFM ordering with antiparallel moments pointing in the ab plane. Another transition tomore » a noncollinear magnetic structure occurs below 7 K. The ordered moments of Mn and Ce at 2 K are 3.32(4) μB and 0.81(4)μB, respectively. We find that CeMnAsO primarily falls into the category of a local-moment antiferromagnetic insulator in which the nearest-neighbor interaction (J1) is dominant with J2 < J1/2 in the context of J1 – J2 – Jc model. The spin reorientation transition driven by the coupling between Ce and the transition metal seems to be common to Mn, Fe, and Cr ions, but not to Co and Ni ions in the isostructural oxypnictides. As a result, a schematic illustration of magnetic structures in Mn and Ce sublattices in CeMnAsO is presented.« less

  8. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  9. Magnetoelectric coupling tuned by competing anisotropies in Mn...

    Office of Scientific and Technical Information (OSTI)

    Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3 Prev Next Title: Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO ...

  10. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the MiniBooNE low energy excess * Low energy neutrino cross sections * Non-accelerator topics - Supernova neutrino detection - Proton decay backgrounds 2 B. Carls, Fermilab MicroBooNE Physics MicroBooNE Detector * 60 ton fiducial volume (of 170 tons total) liquid Argon TPC * TPC consists of 3 planes of wires; vertical Y, ±60°

  11. Microsoft PowerPoint - TAUP_07_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MinibooNE Oscillation Results and Implications Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * MiniBooNE Experiment and Analysis Techniques * MiniBooNE First Oscillation Result * Going Beyond the First Result * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν μ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was Prompted by the Positive LSND Result Oscillation Probability: ( ) (0.264 0.067 0.045)% e P μ ν ν → = ± ± The

  12. PNM Resources 2401 Aztec NE, MS-Z100

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects,

  13. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation Result - π 0 Rate Measurement - Combining Analyses - Compatibility of High ∆m 2 Measurements - Low Energy Electron Candidate Excess - Data from NuMI Beam * Muon Neutrino Disappearance * Anti-Electron Neutrino Appearance * Summary Neutrino 2008 Steve Brice (FNAL) 3 2 National Laboratories, 14 Universities, 80

  14. fileiSdHKL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  15. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; et al

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (Hmore » K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int« less

  16. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  17. Influence of interstitial Mn on magnetism in room-temperature ferromagnet Mn(1+delta)Sb

    SciTech Connect (OSTI)

    Taylor, Alice E; Berlijn, Tom; Hahn, Steven E; May, Andrew F; Williams, Travis J; Poudel, Lekhanath N; Calder, Stuart A; Fishman, Randy Scott; Stone, Matthew B; Aczel, Adam A; Cao, Huibo; Lumsden, Mark D; Christianson, Andrew D

    2015-01-01

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet Mn(1+delta)Sb. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of delta=0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. The results show that the influence of the int

  18. Opti-MN Impact House Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opti-MN Impact House Presentation Opti-MN Impact House Presentation Opti-MN was the Grand Winner of the 2015 Race to Zero Student Design Competition. View the presentation for the Opti-MN Impact House below. Read a full list of the winning teams. Opti-MN Presentation (5.74 MB) More Documents & Publications 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team Submissions 2016 Race to Zero Competition Winner Team Presentations 2014 Race to Zero Student Design Competition:

  19. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

    SciTech Connect (OSTI)

    Provino, A.; Paudyal, D.; Fornasini, ML; Dhiman, I.; Dhar, SK.; Das, A.; Mudryk, Y.; Manfrinetti, P.; Pecharsky, VK

    2013-01-29

    We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 ?B/Mn at 22 K, and a corresponding value of 4.7 ?B/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

  20. NE-24 Unlverslty of Chicayo Remedial Action Plan

    Office of Legacy Management (LM)

    (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the

  1. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009 updated nue oscillation paper is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) 1D array of bin boundaries in electron neutrino reconstructed neutrino energy 1D array of observed electron neutrino candidate events per reconstructed

  2. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where

  3. CA CAIOlf Mr. Andrew Wallo. III, NE-23

    Office of Legacy Management (LM)

    kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your

  4. CA M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    i900,9SS L%nfam Phm, S. W.. Washington. D.C. 20024.2174, Tlkphme: (20.7) 4S.S-M)o 7117-03.87.cdy.43 23 September 1987 CA M r. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES I - The attached elimination recommendation was prepared in accordance M1.oS with your suggestion during our meeting on 22 September. The recommendation nO.O-02

  5. CA M r. Andrew Wallo, III. NE-23

    Office of Legacy Management (LM)

    i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The

  6. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5[BOPW -PVJTJBOB 4UBUF 6OJWFSTJUZ /V'BDU 8PSLTIPQ 8JMMJBNTCVSH +VMZ -BUFTU $SPTT 4FDUJPO 3FTVMUT GSPN .JOJ#PP/& Test of LSND within the context of e appearance only is an essential first step: Keep the same L/E w )JHIFS FOFSHZ BOE MPOHFS CBTFMJOF r & r (F7 L=500m w %JGGFSFOU CFBN w %JGGFSFOU PTDJMMBUJPO TJHOBUVSF F w %JGGFSFOU TZTUFNBUJDT w "OUJOFVUSJOP DBQBCMF CFBN MiniBooNE Experiment ± E898 at Fermilab Booster K + target and horn detector dirt decay region absorber primary beam

  7. Office of Nuclear Energy Doe/ne-0143

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy Office of Nuclear Energy Doe/ne-0143 Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room,

  8. Solid Solution Phases in the Olivine-Type LiMnPO4/MnPO4 System

    SciTech Connect (OSTI)

    Chen, Guoying; Richardson, Thomas J.

    2009-04-07

    Nonstoichiometry is reported in the LiMnPO{sub 4}/MnPO{sub 4} system for the first time. As lithium is removed from crystalline LiMnPO{sub 4} by chemical or electrochemical methods, the resulting two phase mixture consists of stoichiometric LiMnPO{sub 4} and a delithiated phase, Li{sub y}MnPO{sub 4}, whose lattice parameters depend upon the global extent of delithiation and on the crystalline domain size of the delithiated phase. This behavior is reproduced during electrochemical insertion of lithium. Again, no evidence for nonstoichiometry was found in the vicinity of LiMnPO{sub 4}. Attempts to create single phase solid solutions by heating mixtures of the two phases failed due to the thermal instability of Li{sub y}MnPO{sub 4}.

  9. Princeton graduate student Imène Goumiri creates computer program that

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps stabilize fusion plasmas | Princeton Plasma Physics Lab Princeton graduate student Imène Goumiri creates computer program that helps stabilize fusion plasmas By John Greenwald and Raphael Rosen April 14, 2016 Tweet Widget Google Plus One Share on Facebook Imène Goumiri led the design of a controller. (Photo by Elle Starkman/Office of Communications) Imène Goumiri led the design of a controller. Imène Goumiri, a Princeton University graduate student, has worked with physicists at

  10. Demonstration Assessment of LED Roadway Lighting: NE Cully Blvd., Portland, OR

    SciTech Connect (OSTI)

    Royer, M. P.; Poplawski, M. E.; Tuenge, J. R.

    2012-08-01

    GATEWAY program report on a demonstration of LED roadway lighting on NE Cully Boulevard in Portland, OR, a residential collector road.

  11. MiniBooNE's First Oscillation Result Morgan Wascko Imperial College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 July, 2007 Meson Production 9 MiniBooNE Overview * External meson production data * HARP data (CERN) * Parametrisation of cross- sections * Sanford-Wang for pions * Feynman...

  12. High-energy physics detector MicroBooNE sees first accelerator-born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrinos MicroBooNE sees first accelerator-born neutrinos High-energy physics detector MicroBooNE sees first accelerator-born neutrinos The principal purpose of the detector is to confirm or deny the existence of a hypothetical particle known as the sterile neutrino. November 2, 2015 An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab. An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab.

  13. Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman University of Colorado NBI 2003 KEK, Tsukuba November 10, 2003 Kaon Monitoring at MiniBooNE 1) K-decay ν e background at BooNE K production estimates 2) Decay kinematics 3) The "Little Muon Counter" (LMC) Concept/Placement Civil construction/infrastructure Collimator Fiber Tracker Temporary detector Status K-decay ν e background MiniBooNE will see ~200-400 ν e from K + and K 0 L decays each year -- comparable to the

  14. Analysis of Neutral Current 0 Events at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutral Current π 0 Events at MiniBooNE Colin Anderson April 14, 2008 The Experiment Analysis Outline Experiment MiniBooNE Description NC π 0 Overview Analysis Selection and Reconstruction of Events Rate Measurement Correcting Monte Carlo w/ Data Coherent Fraction Measurement C.E. Anderson MiniBooNE NC π 0 Analysis 2/22 The Experiment Analysis MiniBooNE ν e appearance search designed to confirm or refute the LSND result The Beam 8 GeV p's from Booster beam directed at a Be target Produced π

  15. Microsoft PowerPoint - TAUP_09_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Results from the MiniBooNE Booster Neutrino Experiment Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * Overview of MiniBooNE Beam and Detector * Brief Presentation of New Cross Section Results * Recent Oscillation Results - ν e and⎯ν e appearance - ν µ and⎯ν µ disappearance - Offaxis results from NuMI beam * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν µ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was

  16. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator...

  17. 2014 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting The 2014 Annual Face-to-Face Meeting of the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) was held May 6-8, 2014. This meeting was hosted by the Office of Safeguards, Security and Emergency Services (OSSES) at the Savannah River Site (SRS). The Chief of Nuclear Safety (CNS) sponsors

  18. 2015 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting The Chief of Nuclear Safety (CNS) formed the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) in March 2007. The first Annual Meeting was held August 2008. The 8th Annual Meeting will be held May 11-14, 2015. This year the Annual Meeting will be hosted by EM's Office of River Protection in

  19. Investigations of element spatial correlation in Mn-promoted...

    Office of Scientific and Technical Information (OSTI)

    Investigations of element spatial correlation in Mn-promoted Co-based Fischer-Tropsch synthesis catalysts This content will become publicly available on June 4, 2017 Title: ...

  20. Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM), for the MiniBooNE collaboration SILAFAE 2010 10 December 2010, Valparaíso, Chile 2 Outlook MiniBooNE Motivation MiniBooNE Description Summary of past Results New Antineutrino Result Future outlook Conclusions A. Aguilar-Arévalo (ICN-UNAM) SILAFAE 2010, Valparaíso, Chile December 6-12, 2010 MiniBooNE Collaboration 3 MiniBooNE motivation ● LSND experiment (Los Alamos) ● Excess of  e in a  

  1. Mutual neutralization of atomic rare-gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with atomic halide anions (Cl{sup −}, Br{sup −}, I{sup −})

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with halide anions (Cl{sup −}, Br{sup −}, I{sup −}), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl{sup −} to I{sup −}. The largest rate coefficient is 6.5 × 10{sup −8} cm{sup 3} s{sup −1} for Ne{sup +} with I{sup −}. Rate coefficients for Ar{sup +}, Kr{sup +}, and Xe{sup +} reacting with Br{sub 2}{sup −} are also reported.

  2. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  3. Microsoft Word - MnO_Reduction bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2016 Figure 1. Schematic of flow-through system developed at SSRL. A reaction vessel with manganese oxides and media required for microbial experiments was kept anoxic with nitrogen gas and pH was measured using an environmental pH probe. A portion of the fluid was sampled using a peristaltic pump through anaerobic tubing to the beam line hutch where the x-ray beam sampled the Mn coordination environment, mineralogy, and redox state through a Kapton tape window on an x-ray flow-through cell.

  4. Spin caloritronics in graphene with Mn

    SciTech Connect (OSTI)

    Torres, Alberto Lima, Matheus P. Fazzio, A.; Silva, Antnio J. R. da

    2014-02-17

    We show that graphene with Mn adatoms trapped at single vacancies features spin-dependent Seebeck effect, thus enabling the use of this material for spin caloritronics. A gate potential can be used to tune its thermoelectric properties in a way it presents either a total spin polarized current, flowing in one given direction, or currents for both spins flowing in opposite directions without net charge transport. Moreover, we show that the thermal magnetoresistance can be tuned between ?100% and +100% by varying a gate potential.

  5. Magnetic Moment Enhancement for Mn7 Cluster on Graphene

    SciTech Connect (OSTI)

    Liu, Xiaojie; Wang, Cai-Zhuang; Lin, Hai-Qing; Ho, Kai-Ming

    2014-08-21

    Mn7 cluster on graphene with different structural motifs and magnetic orders are investigated systematically by first-principles calculations. The calculations show that Mn7 on graphene prefers a two-layer motif and exhibits a ferrimagnetic coupling. The magnetic moment of the Mn7 cluster increases from 5.0 ?B at its free-standing state to about 6.0 ?B upon adsorption on graphene. Mn7 cluster also induces about 0.3 ?B of magnetic moment in the graphene layer, leading to an overall enhancement of 1.3 ?B magnetic moment for Mn7 on graphene. Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement.

  6. The MiniBooNE detector technical design report

    SciTech Connect (OSTI)

    I. Stancu et al.

    2003-04-18

    The MiniBooNE experiment [1] is motivated by the LSND observation, [2] which has been interpreted as {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, and by the atmospheric neutrino deficit, [3,4,5] which may be ascribed to {nu}{sub {mu}} oscillations into another type of neutrino. MiniBooNE is a single-detector experiment designed to: obtain {approx} 1000 {nu}{sub {mu}} {yields} {nu}{sub e} events if the LSND signal is due to {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, establishing the oscillation signal at the > 5{sigma} level as shown in Fig. 1.1; extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations significantly beyond what has been studied previously if no signal is observed; search for {nu}{sub {mu}} disappearance to address the atmospheric neutrino deficit with a signal that is a suppression of the rate of {nu}{sub {mu}}C {yields} {mu}N events from the expected 600,000 per year; measure the oscillation parameters as shown in Fig. 1.2 if oscillations are observed; and test CP conservation in the lepton sector if oscillations are observed by running with separate {nu}{sub {mu}} and {bar {nu}}{sub {mu}} beams. The detector will consist of a spherical tank 6.1 m (20 feet) in radius, as shown in Fig. 1.3, that stands in a 45-foot diameter cylindrical vault. An inner tank structure at 5.75 m radius will support 1280 8-inch phototubes (10% coverage) pointed inward and optically isolated from the outer region of the tank. The tank will be filled with 807 t of mineral oil, resulting in a 445 t fiducial volume. The outer tank volume will serve as a veto shield for identifying particles both entering and leaving the detector with 240 phototubes mounted on the tank wall. Above the detector tank will be an electronics enclosure that houses the fast electronics and data acquisition system and a utilities enclosure that houses the plumbing, overflow tank, and calibration laser. The detector will be located {approx} 550 m from the Booster neutrino

  7. Mn4+ emission in pyrochlore oxides

    SciTech Connect (OSTI)

    Du, Mao-Hua

    2015-01-01

    For the existing Mn4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE2Hf2O7, RE2Zr2O7, and RE2Sn2O7). We show how the different sizes of the RE3+ cation in these pyrochlores affect the local structure of the distorted MnO6 octahedron, the Mn–O hybridization, and the Mn4+ emission energy. The Mn4+ emission energies of many pyrochlores are found to be higher than those currently known for Mn4+ doped oxides and should be closer to that of Y2O3:Eu3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO6 octahedron is an effective approach to find new Mn4+ activated red phosphors with potential to replace the relatively expensive Y2O3:Eu3+ phosphor.

  8. Electrochemical behavior of β-MnO{sub 2} and MnOOH nanorods in different electrolytes

    SciTech Connect (OSTI)

    Chinnasamy, Revathi; Thangavelu, Rajendrakumar Ramasamy

    2015-06-24

    A manganese dioxide (β-MnO{sub 2}) and MnOOH nanoparticles has been synthesized by hydrothermal method. As prepared samples are analyzed by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). FESEM showed rod morphology within the diameter of 50–200 and length of few nanometers. These nanorods are immobilized on a Glassy Carbon Electrode (GCE) by drop cast method. The comparative electrochemical behavior of β-MnO{sub 2} and MnOOH rod modified GCE electrodes are analyzed by cyclic Voltammetry (CV) method in different electrolytes of 0.1M KCl, 0.1M Na{sub 2}SO{sub 4}, 0.1M NaOH, 0.1M PBS, 0.1M H{sub 2}SO{sub 4}. From the cyclic Voltammetry analysis found that in all the electrolytes both β-MnO{sub 2} and MnOOH modified GCE electrodes exhibit electrochemical behavior and KCl shows well redox properties as compared with others. There is also an observable difference in reduction potential value of both crystalline nanostructurers and concluded that β-MnO{sub 2} has high catalytic ability as compared with MnOOH rods.

  9. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect (OSTI)

    Park, J.; Kucharek, H.; Möbius, E.; Leonard, T.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 ± 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  10. Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}

    SciTech Connect (OSTI)

    Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.

    2011-08-15

    Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.